EP4264678A1 - Simplified tandem structure for solar cells with two terminals - Google Patents

Simplified tandem structure for solar cells with two terminals

Info

Publication number
EP4264678A1
EP4264678A1 EP21851608.6A EP21851608A EP4264678A1 EP 4264678 A1 EP4264678 A1 EP 4264678A1 EP 21851608 A EP21851608 A EP 21851608A EP 4264678 A1 EP4264678 A1 EP 4264678A1
Authority
EP
European Patent Office
Prior art keywords
type
layer
silicon
conductivity
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21851608.6A
Other languages
German (de)
French (fr)
Inventor
Apolline PUAUD
Muriel Matheron
Maria-Delfina MUNOZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
3Sun SRL
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
3Sun SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA, 3Sun SRL filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP4264678A1 publication Critical patent/EP4264678A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of photovoltaic devices, in particular photovoltaic cells of the perovskite tandem type on silicon heterojunction with 2 terminals.
  • the invention relates to a simplified structure having (photo)electric properties comparable to those of a conventional tandem structure.
  • Solar cells convert part of the spectral range of solar radiation into energy. To increase the efficiency of this conversion, it is possible to manufacture structures with tandem architecture comprising two subassemblies (i.e. a lower cell and an upper cell), absorbing in different spectral domains.
  • the lower cell 10 can be, for example, a cell made of perovskite, of CIGS (Cu(ln,Ga)Se 2 ), or it can be a cell based on silicon, for example, with homojunction or with silicon heterojunction (HET-Si or SHJ for “Silicon HeteroJunction solar cell”), of the PERC (“Passivated Emitter and Rear Contact”) or TopCon (“Tunnel Oxide Passivated Contact”) type or even an N-type PERT cell with double diffusion of phosphorus.
  • HET-Si or SHJ for “Silicon HeteroJunction solar cell” of the PERC (“Passivated Emitter and Rear Contact”) or TopCon (“Tunnel Oxide Passivated Contact”) type or even an N-type PERT cell with double diffusion of phosphorus.
  • the upper cell 30 can be, for example, a perovskite, organic or multi-junction cell (MJSC) based on III-V materials (AlGaAs, GalnP, GaAs).
  • MJSC organic or multi-junction cell
  • the NIP-type structure conventionally comprises from the rear face to the front face (figure IA):
  • a lower cell 10 comprising a layer of n-type doped amorphous silicon 11 ((n) a-Si:H), an n-type doped crystalline silicon substrate 12 (c-Si(n)) placed between two layers of intrinsic amorphous silicon 13, 14 ((i) a-Si:H),
  • an upper cell 30 comprising: an N type layer 33 (SnO 2 for example), an active layer made of a perovskite material 31, a P type layer 32 (PTAA for example).
  • Lower and upper electrodes 40, 50 as well as electrical contacts 60, 70 complete the structure.
  • a lower cell 10 comprising a layer of p-doped amorphous silicon 15 ((p) a-Si:H), an n-type doped crystalline silicon substrate 12 (c-Si(n)), placed between two layers of silicon intrinsic amorphous 13, 14 ((i) a-Si:H), an N-type doped amorphous silicon layer 11 ((n) a-Si:H),
  • an upper cell 30 comprising: a P-type layer 32, an active layer of perovskite material 31 and an N-type layer 33.
  • Each sub-cell 10, 30 of the tandem structure comprises layers which make it possible to separate and select the charges according to their polarity.
  • the recombination zone 20 between the two sub-cells is called “recombination junction” because it allows the charges to recombine. It also allows the series connection of the sub-cells and thus the addition of their voltages. It must lead to the recombination of the electrons generated in the upper cell and the holes generated in the lower cell for a tandem of NIP structure (Fig.1A) and the reverse for a PIN structure (Fig.1B).
  • the recombination zone 20 is, for example, formed of a tunnel junction formed of two highly doped layers: one of the P type 21 ((p+)pc-Si:H) and the other of the N type 22 ((n+)pc-Si:H). In the case of a NIP structure, the layer 21 of the recombination zone also plays the role of transmitter of the lower cell 10.
  • tandem structures require many steps to be manufactured, which increases manufacturing costs and the number of layers and interfaces that can lower performance (by adding series resistance, contact resistances, unwanted recombinations ).
  • NIP-like tandem structure comprising a perovskite upper cell and a lower cell based on crystalline silicon and poly-Si can work by directly positioning the upper cell on the lower cell (Shen et al. “In situ recombination junction between p-Si and TiO 2 enables high-efficiency monolithic perovskite/Si tandem cells”, Science Advances, 2018; 4: eaau9711). More particularly, an N-type TiO 2 layer is deposited by ALD directly on the P-doped silicon of the lower cell. Then, a layer of perovskite and a P-type layer of PTAA are deposited. The operation of this structure is made possible thanks to the low contact resistivity between the ALD layer of TiO 2 and the P-doped silicon of the lower cell.
  • tandem perovskite-on-silicon homojunction structure was fabricated by directly depositing the N-type SnO2 layer of the upper perovskite cell onto the P-type layer of the lower cell (Zheng et al. "Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency", Energy Environ. Sci ., 2018, 11, 2432-2443).
  • An object of the present invention is to propose a perovskite tandem structure on silicon heterojunction based on amorphous silicon and on two-terminal crystalline silicon having good electrical properties and which is simpler and less expensive to manufacture.
  • the present invention proposes a structure of tandem solar cells with 2-terminal perovskite on silicon heterojunction based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face:
  • a first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: a first layer of a first type of conductivity in amorphous silicon, a crystalline silicon substrate (from the first type of conductivity or of a second type of conductivity) arranged between two layers of intrinsic amorphous silicon, and optionally a first layer of a second type of conductivity in amorphous silicon,
  • a recombination zone comprising at least one layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity
  • a second solar cell comprising an active layer made of a perovskite material and a second layer of a second type of conductivity, the recombination zone further comprising a second layer of the first type of conductivity in contact with the active layer of the second cell solar cell or a layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity in contact with the active layer of the second solar cell.
  • the invention differs fundamentally from the prior art in that in these structures, one of the layers of the recombination zone fulfills a dual function: both the role of charge selection (N or P type contact ) and participates in recombination junction function.
  • This functional structure allows the recombination of charges and the series connection between the two sub-cells, without adding a layer and/or material. Additional space between the two sub-cells of the tandem structure, as is the case in conventional tandem structures.
  • the recombination zone is a fully recombinant P-N junction (regardless of the recombination mechanisms).
  • the recombination zone causes no reverse potential: no voltage loss in the tandem solar cell.
  • This simplified structure is easier to manufacture compared to the structures of conventional tandem solar cells.
  • the reduction in the number of structural layers and therefore of steps in the manufacturing process lead to a reduction in manufacturing costs.
  • the first type of conductivity is an N-type conductivity (i.e. it is a NIP-type tandem structure).
  • the structure may comprise from the rear face towards the front face:
  • the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: the first layer of the first type of conductivity (type N) in amorphous silicon and the crystalline silicon substrate arranged between the two layers of intrinsic amorphous silicon,
  • the second perovskite solar cell comprising towards the front face: the second layer of the first type of conductivity (type N), preferably of SnO 2 , the active layer of a perovskite material and the second layer of a second type of conductivity ( type P) preferably in PTAA.
  • type N first type of conductivity
  • type P second type of conductivity
  • the recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type P) and of the second layer of the first type of conductivity (type N). These two layers are in direct contact.
  • the upper cell is a conventional cell. This configuration makes it possible to obtain high yields.
  • the structure may comprise from the rear face towards the front face:
  • the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: the first layer of the first type of conductivity (type N) in amorphous silicon and the crystalline silicon substrate arranged between the two layers of intrinsic amorphous silicon,
  • the second perovskite solar cell comprising towards the front face: the active layer in a perovskite material and the second layer of the second type of conductivity (type P) preferably in PTAA.
  • the recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type P) and of the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N) which form a junction tunnel.
  • the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N) also serves as a charge extractor in the second cell (perovskite).
  • perovskite There is no need to add a layer of the first type of conductivity (type N), such as a layer of SnO 2 , in the second solar cell.
  • the active layer of the second solar cell is in direct contact with the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N).
  • the layers based on nanocrystalline or microcrystalline silicon can be deposited in the same equipment as the amorphous silicon layers of the lower cell and on large surfaces in a homogeneous manner, which simplifies the manufacturing process and facilitates the obtaining a homogeneous perovskite layer.
  • the first type of conductivity is a P-type conductivity (ie it is a tandem structure of the type
  • the structure may comprise from the rear face towards the front face:
  • the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: the first layer of the first type of conductivity (type P) in amorphous silicon, the crystalline silicon substrate disposed between the two layers of intrinsic amorphous silicon, possibly the first layer of the second type of conductivity (type N) in amorphous silicon,
  • the second perovskite solar cell comprising towards the front face: the second layer of the first type of conductivity (type P), preferably in PTAA or in TFB or alternatively obtained from phosphonate(s), silanes or carboxylic acids, the layer active in a perovskite material and the second layer of the second conductivity type (type N), preferably in SnO 2 or even a PCBM/SnO 2 or PCBM/BCP stack.
  • type P the first type of conductivity
  • type N the second conductivity type
  • the recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type N) and of the second layer of the first type of conductivity (type P). These two layers are in direct contact.
  • the lower cell is a classic heterojunction cell and does not require additional development.
  • the structure may comprise from the rear face towards the front face:
  • the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising from the rear face towards the face front: the first layer of the first type of conductivity (type P) in amorphous silicon, the crystalline silicon substrate placed between the two layers of intrinsic amorphous silicon, the first layer of the second type of conductivity (type N) in amorphous silicon,
  • the second perovskite solar cell comprising towards the front face: the active layer in a perovskite material and the second layer of the second type of conductivity (N type) preferably in SnO 2 or even a PCBM/SnO 2 or PCBM/BCP stack.
  • N type the second type of conductivity
  • the recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type N) and a layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type P) which form a tunnel junction .
  • the layer based on nanocrystalline or microcrystalline silicon of the first conductivity type (type P) also serves as a charge extractor in the perovskite cell.
  • the active layer of the second solar cell is in direct contact with the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type P).
  • the layers based on nanocrystalline or microcrystalline silicon can be deposited in the same equipment as the amorphous silicon layers of the lower cell and on large surfaces in a homogeneous manner, which simplifies the manufacturing process and facilitates the obtaining a homogeneous perovskite layer. Strong currents can be obtained with this architecture.
  • the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity is in pc-Si:H (p+), pc- Si:H (n+), nc-SiC x type N or P or nc-SiO y type N or P with x ranging from 0 to 1 and y ranging from 0 to 2.
  • nanocrystalline or microcrystalline is meant a layer comprising both an amorphous phase and a crystalline phase, the crystalline phase having a grain size of less than 30 nm. It is generally between 1 and 10 nm for nanocrystalline silicon and generally between 10 and 30 nm and preferably between 10 and 20 nm for microcrystalline. Sometimes, in the literature, for grain sizes below 10 nm, we also find the denomination of microcrystalline silicon.
  • the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a thickness ranging from 15 nm to 60 nm and preferably from 20 nm to 40 nm.
  • the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a conductivity greater than 10 S.cm.
  • the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a doping rate of 10 18 /cm 3 to 10 22 /cm 3 , and preferably between 10 19 /cm 3 and 10 2 °/cm 3 for type P and between 10 2 °/cm 3 and 10 21 /cm 3 for type N.
  • FIG. 1A previously described in the prior art represents, schematically and in section, a two-terminal PIN-PIN tandem structure.
  • FIG. 1B previously described in the prior art represents, schematically and in section, a tandem PIN-PIN structure with two terminals.
  • FIG. 2A represents, schematically and in section, a simplified tandem structure NIP-PIN with two terminals, according to a particular embodiment of the invention.
  • FIG. 2B represents, schematically and in section, a simplified tandem PIN-PIN structure with two terminals, according to another particular embodiment of the invention.
  • FIG. 3A represents, schematically and in section, a simplified tandem structure PIN-PIN with two terminals, according to another particular embodiment of the invention.
  • FIG. 3B represents, schematically and in section, a simplified PIN-PIN tandem structure with two terminals, according to another particular embodiment of the invention.
  • Figures 4A and 4B are graphs representing the EQE and the '1-Rtot' value as a function of the wavelength (with Rtot corresponding to the total reflection of the stack of the cell (without the metallization on the front face )), obtained for tandem structures polished on the front face and on the back face, of NIP type (corresponding to FIGS. 1A, 2A and 3A) and of PIN type (corresponding to FIGS. IB, 2B and 3B) respectively.
  • Figures 5A and 5B are graphs representing the EQE and the value '1-Rtot' as a function of the wavelength, obtained for tandem structures whose substrate is polished on the front face and with a classic pyramidal texturing on the face rear, PIN type (corresponding to Figures IB, 2B and 3B) and PIN type (corresponding to Figures IA, 2A and 3A) respectively.
  • Figures 6A and 6B are graphs representing the EQE and the value '1-Rtot' as a function of the wavelength, obtained for textured tandem structures on the front face and on the back face, of NIP type (corresponding to the figures IA, 2A and 3A) and PIN type (corresponding to Figures IB, 2B and 3B) respectively.
  • FIGS. 2A, 2B, 3A and 3B represent four simplified 100 perovskite tandem structures on silicon heterojunction (amorphous silicon/crystalline silicon). Each of these tandem structures 100 includes:
  • first cell 110 (or lower cell for “bottom cell”) with silicon heterojunction (HET-Si or SHJ for "Silicon HeteroJunction solar cell”) positioned on the rear face of the device,
  • HET-Si or SHJ silicon heterojunction solar cell
  • a recombination zone a fully recombinant P-N junction (regardless of the recombination mechanisms), produced without adding additional layers and/or materials; the recombination zone does not lead to any reverse potential (i.e. no voltage loss in the tandem solar cell),
  • a second perovskite cell 130 (or upper cell for “top cell”) positioned on the front face of the device.
  • the front face is the face intended to receive the light radiation (represented by arrows in the figures).
  • This NIP-type (or standard transmitter) tandem 100 structure includes: - the first silicon heterojunction solar cell 110 (based on amorphous silicon and crystalline silicon) comprising from the rear face towards the front face: a first layer of n-doped amorphous silicon (for example a layer of n-doped hydrogenated amorphous silicon also denoted (n) a-Si:H) 111 and a doped crystalline silicon substrate 112 (for example an n-doped crystalline silicon substrate also denoted c-Si (n)) arranged between two layers of intrinsic amorphous silicon 113, 114 (also called layers of (i)a-Si:H or intrinsic hydrogenated amorphous silicon),
  • a layer based on nanocrystalline or microcrystalline silicon of type P 121 for example a layer of hydrogenated microcrystalline silicon doped p+ also denoted layer (p+) pc-Si:H), which also serves as an emitter in the heterojunction cell,
  • a second perovskite solar cell 130 comprising towards the front face: an N-type layer 133 (for example an SnO 2 layer), an active layer 131 made of a perovskite material and a P-type layer 132 (for example a layer of PTAA).
  • N-type layer 133 for example an SnO 2 layer
  • active layer 131 made of a perovskite material
  • P-type layer 132 for example a layer of PTAA
  • This tandem structure 100 of the PIN type (or with inverted emitter) comprises:
  • the first silicon heterojunction solar cell 110 based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: a p-type amorphous silicon layer 115 (for example a p-doped hydrogenated amorphous silicon layer, also denoted (p) a-Si:H), a doped crystalline silicon substrate 112 (for example a c-Si(n) substrate) arranged between two layers of intrinsic amorphous silicon 113, 114 (for example (i) a- Si:H), and possibly a first layer of N-type amorphous silicon 111 (for example (n) a-Si:H), which is also the incubation layer of the nano or microcrystalline layer 122,
  • a p-type amorphous silicon layer 115 for example a p-doped hydrogenated amorphous silicon layer, also denoted (p) a-Si:H
  • a doped crystalline silicon substrate 112 for example a c-S
  • N 122 for example a layer of hydrogenated microcrystalline silicon doped n+ also denoted layer (n+) pc-Si:H
  • a second perovskite solar cell 130 comprising towards the front face: a P-type layer 132 (for example a PTAA or TBF layer), an active layer 131 made of a perovskite material and an N-type layer 133 (for example a layer in SnO 2 or a PCBM/SnO 2 or PCBM/BCP bilayer).
  • a P-type layer 132 for example a PTAA or TBF layer
  • an active layer 131 made of a perovskite material
  • an N-type layer 133 for example a layer in SnO 2 or a PCBM/SnO 2 or PCBM/BCP bilayer.
  • the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (P in the case of a NIP structure and N in the case of a PIN structure) is in contact directly with the layer of the second type of conductivity (N in the case of a NIP structure and P in the case of a PIN structure) of the second cell 130.
  • the recombination junction is located between the layer based on nanocrystalline silicon or microcrystalline material of the first conductivity type and the charge carrier/extractor material of the second conductivity type of the second solar cell 130 (i.e. between layers 121 and 133 for the NIP structure and between layers 122 and 132 for the PIN structure) .
  • tandem structure 100 represented in FIG. 3A.
  • This NIP-type (or standard transmitter) tandem 100 structure includes:
  • a first silicon heterojunction solar cell 110 based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: an N-type amorphous silicon layer 111 (for example (n) a-Si:H) and a crystalline silicon substrate 112 (for example a c-Si (n) substrate) arranged between two layers of intrinsic amorphous silicon 113, 114 (for example (i) a-Si:H),
  • a layer based on nanocrystalline or microcrystalline silicon of type P 121 which also plays the role of emitter of the heterojunction cell (for example (p+)pc-Si:H) and a layer based on nanocrystalline or microcrystalline silicon of type N 122 (e.g. (n+)pc-Si:H),
  • a second perovskite solar cell 130 comprising towards the front face: an active layer (131) made of a perovskite material and a P-type layer 132 (for example a PTAA layer).
  • This tandem structure 100 of the PIN type (or with inverted emitter) comprises: - a first silicon heterojunction solar cell 110 based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: a layer of P-type amorphous silicon 115 (for example (p) a-Si:H) and a crystalline silicon substrate 112 (for example a c-Si (n) substrate) arranged between two layers of intrinsic amorphous silicon 113, 114 (for example (i) a-Si:H), possibly an amorphous silicon layer of type N 111 (for example (n) a-Si:H), which is also the incubation layer of the nano or microcrystalline layer 121,
  • a second perovskite solar cell 130 comprising towards the front face: an active layer 131 made of a perovskite material and an N-type layer 133 (for example an SnO 2 layer or a PCBM/SnO 2 bilayer).
  • the P-type nanocrystalline or microcrystalline silicon-based layer 121 or 122 and the N-type nanocrystalline or microcrystalline silicon-based layer 122 or 121 form a tunnel junction 120.
  • the one of these layers is in direct contact with the active layer 131 of the second solar cell 130 and then also acts as a charge extractor in the second cell 130.
  • the layers of nanocrystalline or microcrystalline silicon of P type (p+) and/or of N type (n+) can have a thickness ranging from 20 to 40 nm.
  • the Fermi level is between 4.5 and 5.9 eV.
  • the Fermi level is between 3.9 and 4.4 eV.
  • Nanocrystalline or microcrystalline silicon layers are heavily doped.
  • the doping of the nanocrystalline or microcrystalline (p+ or n+) silicon layers ranges, for example, from 10 18 to 10 22 /cm 3 .
  • the layers based on nanocrystalline or microcrystalline silicon are in pc-Si:H (p+), pc-Si:H (n+), nc-SiC x type N or P or nc-SiO y type N or
  • Such layers advantageously have a high vertical conductivity, a low vertical resistance (typically less than 0.5 Ohm.cm 2 ) and/or a lateral conductivity greater than 10" 3 S.cm -1 .
  • the p/n type doping levels of the layers 111 and 115 are, for example, between 10 and 10 /cm '
  • the silicon substrate 12 of the lower cell can be polished or textured (for example, it can be textured in the form of 2 ⁇ m pyramids).
  • the amorphous layers of the lower cell having a thickness of a few nanometers, they will take the form of the texturing of the substrate.
  • the N-type layer 133 of the perovskite cell 130 also called “electron transport layer” (or EIL for "Electron Injection Layer” or ETL for “Electron Transport Layer”) is, for example, a metal oxide such as zinc oxide (ZnO), aluminum doped zinc oxide also called AZO (ZnO: Al), titanium oxide (TiO 2 ) or tin oxide (SnO 2 ). It can also be a stack of [6,6]-phenyl-C 6 i-methyl butanoate and SnO 2 (PCBM/SnO 2 ) or [6,6]-phenyl-C 6 i- bathocuproine methyl butanoate (PCBM/ BCP).
  • PCBM/SnO 2 [6,6]-phenyl-C 6 i- bathocuproine methyl butanoate
  • the P-type layer 132 of the perovskite cell 130 is also called “hole transport layer” (or HTL for “Hole Transport Layer”).
  • the P-type layer 132 is, for example, an organic compound such as Poly(3,4- ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS), [poly(bis 4-phenyl ⁇ 2,4,6-trimethylphenyl ⁇ amine)] (PTAA), [Poly(A/,A/'-bis(4-butylphenyl)-A/,A/'-bis(phenyl)-benzidine] (Poly-TPD), 2,2 , ,7,7 , -Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'- spirobifluorene (spiro-OMeTAD), N4,N4'-bis(4-(6-((3- ethyloxetan-3-yl
  • the active layer 131 of the perovskite cell 130 comprises at least one perovskite material.
  • the perovskite material has the general formula ABX 3 with A representing one or more monovalent organic cations, such as an ammonium, such as methylammonium or formamidinium, or even a monovalent metal cation, such as cesium or rubidium; B representing a divalent metal cation such as Pb, Sn, Ag or a mixture thereof; and X representing one or more halide anions.
  • the perovskite material may have the particular formula H 2 NCHNH 2 PbX 3 or CH 3 NH 3 PbX 3 with X a halogen. It may be, for example, methylammonium lead iodide CH 3 NH 3 Pbl 3 .
  • the perovskite material has the formula Cs x FAi. x Pb(li. y Br y ) 3 .
  • the tandem device 100 can also comprise:
  • the lower electrode 140 can advantageously be opaque or of limited transparency, for example a conductive transparent oxide such as in particular ITO, IOH (hydrogenated indium oxide), or AZO
  • a conductive transparent oxide such as in particular ITO, IOH (hydrogenated indium oxide), or AZO
  • This electrode 150 can be made of conductive transparent oxide, typically indium-tin oxide (ITO) or zinc oxide doped with aluminum (ZnO: AI), IZO, IZrO, IWO, etc., or it can be formed from a transparent conductive polymer comprising silver nanowires, for example ,
  • the contact times can be for example in gold, aluminum or silver (deposited for example by evaporation, or printed by screen printing, inkjet printing, etc.).
  • Simplified tandem structures 100 are shown in Figures 2A, 2B, 3A and 3B.
  • Tables 1 and 2 below list the thicknesses of the simulated layers for NIP and PIN type architectures respectively.
  • the perovskite used in the simulations is of the Cs x FAi type.
  • x Pb(li. y Br y )3 (with x ⁇ 0.20; 0 ⁇ y ⁇ 1).
  • Two different thicknesses were used to obtain less current deviation between the two sub-cells when the surface state is modified.
  • the results presented will be with a perovskite 250 nm thick when the front side is polished and 415 nm thick when textured.
  • Optical simulations of these structures were carried out using the CROWM software, taking into account the optical indices of the layers, their thickness and the state of the surface (totally flat, textured, etc.). These simulations are performed between 310 and 1200 nm with the AMI.5 solar spectrum. The optical indices were extracted by ellipsometry from the experimental layers.
  • the front and back faces of the tandem structures can be polished or textured independently of each other.
  • FIGS. 3A and 3B prove to be different from the others in terms of distribution of the absorption in the tandem cell, on the other hand the resulting short-circuit currents are very similar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Tandem photovoltaic structure (100) comprising, from the rear face to the front face: - a first solar cell (110) with a silicon heterojunction; a first layer which has a first conductivity type and is made from amorphous silicon and a substrate (112) of doped crystalline silicon which is arranged between two layers of intrinsic amorphous silicon (113, 114), - a recombination zone comprising a layer of nano-crystalline or mono-crystalline silicon of the second conductivity type, - a second solar cell (130) comprising an active layer (131) made from a perovskite material and a second layer of a second conductivity type, the recombination zone further comprising a layer of the first conductivity type in contact with the active layer of the second cell or a layer of nano-crystalline or mono-crystalline silicon of the first conductivity type in contact with the active layer of the second solar cell.

Description

STRUCTURE SIMPLIFIEE DE CELLULES SOLAIRES TANDEM A DEUX TERMINAUX SIMPLIFIED STRUCTURE OF TWO-TERMINAL TANDEM SOLAR CELLS
DESCRIPTION DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention se rapporte au domaine des dispositifs photovoltaïques, en particulier des cellules photovoltaïques de type tandem pérovskite sur hétérojonction de silicium à 2 terminaux. The present invention relates to the field of photovoltaic devices, in particular photovoltaic cells of the perovskite tandem type on silicon heterojunction with 2 terminals.
L'invention concerne une structure simplifiée ayant des propriétés (photo)électriques comparables à celles d'une structure tandem classique. The invention relates to a simplified structure having (photo)electric properties comparable to those of a conventional tandem structure.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE PRIOR ART
Les cellules solaires permettent de convertir une partie du domaine spectral du rayonnement solaire en énergie. Pour augmenter le rendement de cette conversion, il est possible de fabriquer des structures à architecture tandem comprenant deux sous-ensembles (i.e. une cellule inférieure et une cellule supérieure), absorbant dans des domaines spectraux différents. Solar cells convert part of the spectral range of solar radiation into energy. To increase the efficiency of this conversion, it is possible to manufacture structures with tandem architecture comprising two subassemblies (i.e. a lower cell and an upper cell), absorbing in different spectral domains.
De nombreuses configurations sont possibles. La cellule inférieure 10 peut être, par exemple, une cellule en pérovskite, en CIGS (Cu(ln,Ga)Se2), ou encore il peut s'agir d'une cellule à base de silicium, par exemple, à homojonction ou à hétérojonction de silicium (HET-Si ou SHJ pour « Silicon HeteroJunction solar cell »), de type PERC (« Passivated Emitter and Rear Contact ») ou TopCon (« Tunnel Oxide Passivated Contact ») ou encore une cellule PERT type N avec double diffusion de phosphore. Many configurations are possible. The lower cell 10 can be, for example, a cell made of perovskite, of CIGS (Cu(ln,Ga)Se 2 ), or it can be a cell based on silicon, for example, with homojunction or with silicon heterojunction (HET-Si or SHJ for “Silicon HeteroJunction solar cell”), of the PERC (“Passivated Emitter and Rear Contact”) or TopCon (“Tunnel Oxide Passivated Contact”) type or even an N-type PERT cell with double diffusion of phosphorus.
La cellule supérieure 30 peut être, par exemple, une cellule pérovskite, organique ou multi-jonction (MJSC) à base de matériaux lll-V (AIGaAs, GalnP, GaAs). The upper cell 30 can be, for example, a perovskite, organic or multi-junction cell (MJSC) based on III-V materials (AlGaAs, GalnP, GaAs).
Les deux sous-cellules sont empilées l'une sur l'autre selon un schéma NIP/NIP (figure IA) ou PIN/PIN (figure IB) A titre illustratif, dans le cas des structures tandem de type pérovskite sur hétérojonction de silicium à 2-terminaux, la structure de type NIP comprend classiquement de la face arrière vers la face avant (figure IA) : The two sub-cells are stacked on top of each other in a PIN/PIN (Figure IA) or PIN/PIN (Figure IB) scheme By way of illustration, in the case of perovskite-type tandem structures on 2-terminal silicon heterojunction, the NIP-type structure conventionally comprises from the rear face to the front face (figure IA):
- une cellule inférieure 10 comprenant une couche de silicium amorphe dopé de type n 11 ((n) a-Si :H), un substrat en silicium cristallin 12 dopé de type n (c-Si(n)) disposé entre deux couches de silicium amorphe intrinsèques 13, 14 ((i) a-Si :H), - a lower cell 10 comprising a layer of n-type doped amorphous silicon 11 ((n) a-Si:H), an n-type doped crystalline silicon substrate 12 (c-Si(n)) placed between two layers of intrinsic amorphous silicon 13, 14 ((i) a-Si:H),
- une zone de recombinaison 20, - a recombination zone 20,
- une cellule supérieure 30 comprenant : une couche de type N 33 (SnO2 par exemple), une couche active en un matériau pérovskite 31, une couche de type P 32 (PTAA par exemple). - an upper cell 30 comprising: an N type layer 33 (SnO 2 for example), an active layer made of a perovskite material 31, a P type layer 32 (PTAA for example).
Des électrodes inférieures et supérieures 40, 50 ainsi que des contacts électriques 60, 70 viennent compléter la structure. Lower and upper electrodes 40, 50 as well as electrical contacts 60, 70 complete the structure.
Dans le cas d'une structure de type PIN, les couches de type P et N sont inversées et la structure comprend classiquement de la face arrière vers la face avant (figure IB) : In the case of a PIN type structure, the P and N type layers are reversed and the structure conventionally comprises from the rear face to the front face (figure IB):
- une cellule inférieure 10 comprenant une couche de silicium amorphe dopé P 15 ((p) a-Si :H), un substrat en silicium cristallin 12 dopé de type n (c-Si(n)), disposé entre deux couches de silicium amorphe intrinsèque 13, 14 ((i) a-Si :H), une couche de silicium amorphe dopé de type N 11 ((n) a-Si :H), - a lower cell 10 comprising a layer of p-doped amorphous silicon 15 ((p) a-Si:H), an n-type doped crystalline silicon substrate 12 (c-Si(n)), placed between two layers of silicon intrinsic amorphous 13, 14 ((i) a-Si:H), an N-type doped amorphous silicon layer 11 ((n) a-Si:H),
- une zone de recombinaison 20, - a recombination zone 20,
- une cellule supérieure 30 comprenant : une couche de type P 32, une couche active en un matériau pérovskite 31 et une couche de type N 33. - an upper cell 30 comprising: a P-type layer 32, an active layer of perovskite material 31 and an N-type layer 33.
Chaque sous-cellule 10, 30 de la structure tandem comporte des couches qui permettent de séparer et sélectionner les charges selon leur polarité. Each sub-cell 10, 30 of the tandem structure comprises layers which make it possible to separate and select the charges according to their polarity.
La zone de recombinaison 20 entre les deux sous-cellules est nommée « jonction de recombinaison » car elle permet aux charges de se recombiner. Elle permet également la connexion en série des sous-cellules et ainsi l'addition de leurs tensions. Elle doit entrainer la recombinaison des électrons générés dans la cellule-supérieure et des trous générés dans la cellule-inférieure pour un tandem de structure NIP (Fig.lA) et l'inverse pour une structure PIN (Fig.lB). La zone de recombinaison 20 est, par exemple, formée d'une jonction tunnel formée de deux couches très dopées : l'une de type P 21 ((p+) pc-Si :H) et l'autre de type N 22 ((n+) pc-Si :H). Dans le cas d'une structure NIP, la couche 21 de la zone de recombinaison joue aussi le rôle d'émetteur de la cellule inférieure 10. The recombination zone 20 between the two sub-cells is called “recombination junction” because it allows the charges to recombine. It also allows the series connection of the sub-cells and thus the addition of their voltages. It must lead to the recombination of the electrons generated in the upper cell and the holes generated in the lower cell for a tandem of NIP structure (Fig.1A) and the reverse for a PIN structure (Fig.1B). The recombination zone 20 is, for example, formed of a tunnel junction formed of two highly doped layers: one of the P type 21 ((p+)pc-Si:H) and the other of the N type 22 ((n+)pc-Si:H). In the case of a NIP structure, the layer 21 of the recombination zone also plays the role of transmitter of the lower cell 10.
Cependant, ces structures tandem nécessitent de nombreuses étapes pour être fabriquées, ce qui augmente les coûts de fabrication et le nombre de couches et d'interfaces susceptibles de baisser les performances (par ajout de résistance série, de résistances de contact, de recombinaisons non souhaitées...). However, these tandem structures require many steps to be manufactured, which increases manufacturing costs and the number of layers and interfaces that can lower performance (by adding series resistance, contact resistances, unwanted recombinations ...).
Il a été montré qu'une structure tandem de type NIP comprenant une cellule supérieure pérovskite et une cellule inférieure à base de silicium cristallin et de poly-Si peut fonctionner en positionnant directement la cellule supérieure sur la cellule inférieure (Shen et al. « In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells », Science Advances, 2018; 4: eaau9711). Plus particulièrement, une couche de TiO2 de type N est déposée par ALD directement sur le silicium dopé P de la cellule inférieure. Puis, une couche de pérovskite et une couche de type P en PTAA sont déposées. Le fonctionnement de cette structure est rendu possible grâce à la faible résistivité de contact entre la couche ALD de TiO2 et le silicium dopé P de la cellule inférieure. It has been shown that a NIP-like tandem structure comprising a perovskite upper cell and a lower cell based on crystalline silicon and poly-Si can work by directly positioning the upper cell on the lower cell (Shen et al. “In situ recombination junction between p-Si and TiO 2 enables high-efficiency monolithic perovskite/Si tandem cells”, Science Advances, 2018; 4: eaau9711). More particularly, an N-type TiO 2 layer is deposited by ALD directly on the P-doped silicon of the lower cell. Then, a layer of perovskite and a P-type layer of PTAA are deposited. The operation of this structure is made possible thanks to the low contact resistivity between the ALD layer of TiO 2 and the P-doped silicon of the lower cell.
De même, une structure tandem pérovskite sur homojonction de silicium a été fabriquée en déposant directement la couche de SnO2 de type N de la cellule supérieure en pérovskite sur la couche de type P de la cellule inférieure (Zheng et al. "Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency", Energy Environ. Sci ., 2018, 11, 2432-2443). Similarly, a tandem perovskite-on-silicon homojunction structure was fabricated by directly depositing the N-type SnO2 layer of the upper perovskite cell onto the P-type layer of the lower cell (Zheng et al. "Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency", Energy Environ. Sci ., 2018, 11, 2432-2443).
Cependant, à ce jour, il n'existe pas de structure tandem pérovskite sur hétérojonction de silicium, à base de silicium amorphe et de silicium cristallin, simplifiée. En effet, l'hétérojonction silicium amorphe/silicium cristallin est très sensible à la température utilisée lors du procédé. De plus, le dépôt de la couche active de pérovskite est généralement réalisé par voie liquide et est donc grandement dépendant du substrat sur lequel elle est déposée ainsi que des étapes de fabrication mises en œuvre, ce qui rend une modification de leur architecture très difficile à réaliser. EXPOSÉ DE L'INVENTION However, to date, there is no simplified perovskite tandem structure on silicon heterojunction, based on amorphous silicon and crystalline silicon. Indeed, the amorphous silicon/crystalline silicon heterojunction is very sensitive to the temperature used during the process. In addition, the deposition of the perovskite active layer is generally carried out by liquid means and is therefore greatly dependent on the substrate on which it is deposited as well as the manufacturing steps implemented, which makes it very difficult to modify their architecture. achieve. DISCLOSURE OF THE INVENTION
Un but de la présente invention est de proposer une structure tandem pérovskite sur hétérojonction de silicium à base de silicium amorphe et de silicium cristallin à deux terminaux présentant de bonnes propriétés électriques et plus simple et moins coûteuse à fabriquer. An object of the present invention is to propose a perovskite tandem structure on silicon heterojunction based on amorphous silicon and on two-terminal crystalline silicon having good electrical properties and which is simpler and less expensive to manufacture.
Pour cela, la présente invention propose une structure de cellules solaires tandem à 2-terminaux pérovskite sur hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : For this, the present invention proposes a structure of tandem solar cells with 2-terminal perovskite on silicon heterojunction based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face:
- une première cellule solaire à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : une première couche d'un premier type de conductivité en silicium amorphe, un substrat de silicium cristallin (du premier type de conductivité ou d'un deuxième type de conductivité) disposé entre deux couches de silicium amorphe intrinsèque, et éventuellement une première couche d'un deuxième type de conductivité en silicium amorphe, - a first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: a first layer of a first type of conductivity in amorphous silicon, a crystalline silicon substrate (from the first type of conductivity or of a second type of conductivity) arranged between two layers of intrinsic amorphous silicon, and optionally a first layer of a second type of conductivity in amorphous silicon,
- une zone de recombinaison comprenant au moins une couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité, - a recombination zone comprising at least one layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity,
- une deuxième cellule solaire comprenant une couche active en un matériau pérovskite et une deuxième couche d'un deuxième type de conductivité, la zone de recombinaison comprenant en outre une deuxième couche du premier type de conductivité en contact avec la couche active de la deuxième cellule solaire ou une couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité en contact avec la couche active de la deuxième cellule solaire. - a second solar cell comprising an active layer made of a perovskite material and a second layer of a second type of conductivity, the recombination zone further comprising a second layer of the first type of conductivity in contact with the active layer of the second cell solar cell or a layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity in contact with the active layer of the second solar cell.
L'invention se distingue fondamentalement de l'art antérieur par le fait que dans ces structures, l'une des couches de la zone de recombinaison remplit une double fonction : à la fois le rôle de sélection des charges (contact de type N ou P) et participe à la fonction jonction de recombinaison. The invention differs fundamentally from the prior art in that in these structures, one of the layers of the recombination zone fulfills a dual function: both the role of charge selection (N or P type contact ) and participates in recombination junction function.
Cette structure fonctionnelle permet la recombinaison des charges et la connexion en série entre les deux sous-cellules, sans ajout de couche et/ou de matériau supplémentaire entre les deux sous-cellules de la structure tandem, comme c'est le cas dans les structures tandem classiques. This functional structure allows the recombination of charges and the series connection between the two sub-cells, without adding a layer and/or material. additional space between the two sub-cells of the tandem structure, as is the case in conventional tandem structures.
La zone de recombinaison est une jonction P-N entièrement recombinante (quels que soient les mécanismes de recombinaison). La zone de recombinaison n'entraîne aucun potentiel inverse : aucune perte de tension dans la cellule solaire tandem. The recombination zone is a fully recombinant P-N junction (regardless of the recombination mechanisms). The recombination zone causes no reverse potential: no voltage loss in the tandem solar cell.
Cette structure simplifiée est plus simple à fabriquer par rapport aux structures des cellules solaires tandem classiques. La diminution du nombre de couches structurelles et donc d'étapes du procédé de fabrication conduisent à une réduction des coûts de fabrication. This simplified structure is easier to manufacture compared to the structures of conventional tandem solar cells. The reduction in the number of structural layers and therefore of steps in the manufacturing process lead to a reduction in manufacturing costs.
Selon une première variante de réalisation, le premier type de conductivité est une conductivité de type N (i.e. il s'agit d'une structure tandem de type NIP). According to a first variant embodiment, the first type of conductivity is an N-type conductivity (i.e. it is a NIP-type tandem structure).
Selon cette première variante de réalisation, la structure peut comprendre depuis la face arrière vers la face avant : According to this first variant embodiment, the structure may comprise from the rear face towards the front face:
- la première cellule solaire à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche du premier type de conductivité (type N) en silicium amorphe et le substrat de silicium cristallin disposé entre les deux couches de silicium amorphe intrinsèque, - the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: the first layer of the first type of conductivity (type N) in amorphous silicon and the crystalline silicon substrate arranged between the two layers of intrinsic amorphous silicon,
- la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type P), - the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type P),
- la deuxième cellule solaire pérovskite comprenant vers la face avant : la deuxième couche du premier type de conductivité (type N), de préférence en SnO2, la couche active en un matériau pérovskite et la deuxième couche d'un deuxième type de conductivité (type P) de préférence en PTAA. - the second perovskite solar cell comprising towards the front face: the second layer of the first type of conductivity (type N), preferably of SnO 2 , the active layer of a perovskite material and the second layer of a second type of conductivity ( type P) preferably in PTAA.
La zone de recombinaison est alors formée de la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type P) et de la deuxième couche du premier type de conductivité (type N). Ces deux couches sont en contact direct. Avec une telle architecture, la cellule supérieure est une cellule classique. Cette configuration permet d'obtenir de hauts rendements. The recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type P) and of the second layer of the first type of conductivity (type N). These two layers are in direct contact. With such an architecture, the upper cell is a conventional cell. This configuration makes it possible to obtain high yields.
Alternativement, selon cette même première variante de réalisation, la structure peut comprendre depuis la face arrière vers la face avant : Alternatively, according to this same first variant embodiment, the structure may comprise from the rear face towards the front face:
- la première cellule solaire à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche du premier type de conductivité (type N) en silicium amorphe et le substrat de silicium cristallin disposé entre les deux couches de silicium amorphe intrinsèque, - the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: the first layer of the first type of conductivity (type N) in amorphous silicon and the crystalline silicon substrate arranged between the two layers of intrinsic amorphous silicon,
- la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type P) et la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type N), - the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type P) and the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N),
- la deuxième cellule solaire pérovskite comprenant vers la face avant : la couche active en un matériau pérovskite et la deuxième couche du deuxième type de conductivité (type P) de préférence en PTAA. - the second perovskite solar cell comprising towards the front face: the active layer in a perovskite material and the second layer of the second type of conductivity (type P) preferably in PTAA.
La zone de recombinaison est alors formée de la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type P) et de la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type N) qui forment une jonction tunnel. La couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type N) sert également d'extracteur de charges dans la deuxième cellule (pérovskite). Il n'y a pas besoin d'ajouter une couche du premier type de conductivité (type N), telle qu'une couche de SnO2, dans la deuxième cellule solaire. La couche active de la deuxième cellule solaire est en contact direct avec la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type N). The recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type P) and of the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N) which form a junction tunnel. The layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N) also serves as a charge extractor in the second cell (perovskite). There is no need to add a layer of the first type of conductivity (type N), such as a layer of SnO 2 , in the second solar cell. The active layer of the second solar cell is in direct contact with the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type N).
Avec cette architecture, les couches à base de silicium nanocristallin ou microcristallin peuvent être déposées dans les mêmes équipements que les couches en silicium amorphe de la cellule inférieure et sur de grandes surfaces de façon homogène, ce qui simplifie le procédé de fabrication et facilite l'obtention d'une couche pérovskite homogène. Selon une deuxième variante de réalisation, le premier type de conductivité est une conductivité de type P (i.e. il s'agit d'une structure tandem de typeWith this architecture, the layers based on nanocrystalline or microcrystalline silicon can be deposited in the same equipment as the amorphous silicon layers of the lower cell and on large surfaces in a homogeneous manner, which simplifies the manufacturing process and facilitates the obtaining a homogeneous perovskite layer. According to a second variant embodiment, the first type of conductivity is a P-type conductivity (ie it is a tandem structure of the type
PIN). PINE).
Selon cette deuxième variante de réalisation, la structure peut comprendre depuis la face arrière vers la face avant : According to this second variant embodiment, the structure may comprise from the rear face towards the front face:
- la première cellule solaire à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche du premier type de conductivité (type P) en silicium amorphe, le substrat de silicium cristallin disposé entre les deux couches de silicium amorphe intrinsèque, éventuellement la première couche du deuxième type de conductivité (type N) en silicium amorphe, - the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: the first layer of the first type of conductivity (type P) in amorphous silicon, the crystalline silicon substrate disposed between the two layers of intrinsic amorphous silicon, possibly the first layer of the second type of conductivity (type N) in amorphous silicon,
- la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type N), - the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type N),
- la deuxième cellule solaire pérovskite comprenant vers la face avant : la deuxième couche du premier type de conductivité (type P), de préférence en PTAA ou en TFB ou alternativement obtenue à partir de phosphonate(s), silanes ou acides carboxyliques, la couche active en un matériau pérovskite et la deuxième couche du deuxième type de conductivité (type N), de préférence en SnO2 ou encore un empilement PCBM/SnO2 ou PCBM/BCP. - the second perovskite solar cell comprising towards the front face: the second layer of the first type of conductivity (type P), preferably in PTAA or in TFB or alternatively obtained from phosphonate(s), silanes or carboxylic acids, the layer active in a perovskite material and the second layer of the second conductivity type (type N), preferably in SnO 2 or even a PCBM/SnO 2 or PCBM/BCP stack.
La zone de recombinaison est alors formée de la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type N) et de la deuxième couche du premier type de conductivité (type P). Ces deux couches sont en contact direct. The recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type N) and of the second layer of the first type of conductivity (type P). These two layers are in direct contact.
Avec cette architecture de type PIN, il est possible d'obtenir de forts courants. De plus, la cellule inférieure est une cellule à hétérojonction classique et ne demande pas de développement supplémentaire. With this PIN type architecture, it is possible to obtain high currents. Moreover, the lower cell is a classic heterojunction cell and does not require additional development.
Alternativement, selon cette même deuxième variante de réalisation, la structure peut comprendre depuis la face arrière vers la face avant : Alternatively, according to this same second variant embodiment, the structure may comprise from the rear face towards the front face:
- la première cellule solaire à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche du premier type de conductivité (type P) en silicium amorphe, le substrat de silicium cristallin disposé entre les deux couches de silicium amorphe intrinsèque, la première couche du deuxième type de conductivité (type N) en silicium amorphe, - the first silicon heterojunction solar cell based on amorphous silicon and crystalline silicon comprising from the rear face towards the face front: the first layer of the first type of conductivity (type P) in amorphous silicon, the crystalline silicon substrate placed between the two layers of intrinsic amorphous silicon, the first layer of the second type of conductivity (type N) in amorphous silicon,
- la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type N) et la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type P), - the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type N) and the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type P),
- la deuxième cellule solaire pérovskite comprenant vers la face avant : la couche active en un matériau pérovskite et la deuxième couche du deuxième type de conductivité (type N) de préférence en SnO2 ou encore un empilement PCBM/SnO2 ou PCBM/BCP. - the second perovskite solar cell comprising towards the front face: the active layer in a perovskite material and the second layer of the second type of conductivity (N type) preferably in SnO 2 or even a PCBM/SnO 2 or PCBM/BCP stack.
La zone de recombinaison est alors formée de la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité (type N) et une couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type P) qui forment une jonction tunnel. La couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type P) sert également d'extracteur de charges dans la cellule pérovskite. Il n'y a pas besoin d'ajouter une couche du premier type de conductivité (type P), telle qu'une couche de PTAA, dans la deuxième cellule solaire. La couche active de la deuxième cellule solaire est en contact direct avec la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (type P). The recombination zone is then formed of the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity (type N) and a layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type P) which form a tunnel junction . The layer based on nanocrystalline or microcrystalline silicon of the first conductivity type (type P) also serves as a charge extractor in the perovskite cell. There is no need to add a layer of the first conductivity type (P-type), such as a layer of PTAA, in the second solar cell. The active layer of the second solar cell is in direct contact with the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (type P).
Avec cette architecture, les couches à base de silicium nanocristallin ou microcristallin peuvent être déposées dans les mêmes équipements que les couches en silicium amorphe de la cellule inférieure et sur de grandes surfaces de façon homogène, ce qui simplifie le procédé de fabrication et facilite l'obtention d'une couche pérovskite homogène. De forts courants peuvent être obtenus avec cette architecture. With this architecture, the layers based on nanocrystalline or microcrystalline silicon can be deposited in the same equipment as the amorphous silicon layers of the lower cell and on large surfaces in a homogeneous manner, which simplifies the manufacturing process and facilitates the obtaining a homogeneous perovskite layer. Strong currents can be obtained with this architecture.
Avantageusement, la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité est en pc-Si :H (p+), pc- Si :H (n+), nc-SiCx type N ou P ou nc-SiOy type N ou P avec x allant de 0 à 1 et y allant de 0 à 2. Advantageously, the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity is in pc-Si:H (p+), pc- Si:H (n+), nc-SiC x type N or P or nc-SiO y type N or P with x ranging from 0 to 1 and y ranging from 0 to 2.
Par nanocristallin ou microcristallin, on entend une couche comportant à la fois une phase amorphe et une phase cristalline, la phase cristalline ayant une taille de grain inférieure à 30nm. Elle est comprise, en général, entre 1 et 10 nm pour du silicium nanocristallin et en général entre 10 et 30nm et de préférence entre 10 et 20 nm pour du microcristallin. Parfois, dans la littérature, pour des tailles de grain inférieures à 10 nm, on trouve également la dénomination de silicium microcristallin. By nanocrystalline or microcrystalline is meant a layer comprising both an amorphous phase and a crystalline phase, the crystalline phase having a grain size of less than 30 nm. It is generally between 1 and 10 nm for nanocrystalline silicon and generally between 10 and 30 nm and preferably between 10 and 20 nm for microcrystalline. Sometimes, in the literature, for grain sizes below 10 nm, we also find the denomination of microcrystalline silicon.
Avantageusement, la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité a une épaisseur allant de 15nm à 60nm et de préférence de 20nm à 40nm. Advantageously, the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a thickness ranging from 15 nm to 60 nm and preferably from 20 nm to 40 nm.
Avantageusement, la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité a une conductivité supérieure a 10 S. cm . Advantageously, the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a conductivity greater than 10 S.cm.
Avantageusement, la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité a un taux de dopage de 1018/cm3 à 1022/cm3, et de préférence entre 1019/cm3 et 102°/cm3 pour le type P et entre 102°/cm3 et 1021/cm3 pour le type N. Advantageously, the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a doping rate of 10 18 /cm 3 to 10 22 /cm 3 , and preferably between 10 19 /cm 3 and 10 2 °/cm 3 for type P and between 10 2 °/cm 3 and 10 21 /cm 3 for type N.
D'autres caractéristiques et avantages de l'invention ressortiront du complément de description qui suit. Other characteristics and advantages of the invention will emerge from the additional description which follows.
Il va de soi que ce complément de description n'est donné qu'à titre d'illustration de l'objet de l'invention et ne doit en aucun cas être interprété comme une limitation de cet objet. It goes without saying that this additional description is only given by way of illustration of the object of the invention and should in no way be interpreted as a limitation of this object.
BRÈVE DESCRIPTION DES DESSINS La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels : BRIEF DESCRIPTION OF DRAWINGS The present invention will be better understood on reading the description of exemplary embodiments given purely for information and in no way limiting with reference to the appended drawings in which:
La figure IA précédemment décrite dans l'art antérieur, représente, de manière schématique et en coupe, une structure tandem NIP-NIP à deux terminaux. FIG. 1A previously described in the prior art represents, schematically and in section, a two-terminal PIN-PIN tandem structure.
La figure IB précédemment décrite dans l'art antérieur, représente, de manière schématique et en coupe, une structure tandem PIN-PIN à deux terminaux. FIG. 1B previously described in the prior art represents, schematically and in section, a tandem PIN-PIN structure with two terminals.
La figure 2A représente, de manière schématique et en coupe, une structure tandem simplifié NIP-NIP à deux terminaux, selon un mode de réalisation particulier de l'invention. FIG. 2A represents, schematically and in section, a simplified tandem structure NIP-PIN with two terminals, according to a particular embodiment of the invention.
La figure 2B représente, de manière schématique et en coupe, une structure tandem simplifié PIN-PIN à deux terminaux, selon un autre mode de réalisation particulier de l'invention. FIG. 2B represents, schematically and in section, a simplified tandem PIN-PIN structure with two terminals, according to another particular embodiment of the invention.
La figure 3A représente, de manière schématique et en coupe, une structure tandem simplifié NIP-NIP à deux terminaux, selon un autre mode de réalisation particulier de l'invention. FIG. 3A represents, schematically and in section, a simplified tandem structure PIN-PIN with two terminals, according to another particular embodiment of the invention.
La figure 3B représente, de manière schématique et en coupe, une structure tandem simplifié PIN-PIN à deux terminaux, selon un autre mode de réalisation particulier de l'invention. FIG. 3B represents, schematically and in section, a simplified PIN-PIN tandem structure with two terminals, according to another particular embodiment of the invention.
Les figures 4A et 4B sont des graphiques représentant l'EQE et la valeur '1-Rtot' en fonction de la longueur d'onde (avec Rtot correspondant à la réflexion totale de l'empilement de la cellule (sans la métallisation en face avant)), obtenus pour des structures tandem polies en face avant et en face arrière, de type NIP (correspondant aux figures IA, 2A et 3A) et de type PIN (correspondant aux figures IB, 2B et 3B) respectivement. Figures 4A and 4B are graphs representing the EQE and the '1-Rtot' value as a function of the wavelength (with Rtot corresponding to the total reflection of the stack of the cell (without the metallization on the front face )), obtained for tandem structures polished on the front face and on the back face, of NIP type (corresponding to FIGS. 1A, 2A and 3A) and of PIN type (corresponding to FIGS. IB, 2B and 3B) respectively.
Les figures 5A et 5B sont des graphiques représentant l'EQE et la valeur '1-Rtot' en fonction de la longueur d'onde, obtenus pour des structures tandem dont le substrat est poli en face avant et avec une texturation pyramidale classique en face arrière, de type NIP (correspondant aux figures IB, 2B et 3B) et de type PIN (correspondant aux figures IA, 2A et 3A) respectivement. Les figure 6A et 6B sont des graphiques représentant l'EQE et la valeur '1-Rtot' en fonction de la longueur d'onde, obtenus pour des structures tandem texturées en face avant et en face arrière, de type NIP (correspondant aux figures IA, 2A et 3A) et de type PIN (correspondant aux figures IB, 2B et 3B) respectivement. Figures 5A and 5B are graphs representing the EQE and the value '1-Rtot' as a function of the wavelength, obtained for tandem structures whose substrate is polished on the front face and with a classic pyramidal texturing on the face rear, PIN type (corresponding to Figures IB, 2B and 3B) and PIN type (corresponding to Figures IA, 2A and 3A) respectively. Figures 6A and 6B are graphs representing the EQE and the value '1-Rtot' as a function of the wavelength, obtained for textured tandem structures on the front face and on the back face, of NIP type (corresponding to the figures IA, 2A and 3A) and PIN type (corresponding to Figures IB, 2B and 3B) respectively.
Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles. The different parts shown in the figures are not necessarily shown on a uniform scale, to make the figures more readable.
En outre, dans la description ci-après, des termes qui dépendent de l'orientation, tels que « dessus » / « supérieure », «dessous » / « inférieure », etc. d'une structure s'appliquent en considérant que le dispositif tandem et la structure test sont orientés de la façon illustrée sur les figures. Also, in the description below, terms that depend on orientation, such as "top"/"top", "bottom"/"bottom", etc. of a structure apply considering that the tandem device and the test structure are oriented as illustrated in the figures.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED DISCUSSION OF PARTICULAR EMBODIMENTS
Les figures 2A, 2B, 3A et 3B représentent quatre structures tandem 100 pérovskite sur hétérojonction de silicium (silicium amorphe/silicium cristallin) simplifiées. Chacune de ces structures tandem 100 comprend : FIGS. 2A, 2B, 3A and 3B represent four simplified 100 perovskite tandem structures on silicon heterojunction (amorphous silicon/crystalline silicon). Each of these tandem structures 100 includes:
- une première cellule 110 (ou cellule inférieure pour « bottom cell ») à hétérojonction de silicium (HET-Si ou SHJ pour « Silicon HeteroJunction solar cell ») positionnée en face arrière du dispositif, - a first cell 110 (or lower cell for "bottom cell") with silicon heterojunction (HET-Si or SHJ for "Silicon HeteroJunction solar cell") positioned on the rear face of the device,
- une zone de recombinaison : une jonction P-N entièrement recombinante (quels que soient les mécanismes de recombinaison), réalisée sans ajout de couches et/ou de matériaux supplémentaires ; la zone de recombinaison n'entraîne aucun potentiel inverse (i.e. aucune perte de tension dans la cellule solaire tandem),- a recombination zone: a fully recombinant P-N junction (regardless of the recombination mechanisms), produced without adding additional layers and/or materials; the recombination zone does not lead to any reverse potential (i.e. no voltage loss in the tandem solar cell),
- une deuxième cellule 130 (ou cellule supérieure pour « top cell ») pérovskite positionnée en face avant du dispositif. a second perovskite cell 130 (or upper cell for “top cell”) positioned on the front face of the device.
On appelle face avant, la face destinée à recevoir le rayonnement lumineux (représenté par des flèches sur les figures). The front face is the face intended to receive the light radiation (represented by arrows in the figures).
Nous allons maintenant détailler plus en détail ces quatre différentes structures. We will now detail these four different structures in more detail.
On se réfère tout d'abord à la structure tandem 100 représentée sur la figure 2A. Cette structure tandem 100 de type NIP (ou à émetteur standard) comprend : - la première cellule solaire 110 à hétérojonction de silicium (à base de silicium amorphe et de silicium cristallin) comprenant depuis la face arrière vers la face avant : une première couche en silicium amorphe dopé N (par exemple une couche de silicium amorphe hydrogéné dopé n également notée (n) a-Si :H) 111 et un substrat de silicium cristallin 112 dopé (par exemple un substrat de silicium cristallin dopé n également noté c-Si (n)) disposé entre deux couches de silicium amorphe intrinsèque 113, 114 (également appelées couches de (i) a-Si :H ou de silicium amorphe hydrogéné intrinsèque), We first refer to the tandem structure 100 represented in FIG. 2A. This NIP-type (or standard transmitter) tandem 100 structure includes: - the first silicon heterojunction solar cell 110 (based on amorphous silicon and crystalline silicon) comprising from the rear face towards the front face: a first layer of n-doped amorphous silicon (for example a layer of n-doped hydrogenated amorphous silicon also denoted (n) a-Si:H) 111 and a doped crystalline silicon substrate 112 (for example an n-doped crystalline silicon substrate also denoted c-Si (n)) arranged between two layers of intrinsic amorphous silicon 113, 114 (also called layers of (i)a-Si:H or intrinsic hydrogenated amorphous silicon),
- une couche à base de silicium nanocristallin ou microcristallin de type P 121 (par exemple une couche de silicium microcristallin hydrogéné dopé p+ également notée couche (p+) pc-Si :H), qui sert également d'émetteur dans la cellule à hétérojonction, - a layer based on nanocrystalline or microcrystalline silicon of type P 121 (for example a layer of hydrogenated microcrystalline silicon doped p+ also denoted layer (p+) pc-Si:H), which also serves as an emitter in the heterojunction cell,
- une deuxième cellule solaire 130 pérovskite comprenant vers la face avant : une couche de type N 133 (par exemple une couche en SnO2), une couche active 131 en un matériau pérovskite et une couche de type P 132 (par exemple une couche en PTAA). - a second perovskite solar cell 130 comprising towards the front face: an N-type layer 133 (for example an SnO 2 layer), an active layer 131 made of a perovskite material and a P-type layer 132 (for example a layer of PTAA).
On se réfère maintenant à la structure tandem 100 représentée sur la figure 2B. Cette structure tandem 100 de type PIN (ou à émetteur inversé) comprend : We now refer to the tandem structure 100 represented in FIG. 2B. This tandem structure 100 of the PIN type (or with inverted emitter) comprises:
- la première cellule solaire 110 à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : une couche de silicium amorphe de type P 115 (par exemple une couche de silicium amorphe hydrogéné dopé p, également notée (p) a-Si :H), un substrat de silicium cristallin dopé 112 (par exemple un substrat c-Si (n)) disposé entre deux couches de silicium amorphe intrinsèque 113, 114 (par exemple (i) a-Si :H), et éventuellement une première couche de silicium amorphe de type N 111 (par exemple (n) a-Si :H), qui est également la couche d'incubation de la couche nano ou microcristalline 122, - the first silicon heterojunction solar cell 110 based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: a p-type amorphous silicon layer 115 (for example a p-doped hydrogenated amorphous silicon layer, also denoted (p) a-Si:H), a doped crystalline silicon substrate 112 (for example a c-Si(n) substrate) arranged between two layers of intrinsic amorphous silicon 113, 114 (for example (i) a- Si:H), and possibly a first layer of N-type amorphous silicon 111 (for example (n) a-Si:H), which is also the incubation layer of the nano or microcrystalline layer 122,
- une couche à base de silicium nanocristallin ou microcristallin de type- a layer based on nanocrystalline or microcrystalline silicon of type
N 122 (par exemple une couche de silicium microcristallin hydrogéné dopé n+ également notée couche (n+) pc-Si :H), - une deuxième cellule solaire pérovskite 130 comprenant vers la face avant : une couche de type P 132 (par exemple une couche en PTAA ou TBF), une couche active 131 en un matériau pérovskite et une couche de type N 133 (par exemple une couche en SnO2 ou encore un bicouche PCBM/SnO2 ou PCBM/BCP). N 122 (for example a layer of hydrogenated microcrystalline silicon doped n+ also denoted layer (n+) pc-Si:H), - a second perovskite solar cell 130 comprising towards the front face: a P-type layer 132 (for example a PTAA or TBF layer), an active layer 131 made of a perovskite material and an N-type layer 133 (for example a layer in SnO 2 or a PCBM/SnO 2 or PCBM/BCP bilayer).
Dans ces deux structures représentées sur les figures 2A et 2B, la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité (P dans le cas d'une structure NIP et N dans le cas d'une structure PIN) est en contact direct avec la couche du deuxième type de conductivité (N dans le cas d'une structure NIP et P dans le cas d'une structure PIN) de la deuxième cellule 130. La jonction de recombinaison se situe entre la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et le matériau transporteur/extracteur de charges du deuxième type de conductivité de la deuxième cellule solaire 130 (i.e. entre les couches 121 et 133 pour la structure NIP et entre les couches 122 et 132 pour la structure PIN). In these two structures represented in FIGS. 2A and 2B, the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity (P in the case of a NIP structure and N in the case of a PIN structure) is in contact directly with the layer of the second type of conductivity (N in the case of a NIP structure and P in the case of a PIN structure) of the second cell 130. The recombination junction is located between the layer based on nanocrystalline silicon or microcrystalline material of the first conductivity type and the charge carrier/extractor material of the second conductivity type of the second solar cell 130 (i.e. between layers 121 and 133 for the NIP structure and between layers 122 and 132 for the PIN structure) .
On se réfère maintenant à la structure tandem 100 représentée sur la figure 3A. Cette structure tandem 100 de type NIP (ou à émetteur standard) comprend : We now refer to the tandem structure 100 represented in FIG. 3A. This NIP-type (or standard transmitter) tandem 100 structure includes:
- une première cellule solaire 110 à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : une couche de silicium amorphe de type N 111 (par exemple (n) a-Si :H) et un substrat de silicium cristallin 112 (par exemple un substrat c-Si (n)) disposé entre deux couches de silicium amorphe intrinsèque 113, 114 (par exemple (i) a-Si :H), - a first silicon heterojunction solar cell 110 based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: an N-type amorphous silicon layer 111 (for example (n) a-Si:H) and a crystalline silicon substrate 112 (for example a c-Si (n) substrate) arranged between two layers of intrinsic amorphous silicon 113, 114 (for example (i) a-Si:H),
- une couche à base de silicium nanocristallin ou microcristallin de type P 121 qui joue également le rôle d'émetteur de la cellule à hétérojonction (par exemple (p+) pc-Si :H) et une couche à base de silicium nanocristallin ou microcristallin de type N 122 (par exemple (n+) pc-Si :H), - a layer based on nanocrystalline or microcrystalline silicon of type P 121 which also plays the role of emitter of the heterojunction cell (for example (p+)pc-Si:H) and a layer based on nanocrystalline or microcrystalline silicon of type N 122 (e.g. (n+)pc-Si:H),
- une deuxième cellule solaire 130 pérovskite comprenant vers la face avant : une couche active (131) en un matériau pérovskite et une couche de type P 132 (par exemple une couche en PTAA). - a second perovskite solar cell 130 comprising towards the front face: an active layer (131) made of a perovskite material and a P-type layer 132 (for example a PTAA layer).
On se réfère maintenant à la structure tandem 100 représentée sur la figure 3B. Cette structure tandem 100 de type PIN (ou à émetteur inversé) comprend : - une première cellule solaire 110 à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : une couche de silicium amorphe de type P 115 (par exemple (p) a-Si :H) et un substrat de silicium cristallin 112 (par exemple un substrat c-Si (n)) disposé entre deux couches de silicium amorphe intrinsèque 113, 114 (par exemple (i) a-Si :H), éventuellement une couche de silicium amorphe de type N 111 (par exemple (n) a-Si :H), qui est également la couche d'incubation de la couche nano ou microcristalline 121, Reference is now made to the tandem structure 100 represented in FIG. 3B. This tandem structure 100 of the PIN type (or with inverted emitter) comprises: - a first silicon heterojunction solar cell 110 based on amorphous silicon and crystalline silicon comprising from the rear face towards the front face: a layer of P-type amorphous silicon 115 (for example (p) a-Si:H) and a crystalline silicon substrate 112 (for example a c-Si (n) substrate) arranged between two layers of intrinsic amorphous silicon 113, 114 (for example (i) a-Si:H), possibly an amorphous silicon layer of type N 111 (for example (n) a-Si:H), which is also the incubation layer of the nano or microcrystalline layer 121,
- une couche à base de silicium nanocristallin ou microcristallin de type N 121 (par exemple (n+) pc-Si :H) et une couche à base de silicium nanocristallin ou microcristallin de type P 122 (par exemple (p+) pc-Si :H), - a layer based on nanocrystalline or microcrystalline silicon of type N 121 (for example (n+) pc-Si:H) and a layer based on nanocrystalline or microcrystalline silicon of type P 122 (for example (p+) pc-Si: H),
- une deuxième cellule solaire 130 pérovskite comprenant vers la face avant : une couche active 131 en un matériau pérovskite et une couche de type N 133 (par exemple une couche en SnO2 ou un bicouche PCBM/SnO2). a second perovskite solar cell 130 comprising towards the front face: an active layer 131 made of a perovskite material and an N-type layer 133 (for example an SnO 2 layer or a PCBM/SnO 2 bilayer).
Dans ces deux structures représentées sur les figures 3A et 3B, la couche à base de silicium nanocristallin ou microcristallin de type P 121 ou 122 et la couche à base de silicium nanocristallin ou microcristallin de type N 122 ou 121 forment une jonction tunnel 120. L'une de ces couches est en contact direct avec la couche active 131 de la deuxième cellule solaire 130 et joue alors également le rôle d'extracteur de charges dans la deuxième cellule 130. In these two structures represented in FIGS. 3A and 3B, the P-type nanocrystalline or microcrystalline silicon-based layer 121 or 122 and the N-type nanocrystalline or microcrystalline silicon-based layer 122 or 121 form a tunnel junction 120. The one of these layers is in direct contact with the active layer 131 of the second solar cell 130 and then also acts as a charge extractor in the second cell 130.
Pour ces différentes structures tandem 100 présentées précédemment, les couches de silicium nanocristallin ou microcristallin de type P (p+) et/ou de type N (n+) peuvent avoir une épaisseur allant de 20 à 40nm. For these various tandem structures 100 presented previously, the layers of nanocrystalline or microcrystalline silicon of P type (p+) and/or of N type (n+) can have a thickness ranging from 20 to 40 nm.
Dans le cas d'une couche dopée P, le niveau de Fermi est entre 4,5 et 5,9 eV. In the case of a P-doped layer, the Fermi level is between 4.5 and 5.9 eV.
Dans le cas d'une couche dopée N, le niveau de Fermi est entre 3,9 et 4,4 eV. In the case of an N-doped layer, the Fermi level is between 3.9 and 4.4 eV.
Les couches de silicium nanocristallin ou microcristallin sont fortement dopées. Le dopage des couches de silicium nanocristallin ou microcristallin (p+ ou n+) va, par exemple, de 1018 à 1022/cm3. De préférence, les couche à base de silicium nanocristallin ou microcristallin sont en pc-Si :H (p+), pc-Si :H (n+), nc-SiCx type N ou P ou nc-SiOy type N ouNanocrystalline or microcrystalline silicon layers are heavily doped. The doping of the nanocrystalline or microcrystalline (p+ or n+) silicon layers ranges, for example, from 10 18 to 10 22 /cm 3 . Preferably, the layers based on nanocrystalline or microcrystalline silicon are in pc-Si:H (p+), pc-Si:H (n+), nc-SiC x type N or P or nc-SiO y type N or
P avec x pouvant aller de 0 à 1 et y de 0 à 2. P with x ranging from 0 to 1 and y from 0 to 2.
De telles couches ont, avantageusement, une conductivité verticale élevée, une faible résistance verticale (typiquement inférieure à 0.5 Ohm. cm2) et/ou une conductivité latérale supérieure à 10"3 S. cm -1. Such layers advantageously have a high vertical conductivity, a low vertical resistance (typically less than 0.5 Ohm.cm 2 ) and/or a lateral conductivity greater than 10" 3 S.cm -1 .
Les taux de dopage de type p/n des couches 111 et 115 sont, par exemple, entre 10 et 10 /cm ' The p/n type doping levels of the layers 111 and 115 are, for example, between 10 and 10 /cm '
Le substrat de silicium 12 de la cellule inférieure peut être poli ou texturé (par exemple, il peut s'agir d'une texturation sous la forme de pyramides de 2pm). Les couches amorphes de la cellule inférieure ayant une épaisseur de quelques nanomètres, elles vont prendre la forme de la texturation du substrat. The silicon substrate 12 of the lower cell can be polished or textured (for example, it can be textured in the form of 2 µm pyramids). The amorphous layers of the lower cell having a thickness of a few nanometers, they will take the form of the texturing of the substrate.
La couche de type N 133 de la cellule pérovskite 130 aussi appelée « couche de transport d'électrons » (ou EIL pour « Electron Injection Layer » ou ETL pour « Electron Transport Layer ») est, par exemple, un oxyde métallique tel que l'oxyde de zinc (ZnO), de l'oxyde de zinc dopé à l'aluminium aussi appelé AZO (ZnO :AI), l'oxyde de titane (TiO2) ou l'oxyde d'étain (SnO2). Il peut également s'agir d'un empilement de [6,6]- phényl-C6i-butanoate de méthyle et de SnO2 (PCBM/SnO2) ou de [6,6]-phényl-C6i- butanoate de méthyle et de bathocuproine (PCBM/ BCP). The N-type layer 133 of the perovskite cell 130 also called "electron transport layer" (or EIL for "Electron Injection Layer" or ETL for "Electron Transport Layer") is, for example, a metal oxide such as zinc oxide (ZnO), aluminum doped zinc oxide also called AZO (ZnO: Al), titanium oxide (TiO 2 ) or tin oxide (SnO 2 ). It can also be a stack of [6,6]-phenyl-C 6 i-methyl butanoate and SnO 2 (PCBM/SnO 2 ) or [6,6]-phenyl-C 6 i- bathocuproine methyl butanoate (PCBM/ BCP).
La couche de type P 132 de la cellule pérovskite 130 est aussi appelée « couche de transport de trous » (ou HTL pour « Hole Transport Layer »). La couche de type P 132 est, par exemple, un composé organique comme du Poly(3,4- éthylenedioxythiophène) Polystyrene sulfonate (PEDOT:PSS), du [poly(bis 4-phényl}{2,4,6- trimethylphényl}amine)] (PTAA), du [Poly(A/,A/'-bis(4-butylphényl)-A/,A/'-bis(phényl)- benzidine] (Poly-TPD), du 2,2,,7,7,-Tétrakis[N,N-di(4-méthoxyphényl)amino]-9,9'- spirobifluorène (spiro-OMeTAD), du N4,N4'-bis(4-(6-((3-éthyloxetan-3- yl)méthoxy)hexyl)phényl)-N4,N4'-diphényl-[l,r-biphényl]-4,4'-diamine (OTPD), du poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(/V-(4-sec-butylphenyl)diphenylamine)] (TFB) ou du pyrène, ou encore un oxyde métallique tel qu'un oxyde de molybdène, un oxyde de vanadium ou un oxyde de tungstène. La couche active 131 de la cellule pérovskite 130 comprend au moins un matériau pérovskite. Le matériau pérovskite a de formule générale ABX3 avec A représentant un ou plusieurs cations organiques monovalents, tel qu'un ammonium, comme le méthylammonium ou le formamidinium, ou encore un cation métallique monovalent, comme le césium ou le rubidium ; B représentant un cation métallique divalent comme Pb, Sn, Ag ou un de leurs mélanges; et X représentant un ou plusieurs anions halogénures. The P-type layer 132 of the perovskite cell 130 is also called “hole transport layer” (or HTL for “Hole Transport Layer”). The P-type layer 132 is, for example, an organic compound such as Poly(3,4- ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS), [poly(bis 4-phenyl}{2,4,6-trimethylphenyl} amine)] (PTAA), [Poly(A/,A/'-bis(4-butylphenyl)-A/,A/'-bis(phenyl)-benzidine] (Poly-TPD), 2,2 , ,7,7 , -Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'- spirobifluorene (spiro-OMeTAD), N4,N4'-bis(4-(6-((3- ethyloxetan-3-yl)methoxy)hexyl)phenyl)-N4,N4'-diphenyl-[1,r-biphenyl]-4,4'-diamine (OTPD), poly[(9,9-dioctylfluorenyl-2, 7-diyl)-co-(4,4'-(/V-(4-sec-butylphenyl)diphenylamine)] (TFB) or pyrene, or else a metal oxide such as a molybdenum oxide, an oxide of vanadium or tungsten oxide. The active layer 131 of the perovskite cell 130 comprises at least one perovskite material. The perovskite material has the general formula ABX 3 with A representing one or more monovalent organic cations, such as an ammonium, such as methylammonium or formamidinium, or even a monovalent metal cation, such as cesium or rubidium; B representing a divalent metal cation such as Pb, Sn, Ag or a mixture thereof; and X representing one or more halide anions.
Plus particulièrement, le matériau pérovskite peut avoir pour formule particulière H2NCHNH2PbX3 ou CH3NH3PbX3 avec X un halogène. Il peut s'agir par exemple de iodure de plomb méthylammonium CH3NH3Pbl3. De préférence, le matériau pérovskite a pour formule CsxFAi.xPb(li.yBry)3. More particularly, the perovskite material may have the particular formula H 2 NCHNH 2 PbX 3 or CH 3 NH 3 PbX 3 with X a halogen. It may be, for example, methylammonium lead iodide CH 3 NH 3 Pbl 3 . Preferably, the perovskite material has the formula Cs x FAi. x Pb(li. y Br y ) 3 .
Le dispositif tandem 100 peut comprendre également : The tandem device 100 can also comprise:
- une première électrode 140 (électrode inférieure) disposée en face arrière ; l'électrode inférieure 140 peut, avantageusement, être opaque ou de transparence limitée, par exemple un oxyde transparent conducteur tel que notamment ITO, IOH (oxyde d'indium hydrogéné), ou AZO - a first electrode 140 (lower electrode) arranged on the rear face; the lower electrode 140 can advantageously be opaque or of limited transparency, for example a conductive transparent oxide such as in particular ITO, IOH (hydrogenated indium oxide), or AZO
- une deuxième électrode 150 (électrode supérieure) disposée sur la face avant du dispositif ; la deuxième électrode est électriquement conductrice et optiquement transparente, de manière à laisser passer les photons jusqu'à la couche active 131 de la cellule supérieure 130. Cette électrode 150 peut être en oxyde transparent conducteur, typiquement de l'oxyde d'indium-étain (ITO) ou de l'oxyde de zinc dopé à l'aluminium (ZnO :AI), IZO, IZrO, IWO..., ou encore elle peut être formée d'un polymère transparent conducteur comprenant des nanofils d'argent par exemple, - a second electrode 150 (upper electrode) arranged on the front face of the device; the second electrode is electrically conductive and optically transparent, so as to allow the photons to pass as far as the active layer 131 of the upper cell 130. This electrode 150 can be made of conductive transparent oxide, typically indium-tin oxide (ITO) or zinc oxide doped with aluminum (ZnO: AI), IZO, IZrO, IWO, etc., or it can be formed from a transparent conductive polymer comprising silver nanowires, for example ,
- des reprises de contact 160 en face arrière et des reprises de contact 170 en face avant ; les reprises de contact peuvent être par exemple en or, en aluminium ou en argent, (déposé par exemple par évaporation, ou imprimé par sérigraphie, impression jet d'encre...). - contact times 160 on the rear face and contact times 170 on the front face; the contact times can be for example in gold, aluminum or silver (deposited for example by evaporation, or printed by screen printing, inkjet printing, etc.).
Exemples illustratifs et non limitatifs d'un mode de réalisation : Illustrative and non-limiting examples of an embodiment:
Dans cet exemple, une structure tandem classique et deux structures tandem simplifiées ont été choisies. La structure tandem classique est représentée sur les figures IA et IB.In this example, a classic tandem structure and two simplified tandem structures have been chosen. The classic tandem structure is shown in Figures 1A and 1B.
Les structures tandem simplifiées 100 sont représentées sur les figures 2A, 2B, 3A et 3B. Simplified tandem structures 100 are shown in Figures 2A, 2B, 3A and 3B.
Les Tableaux 1 et 2 suivants recensent les épaisseurs des couches simulées pour des architectures de type NIP et PIN respectivement. La pérovskite utilisée dans les simulations est de type CsxFAi.xPb(li.yBry)3 (avec x < 0,20 ; 0 < y < 1). Deux épaisseurs différentes ont été utilisées pour obtenir moins d'écart de courant entre les deux sous-cellules lorsque l'état de surface est modifié. Les résultats présentés seront avec une pérovskite de 250 nm d'épaisseur lorsque la face avant est polie et de 415 nm d'épaisseur lorsqu'elle est texturée. Tables 1 and 2 below list the thicknesses of the simulated layers for NIP and PIN type architectures respectively. The perovskite used in the simulations is of the Cs x FAi type. x Pb(li. y Br y )3 (with x <0.20; 0 < y < 1). Two different thicknesses were used to obtain less current deviation between the two sub-cells when the surface state is modified. The results presented will be with a perovskite 250 nm thick when the front side is polished and 415 nm thick when textured.
Le tableau 1 suivant répertorie les épaisseurs (nm) des couches simulées pour les architectures de type NIP : The following Table 1 lists the thicknesses (nm) of the simulated layers for NIP-type architectures:
Le tableau 2 suivant répertorie les épaisseurs (nm) des couches simulées pour les architectures de type PIN : The following Table 2 lists the thicknesses (nm) of the simulated layers for PIN type architectures:
Des simulations optiques de ces structures ont été réalisées en utilisant le logiciel CROWM, en tenant compte des indices optiques des couches, de leur épaisseur et de l'état de surface (totalement plane, texturée...). Ces simulations sont effectuées entre 310 et 1200 nm avec le spectre solaire AMI.5. Les indices optiques ont été extraits par ellipsométrie à partir des couches expérimentales. Optical simulations of these structures were carried out using the CROWM software, taking into account the optical indices of the layers, their thickness and the state of the surface (totally flat, textured, etc.). These simulations are performed between 310 and 1200 nm with the AMI.5 solar spectrum. The optical indices were extracted by ellipsometry from the experimental layers.
Les courbes obtenues représentant l'efficacité quantique externe (EQ.E) et la valeur '1-Rtot' sont représentées sur les figures 4A, 4B, 5A, 5B, 6A et 6B. Cette étude par simulation optique démontre que les structures tandem simplifiées NIP et PIN avec une jonction en silicium microcristallin sont viables peu importe la texturation. En effet, ces structures simplifiées ne présentent optiquement que très peu de différences avec les structures complètes et ont le même potentiel optique. The curves obtained representing the external quantum efficiency (EQ.E) and the value '1-Rtot' are represented in figures 4A, 4B, 5A, 5B, 6A and 6B. This optical simulation study demonstrates that simplified NIP and PIN tandem structures with a microcrystalline silicon junction are viable regardless of texturing. Indeed, these simplified structures have optically only very few differences with the complete structures and have the same optical potential.
Le Tableau 3 répertorie les valeurs de Jsc et Rtot obtenues par simulations optiques, et les PCE estimés pour FF = 75 % et \Z0C=1.8 V pour des structures tandem classiques (telles ques représentées sur les figures IA et IB) et des structures tandem simplifiées telles que représentées sur les figures 2A, 2B et 3A, 3B. Les faces avant et arrière des structures tandem peuvent être indépendemment l'une de l'autre polies ou texturées. Table 3 lists the values of J sc and R to t obtained by optical simulations, and the estimated PCEs for FF = 75% and \Z 0C =1.8 V for classic tandem structures (as shown in Figures IA and IB) and simplified tandem structures as shown in Figures 2A, 2B and 3A, 3B. The front and back faces of the tandem structures can be polished or textured independently of each other.
Les structures tandem simplifiées représentées sur les figures 3A et 3B se révèlent être différentes des autres en terme de répartition de l'absorption dans la cellule tandem, par contre les courants de court-circuit qui en résultent sont très similaires. The simplified tandem structures represented in FIGS. 3A and 3B prove to be different from the others in terms of distribution of the absorption in the tandem cell, on the other hand the resulting short-circuit currents are very similar.

Claims

REVENDICATIONS
1. Structure photovoltaïque tandem (100) à 2-terminaux comprenant depuis la face arrière vers la face avant : 1. Tandem photovoltaic structure (100) with 2-terminals comprising from the rear face to the front face:
- une première cellule solaire (110) à hétérojonction de silicium comprenant depuis la face arrière vers la face avant : une première couche d'un premier type de conductivité en silicium amorphe et un substrat de silicium cristallin (112) du premier type de conductivité ou d'un deuxième type de conductivité, disposé entre deux couches de silicium amorphe intrinsèque (113, 114), et éventuellement une première couche d'un deuxième type de conductivité en silicium amorphe, - a first silicon heterojunction solar cell (110) comprising, from the rear face towards the front face: a first layer of a first type of conductivity in amorphous silicon and a substrate of crystalline silicon (112) of the first type of conductivity or of a second type of conductivity, arranged between two layers of intrinsic amorphous silicon (113, 114), and optionally a first layer of a second type of conductivity in amorphous silicon,
- une zone de recombinaison comprenant une couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité, et une deuxième couche du premier type de conductivité, éventuellement à base de silicium nanocristallin ou microcristallin du premier type de conductivité, - a recombination zone comprising a layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity, and a second layer of the first type of conductivity, optionally based on nanocrystalline or microcrystalline silicon of the first type of conductivity,
- une couche active (131) en un matériau pérovskite et une deuxième couche d'un deuxième type de conductivité, caractérisée en ce que la deuxième couche du premier type de conductivité de la zone de recombinaison est en contact avec la couche active en matériau pérovskite (131) et avec la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité de la zone de recombinaison. - an active layer (131) in a perovskite material and a second layer of a second type of conductivity, characterized in that the second layer of the first type of conductivity of the recombination zone is in contact with the active layer in perovskite material (131) and with the layer based on nanocrystalline or microcrystalline silicon of the second conductivity type of the recombination zone.
2. Structure tandem (100) selon la revendication 1, caractérisée en ce que la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité est en pc-Si :H (p+), pc-Si :H (n+), nc-SiCx type N ou P ou nc-SiOy type N ou P avec x allant de 0 à 1 et y allant de 0 à 2. 2. Tandem structure (100) according to claim 1, characterized in that the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity is in pc -Si:H (p+), pc-Si:H (n+), nc-SiC x type N or P or nc-SiOy type N or P with x ranging from 0 to 1 and y ranging from 0 to 2.
3. Structure tandem (100) selon l'une quelconque des revendications précédentes, caractérisée en ce que la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité a une épaisseur allant de 15nm à 60nm et de préférence de 20 à 40nm. 3. Tandem structure (100) according to any one of the preceding claims, characterized in that the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on silicon nanocrystalline or microcrystalline of the second type of conductivity has a thickness ranging from 15 nm to 60 nm and preferably from 20 to 40 nm.
4. Structure tandem (100) selon l'une quelconque des revendications précédentes, caractérisée en ce que la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité a une conductivité supérieure 4. Tandem structure (100) according to any one of the preceding claims, characterized in that the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has higher conductivity
5. Structure tandem (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche à base de silicium nanocristallin ou microcristallin du premier type de conductivité et/ou la couche à base de silicium nanocristallin ou microcristallin du deuxième type de conductivité a un taux de dopage de 1018/cm3 à 1022/cm3. 5. Tandem structure (100) according to any one of the preceding claims, characterized in that the layer based on nanocrystalline or microcrystalline silicon of the first type of conductivity and/or the layer based on nanocrystalline or microcrystalline silicon of the second type of conductivity has a doping rate of 10 18 /cm 3 to 10 22 /cm 3 .
6. Structure tandem (100) selon l'une des revendications 1 à 5, caractérisée en ce que le premier type de conductivité est de type N. 6. Tandem structure (100) according to one of claims 1 to 5, characterized in that the first type of conductivity is of type N.
7. Structure tandem (100) selon la revendication 6, caractérisée en ce qu'elle comprend depuis la face arrière vers la face avant : 7. Tandem structure (100) according to claim 6, characterized in that it comprises from the rear face towards the front face:
- la première cellule solaire (110) à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche de type N (111) en silicium amorphe et le substrat de silicium cristallin (112) disposé entre les deux couches de silicium amorphe intrinsèque (113, 114), - the first silicon heterojunction solar cell (110) based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: the first N-type layer (111) of amorphous silicon and the crystalline silicon substrate ( 112) arranged between the two layers of intrinsic amorphous silicon (113, 114),
- la couche à base de silicium nanocristallin ou microcristallin de type P (121), - the layer based on nanocrystalline or microcrystalline P-type (121) silicon,
- une deuxième cellule solaire (130) pérovskite comprenant vers la face avant : la deuxième couche de type N (133), de préférence en SnO2, la couche active (131) en un matériau pérovskite et la deuxième couche de type P (132) de préférence en PTAA. 8. Structure tandem (100) selon la revendication 6, caractérisée en ce qu'elle comprend depuis la face arrière vers la face avant : - a second perovskite solar cell (130) comprising towards the front face: the second N-type layer (133), preferably made of SnO 2 , the active layer (131) made of a perovskite material and the second P-type layer (132 ) preferably in PTAA. 8. Tandem structure (100) according to claim 6, characterized in that it comprises from the rear face towards the front face:
- la première cellule solaire (110) à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche de type N (111) en silicium amorphe et le substrat de silicium cristallin (112) disposé entre les deux couches de silicium amorphe intrinsèque (113, 114), - the first silicon heterojunction solar cell (110) based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: the first N-type layer (111) of amorphous silicon and the crystalline silicon substrate ( 112) arranged between the two layers of intrinsic amorphous silicon (113, 114),
- la couche à base de silicium nanocristallin ou microcristallin de type P- the P-type nanocrystalline or microcrystalline silicon-based layer
(121) et la couche à base de silicium nanocristallin ou microcristallin de type N (122),(121) and the N-type nanocrystalline or microcrystalline silicon-based layer (122),
- la deuxième cellule solaire (130) pérovskite comprenant vers la face avant : la couche active (131) en un matériau pérovskite et la deuxième couche de type P (132) de préférence en PTAA. - the second perovskite solar cell (130) comprising towards the front face: the active layer (131) in a perovskite material and the second P-type layer (132) preferably in PTAA.
9. Structure tandem (100) selon l'un des revendications 1 à 5, caractérisée en ce que le premier type de conductivité est de type P. 9. Tandem structure (100) according to one of claims 1 to 5, characterized in that the first type of conductivity is of type P.
10. Structure tandem (100) selon la revendication 9, caractérisée en ce qu'elle comprend depuis la face arrière vers la face avant : 10. Tandem structure (100) according to claim 9, characterized in that it comprises from the rear face towards the front face:
- la première cellule solaire (110) à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche de type P (115) en silicium amorphe, le substrat de silicium cristallin (112) disposé entre les deux couches de silicium amorphe intrinsèque (113, 114), et la première couche de type N (111) en silicium amorphe, - the first silicon heterojunction solar cell (110) based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: the first P-type layer (115) of amorphous silicon, the crystalline silicon substrate ( 112) arranged between the two layers of intrinsic amorphous silicon (113, 114), and the first N-type layer (111) of amorphous silicon,
- la couche à base de silicium nanocristallin ou microcristallin de type N- the N-type nanocrystalline or microcrystalline silicon-based layer
(122), (122),
- une deuxième cellule solaire pérovskite (120) comprenant vers la face avant : la deuxième couche de type P (132), de préférence en PTAA ou en TFB, la couche active (131) en un matériau pérovskite et la deuxième couche de type N (133) de préférence SnO2 ou un bicouche PCBM/SnO2. - a second perovskite solar cell (120) comprising towards the front face: the second P-type layer (132), preferably made of PTAA or TFB, the active layer (131) made of a perovskite material and the second N-type layer (133) preferably SnO 2 or a PCBM/SnO 2 bilayer.
11. Structure tandem (100) selon la revendication 9, caractérisée en ce qu'elle comprend depuis la face arrière vers la face avant : 11. Tandem structure (100) according to claim 9, characterized in that it comprises from the rear face towards the front face:
- la première cellule solaire (110) à hétérojonction de silicium à base de silicium amorphe et de silicium cristallin comprenant depuis la face arrière vers la face avant : la première couche de type P (115) en silicium amorphe, le substrat de silicium cristallin (112) disposé entre les deux couches de silicium amorphe intrinsèque (113, 114), et la première couche de type N (111) en silicium amorphe, - the first silicon heterojunction solar cell (110) based on amorphous silicon and crystalline silicon comprising, from the rear face towards the front face: the first P-type layer (115) of amorphous silicon, the crystalline silicon substrate ( 112) arranged between the two layers of intrinsic amorphous silicon (113, 114), and the first N-type layer (111) of amorphous silicon,
- la couche à base de silicium nanocristallin ou microcristallin de type N (121) et la couche à base de silicium nanocristallin ou microcristallin de type P (122), - une deuxième cellule solaire (130) pérovskite comprenant vers la face avant : la couche active (131) en un matériau pérovskite et la deuxième couche de type N (133) de préférence en SnO2 ou un bicouche PCBM/SnO2. - the layer based on N-type nanocrystalline or microcrystalline silicon (121) and the layer based on P-type nanocrystalline or microcrystalline silicon (122), - a second perovskite solar cell (130) comprising towards the front face: the layer layer (131) in a perovskite material and the second N-type layer (133) preferably in SnO 2 or a PCBM/SnO 2 bilayer.
EP21851608.6A 2020-12-18 2021-12-13 Simplified tandem structure for solar cells with two terminals Pending EP4264678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013591A FR3118297A1 (en) 2020-12-18 2020-12-18 SIMPLIFIED STRUCTURE OF TWO-TERMINAL TANDEM SOLAR CELLS
PCT/FR2021/052296 WO2022129758A1 (en) 2020-12-18 2021-12-13 Simplified tandem structure for solar cells with two terminals

Publications (1)

Publication Number Publication Date
EP4264678A1 true EP4264678A1 (en) 2023-10-25

Family

ID=74554116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21851608.6A Pending EP4264678A1 (en) 2020-12-18 2021-12-13 Simplified tandem structure for solar cells with two terminals

Country Status (7)

Country Link
US (1) US20240121969A1 (en)
EP (1) EP4264678A1 (en)
CN (1) CN117280480A (en)
AU (1) AU2021403921A1 (en)
CA (1) CA3202271A1 (en)
FR (1) FR3118297A1 (en)
WO (1) WO2022129758A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411197A (en) * 2022-09-23 2022-11-29 深圳黑晶光电技术有限公司 Preparation method of tandem solar laminated cell and cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296283B1 (en) * 2012-09-18 2021-08-31 옥스포드 유니버시티 이노베이션 리미티드 Optoelectonic device
US20150053259A1 (en) * 2013-08-22 2015-02-26 Plant PV P-type doping of ii-vi materials with rapid vapor deposition using radical nitrogen
WO2016090179A1 (en) * 2014-12-03 2016-06-09 The Board Of Trustees Of The Leland Stanford Junior University 2-terminal metal halide semiconductor/c-silicon multijunction solar cell with tunnel junction
US9653696B2 (en) * 2016-05-09 2017-05-16 Solar-Tectic Llc Tin perovskite/silicon thin-film tandem solar cell
GB2559800B (en) * 2017-02-20 2019-06-12 Oxford Photovoltaics Ltd Multijunction photovoltaic device
CN107564989A (en) * 2017-07-20 2018-01-09 南开大学 The structure design of tunnel junctions in a kind of perovskite/silicon heterogenous stacked solar cell, cascade solar cell
KR102570856B1 (en) * 2017-07-21 2023-08-25 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Perovskite solar cell and tandem solar cell including the same
CN109390430A (en) * 2018-10-19 2019-02-26 君泰创新(北京)科技有限公司 A kind of lamination solar cell and preparation method thereof
CN111081878A (en) * 2018-10-19 2020-04-28 君泰创新(北京)科技有限公司 Perovskite/silicon-based heterojunction laminated solar cell and preparation method thereof
CN111081812A (en) * 2019-11-18 2020-04-28 深圳第三代半导体研究院 Preparation method and application of transparent conductive oxide film
CN111916561A (en) * 2020-07-22 2020-11-10 隆基绿能科技股份有限公司 Perovskite solar cell, tandem solar cell and battery pack

Also Published As

Publication number Publication date
CA3202271A1 (en) 2022-06-23
WO2022129758A1 (en) 2022-06-23
FR3118297A1 (en) 2022-06-24
CN117280480A (en) 2023-12-22
US20240121969A1 (en) 2024-04-11
AU2021403921A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US10672930B2 (en) Photoelectric conversion device and photoelectric conversion module
US20140230901A1 (en) Organic Solar Cell Comprising an Intermediate Layer with Asymmetrical Transport Properties
US9768329B1 (en) Multi-junction optoelectronic device
JP2011061197A (en) Solar cell, and method of manufacturing the same
EP3161883B1 (en) Multi-thread tandem cells
US20200295209A1 (en) Integration of bypass diodes within thin film photovoltaic module interconnects
US11271128B2 (en) Multi-junction optoelectronic device
FR2878652A1 (en) ORGANIC ELECTROLUMINESCENT DIODE WITH DOPED LAYERS
EP4264678A1 (en) Simplified tandem structure for solar cells with two terminals
EP3555921B1 (en) Tandem photovoltaic device comprising a sub-cell based on perovskite and a sub-cell based on silicon
EP2862211A1 (en) P-i-n-type organic light-emitting diode
WO2022129757A1 (en) Simplified structure of two-terminal tandem solar cells with transparent conducting oxide junction material
FR3069708B1 (en) MULTILAYER STACK USEFUL AS P-LAYER FOR PHOTOVOLTAIC DEVICE
KR102075937B1 (en) High efficiency PERC solar cell
FR3115929A1 (en) Tandem photovoltaic device combining a silicon-based sub-cell and a perovskite-based sub-cell comprising a perovskite/P- or N-type material composite layer
EP3979337A1 (en) Method for characterising a solar cell in similar conditions to those of a solar device with tandem architecture
KR102667799B1 (en) Solar cell and method for manufacturing the same
KR102690582B1 (en) Tandum Solar Cell
FR3115928A1 (en) Tandem photovoltaic device combining a silicon-based sub-cell and a perovskite-based sub-cell comprising an N layer with controlled carbon content

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)