EP4264824A1 - Verfahren und system zur schätzung der von einem fotovoltaischen modul gelieferten elektrischen leistung - Google Patents

Verfahren und system zur schätzung der von einem fotovoltaischen modul gelieferten elektrischen leistung

Info

Publication number
EP4264824A1
EP4264824A1 EP21854869.1A EP21854869A EP4264824A1 EP 4264824 A1 EP4264824 A1 EP 4264824A1 EP 21854869 A EP21854869 A EP 21854869A EP 4264824 A1 EP4264824 A1 EP 4264824A1
Authority
EP
European Patent Office
Prior art keywords
photovoltaic
group
module
modules
photovoltaic module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21854869.1A
Other languages
English (en)
French (fr)
Inventor
Duy Long Ha
Franck AL SHAKARCHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP4264824A1 publication Critical patent/EP4264824A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • a photovoltaic power plant generally comprises several chains of photovoltaic modules (also called photovoltaic panels or solar panels) connected in parallel.
  • each photovoltaic module in a chain must be monitored regularly in order to identify any faults that could cause a loss of production.
  • the defect may be of different natures, in particular permanent if it is a hardware problem, or temporary if it is for example the presence of shading or dust on the photovoltaic module.
  • the step of acquiring environmental parameters includes a step of measuring said parameters.
  • the step of determining the corrected environmental parameters is implemented by solving a nonlinear optimization problem defined by the following constraints:
  • Tamb c (i) is the corrected ambient temperature for group i of photovoltaic modules
  • WindSpeed c (C) is the corrected wind speed for group i of photovoltaic modules
  • Pmppt( ⁇ ) corresponds to the power delivered by group i of photovoltaic modules at the maximum power point
  • Pelec c ( i , j ) corresponds to the corrected electric power of each photovoltaic module of the group i of photovoltaic modules
  • Modules Ref (i) corresponds to the reference photovoltaic module(s) present in group i of photovoltaic modules;
  • is a power loss factor as a function of temperature
  • P STC (W) is a reference electrical power delivered by a photovoltaic module under standard operating conditions
  • the method comprises steps of: Determining the current at the maximum power point which passes through the group i of photovoltaic modules and the voltage at the maximum power point at the terminals of the group i of photovoltaic modules, Determination of the voltage at the terminals of each photovoltaic module of the group i of photovoltaic modules,
  • the method includes a step for carrying out diagnostics and/or maintenance of the target photovoltaic module when said determined electrical power loss is greater than said threshold value.
  • a module for acquiring the following environmental parameters for group i of photovoltaic modules o Gh (W/m2): global irradiance at the horizontal level; o Tamb (°C): Ambient temperature; o WindSpeed (m/s): Wind speed;
  • the system includes means for measuring environmental parameters.
  • the system comprises a module for determining a temperature of each photovoltaic module, which is configured to determine the temperature of each photovoltaic module of the group i of photovoltaic modules from a thermal image acquired for each photovoltaic module of group i of modules.
  • the module for determining the corrected environmental parameters is configured to solve a nonlinear optimization problem defined by the following constraints:
  • Pmppt( ⁇ ) corresponds to the power delivered for group i of photovoltaic modules at the maximum power point
  • the system comprises:
  • AP corresponds to an accepted power tolerance for each photovoltaic module of the group i of photovoltaic modules
  • FIG. 1 schematically represents a conventional photovoltaic power plant
  • FIG. 4 shows the different steps of the method of the invention and the different functional software modules involved during the execution of this method; Detailed description of at least one embodiment
  • Control means integrated or not in the converter, are able to control the inverter to perform the voltage conversion.
  • each photovoltaic module is referenced j, with j ranging from 1 to M.
  • Each photovoltaic module Mi ,j has a thermal image denoted Irrii j.
  • the system of the invention is intended to estimate, ultimately, the loss of production or energy power of a photovoltaic module that is defective in operation.
  • the estimate can be made when the photovoltaic plant is in operation.
  • in operation or “during operation”, it is meant that the photovoltaic module or the photovoltaic power plant is in the process of producing electrical energy, by conversion of incident light energy.
  • the estimation system comprises the following elements:
  • the computer 5 is intended to estimate the electric power of a photovoltaic module, called target, potentially defective.
  • the computer 5 comprises several functional software modules described below, which make it possible to carry out intermediate calculations necessary for estimating the electrical power of the photovoltaic module.
  • the acquisition means can also be configured to acquire the electric current supplied by each photovoltaic module of the group i of photovoltaic modules at the maximum power point, referenced I mp pt(i>D (A), and the voltage at the terminals of each photovoltaic module of group i of photovoltaic modules at the maximum power point, referenced V mppt (i,D (V).
  • the method of the invention firstly makes it possible to estimate the electrical power of a photovoltaic module present in a group i of photovoltaic modules.
  • the process follows the steps described below.
  • WindSpeed (m/s): Wind speed; Furthermore, as the inclination and orientation of the photovoltaic modules in each group i of photovoltaic modules are known, the computer 5 can determine the parameter:
  • Step E1 Acquisition of temperature data at the level of each photovoltaic module and determination of the average temperature of each photovoltaic module
  • the reference module Mref is a photovoltaic module analogous to the monitored and targeted photovoltaic module (that is to say with the same technical characteristics - with the same orientation and the same inclination) and not defective. It is part of the same group i of photovoltaic modules as the monitored photovoltaic module. It has a uniform temperature distribution over all of its zones. In other words, it does not include any hot thermal zone in the sense defined above during step E1.
  • two modules M1, 1, M1, 2 of group 1 of photovoltaic modules have been shown. One of the two is defective and the other photovoltaic module is healthy and can thus be chosen as the reference photovoltaic module Mref.
  • the computer 5 can estimate the theoretical electrical power that a healthy photovoltaic module, that is to say the reference module, would be able to supply.
  • the calculator is based on the following formula (equation (2)):
  • One of the principles of the invention consists in determining corrected environmental parameters taking into account constraints on the energy balance of the modules and on the electrical power P mppt (i) delivered at the maximum power point by the group i of photovoltaic modules , and a weighting function applied to the acquired environmental parameters.
  • the calculator can also rely on the following expression f:
  • CP mppt which corresponds to the tolerance allowed with respect to the power P mppt (i) acquired during step E2.
  • the tolerance can be set at 3%;
  • Tamb c (P) Tamb c (i,j)Vj
  • step E2 in an improved version, it is possible to have measurements of the current l mppt (S) which crosses the entire chain of photovoltaic modules (i.e. the group i) and voltage V mppt (i) at the terminals of group i of photovoltaic modules.
  • G(i) being the measured or estimated irradiance, respectively on a photovoltaic module of the group i of photovoltaic modules.
  • the computer 5 will estimate the voltage at the terminals of each other photovoltaic module of the group i of photovoltaic modules. For each photovoltaic module of group i of photovoltaic modules, it must be taken into account that its voltage V mppt (i,j) can be reduced depending on the number of active bypass diodes. We can therefore add a variable which corresponds to the number of diodes activated for each photovoltaic module, referenced DiodeActive(i,_r) e ⁇ 0,1,2, .. , N diode ⁇ . N diode is the total number of diodes in the photovoltaic module. A continuous degradation factor is also added: Degrade (iJ) e [0.1], This factor makes it possible to take account of the level of aging of each module, which may vary from one module to another.
  • the computer 5 is required to solve the optimization problem mentioned above (step 5.1 and step 5.2 if executed). This is a non-linear optimization problem that can be solved with "fmincon" type solvers.
  • the computer 5 By determining this power loss for each photovoltaic module, the computer 5 is able to identify, within a group of several photovoltaic modules, the photovoltaic modules which are defective, for example by comparing the power loss calculated for the photovoltaic module with a stored threshold value. Each photovoltaic module declared as defective may be subject to specific diagnostic and/or maintenance actions.
  • the step EO is implemented by the environmental data acquisition means of the system. This means, for example, measuring wind speed, ambient temperature and irradiance. This data can also be retrieved by the computer by connecting to a remote weather server.
  • a remote weather server in a non-limiting manner, we have represented the various sensors 2, 3, 4 necessary for taking these measurements.
  • Step E1 is implemented both by the temperature data acquisition device and by a processing module MT of the computer 5, responsible for processing the measurement data to assign an average temperature to each photovoltaic module.
  • the data acquisition is carried out by the thermal camera 1 .
  • Step E2 is implemented thanks to the inverter 6 responsible for transmitting the electrical data of the group i of photovoltaic modules and to a module for acquiring the electrical data relating to the group i of photovoltaic modules, this acquisition module being integrated into the calculator.
  • the optional step E3 is implemented by a selection module MS of the computer 5, the latter being responsible for selecting at least one reference photovoltaic module Mref.
  • the optional step E4 is implemented by a first calculation module MC1 of the computer 5, intended to calculate the theoretical electric power P eiec (i,_T) supplied to a healthy photovoltaic module.
  • Step E5 is implemented by a second calculation module MC2 of the computer, intended to solve the optimization problem with a view to determining the three environmental parameters sought.
  • the module MC2 can in particular use the measurements of current / mppt (0 (A) of the voltage V mppt (i) (V) at the level of group i of modules photovoltaic cells and estimate the corrected electrical power P eiec (i,j) in order to facilitate obtaining the desired environmental parameters.
  • Step E6 is implemented by a third calculation module MC3 of the computer, intended to estimate the actual electrical power Pelec c (i,f) supplied by each photovoltaic module Mi,j and the power loss PowerLoss(i,f ) of each photovoltaic module.
  • G arr(0 which is the solar irradiance received by the rear face of the photovoltaic module; It can come from a measurement or an estimate from a model;

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
EP21854869.1A 2020-12-17 2021-12-13 Verfahren und system zur schätzung der von einem fotovoltaischen modul gelieferten elektrischen leistung Pending EP4264824A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013440A FR3118363B1 (fr) 2020-12-17 2020-12-17 Procédé et système d'estimation de la puissance électrique fournie par un module photovoltaïque
PCT/EP2021/085524 WO2022128933A1 (fr) 2020-12-17 2021-12-13 Procédé et système d'estimation de la puissance électrique fournie par un module photovoltaïque

Publications (1)

Publication Number Publication Date
EP4264824A1 true EP4264824A1 (de) 2023-10-25

Family

ID=74554100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21854869.1A Pending EP4264824A1 (de) 2020-12-17 2021-12-13 Verfahren und system zur schätzung der von einem fotovoltaischen modul gelieferten elektrischen leistung

Country Status (3)

Country Link
EP (1) EP4264824A1 (de)
FR (1) FR3118363B1 (de)
WO (1) WO2022128933A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059986A (ja) 1998-04-08 2000-02-25 Canon Inc 太陽電池モジュ―ルの故障検出方法および装置ならびに太陽電池モジュ―ル
US20110088744A1 (en) 2009-10-21 2011-04-21 Bp Corporation North America Inc. Photovoltaic Module Failure Detection Devices and Methods
US9660576B2 (en) * 2010-05-04 2017-05-23 Solmetric Corporation Predicting production of photovoltaic systems
US20110316343A1 (en) 2010-06-25 2011-12-29 International Business Machines Corporation Photovoltaic module with integrated diagnostics
US20140278332A1 (en) * 2013-03-15 2014-09-18 Inaccess Networks S.A. System And Method For Performance Monitoring And Evaluation Of Solar Plants
WO2015118608A1 (ja) 2014-02-04 2015-08-13 株式会社日立システムズ 太陽電池検査システムおよび太陽電池検査方法
FR3036900B1 (fr) 2015-05-26 2017-06-16 Commissariat Energie Atomique Procede et systeme d'estimation d'une perte de production energetique d'un module photovoltaique

Also Published As

Publication number Publication date
FR3118363B1 (fr) 2023-06-30
FR3118363A1 (fr) 2022-06-24
WO2022128933A1 (fr) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2022128932A1 (fr) Procédé et système d'estimation de la puissance électrique fournie par un module photovoltaïque
EP2491413B1 (de) Pv-modul mit elektronischen schaltern
EP3474439B1 (de) Verfahren zur elektrischen characterisierung einer solarzelle
EP2510415B1 (de) Elektronische steuervorrichtung mit adaptierbaren schwellen für solarzellen
US9876468B2 (en) Method, system and program product for photovoltaic cell monitoring via current-voltage measurements
WO2010070621A1 (fr) Systeme de gestion electronique de cellules photovoltaiques
EP3300249B1 (de) Verfahren und system zur überwachung und diagnose einer fotovoltaik-architektur
WO2020115431A1 (fr) Procédé de détermination d'une vitesse de salissure d'une unité de production photovoltaïque
WO2011117485A1 (fr) Dispositif et méthode pour détecter la performance de panneaux photovoltaïques
EP3474440B1 (de) Fehlererkennungsverfahren für photovoltaikmodul
WO2017055701A1 (fr) Commande en puissance, perfectionnée, d'un ensemble de panneaux photovoltaïques pour la participation au réglage de fréquence sans recours à un moyen de stockage
EP2510416A1 (de) System zur elektronischen verwaltung von pv-zellen als meteorologische funktion
EP3648020B1 (de) Absicherung eines eingriffs in einem niedrigspannungszweig eines stromversorgungsnetzes
EP4199348A1 (de) Verfahren und vorrichtung zur diagnose des betriebs einer string von photovoltaikmodulen mit mindestens einem photovoltaikmodul
Yaichi et al. Monitoring of PV systems installed in an extremely hostile climate in southern Algeria: Performance evaluation extended to degradation assessment of various PV panel of single-crystalline technologies
EP3660524B1 (de) Verfahren zur bestimmung einer korrigierten charakteristischen strom-spannungs-kurve eines elektrischen systems
EP3304732B1 (de) Verfahren zur schätzung eines verlusts der energieerzeugung eines photovoltaischen moduls
Atsu et al. Thermal behavior analysis of different solar PV modules via thermographic imaging
EP4264824A1 (de) Verfahren und system zur schätzung der von einem fotovoltaischen modul gelieferten elektrischen leistung
EP4268363B1 (de) Verfahren zur diagnose von fotovoltaischen anlagen durch analyse von iv-kurven
EP3447908A1 (de) Quantitatives analyseverfahren einer anlage, die ein elektrolumineszenzmodul umfasst
EP4277122A1 (de) Verfahren und vorrichtung zur bestimmung der verluste einer planaren photovoltaik-anordnung
EP3447909B1 (de) Verfahren und vorrichtung zur charakterisierung eines fotovoltaikmoduls
WO2023105169A1 (fr) Procédé de caractérisation électrique de cellules d'un module photovoltaïque
FR3067120A1 (fr) Methode et dispositif de gestion d'un systeme photovoltaique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)