EP4244117A1 - Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component - Google Patents

Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component

Info

Publication number
EP4244117A1
EP4244117A1 EP21805490.6A EP21805490A EP4244117A1 EP 4244117 A1 EP4244117 A1 EP 4244117A1 EP 21805490 A EP21805490 A EP 21805490A EP 4244117 A1 EP4244117 A1 EP 4244117A1
Authority
EP
European Patent Office
Prior art keywords
component
measuring
infrastructure component
infrastructure
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21805490.6A
Other languages
German (de)
French (fr)
Inventor
Markus Pröll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP4244117A1 publication Critical patent/EP4244117A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems

Definitions

  • the invention relates to a method for measuring an infrastructure component, in particular a track structure component. Furthermore, the invention relates to a mobile measuring system for measuring an infrastructure component, in particular a track structure component.
  • a method and a measuring system for optically detecting fixed points next to a track are known from AT 518579 A1.
  • the measuring system is arranged on a measuring car that can be moved on a track and includes a stereo camera system for capturing image pairs of the lateral surroundings of the track.
  • the position of fixed points in the area is determined by means of the pairs of images, from which the position of the measuring vehicle can be deduced.
  • a drift correction of position data is carried out, which is determined with an inertial measuring device.
  • an infrastructure component can be measured in a particularly precise, economical and flexible manner using a mobile measurement system with a stereo camera. Determining the deformation of the infrastructure component based on the at least one relative position makes it possible to draw conclusions about the stress on the Infrastructure component, especially during transport and / or in the installed state to pull.
  • the detection of the measurement position of the measurement system in the global coordinate system ensures a particularly precise determination of the arrangement of the infrastructure component in the global coordinate system.
  • the pair of images can be recorded without contact, in particular if the measuring system is arranged at a distance from the infrastructure component.
  • the attachment of measuring equipment to the infrastructure component can largely, in particular completely, be dispensed with.
  • the accessibility of the infrastructure component can therefore remain unaffected during the measurement process.
  • the measurement of the infrastructure component from a distance also enables a more flexible choice of the arrangement of the mobile measurement system, so that it can be reliably arranged on a solid surface.
  • Measuring the infrastructure component by means of image acquisition allows the precise measurement of both small infrastructure components, for example with a main dimension of a maximum of 2 m, and very large infrastructure components, for example with a main dimension of at least 5 m, in particular at least 10 m, in particular at least 100 m.
  • the relative position of several measuring points can be determined using a single pair of images. The method can be carried out fully automatically.
  • the method offers a high degree of safety for the measurement personnel due to the arrangement at a distance from the infrastructure component.
  • the method is particularly suitable for use in safety-critical areas such as construction sites, on busy traffic routes and/or on contaminated infrastructure components.
  • the depth of the at least one measuring point can be determined on the basis of the pair of images, in addition to the two-dimensional information of the respective individual image. This depth can be determined based on the angle and the distance between the cameras of the stereo camera.
  • the individual images of the image pair are preferably captured at the same time. The methods for determining the position of a measurement point in three-dimensional space using a pair of images are known from the prior art.
  • the infrastructure component is understood to mean a structural component from the construction industry, in particular from the transport sector.
  • the infrastructure component can be a component from building construction, in particular building construction, for example a building wall, and/or from civil engineering, in particular bridge construction, for example a bridge girder or a bridge pillar, tunnel construction, pipeline construction, mining, road construction and/or the Track construction, for example a track structure component.
  • the infrastructure component preferably comprises a precast concrete component, in particular a precast concrete slab, for example a precast concrete slab for constructing a track without sleepers, or a precast concrete girder.
  • the infrastructure component can be a road element and/or a track element, in particular made of ready-mixed concrete.
  • a main dimension of the infrastructure component, in particular an area that can be detected, in particular an area that can be recorded using the stereo camera, of the infrastructure component is preferably at least 1 m, in particular at least 5 m, in particular at least 10 m, in particular at least 20 m, in particular at least 50 m and/or at most 100 m, in particular a maximum of 50 m, in particular a maximum of 20 m, in particular a maximum of 10 m, in particular a maximum of 1 m.
  • the main dimension is understood to mean the maximum dimension of the infrastructure component.
  • the mass of the infrastructure component is preferably in a range from 50 kg to 500 t, in particular from 0.5 t to 150 1, in particular from 1 1 to 100 1, in particular from 5 t to 50 t.
  • Measuring the infrastructure component means in particular determining the arrangement and/or the deformation of the infrastructure component.
  • the deformation can include stretching and/or twisting and/or distortion of the infrastructure component.
  • the arrangement of an object includes its position and orientation.
  • a mobile object is understood to mean that it is designed to be movable, that is to say transportable, in particular portable.
  • its mass is preferably a maximum of 50 kg, in particular a maximum of 20 kg.
  • a stereo camera is understood to mean an image acquisition unit which enables images to be recorded from two different positions, in particular simultaneously.
  • the stereo camera can have two cameras arranged at a distance from one another and/or a single camera with a mirror device for capturing image halves from positions at a distance from one another.
  • the pair of images can also be recorded using a single camera, which is successively shifted into two mutually spaced positions in order to record the individual images.
  • the distance between these objected positions must be detectable in order to determine the depth of the at least one measuring point. If this is the case, this can also be understood as a stereo camera.
  • the at least one camera is preferably designed as a digital camera, in particular as a full HD camera.
  • the at least one camera is preferably designed to record images with a resolution in a range from 1 MP (megapixel) to 64 MP, in particular from 4 MP to 32 MP, in particular from 8 MP to 16 MP.
  • the at least one measuring point can be a point on the surface of the infrastructure component and/or the center of a partial area of the infrastructure component and/or a point, in particular the center, of an object coupled to the structural component, in particular a marking.
  • the marking is preferably attached rigidly to the infrastructure component. According to one aspect of the invention, the marking is movably, in particular linearly displaceable, attached to the infrastructure component. This advantageously means that the infrastructure component can be measured in detail using a plurality of image pairs with different arrangements of the at least one marking relative to the infrastructure component.
  • individual measurement points coupled to the infrastructure component can be recorded and/or at least sections of a surface of the infrastructure component or an object coupled thereto.
  • the relative position of the at least one measuring point can be inferred from the detected surface.
  • the relative position is preferably determined by evaluating partial areas, so-called facets, of the detected surface.
  • the global coordinate system is preferably a geographic coordinate system.
  • the global coordinate system can be determined by the coordinate system in which the position of survey points for land surveying are specified. Points specified in the global coordinate system are preferably uniquely determined with regard to their global position.
  • the relative position is understood to mean the position of the respective measuring point in a local coordinate system, in particular in a camera coordinate system.
  • the origin of the camera coordinate system is preferably in the middle between the two individual cameras.
  • the x axis of the camera coordinate system is preferably oriented horizontally and points in the viewing direction of the stereo cameras.
  • the z axis of the camera coordinate system preferably points upwards in the vertical direction.
  • the y-axis of the camera coordinate system results from the formation of the camera coordinate system as a right-hand Cartesian coordinate system.
  • the relative position and/or the measurement position and/or the component position can be determined by means of the measurement system with a measurement deviation of at most 100 mm, in particular at most 10 mm, in particular at most 1 mm, in particular at most 0.1 mm, in particular at most 0.01 mm, in particular a maximum of 0.001 mm.
  • a distance between the measuring system, in particular the stereo camera, and the infrastructure component can be at least 1 m, in particular at least 5 m, in particular at least 10 m, in particular at least 20 m, in particular at least 50 m, in particular at least 100 m, in particular at least 250 m, and/or a maximum of 100 m, in particular a maximum of 50 m, in particular a maximum of 20 m, in particular a maximum of 10 m, in particular a maximum of 2 m.
  • the measuring system can thus be positioned particularly flexibly and the measuring field that can be recorded by the stereo camera is particularly large.
  • the field of view of the stereo camera is determined by the overlapping area of the fields of view of the two digital cameras.
  • the measurement system preferably includes an illumination unit for illuminating the infrastructure component.
  • the lighting unit can be designed to emit infrared light and/or UV light and/or narrow-band blue light and/or white light.
  • the lighting device can also be designed to project a pattern, in particular a grid, onto the infrastructure component.
  • the lighting unit preferably has at least one LED and/or a projector as the light source. Such an illumination unit advantageously ensures that the acquisition of the at least one pair of images is particularly robust with respect to environmental influences.
  • the measurement arrangement, in particular the measurement position and/or the measurement orientation, of the measurement system is preferably determined in the global coordinate system.
  • the measurement arrangement is preferably described by the arrangement of a measurement coordinate system.
  • the measurement position corresponds to the origin of the measurement coordinate system and the measurement orientation corresponds to the orientation of the measurement coordinate system.
  • the arrangement of the measuring system can preferably be reversibly fixed by means of a fixing unit.
  • the fixing unit preferably has a tripod, in particular a tripod.
  • the fixing unit enables the measurement arrangement to be stably fixed in the global coordinate system.
  • a vertical axis of the measurement coordinate system is preferably aligned by means of the fixing unit in such a way that it points upwards in the vertical direction.
  • the infrastructure component is preferably measured in a fixed arrangement, in particular in a fixed measurement position and/or Measurement orientation of the measurement system, in particular in the global coordinate system.
  • the arrangement of the measuring system is preferably retained for the period in which the infrastructure component, in particular in the target component arrangement, is relocated and/or in which at least two, in particular at least five, in particular at least ten, of the image pairs of the infrastructure component are captured by the stereo camera .
  • the infrastructure component can thus be measured in a particularly robust and precise manner.
  • the measurement position and/or the measurement orientation can deviate from or coincide with the camera position and/or the camera orientation.
  • the stereo camera is preferably mounted on the fixing unit so that it can swivel about the vertical axis and/or a horizontal axis, in particular with respect to the measuring coordinate system.
  • the camera orientation can be changed relative to the measurement orientation.
  • the orientation of the camera coordinate system relative to the measurement coordinate system is preferably detected by means of at least one angle sensor, in particular a rotary encoder.
  • the position of the origin of the camera coordinate system relative to the origin of the measurement coordinate system can be specified unchanged by a connection s structure or be changeable and measurable by means of at least one sensor.
  • a measurement camera vector can be determined between the origin of the measurement coordinate system and the origin of the camera coordinate system.
  • the relative position of the respective measuring point detected by means of the stereo camera in particular independently of the arrangement of the stereo camera in the measuring -Coordinate system, is determinable.
  • a method according to claim 2 enables the component arrangement to be described in a uniform, stationary and/or standardized reference coordinate system.
  • the component arrangement includes the component position and/or the component orientation.
  • the component position is preferably described by the origin of a component coordinate system.
  • the component orientation can be described by the orientation of the component coordinate system.
  • the component arrangement can be determined based on the at least one relative position, in particular based on at least two, in particular at least three, relative positions, based on common geometric functions, in particular in the camera coordinate system.
  • the arrangement of components in the global coordinate system is preferably calculated on the basis of the arrangement of components in the camera coordinate system using common calculation methods for coordinate transformation.
  • the deviation of the component arrangement from a target component arrangement can be determined using the method according to claim 3 .
  • the deviation of the component position and/or the component orientation from a target component position and/or target component orientation can be determined.
  • the comparison result can be calculated using the difference between the component arrangement and the target component arrangement.
  • the result of the comparison is a measure of the extent to which the current component arrangement deviates from the target component arrangement.
  • a method according to claim 4 ensures a particularly precise arrangement, in particular positioning and orientation, of the infrastructure component.
  • the relocation of the infrastructure component can be be done manually, in particular by hand, or automatically with the same result.
  • the infrastructure component can be relocated by means of a transport device, in particular by means of a rail vehicle and/or a road vehicle and/or a track-laying device and/or a construction crane.
  • the infrastructure component is preferably measured, in particular repeatedly, during the relocation, in particular from a storage arrangement, to the target arrangement.
  • a course, in particular a change, of the deviation of the component arrangement from a target component arrangement can be determined.
  • the shifting of the infrastructure component, in particular into the desired component arrangement can be controlled, in particular regulated, on the basis of this course.
  • a method according to claim 5 is particularly robust in operation and has an expanded field of application.
  • the pairs of images can be captured at times that follow one another periodically or aperiodically.
  • a mean value is preferably formed over at least two, in particular at least three, in particular at least five, and/or a maximum of ten of the relative positions recorded using the image pairs at different points in time. This redundancy makes the measurement process particularly precise.
  • the image pairs can be recorded, for example, at an interval of at least one month, in particular at least one year and/or a maximum of 20 years, in particular a maximum of 10 years, in particular a maximum of 5 years, and/or after a specified maintenance period has expired.
  • a comparison result is preferably obtained by comparing the component arrangement at the different time definitely score. This comparison result can be used to draw conclusions about the change in the component arrangement. On this basis, the need for maintenance measures can be determined.
  • a method according to claim 6 ensures that the infrastructure component is measured and/or arranged in a particularly efficient manner.
  • the movement path of the at least one measuring point is preferably a trajectory in three-dimensional space.
  • the movement path can include the measurement points determined at different points in time, in particular consist of them, and/or be supplemented by interpolation between the measurement points to form an uninterrupted line.
  • the movement path can be determined when the infrastructure component is relocated relative to the global coordinate system and/or when the at least one measuring point, in particular the at least one marking, is relocated relative to the infrastructure component.
  • the component arrangement can be shifted particularly efficiently into the target component arrangement using the movement path, in particular on the basis of a control with an integral and/or differential control element.
  • the component arrangement and/or the component geometry can be determined particularly efficiently and precisely using the movement path.
  • the at least one measuring point in particular a marking, can be arranged on a measuring carriage for displacement on a track.
  • the position of the at least one measurement point relative to the rails can be fixed or recorded.
  • the geometry and the arrangement of the infrastructure components designed as rails can be determined.
  • a method according to claim 7 can be used particularly flexibly and is economical to operate.
  • the image pairs are preferably recorded with a measurement frequency in a range from 0.01 Hz to 500 Hz, in particular from 0.1 Hz to 250 Hz, in particular from 1 Hz to 150 Hz, in particular from 10 Hz to 100 Hz.
  • the mean value is preferably formed over the relative positions recorded using the image pairs recorded with a corresponding frequency.
  • a method according to claim 8 ensures that the measurement position is determined in a particularly simple and precise manner.
  • the survey point is understood to mean a fixed point firmly marked on the ground or on a building, which serves in particular as a starting point or as a target point in land surveying.
  • the measurement position is preferably determined after the arrangement of the measurement system has been determined by means of the fixing unit.
  • the measurement arrangement, in particular the measurement position and/or the measurement orientation, of the measurement system is preferably determined in the global coordinate system.
  • the measuring system can have a position determination unit, in particular a satellite navigation module, in particular a GPS module, a Galileo module and/or a Glonass module, and/or a tachymeter for geodesy, in particular a laser distance measuring device.
  • the measurement arrangement can be determined by laser distance measurement and triangulation of the measurement points and/or using the satellite navigation signal of the GPS module, the Galileo module and/or the Glonass module.
  • a method according to claim 9 can be used particularly flexibly and carried out efficiently.
  • the camera arrangement in particular the camera position and/or the camera orientation, is preferably related to the measuring arrangement, in particular the measurement position and/or the measurement orientation, rigid or changeable.
  • the camera arrangement relative to the measurement arrangement can be determined in a calibration process, in particular in the case of a rigid connection.
  • the camera arrangement is preferably changed, in particular pivoted, between two consecutively captured image pairs relative to the fixing unit.
  • the relative arrangement of the stereo camera with respect to the fixing unit can be detected automatically with the aid of the angle sensor and/or the displacement sensor. Alternatively, this relative arrangement can be recorded manually.
  • the arrangement of the fixing unit can be retained if a rearrangement, in particular a reorientation of the stereo camera, is required for measuring the infrastructure component.
  • the component arrangement of the infrastructure component can also be determined after rearranging the stereo camera in the global coordinate system without the need for rearranging the measurement system.
  • a measuring point that has moved beyond the measuring field of the stereo camera can be tracked by panning the stereo camera.
  • a method according to claim 10 enables an analysis of the stress on the infrastructure component.
  • At least two, in particular at least three, of the relative positions are preferably compared with a respective reference value.
  • the at least one reference value can be a reference position specified for the respective relative position.
  • the reference position can take place, for example, in the course of a reference measurement, in particular of the unloaded infrastructure component. It is preferably checked whether the deviation of the at least one relative position from the respective reference value exceeds a predefined deformation threshold value.
  • the deformation threshold value preferably correlates with an allowable deformation of the infrastructure component.
  • the at least one relative position is preferably compared with the respective limit value while the infrastructure component is being relocated, in particular to the target component arrangement, and/or before or after the infrastructure component is fixed in the target component arrangement and/or after a maintenance period has expired. This enables the stress on the infrastructure component to be monitored, which increases the operational reliability of the infrastructure component and enables maintenance and repair work on the infrastructure component to be carried out particularly efficiently and economically.
  • the deformation of the infrastructure component is determined by comparing at least three, in particular at least ten, in particular at least 100, in particular at least 500, in particular linearly independent and/or distributed in a grid over a surface of the infrastructure component, relative positions with at least one, in particular one each, reference value. This advantageously means that local deformations of the infrastructure component can also be detected.
  • a method according to claim 11 ensures the particularly precise determination of the deformation of the infrastructure component.
  • the geometry model can be a CAD model.
  • the structural model can be an FEM model.
  • the at least one pair of reference images can have been captured of the infrastructure component in an unloaded state and/or the fixing of the infrastructure component in the desired component arrangement and/or after a maintenance period has expired.
  • the reference value and/or the deformation threshold value can be determined using a structural model, in particular an FEM model, in particular under virtual loading of the infrastructure component with loads, in particular with the loads to be expected when the infrastructure component is in use.
  • the deformation threshold value for the respective deviation of the relative position from the reference value can be determined using the structural model as the maximum permissible stress on the infrastructure component. The stress on the infrastructure component in relation to a permissible stress can thus be determined on the basis of the result of the comparison between the respective reference value and the relative position.
  • a method according to claim 12 makes stresses, in particular overstresses, of the infrastructure component during transport recognizable.
  • the monitoring of the deformation of the infrastructure component during displacement preferably takes place periodically, in particular with the measurement frequency described above. This reliably prevents brief peak deformations, in particular load peaks, from remaining undetected.
  • the deformations determined are documented, in particular stored in the memory element of an evaluation unit.
  • the deformation information is preferably stored in a database for life cycle monitoring of the respective infrastructure component.
  • stresses on the infrastructure component Based on the at least one relative position, in particular based on the comparison of the at least one relative position with the at least one reference value, stresses on the infrastructure component Based on a structural model, in particular an FEM model, are calculated. For example, stresses in the infrastructure component can be determined based on the at least one relative position.
  • a method according to claim 13 enables the stresses acting on the infrastructure component during relocation to be reduced. For example, based on the result of the comparison, the displacement can be influenced in such a way that a threshold value of the deformation is not exceeded.
  • a controlled displacement of the infrastructure component preferably takes place on the basis of the deformation in such a way that the deformations are minimized.
  • the infrastructure component can in particular be measured in real time. This means that the time between the image acquisition and the determination of the at least one relative position is a maximum of 1 s, in particular a maximum of 0.1, in particular a maximum of 0.01 s.
  • the arrangement of the infrastructure component can be controlled, in particular regulated, in a particularly efficient manner.
  • a method according to claim 14 enables a particularly detailed measurement of the infrastructure component.
  • a method according to claim 15 can be carried out particularly robustly and reliably.
  • the at least one marking can be rigidly or movably coupled to the infrastructure component, in particular linearly displaceable.
  • the marking can have a reflector for reflecting light.
  • the marking preferably includes a connecting means for the precise positioning on the infrastructure component.
  • the marking is attached to a predetermined position of the infrastructure component.
  • the marking can have a pattern for easier and/or automated identification of the marking.
  • the marking in particular the pattern, preferably includes unique identification information.
  • the unique identification information is preferably assigned to an individual measurement point. In this way, an in particular automated assignment of the recorded relative position to the respective measuring point can take place.
  • the method can thus be implemented in a particularly reliable and robust manner with respect to operating errors.
  • the infrastructure component can be measured particularly precisely.
  • Such markings are also referred to as measuring marks.
  • a further object of the invention is to create a mobile measuring system for measuring an infrastructure component, in particular a track structure component, which can be used very economically and flexibly and provides particularly precise measurement results.
  • a mobile measuring system with the features of claim 16 .
  • the advantages of the mobile measuring system correspond to the advantages of the method described above.
  • Especially the mobile measuring system can be further developed with at least one of the features that are described above in connection with the method.
  • the evaluation unit preferably includes a processor for processing digital data, in particular in real time, and/or a storage element for storing the data and/or a user interface for exchanging information with the user.
  • the evaluation unit preferably includes a desktop PC, a notebook and/or a tablet PC and/or a smartphone.
  • the mobile measuring system is preferably designed to carry out the method described above.
  • a computer program for executing the method described above can be stored on the memory element of the evaluation unit.
  • the invention also relates to a computer program for carrying out the method described above.
  • the mobile measuring system preferably includes a fixing unit for determining the arrangement of the measuring system, in particular for fixing the measuring system on the ground.
  • the fixing unit can include a tripod and/or a carriage, in particular a measuring carriage that can be moved on rails.
  • the fixing unit is preferably designed to completely determine the measurement position and/or the measurement orientation of the measurement system. This allows the determination of the relative position, in particular the determination of the arrangement of the infrastructural component in the global coordinate system, be carried out particularly precisely and robustly.
  • a mobile measuring system is particularly flexible and economical to operate.
  • the measuring means can be designed to detect the camera position and/or the camera orientation relative to the measuring position and/or the measuring orientation.
  • the measuring means can be designed for analog or digital detection of the camera arrangement.
  • the evaluation unit is preferably designed for the automated detection of the camera arrangement relative to the measuring arrangement by means of the measuring means.
  • the measuring means can have at least one angle sensor for detecting the camera orientation relative to the measurement orientation and/or a displacement sensor for detecting the camera position relative to the measurement position.
  • the angle sensor is preferably designed as a rotary encoder on a swivel joint between the stereo camera and the fixing unit and/or the position determination unit.
  • the path sensor can be designed as a linear guide between the stereo camera and the fixing unit.
  • the evaluation unit is preferably designed to capture the camera arrangement relative to the measurement arrangement when capturing the image pair of the infrastructure component.
  • the stereo camera can thus be moved, in particular pivoted, in order to track a measurement point displaced over the measurement field of the stereo camera.
  • the position of the measurement point can thus always be calculated in the measurement coordinate system and/or in the global coordinate system even if the stereo camera is displaced.
  • the measuring field of the measuring system is thus significantly larger than the measuring field of the stereo camera.
  • FIG. 1 shows a schematic representation of a mobile measuring system with a stereo camera, an evaluation unit and a position determination unit, the measuring system being used to measure a structural track component, in particular a precast concrete slab for the construction of a sleeper-free track,
  • FIG. 2 shows a plan view of the measuring system in FIG. 1, wherein measuring points detected by the stereo camera and coupled to the infrastructure component and measuring points detected by the position determination unit are shown together with a global coordinate system, a measuring coordinate system and a camera coordinate system,
  • FIG. 3 shows a perspective representation of the measuring system and the infrastructure component in FIG.
  • FIG. 4 shows a schematic representation of the mobile measuring system in FIG. 1, the measuring system being used for measuring a building element
  • 5 shows a schematic representation of the mobile measuring system in FIG.
  • FIG. 6 is a perspective view of the measurement system of FIG. 1, the measurement system being used to measure rails by detecting the path of movement of measurement points moved relative to the track.
  • the infrastructure component 1 is a structural track component, in particular a precast concrete slab for constructing a track 3 without sleepers.
  • the infrastructure component 1 has support elements 5 for fastening rails 4 . Bores 6 for attaching tension clamps 7 are arranged on the support elements 5 .
  • Surveying points 8 are located in the vicinity of the measuring system 2 or the infrastructure component 1.
  • Surveying points 8 are points fixed on the ground or on buildings, which serve as starting or target points in land surveying or in construction.
  • Reflector rods 9 placed in the survey points 8 are used to detect the position of the survey points 8 .
  • the reflector rods 9 can be detected by sensors in a particularly simple and reliable manner.
  • a reflector rod 9 usually comprises an optically detectable target window 10 which is arranged vertically above the survey point 8 at a specific distance therefrom in order to detect it.
  • the measuring system 2 has a stereo camera 11 and a position determination unit 12 . In order to set up the measuring system 2 stably on the floor, the measuring system 2 comprises a tripod 13, in particular a tripod. Furthermore, the measuring system 2 includes an evaluation unit 14 for processing the data recorded by the stereo camera 11 and the position determination unit 12 .
  • the position determination unit 12 is attached to the tripod 13 .
  • a vertical axis 15 of the position determination unit 12 can be aligned vertically by means of the stand 13 .
  • a laser distance measuring device 16 of the position determination unit 12 is attached to the stand 13 so as to be pivotable about a horizontal axis 18 via a horizontal joint 17 and about a vertical axis 20 via a vertical joint 19 .
  • the two joints 17, 19 are each formed with a rotary encoder 20a, 20b, not shown, for detecting the orientation of the laser distance measuring device 16.
  • the orientation of the laser distance measuring device 16 can be completely determined by means of these rotary encoders 20a, 20b and due to the vertical alignment of the vertical axis 15.
  • the laser distance measuring device 16 is designed to detect a reflector distance bi, b, bs from the measurement points 8, in particular from the target window 10 of the reflector rods 9. In order to align the laser distance measuring device 16 in the direction of the respective target window 10, it can be pivoted about the joints 17, 19.
  • the detected reflector distances bi, bi, bs can be transmitted to the evaluation unit 14 via a signal connection 21 together with the angles of rotation ⁇ i, ⁇ i, ⁇ s, yi, yi, y3 detected by the rotary encoders 20a, 20b.
  • the stereo camera 11 has two digital cameras 22 .
  • the digital cameras 22 are arranged at a camera distance D from one another. In particular, the two digital cameras 22 are arranged at the same height in the vertical direction.
  • the stereo camera 11 is connected to the position determination unit 12 in such a way that it can be pivoted about the vertical axis 20 by means of the vertical joint 19, but not about the horizontal axis 18.
  • the orientation of the stereo camera 11 relative to the tripod 13 can only be adjusted about the vertical axis 20.
  • the digital cameras 22 are full HD cameras with a resolution of 1920x1080 pixels.
  • the measuring system 2 has an illumination unit 23 .
  • the lighting unit is arranged centrally between the digital cameras 22 .
  • the lighting unit 23 is designed to emit infrared light.
  • Markings 24 in the form of reflectors are coupled to the infrastructure component 1 .
  • the respective marking 24 is attached to the infrastructure component 1 , in particular to the bores 6 , by means of a marking attachment 25 .
  • the markings 24 are arranged offset by marker vectors Ci, Ci, C3, C4, C5 in relation to the stereo camera 11, in particular in relation to an origin 26 of a camera coordinate system 27.
  • the distances between the reflectors bi, b, b3 are determined relative to the origin 28 of a measuring coordinate system 29 of the measuring system 2.
  • a global coordinate system 30 has the origin 31.
  • the evaluation unit 14 includes a processor 32 for processing data, a user interface 33 for exchanging information with the user and a storage element 34 for storing digital data.
  • the processor 32 is in signal connection with the measuring system 2 , with the user interface 33 and the memory element 34 via the signal connection 21 .
  • the user interface 33 has a touch-sensitive screen.
  • the evaluation unit 14 can be a desktop PC, a laptop, a tablet PC or a smartphone, for example.
  • the functioning of the measuring system 2 is as follows:
  • the infrastructure components 1 in the form of precast concrete slabs are continuously applied to one another.
  • the infrastructure components 1 are successively shifted from a transport position to an individual target component position.
  • the respective infrastructure component 1 is preferably arranged in a target component orientation.
  • the infrastructure component 1 can be moved, for example, by means of a crane 35 .
  • the measuring system 2 is used for the precise, planned positioning and orientation of the infrastructure component 1 .
  • the measuring system 2 is arranged on the infrastructure component 1 in such a way that the measuring field 36 of the stereo camera 11, in particular an overlapping area of fields of view of the two digital cameras 22, overlaps the infrastructure component 1 and the markings 24 coupled to it, at least in the target component position. This ensures that both digital cameras 22 can see the infrastructure component 1 and the markings 24 attached to it when the infrastructure component 1 is arranged. can grasp.
  • the vertical axis 15 of the measuring system 2 is aligned vertically by means of the tripod 13, in particular by means of an analog or digital spirit level.
  • the stand 13 is fixed to the ground and also no longer moves in the course of the subsequent measurement process.
  • the measuring coordinate system 29 is rigidly connected to the fixing unit 13 or fixed by the fixing unit 13 and is thus fixed in relation to the global coordinate system 30 .
  • the measurement position of the measurement system 2, in particular the origin 28 and the orientation of the measurement coordinate system 29, in the global coordinate system 30 are determined.
  • the reflector rods 9 are arranged on the measurement points 8 located in the vicinity of the measurement system 2 .
  • the laser distance measuring device 16 is successively aligned with the respective target windows 10 of the reflector rods 9 .
  • This information is transmitted to the processor 32 via the signal connection 21 .
  • the measuring position, in particular the origin 28 and the orientation of the measuring coordinate system 29, in the global coordinate system 30 is determined by means of common vector calculation using the processor 32 and stored in the memory element 34 from the coordinates of the measurement points 8 and the recorded measurement position values.
  • the origin 26 of the camera coordinate system 27 is offset by a measurement camera vector t to the origin 28 of the measurement coordinate system 29 .
  • the measuring camera vector t is unchangeable with regard to its length and its vertical portion due to the chosen attachment of the stereo camera 11 .
  • the horizontal component of the measurement camera vector t depends on the orientation of the stereo camera 11 about the vertical axis 20.
  • the measurement camera vector t is determined based on its known length, the likewise known vertical component and the horizontal component determined by means of the rotary encoder 20b of the vertical joint 19 definitely.
  • the origin 26 and the orientation of the camera coordinate system 27 in the global coordinate system 30 are determined on the basis of the measuring camera vector t and the measuring position, in particular the origin 28 and the orientation of the measuring coordinate system 29 .
  • relative positions of the measurement points 37, 38, 39, 40, 41 recorded by the stereo camera 11 can be determined in the global coordinate system 30 via common coordinate transformations executed in the evaluation unit 14, in particular by the processor 32.
  • the pair of images can be recorded particularly precisely and robustly.
  • the stereo camera 11 can be moved, in particular pivoted, in particular pivoted about the vertical axis 20, relative to the measuring coordinate system 29 during the detection of the infrastructure component 1, in particular continuously and/or corresponding to the displacement movement of the infrastructure component 1.
  • the stereo camera 11 is rigidly connected to the measuring coordinate system 29, in particular to the stand 13.
  • a vertical joint 19 is not provided. The stereo camera 11 cannot be pivoted relative to the measurement coordinate system 29 .
  • the arrangement of the infrastructure component 1 is determined by its position and orientation.
  • the component position is determined by the origin 42 of a component coordinate system 43 .
  • the orientation of the component is determined by the orientation of the component coordinate system 43 .
  • the position of the measuring points 37, 38, 39, 40, 41 on the infrastructure component 1 is known; in particular, this is stored in a corresponding data record in the memory element 34. From this, the arrangement of the component coordinate system 43 with the origin 42 relative to the measuring points 37, 38, 39, 40, 41 is calculated, in particular by means of the processor 32.
  • the arrangement of the components, in particular the component position and the component orientation can be determined in the global coordinate system 30 using common coordinate transformation methods.
  • the component position is determined in the global coordinate system 30 using the component position vector p pointing from the origin 31 to the origin 42 .
  • the component orientation can be specified in the global coordinate system 30, for example using a corresponding component orientation s vector for the component coordinate system 43.
  • the infrastructure component 1 is moved from a storage component arrangement to a target component arrangement by means of the crane 35 .
  • the component arrangement is changed during the relocation of the infrastructure component 1 continuously determined by means of the measuring system 2.
  • the component arrangement is determined with a frequency in a range from 10 Hz to 100 Hz, in particular with a frequency of 55 Hz.
  • the desired component arrangement is stored in the storage element 34 for each of the infrastructure components 1 .
  • the desired component arrangement of the respective infrastructure component 1 is preferably stored in the storage element 34 together with individual identification information or a sequential number. Using the individual identification information or the sequential number, the user can use the user interface 33 to select the target component arrangement that is appropriate for the infrastructure component 1 that is currently to be arranged.
  • the target component arrangement includes, for example, a target component position vector and a target component orientation vector.
  • the detected component arrangement is continuously compared with the target component arrangement, in particular with the frequency in the range from 10 Hz to 100 Hz, in particular with the frequency of 55 Hz.
  • the comparison result is determined by the difference between the target component arrangement and the component arrangement.
  • the result of the comparison is displayed to the user via the user interface 33 in the form of a difference position vector and a difference orientation vector.
  • the infrastructure component 1 is relocated using the result of the comparison.
  • the infrastructure component 1 can be relocated to the target component arrangement in an automated manner, in particular in a controlled manner, by means of the crane 35 . If the result of the comparison, in particular the differential position vector and the differential orientation vector, falls below a predetermined arrangement threshold value, a permissible component arrangement is reached.
  • the infrastructure component 1 is fixed in this arrangement.
  • the method for arranging the infrastructure component 1 is ended.
  • a further infrastructure component 1 can be transferred from the storage component arrangement to the desired component arrangement and fixed there in accordance with the method described above.
  • a deformation of the infrastructure component 1 can be determined by means of the measuring system 2.
  • the marker vectors c are determined according to the method described above by capturing image pairs using the stereo camera. A transformation of the marker positions into the global coordinate system 30 is not required to determine the deformation of the infrastructure component 1 .
  • the position of the markings 24 is determined by the processor 32 using the marker vectors c in the component coordinate system 43 .
  • Target marker positions of the marking elements 24 are stored in the storage element 34 .
  • the corresponding target marking positions can be selected by the user via the user interface 33 using identification information that is unique to the infrastructure component 1 .
  • the marker positions are compared with the target marker positions by means of the processor 32 .
  • the comparison result is determined as the difference between the target marker position and the marker position.
  • the result of the comparison correlates with a deformation of infrastructure component 1.
  • the comparison result is determined, for example, during the relocation of the infrastructure component 1, in particular between the storage component arrangement and the target component arrangement, and/or in the target component arrangement, in particular before the fixing or after the fixing of the infrastructure component 1, and/or or for maintenance purposes after a certain maintenance period has expired.
  • the displacement of the infrastructure component 1 preferably takes place in such a way that a deformation threshold value is not exceeded.
  • a reduction in the deformation can be achieved, for example, by more even displacement or additional suspension points.
  • the comparison result of the deformation is continuously stored in the storage element 34 .
  • the documentation of the deformation enables improved quality assurance.
  • the comparison result determined after the maintenance period can be a basis for the decision on maintenance measures. For this purpose, in particular, a comparison can be made between the target marker position and the marker position that was determined following the fixing of the infrastructure component 1 and/or the end of a maintenance period.
  • the arrangement of components determined after a maintenance period can also be compared to the target arrangement of components and/or the arrangement of components following the fixing of the infrastructure component 1 in order to determine the result of the comparison.
  • the method described above enables infrastructure components 1 to be positioned particularly precisely and with repeat accuracy, in particular in a global coordinate system 30.
  • the method makes Stresses, in particular overstresses, recognizable from infrastructure components 1 during transport and/or when fixing.
  • Infrastructure components 1 can be maintained in a particularly efficient and reliable manner.
  • Infrastructure components 1 can be monitored particularly flexibly, reliably, efficiently and economically with regard to their arrangement and stress by means of the method described above during installation and during their service life.
  • the infrastructure component 1 shown in FIG. 4 is a building element, in particular a precast concrete wall.
  • the infrastructure component 1 is moved precisely into the target component arrangement by means of the measuring system 2 .
  • the infrastructure component 1 is relocated manually using the comparison result determined by the measuring system 2 .
  • the exemplary embodiment shown in FIG. 5 differs from the exemplary embodiments described above in that the infrastructure components 1 detected by the measuring system 2 are a bridge girder and a bridge pier.
  • the infrastructure component 1 embodied as a bridge girder is relocated to the target component arrangement by means of a crane 35 in accordance with the method described above, with the relocation taking place automatically using a comparison result between the component arrangement and the target component arrangement determined in accordance with the method described above.
  • the deformation of the infrastructure part 1 determined and monitored in accordance with the procedure described above.
  • the marker positions of the infrastructure components 1 designed as bridge girders and bridge piers are recorded, in particular after the completion of the bridge and/or after specified maintenance periods, in order to determine new deformations.
  • cracks in the infrastructure component 1 can be identified on the basis of the deformation image. Based on the determined deformations, in particular based on a deformation and/or crack progress determined therefrom, a decision can be made about maintenance measures that may be necessary.
  • FIG. 6 A further method for measuring an infrastructure component 1 or a further application example for using the measuring system 2 is described with reference to FIG. 6 .
  • the markings 24 are attached to a measuring carriage 44 which is designed as a rail vehicle.
  • the markings 24 and the measuring points 37, 38 marked therewith are coupled to the rails 4, which represent the infrastructure components 1 to be measured, via the measuring carriage 44.
  • the markings 24 are moved over the rails 4 in the measuring field 36 of the measuring system 2 by means of the measuring carriage 44 .
  • the measuring system 2 continuously records the relative positions of the measuring points 37, 38 coupled to the infrastructure components 1, in particular with a measuring frequency of 10 Hz.
  • the driving speed of the measuring car 44 is preferably in a range of 2 m/s to 20 m/s. Movement trajectories 44a of the measuring points 37, 38 are determined on the basis of the course of the relative positions over time.
  • the arrangement of the markings 24 relative to the rails 4, in particular in a plane perpendicular to the direction of travel 45, is known, in particular fixed or variable by the measuring carriage 44 and is recorded on the measuring carriage 44.
  • the position of the rails 4 at successive points in time and thus at different points along the direction of travel 45 in the global coordinate system 30 is determined by means of the evaluation unit 14, in particular by means of the processor 32, based on the course of the relative positions over time.
  • the component arrangement of the infrastructure components 1, in particular the course of the rails 4, can be determined in the global coordinate system 30 as a result.
  • the method otherwise corresponds to the method according to the exemplary embodiments described above.
  • the method enables a particularly precise and efficient determination of the component arrangement in the global coordinate system 30, in particular during track construction, after the rails 4 have been laid and/or for maintenance purposes after a specific maintenance period has expired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A method for measuring an infrastructure component (1), in particular a track structure component, comprises the steps of: providing a mobile measuring system (2) having a stereo camera (11), arranging the measuring system (2) on the infrastructure component (1), capturing at least one pair of images from the infrastructure component (1) by means of the stereo camera (11), determining a relative position of at least one measurement point (37, 38, 39, 40, 41) coupled to the infrastructure component (1) on the basis of the at least one pair of images, and determining a deformation of the infrastructure component (1) on the basis of the at least one relative position and/or detecting a measurement position of the measuring system (2) in a global coordinate system (30).

Description

Verfahren und mobiles Messsystem zum Vermessen eines Infrastrukturbauteils, insbesondere eines Gleisstrukturbauteils Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component
Die Erfindung betrifft ein Verfahren zum Vermessen eines Infrastrukturbauteils, insbesondere eines Gleisstrukturbauteils. Ferner betrifft die Erfindung ein mobiles Messsystem zum Vermessen eines Infrastrukturbauteils, insbesondere eines Gleisstrukturbauteils. The invention relates to a method for measuring an infrastructure component, in particular a track structure component. Furthermore, the invention relates to a mobile measuring system for measuring an infrastructure component, in particular a track structure component.
Ein Verfahren und ein Messsystem zum optischen Erfassen von Festpunkten neben einem Gleis sind aus AT 518579 Al bekannt. Das Messsystem ist an einem auf einem Gleis verfahrbaren Messwagen angeordnet und umfasst ein Stereokamerasystem zum Erfassen von Bildpaaren der seitlichen Umgebung des Gleises. Mittels der Bildpaare wird die Position von Festpunkten in der Umgebung bestimmt, woraus auf die Position des Messwagens zurückgeschlossen wird. Anhand der ermittelten Position des Messwagens erfolgt eine Driftkorrektur von Positionsdaten, die mit einer Trägheitsmesseinrichtung bestimmt werden. A method and a measuring system for optically detecting fixed points next to a track are known from AT 518579 A1. The measuring system is arranged on a measuring car that can be moved on a track and includes a stereo camera system for capturing image pairs of the lateral surroundings of the track. The position of fixed points in the area is determined by means of the pairs of images, from which the position of the measuring vehicle can be deduced. Based on the determined position of the measuring carriage, a drift correction of position data is carried out, which is determined with an inertial measuring device.
Es ist eine Aufgabe der Erfindung, ein verbessertes Verfahren zum Vermessen eines Infrastrukturbauteils, insbesondere eines Gleisstrukturbauteils, zu schaffen, das insbesondere sehr wirtschaftlich ausführbar, flexibel einsetzbar und hinsichtlich der Messergebnisse präzise ist. It is an object of the invention to provide an improved method for measuring an infrastructure component, in particular a track structure component, which can be carried out very economically, can be used flexibly and is precise with regard to the measurement results.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Es wurde erkannt, dass ein Infrastrukturbauteil mittels eines mobilen Messsystems mit einer Stereokamera in besonders präziser, wirtschaftlicher und flexibler Weise vermessen werden kann. Das Bestimmen der Verformung des Infrastrukturbauteils anhand der mindestens einen Relativposition ermöglicht es, Rückschlüsse auf die Beanspruchung des Infrastrukturbauteils, insbesondere beim Transport und/oder im verbauten Zustand, zu ziehen. Das Erfassen der Messposition des Messsystems in dem globalen Koordinatensystem gewährleistet eine besonders präzise Bestimmung der Anordnung des Infrastrukturbauteils in dem globalen Koordinatensystem. Das Erfassen des Bildpaars kann berührungslos, insbesondere bei einer zu dem Infrastrukturbauteil beabstandeten Anordnung des Messsystems erfolgen. Auf die Anbringung von Messequipment an dem Infrastrukturbauteil kann weitgehend, insbesondere vollständig, verzichtet werden. Die Zugänglichkeit des Infrastrukturbauteils kann während des Messverfahrens daher unbeeinträchtigt bleiben. Die Vermessung des Infrastrukturbauteils aus der Feme ermöglicht zudem eine flexiblere Wahl der Anordnung des mobilen Messsystems, sodass dieses zuverlässig auf einem festen Untergrund anordenbar ist. Das Vermessen des Infrastrukturbauteils mittels der Bilderfassung erlaubt die präzise Vermessung sowohl kleiner Infrastrukturbauteile, beispielsweise mit einer Hauptabmessung von maximal 2 m, als auch sehr großer Infrastrukturbauteile, beispielsweise mit einer Hauptabmessung von mindestens 5 m, insbesondere mindestens 10 m, insbesondere mindestens 100 m. Insbesondere kann die Relativposition mehrerer Messpunkte anhand eines einzelnen Bildpaars bestimmt werden. Das Verfahren kann vollständig automatisiert ausgeführt werden. Bei einer zumindest teilweise manuell ausgeführten Vermessung bietet das Verfahren durch die beabstandete Anordnung zum Infrastrukturbauteil ein hohes Maß an Sicherheit für das Messpersonal. Das Verfahren eignet sich insbesondere zum Einsatz in sicherheitskritischen Bereichen wie Baustellen, an stark befahrenen Verkehrswegen und/oder an kontaminierten Infrastrukturbauteilen. This object is achieved by a method having the features of claim 1. It was recognized that an infrastructure component can be measured in a particularly precise, economical and flexible manner using a mobile measurement system with a stereo camera. Determining the deformation of the infrastructure component based on the at least one relative position makes it possible to draw conclusions about the stress on the Infrastructure component, especially during transport and / or in the installed state to pull. The detection of the measurement position of the measurement system in the global coordinate system ensures a particularly precise determination of the arrangement of the infrastructure component in the global coordinate system. The pair of images can be recorded without contact, in particular if the measuring system is arranged at a distance from the infrastructure component. The attachment of measuring equipment to the infrastructure component can largely, in particular completely, be dispensed with. The accessibility of the infrastructure component can therefore remain unaffected during the measurement process. The measurement of the infrastructure component from a distance also enables a more flexible choice of the arrangement of the mobile measurement system, so that it can be reliably arranged on a solid surface. Measuring the infrastructure component by means of image acquisition allows the precise measurement of both small infrastructure components, for example with a main dimension of a maximum of 2 m, and very large infrastructure components, for example with a main dimension of at least 5 m, in particular at least 10 m, in particular at least 100 m. In particular the relative position of several measuring points can be determined using a single pair of images. The method can be carried out fully automatically. In the case of an at least partially manual measurement, the method offers a high degree of safety for the measurement personnel due to the arrangement at a distance from the infrastructure component. The method is particularly suitable for use in safety-critical areas such as construction sites, on busy traffic routes and/or on contaminated infrastructure components.
Anhand des Bildpaares kann die Relativposition des mindestens einen Messpunkts im dreidimensionalen Raum, insbesondere in einem Kamera- Koordinatensystem, bestimmt werden. Anhand des Bildpaars lässt sich, über die zweidimensionalen Informationen des jeweiligen Einzelbilds hinaus, die Tiefenlage des mindestens einen Messpunkts bestimmen. Diese Tiefenlage kann anhand des Winkels und des Abstands zwischen den Kameras der Stereokamera bestimmt werden. Die Einzelbilder des Bildpaars werden vorzugsweise zeitgleich erfasst. Die Methoden zum Bestimmen der Position eines Messpunkts im dreidimensionalen Raum anhand eines Bildpaares sind aus dem Stand der Technik bekannt. The relative position of the at least one measuring point in three-dimensional space, in particular in a camera Coordinate system to be determined. The depth of the at least one measuring point can be determined on the basis of the pair of images, in addition to the two-dimensional information of the respective individual image. This depth can be determined based on the angle and the distance between the cameras of the stereo camera. The individual images of the image pair are preferably captured at the same time. The methods for determining the position of a measurement point in three-dimensional space using a pair of images are known from the prior art.
Unter dem Infrastrukturbauteil wird ein Strukturbauteil aus dem Bauwesen, insbesondere aus dem Verkehrswesen, verstanden. Das Infrastrukturbauteil kann ein Bauteil aus dem Hochbau, insbesondere dem Gebäudebau, beispielsweise eine Gebäudewand, und/oder aus dem Tiefbau, insbesondere dem Brückenbau, beispielsweise ein Brückenträger oder ein Brückenpfeiler, dem Tunnelbau, dem Leitungsbau, dem Bergbau, dem Straßenbau und/oder dem Gleisbau, beispielsweise ein Gleisstrukturbauteil, sein. Vorzugsweise umfasst das Infrastrukturbauteil ein Fertigbetonbauteil, insbesondere eine Fertigbetonplatte, beispielsweise eine Fertigbetonplatte zum Bau eines schwellenlosen Gleises, oder einen Fertigbetonträger. Insbesondere kann das Infrastrukturbauteil ein Straßenelement und/oder ein Gleiselement, insbesondere aus Fertigbeton, sein. Eine Hauptabmessung des Infrastrukturbauteils, insbesondere eines erfassbaren Bereichs, insbesondere eines mittels der Stereokamera erfassbaren Bereichs, des Infrastrukturbauteils, beträgt vorzugsweise mindestens 1 m, insbesondere mindestens 5 m, insbesondere mindestens 10 m, insbesondere mindestens 20 m, insbesondere mindestens 50 m und/oder maximal 100 m, insbesondere maximal 50 m, insbesondere maximal 20 m, insbesondere maximal 10 m, insbesondere maximal 1 m. Unter der Hauptabmessung wird die maximale Abmessung des Infrastrukturbauteils verstanden. Die Masse des Infrastrukturbauteils liegt vorzugsweise in einem Bereich von 50 kg bis 500 t, insbesondere von 0,5 t bis 1501, insbesondere von 1 1 bis 1001, insbesondere von 5 t bis 50 t. The infrastructure component is understood to mean a structural component from the construction industry, in particular from the transport sector. The infrastructure component can be a component from building construction, in particular building construction, for example a building wall, and/or from civil engineering, in particular bridge construction, for example a bridge girder or a bridge pillar, tunnel construction, pipeline construction, mining, road construction and/or the Track construction, for example a track structure component. The infrastructure component preferably comprises a precast concrete component, in particular a precast concrete slab, for example a precast concrete slab for constructing a track without sleepers, or a precast concrete girder. In particular, the infrastructure component can be a road element and/or a track element, in particular made of ready-mixed concrete. A main dimension of the infrastructure component, in particular an area that can be detected, in particular an area that can be recorded using the stereo camera, of the infrastructure component is preferably at least 1 m, in particular at least 5 m, in particular at least 10 m, in particular at least 20 m, in particular at least 50 m and/or at most 100 m, in particular a maximum of 50 m, in particular a maximum of 20 m, in particular a maximum of 10 m, in particular a maximum of 1 m. The main dimension is understood to mean the maximum dimension of the infrastructure component. The mass of the infrastructure component is preferably in a range from 50 kg to 500 t, in particular from 0.5 t to 150 1, in particular from 1 1 to 100 1, in particular from 5 t to 50 t.
Unter dem Vermessen des Infrastrukturbauteils wird insbesondere das Bestimmen der Anordnung und/oder der Verformung des Infrastrukturbauteils verstanden. Die Verformung kann eine Dehnung und/oder eine Verwindung und/oder eine Verzerrung des Infrastrukturbauteils umfassen. Die Anordnung eines Objekts umfasst deren Position und Orientierung. Unter einem mobilen Objekt wird verstanden, dass diese beweglich, also transportabel, insbesondere tragbar, ausgebildet ist. Zur Tragbarkeit des Objekts, insbesondere des Messsystems, beträgt dessen Masse vorzugsweise maximal 50 kg, insbesondere maximal 20 kg. Measuring the infrastructure component means in particular determining the arrangement and/or the deformation of the infrastructure component. The deformation can include stretching and/or twisting and/or distortion of the infrastructure component. The arrangement of an object includes its position and orientation. A mobile object is understood to mean that it is designed to be movable, that is to say transportable, in particular portable. For portability of the object, in particular the measuring system, its mass is preferably a maximum of 50 kg, in particular a maximum of 20 kg.
Unter einer Stereokamera wird eine Bilderfassungseinheit verstanden, welche Bildaufnahmen aus zwei unterschiedlichen Positionen, insbesondere zeitgleich ermöglicht. Die Stereokamera kann hierzu zwei beabstandet zueinander angeordnete Kameras und/oder eine einzelne Kamera mit einer Spiegeleinrichtung zum Erfassen von Bildhälften aus zueinander beabstan- deten Positionen aufweisen. Grundsätzlich kann das Bildpaar auch mittels einer einzigen Kamera erfasst werden, die zum Erfassen der Einzelbilder nacheinander in zwei zueinander beabstandete Positionen verlagert wird. Der Abstand zwischen diesen beanstandeten Positionen muss zum Bestimmen der Tiefenlage des mindestens einen Messpunkts erfassbar sein. Ist dies gegeben, kann auch hierunter eine Stereokamera verstanden werden. Vorzugsweise ist die mindestens eine Kamera als Digitalkamera, insbesondere als Full-HD-Kamera, ausgebildet. Vorzugsweise ist die mindestens eine Kamera zum Aufzeichnen von Bildern mit einer Auflösung in einem Bereich von 1 MP (Megapixel) bis 64 MP, insbesondere von 4 MP bis 32 MP, insbesondere von 8 MP bis 16 MP, ausgebildet. Der mindestens eine Messpunkt kann ein Punkt auf der Oberfläche des Infrastrukturbauteils und/oder das Zentrum einer Teilfläche des Infrastrukturbauteils und/oder ein Punkt, insbesondere das Zentrum, eines an das Strukturbauteil gekoppelten Objekts, insbesondere einer Markierung, sein. Die Markierung ist vorzugsweise starr an dem Infrastrukturbauteil angebracht. Gemäß einem Aspekt der Erfindung ist die Markierung beweglich, insbesondere linear verschiebbar, an dem Infrastrukturbauteil angebracht. Vorteilhaft wird hierdurch erreicht, dass das Infrastrukturbauteil anhand mehrerer Bildpaare bei unterschiedlichen Anordnungen der mindestens einen Markierung relativ zu dem Infrastrukturbauteil detailliert vermessen werden kann. A stereo camera is understood to mean an image acquisition unit which enables images to be recorded from two different positions, in particular simultaneously. For this purpose, the stereo camera can have two cameras arranged at a distance from one another and/or a single camera with a mirror device for capturing image halves from positions at a distance from one another. In principle, the pair of images can also be recorded using a single camera, which is successively shifted into two mutually spaced positions in order to record the individual images. The distance between these objected positions must be detectable in order to determine the depth of the at least one measuring point. If this is the case, this can also be understood as a stereo camera. The at least one camera is preferably designed as a digital camera, in particular as a full HD camera. The at least one camera is preferably designed to record images with a resolution in a range from 1 MP (megapixel) to 64 MP, in particular from 4 MP to 32 MP, in particular from 8 MP to 16 MP. The at least one measuring point can be a point on the surface of the infrastructure component and/or the center of a partial area of the infrastructure component and/or a point, in particular the center, of an object coupled to the structural component, in particular a marking. The marking is preferably attached rigidly to the infrastructure component. According to one aspect of the invention, the marking is movably, in particular linearly displaceable, attached to the infrastructure component. This advantageously means that the infrastructure component can be measured in detail using a plurality of image pairs with different arrangements of the at least one marking relative to the infrastructure component.
Mittels des Messsystems können einzelne an das Infrastrukturbauteil gekoppelte Messpunkte erfasst werden und/oder zumindest abschnittsweise eine Oberfläche des Infrastrukturbauteils oder eines daran gekoppelten Objekts. Anhand der erfassten Oberfläche kann auf die Relativposition des mindestens einen Messpunkts geschlossen werden. Vorzugweise erfolgt die Bestimmung der Relativposition durch Auswerten von Teilflächen, sogenannter Facetten, der erfassten Oberfläche. Using the measurement system, individual measurement points coupled to the infrastructure component can be recorded and/or at least sections of a surface of the infrastructure component or an object coupled thereto. The relative position of the at least one measuring point can be inferred from the detected surface. The relative position is preferably determined by evaluating partial areas, so-called facets, of the detected surface.
Das globale Koordinatensystem ist vorzugsweise ein geografisches Koordinatensystem. Das globale Koordinatensystem kann durch das Koordinatensystem bestimmt sein, in dem die Position von Vermessungspunkten zur Landvermessung angegeben sind. In dem globalen Koordinatensystem angegebene Punkte sind vorzugsweise hinsichtlich ihrer globalen Position eindeutig bestimmt. Unter der Relativposition wird die Position des jeweiligen Messpunkts in einem lokalen Koordinatensystem, insbesondere in einem Kamera-Koordinatensystem, verstanden. Der Ursprung des Kamera-Koordinatensystems liegt vorzugsweise mittig zwischen den beiden Einzelkameras. Die x- Achse des Kamera-Koordinatensystems ist vorzugsweise horizontal orientiert und weist in Blickrichtung der Stereokameras. Die z- Achse des Kamera-Koordinatensystems weist vorzugsweise in vertikaler Richtung nach oben. Die y-Achse des Kamera-Koordinatensystems ergibt sich aus der Ausbildung des Kamera-Koordinatensystems als rechtshändiges kartesisches Koordinatensystem. The global coordinate system is preferably a geographic coordinate system. The global coordinate system can be determined by the coordinate system in which the position of survey points for land surveying are specified. Points specified in the global coordinate system are preferably uniquely determined with regard to their global position. The relative position is understood to mean the position of the respective measuring point in a local coordinate system, in particular in a camera coordinate system. The origin of the camera coordinate system is preferably in the middle between the two individual cameras. The x axis of the camera coordinate system is preferably oriented horizontally and points in the viewing direction of the stereo cameras. The z axis of the camera coordinate system preferably points upwards in the vertical direction. The y-axis of the camera coordinate system results from the formation of the camera coordinate system as a right-hand Cartesian coordinate system.
Gemäß einem Aspekt der Erfindung können die Relativposition und oder die Messposition und/oder die Bauteilposition mittels des Messsystems mit einer Messabweichung von maximal 100 mm, insbesondere maximal 10 mm, insbesondere maximal 1 mm, insbesondere maximal 0, 1 mm, insbesondere maximal 0,01 mm, insbesondere maximal 0,001 mm, bestimmt werden. According to one aspect of the invention, the relative position and/or the measurement position and/or the component position can be determined by means of the measurement system with a measurement deviation of at most 100 mm, in particular at most 10 mm, in particular at most 1 mm, in particular at most 0.1 mm, in particular at most 0.01 mm, in particular a maximum of 0.001 mm.
Ein Abstand zwischen dem Messsystem, insbesondere der Stereokamera, und dem Infrastrukturbauteil kann beim Erfassen des mindestens einen Bildpaars mindestens 1 m, insbesondere mindestens 5 m, insbesondere mindestens 10 m, insbesondere mindestens 20 m, insbesondere mindestens 50 m, insbesondere mindestens 100 m, insbesondere mindestens 250 m, und/oder maximal 100 m, insbesondere maximal 50 m, insbesondere maximal 20 m, insbesondere maximal 10 m, insbesondere maximal 2 m, betragen. Das Messsystem ist somit besonders flexibel positionierbar und das von der Stereokamera erfassbare Messfeld ist besonders groß. Das Messfeld der Stereokamera ist durch den Überlappungsbereich von Sichtfeldem der beiden Digitalkameras bestimmt. Vorzugsweise umfasst das Messsystem eine Beleuchtungseinheit zum Beleuchten des Infrastrukturbauteils. Die Beleuchtungseinheit kann zum Ausstahlen von Infrarotlicht und/oder UV-Licht und/oder schmalbandigem Blaulicht und/oder Weißlicht ausgebildet sein. Die Beleuchtungseinrichtung kann auch zum Projizieren eines Musters, insbesondere eines Gitters, auf das Infrastrukturbauteil ausgebildet sein. Die Beleuchtungseinheit weist vorzugsweise mindestens eine LED und/oder einen Projektor als Leuchtmittel auf. Eine derartige Beleuchtungseinheit gewährleistet vorteilhaft, dass die Erfassung des mindestens einen Bildpaares gegenüber Umgebungseinflüssen besonders robust ist. A distance between the measuring system, in particular the stereo camera, and the infrastructure component can be at least 1 m, in particular at least 5 m, in particular at least 10 m, in particular at least 20 m, in particular at least 50 m, in particular at least 100 m, in particular at least 250 m, and/or a maximum of 100 m, in particular a maximum of 50 m, in particular a maximum of 20 m, in particular a maximum of 10 m, in particular a maximum of 2 m. The measuring system can thus be positioned particularly flexibly and the measuring field that can be recorded by the stereo camera is particularly large. The field of view of the stereo camera is determined by the overlapping area of the fields of view of the two digital cameras. The measurement system preferably includes an illumination unit for illuminating the infrastructure component. The lighting unit can be designed to emit infrared light and/or UV light and/or narrow-band blue light and/or white light. The lighting device can also be designed to project a pattern, in particular a grid, onto the infrastructure component. The lighting unit preferably has at least one LED and/or a projector as the light source. Such an illumination unit advantageously ensures that the acquisition of the at least one pair of images is particularly robust with respect to environmental influences.
Vorzugsweise wird die Messanordnung, insbesondere die Messposition und/oder die Messorientierung, des Messsystems in dem globalen Koordinatensystem bestimmt. Die Messanordnung wird vorzugsweise durch die Anordnung eines Mess-Koordinatensystems beschrieben. Die Messposition entspricht dem Ursprung des Mess-Koordinatensystems und die Messorientierung entspricht der Ausrichtung des Mess-Koordinatensystems. Vorzugsweise ist die Anordnung des Messsystems mittels einer Fixiereinheit reversibel festlegbar. Die Fixiereinheit weist vorzugsweise ein Stativ, insbesondere ein Dreibein auf. Die Fixiereinheit ermöglicht eine stabile Festlegung der Messanordnung in dem globalen Koordinatensystem. Vorzugsweise wird eine Hochachse des Mess-Koordinatensystems mittels der Fixiereinheit derart ausgerichtet, dass diese in vertikaler Richtung nach oben weist. The measurement arrangement, in particular the measurement position and/or the measurement orientation, of the measurement system is preferably determined in the global coordinate system. The measurement arrangement is preferably described by the arrangement of a measurement coordinate system. The measurement position corresponds to the origin of the measurement coordinate system and the measurement orientation corresponds to the orientation of the measurement coordinate system. The arrangement of the measuring system can preferably be reversibly fixed by means of a fixing unit. The fixing unit preferably has a tripod, in particular a tripod. The fixing unit enables the measurement arrangement to be stably fixed in the global coordinate system. A vertical axis of the measurement coordinate system is preferably aligned by means of the fixing unit in such a way that it points upwards in the vertical direction.
Das Vermessen des Infrastrukturbauteils erfolgt vorzugsweise bei einer fixierten Anordnung, insbesondere bei einer fixierten Messposition und/oder Messorientierung des Messsystems, insbesondere in dem globalen Koordinatensystem. Vorzugsweise wird die Anordnung des Messsystems für den Zeitraum beibehalten, in dem das Infrastrukturbauteil, insbesondere in die Soll-Bauteilanordnung, verlagert wird und/oder in den mindestens zwei, insbesondere mindestens fünf, insbesondere mindestens zehn der Bildpaare von dem Infrastrukturbauteil mittels der Stereokamera erfasst werden. Das Vermessen des Infrastrukturbauteils kann somit besonders robust und präzise erfolgen. The infrastructure component is preferably measured in a fixed arrangement, in particular in a fixed measurement position and/or Measurement orientation of the measurement system, in particular in the global coordinate system. The arrangement of the measuring system is preferably retained for the period in which the infrastructure component, in particular in the target component arrangement, is relocated and/or in which at least two, in particular at least five, in particular at least ten, of the image pairs of the infrastructure component are captured by the stereo camera . The infrastructure component can thus be measured in a particularly robust and precise manner.
Die Messposition und/oder die Messorientierung können von der Kamera- Position und/oder der Kameraorientierung abweichen oder damit zusammenfallen. Vorzugsweise ist die Stereokamera um die Vertikalachse und/oder eine Horizontalachse schwenkbar an der Fixiereinheit, insbesondere gegenüber dem Mess-Koordinatensystem, gelagert. Hierdurch ist die Kameraorientierung relativ zu der Messorientierung veränderbar. Mittels mindestens eines Winkelsensors, insbesondere eines Drehgebers, wird vorzugsweise die Orientierung des Kamerakoordinatensystems relativ zu dem Mess-Koordinatensystem erfasst. Die Position des Ursprungs des Kamera- Koordinatensystems relativ zu dem Ursprung des Mess-Koordinatensys- tems kann durch eine Verbindung s Struktur unverändert vorgegeben sein o- der veränderbar und mittels mindestens eines Sensors messbar sein. Hierdurch ist ein Mess-Kamera-Vektor zwischen dem Ursprung des Mess-Ko- ordinatensystems und dem Ursprung des Kamera-Koordinatensystems bestimmbar. Durch das Erfassen des Mess-Kamera-Vektors und/oder der Orientierung der Stereokamera relativen relativ zu dem Mess-Koordinatensys- tem wird vorteilhaft erreicht, dass die mittels der Stereokamera erfasste Relativposition des jeweiligen Messpunkts, insbesondere unabhängig von der Anordnung der Stereokamera in dem Mess-Koordinatensystem, bestimmbar ist. Ein Verfahren nach Anspruch 2 ermöglicht die Beschreibung der Bauteilanordnung in einem einheitlichen, ortsfesten und/oder standardisierten Referenz-Koordinatensystem. Die Bauteilanordnung umfasst die Bauteilposition und/oder die Bauteilorientierung. Die Bauteilposition wird vorzugsweise durch den Ursprung eines Bauteil-Koordinatensystems beschrieben. Die Bauteilorientierung kann durch die Orientierung des Bauteil-Koordinatensystems beschrieben werden. Die Bauteilanordnung kann anhand der mindestens einen Relativposition, insbesondere anhand von mindestens zwei, insbesondere mindestens drei, Relativpositionen, anhand gängiger geometrischer Funktionen, insbesondere in dem Kamera-Koordinatensystem, bestimmt werden. Vorzugsweise wird die Bauteilanordnung in dem globalen Koordinatensystem auf Grundlage der Bauteilanordnung in dem Kamera-Koordinatensystem anhand gängiger Berechnungsmethoden zur Koordinaten-Transformation errechnet. The measurement position and/or the measurement orientation can deviate from or coincide with the camera position and/or the camera orientation. The stereo camera is preferably mounted on the fixing unit so that it can swivel about the vertical axis and/or a horizontal axis, in particular with respect to the measuring coordinate system. As a result, the camera orientation can be changed relative to the measurement orientation. The orientation of the camera coordinate system relative to the measurement coordinate system is preferably detected by means of at least one angle sensor, in particular a rotary encoder. The position of the origin of the camera coordinate system relative to the origin of the measurement coordinate system can be specified unchanged by a connection s structure or be changeable and measurable by means of at least one sensor. As a result, a measurement camera vector can be determined between the origin of the measurement coordinate system and the origin of the camera coordinate system. By detecting the measuring camera vector and/or the orientation of the stereo camera relative to the measuring coordinate system, it is advantageously achieved that the relative position of the respective measuring point detected by means of the stereo camera, in particular independently of the arrangement of the stereo camera in the measuring -Coordinate system, is determinable. A method according to claim 2 enables the component arrangement to be described in a uniform, stationary and/or standardized reference coordinate system. The component arrangement includes the component position and/or the component orientation. The component position is preferably described by the origin of a component coordinate system. The component orientation can be described by the orientation of the component coordinate system. The component arrangement can be determined based on the at least one relative position, in particular based on at least two, in particular at least three, relative positions, based on common geometric functions, in particular in the camera coordinate system. The arrangement of components in the global coordinate system is preferably calculated on the basis of the arrangement of components in the camera coordinate system using common calculation methods for coordinate transformation.
Anhand des Verfahrens nach Anspruch 3 kann die Abweichung der Bauteilanordnung von einer Soll-Bauteilanordnung bestimmt werden. Insbesondere kann die Abweichung der Bauteilposition und/oder der Bauteilorientierung von einer Soll-Bauteilposition und/oder Soll-Bauteilorientierung bestimmt werden. Das Vergleichsergebnis kann anhand der Differenz zwischen der Bauteilanordnung und der Soll-Bauteilanordnung errechnet werden. Das Vergleichsergebnis ist ein Maß dafür, in welchem Umfang die momentane Bauteilanordnung von der Soll-Bauteilanordnung abweicht. The deviation of the component arrangement from a target component arrangement can be determined using the method according to claim 3 . In particular, the deviation of the component position and/or the component orientation from a target component position and/or target component orientation can be determined. The comparison result can be calculated using the difference between the component arrangement and the target component arrangement. The result of the comparison is a measure of the extent to which the current component arrangement deviates from the target component arrangement.
Ein Verfahren nach Anspruch 4 gewährleistet eine besonders präzise Anordnung, insbesondere Positionierung und Orientierung, des Infrastrukturbauteils. Das Verlagern des Infrastrukturbauteils kann anhand des Ver- gleichsergebnisses manuell, insbesondere von Hand, oder automatisiert erfolgen. Das Verlagern des Infrastrukturbauteils kann mittels einer Transporteinrichtung, insbesondere mittels eines Schienenfahrzeugs und/oder eines Straßenfahrzeugs und/oder einer Gleisverlegeeinrichtung und/oder eines Baukrans erfolgen. A method according to claim 4 ensures a particularly precise arrangement, in particular positioning and orientation, of the infrastructure component. The relocation of the infrastructure component can be be done manually, in particular by hand, or automatically with the same result. The infrastructure component can be relocated by means of a transport device, in particular by means of a rail vehicle and/or a road vehicle and/or a track-laying device and/or a construction crane.
Vorzugsweise wird das Infrastrukturbauteil während des Verlagerns, insbesondere aus einer Bevorratungs-Anordnung, in die Soll- Anordnung, insbesondere wiederholt, vermessen. Hierdurch kann ein Verlauf, insbesondere eine Änderung, der Abweichung der Bauteilanordnung von einer Soll-Bauteilanordnung bestimmt werden. Anhand dieses Verlaufs kann das Verlagern des Infrastrukturbauteils, insbesondere in die Soll-Bauteilanordnung, gesteuert, insbesondere geregelt werden. The infrastructure component is preferably measured, in particular repeatedly, during the relocation, in particular from a storage arrangement, to the target arrangement. As a result, a course, in particular a change, of the deviation of the component arrangement from a target component arrangement can be determined. The shifting of the infrastructure component, in particular into the desired component arrangement, can be controlled, in particular regulated, on the basis of this course.
Ein Verfahren nach Anspruch 5 ist besonders robust im Betrieb und weist ein erweitertes Anwendungsfeld auf. Die Bildpaare können zu periodisch oder aperiodisch aufeinander folgenden Zeitpunkten erfasst werden. Vorzugsweise wird über mindestens zwei, insbesondere mindestens drei, insbesondere mindestens fünf, und/oder maximal zehn, der anhand der Bildpaare zu unterschiedlichen Zeitpunkten erfassten Relativpositionen ein Mittelwert gebildet. Durch diese Redundanz ist das Messverfahren besonders präzise. Das Erfassen der Bildpaare kann beispielsweise in einem zeitlichen Abstand von mindestens einem Monat, insbesondere mindestens einem Jahr und/oder maximal 20 Jahren, insbesondere maximal 10 Jahren, insbesondere maximal 5 Jahren, und/oder nach Ablauf einer vorgegebenen Wartungsperiode erfolgen. Vorzugsweise wird ein Vergleichsergebnis durch Vergleichen der Bauteilanordnung zu den unterschiedlichen Zeit- punkten bestimmt. Anhand dieses Vergleichsergebnisses kann auf die Veränderung der Bauteilanordnung geschlossen werden. Auf dieser Grundlage kann die Notwendigkeit von Instandhaltungsmaßnahmen bestimmt werden. A method according to claim 5 is particularly robust in operation and has an expanded field of application. The pairs of images can be captured at times that follow one another periodically or aperiodically. A mean value is preferably formed over at least two, in particular at least three, in particular at least five, and/or a maximum of ten of the relative positions recorded using the image pairs at different points in time. This redundancy makes the measurement process particularly precise. The image pairs can be recorded, for example, at an interval of at least one month, in particular at least one year and/or a maximum of 20 years, in particular a maximum of 10 years, in particular a maximum of 5 years, and/or after a specified maintenance period has expired. A comparison result is preferably obtained by comparing the component arrangement at the different time definitely score. This comparison result can be used to draw conclusions about the change in the component arrangement. On this basis, the need for maintenance measures can be determined.
Ein Verfahren nach Anspruch 6 gewährleistet das Vermessen und/oder Anordnen des Infrastrukturbauteils in besonders effizienter Weise. Der Bewegungspfad des mindestens einen Messpunkts ist vorzugsweise eine Trajek- torie im dreidimensionalen Raum. Der Bewegungspfad kann die zu unterschiedlichen Zeitpunkten bestimmten Messpunkt umfassen, insbesondere daraus bestehen, und/oder durch Interpolation zwischen den Messpunkten zu einer unterbrechungsfreien Linie ergänzt werden. Der Bewegungspfad kann beim Verlagern des Infrastrukturbauteils relativ zu dem globalen Koordinatensystem und/oder beim Verlagern des mindestens einen Messpunkts, insbesondere der mindestens einen Markierung, relativ zu dem Infrastrukturbauteil bestimmt werden. Beispielsweise kann die Bauteilanordnung anhand des Bewegungspfads, insbesondere auf Grundlage einer Regelung mit einem integralen und/oder differenzialen Regelglied, besonders effizient in die Soll-Bauteilanordnung verlagert werden. Bei einem relativ zu dem Infrastrukturbauteil verlagerten Messpunkt können die Bauteilanordnung und/oder die Bauteilgeometrie anhand des Bewegungspfads besonders effizient und präzise bestimmt werden. A method according to claim 6 ensures that the infrastructure component is measured and/or arranged in a particularly efficient manner. The movement path of the at least one measuring point is preferably a trajectory in three-dimensional space. The movement path can include the measurement points determined at different points in time, in particular consist of them, and/or be supplemented by interpolation between the measurement points to form an uninterrupted line. The movement path can be determined when the infrastructure component is relocated relative to the global coordinate system and/or when the at least one measuring point, in particular the at least one marking, is relocated relative to the infrastructure component. For example, the component arrangement can be shifted particularly efficiently into the target component arrangement using the movement path, in particular on the basis of a control with an integral and/or differential control element. In the case of a measuring point that is shifted relative to the infrastructure component, the component arrangement and/or the component geometry can be determined particularly efficiently and precisely using the movement path.
Beispielsweise kann der mindestens eine Messpunkt, insbesondere eine Markierung, an einem Messwagen zum Verlagern auf einem Gleis angeordnet sein. Die Position des mindestens einen Messpunkts relativ zu den Schienen kann fixiert sein oder erfasst werden. Durch Bestimmen der Relativposition des über den Messwagen an die Schienen gekoppelten mindestens einen Messpunkts können die Geometrie und die Anordnung der als Schienen ausgebildeten Infrastrukturbauteile bestimmt werden. Ein Verfahren nach Anspruch 7 ist besonders flexibel einsetzbar und wirtschaftlich im Betrieb. Vorzugsweise werden die Bildpaare mit einer Messfrequenz in einem Bereich von 0,01 Hz bis 500 Hz, insbesondere von 0,1 Hz bis 250 Hz, insbesondere von 1 Hz bis 150 Hz, insbesondere von 10 Hz bis 100 Hz, erfasst. Vorzugsweise wird der Mittelwert über die anhand der mit einer entsprechenden Frequenz erfassten Bildpaare erfassten Relativpositionen gebildet. For example, the at least one measuring point, in particular a marking, can be arranged on a measuring carriage for displacement on a track. The position of the at least one measurement point relative to the rails can be fixed or recorded. By determining the relative position of the at least one measuring point coupled to the rails via the measuring carriage, the geometry and the arrangement of the infrastructure components designed as rails can be determined. A method according to claim 7 can be used particularly flexibly and is economical to operate. The image pairs are preferably recorded with a measurement frequency in a range from 0.01 Hz to 500 Hz, in particular from 0.1 Hz to 250 Hz, in particular from 1 Hz to 150 Hz, in particular from 10 Hz to 100 Hz. The mean value is preferably formed over the relative positions recorded using the image pairs recorded with a corresponding frequency.
Ein Verfahren nach Anspruch 8 gewährleistet das Bestimmen der Messposition in besonders einfacher und präziser Weise. Bei dem Vermessungspunkt wird ein am Boden oder an einem Gebäude fest markierter Fixpunkt verstanden, der insbesondere als Ausgangspunkt oder als Zielpunkt bei der Landvermessung dient. Das Bestimmen der Messposition erfolgt vorzugsweise nach dem Festlegen der Anordnung des Messsystems mittels der Fixiereinheit. Vorzugsweise wird die Messanordnung, insbesondere die Messposition und/oder die Messorientierung, des Messsystems in dem globalen Koordinatensystem bestimmt. Hierzu kann das Messsystem eine Positionsbestimmungseinheit, insbesondere ein Satellitennavigationsmodul, insbesondere ein GPS-Modul, ein Galileo-Modul und/oder ein Glonass- Modul, und/oder ein Tachymeter zur Geodäsie, insbesondere ein Laserdistanzmessgerät, aufweisen. Das Bestimmen der Messanordnung kann durch Laserdistanzmessung und Triangulation der Vermessungspunkte erfolgen und/oder anhand des Satellitennavigationssignals des GPS-Moduls, des Galileo-Moduls und/oder des Glonass-Moduls. A method according to claim 8 ensures that the measurement position is determined in a particularly simple and precise manner. The survey point is understood to mean a fixed point firmly marked on the ground or on a building, which serves in particular as a starting point or as a target point in land surveying. The measurement position is preferably determined after the arrangement of the measurement system has been determined by means of the fixing unit. The measurement arrangement, in particular the measurement position and/or the measurement orientation, of the measurement system is preferably determined in the global coordinate system. For this purpose, the measuring system can have a position determination unit, in particular a satellite navigation module, in particular a GPS module, a Galileo module and/or a Glonass module, and/or a tachymeter for geodesy, in particular a laser distance measuring device. The measurement arrangement can be determined by laser distance measurement and triangulation of the measurement points and/or using the satellite navigation signal of the GPS module, the Galileo module and/or the Glonass module.
Ein Verfahren nach Anspruch 9 ist besonders flexibel einsetzbar und effizient ausführbar. Vorzugsweise ist die Kameraanordnung, insbesondere die Kameraposition und/oder die Kameraorientierung, zu der Messanordnung, insbesondere der Messposition und/oder der Messorientierung, starr oder veränderlich. Die Kameraanordnung relativ zu der Messanordnung kann, insbesondere bei einer starren Verbindung, in einem Kalibriervorgang bestimmt werden. Die Kameraanordnung wird vorzugsweise zwischen zwei aufeinanderfolgend erfasste Bildpaare relativ zu der Fixiereinheit verändert, insbesondere geschwenkt. Mit Hilfe des Winkelsensors und/oder des Wegsensors kann die relative Anordnung der Stereokamera gegenüber der Fixiereinheit automatisiert erfasst werden. Alternativ kann diese relative Anordnung manuell erfasst werden. Vorteilhaft wird hierdurch erreicht, dass die Anordnung der Fixiereinheit beibehalten werden kann, wenn eine Neuanordnung, insbesondere eine Neuorientierung der Stereokamera zum Vermessen des Infrastrukturbauteils erforderlich ist. Die Bauteilanordnung des Infrastrukturbauteils kann auch nach der Neuanordnung der Stereokamera in dem globalen Koordinatensystem bestimmt werden, ohne dass eine Neuanordnung des Messsystems erforderlich ist. Somit kann beispielsweise ein über das Messfeld der Stereokamera hinaus bewegter Messpunkt durch Schwenken der Stereokamera verfolgt werden. A method according to claim 9 can be used particularly flexibly and carried out efficiently. The camera arrangement, in particular the camera position and/or the camera orientation, is preferably related to the measuring arrangement, in particular the measurement position and/or the measurement orientation, rigid or changeable. The camera arrangement relative to the measurement arrangement can be determined in a calibration process, in particular in the case of a rigid connection. The camera arrangement is preferably changed, in particular pivoted, between two consecutively captured image pairs relative to the fixing unit. The relative arrangement of the stereo camera with respect to the fixing unit can be detected automatically with the aid of the angle sensor and/or the displacement sensor. Alternatively, this relative arrangement can be recorded manually. This advantageously means that the arrangement of the fixing unit can be retained if a rearrangement, in particular a reorientation of the stereo camera, is required for measuring the infrastructure component. The component arrangement of the infrastructure component can also be determined after rearranging the stereo camera in the global coordinate system without the need for rearranging the measurement system. Thus, for example, a measuring point that has moved beyond the measuring field of the stereo camera can be tracked by panning the stereo camera.
Ein Verfahren nach Anspruch 10 ermöglicht eine Analyse der Beanspruchung des Infrastrukturbauteils. Vorzugsweise werden mindestens zwei, insbesondere mindestens drei der Relativpositionen mit jeweils einem Referenzwert verglichen. Bei dem mindestens einen Referenzwert kann es sich um eine für die jeweilige Relativposition vorgegebene Referenzposition handeln. Die Referenzposition kann beispielsweise im Zuge einer Referenzmessung, insbesondere des unbelasteten Infrastrukturbauteils, erfolgen. Vorzugsweise wird überprüft, ob die Abweichung der mindestens einen Relativposition von dem jeweiligen Referenzwert einen vorgegebenen Verformungs-Schwellenwert überschreitet. Der Verformungs-Schwellen- wert korreliert vorzugsweise mit einer zulässigen Verformung des Infrastrukturbauteils. Das Vergleichen der mindestens einen Relativposition mit dem jeweiligen Grenzwert erfolgt vorzugsweise während des Verlagerns des Infrastrukturbauteils, insbesondere in die Soll-Bauteilanordnung, und/oder vor oder nach dem Fixieren des Infrastrukturbauteils in der Soll- Bauteilanordnung und/oder nach Ablauf einer Wartungsperiode. Hierdurch wird eine Überwachung der Beanspruchung des Infrastrukturbauteils ermöglicht, welche die Betriebssicherheit des Infrastrukturbauteils erhöht und eine besonders effiziente und wirtschaftliche Durchführung von Warlungs- und Instandhaltungsarbeit an dem Infrastrukturbauteil ermöglicht. A method according to claim 10 enables an analysis of the stress on the infrastructure component. At least two, in particular at least three, of the relative positions are preferably compared with a respective reference value. The at least one reference value can be a reference position specified for the respective relative position. The reference position can take place, for example, in the course of a reference measurement, in particular of the unloaded infrastructure component. It is preferably checked whether the deviation of the at least one relative position from the respective reference value exceeds a predefined deformation threshold value. The deformation threshold value preferably correlates with an allowable deformation of the infrastructure component. The at least one relative position is preferably compared with the respective limit value while the infrastructure component is being relocated, in particular to the target component arrangement, and/or before or after the infrastructure component is fixed in the target component arrangement and/or after a maintenance period has expired. This enables the stress on the infrastructure component to be monitored, which increases the operational reliability of the infrastructure component and enables maintenance and repair work on the infrastructure component to be carried out particularly efficiently and economically.
Gemäß einem Aspekt der Erfindung erfolgt zum Bestimmen der Verformung des Infrastrukturbauteils ein Vergleich von mindestens drei, insbesondere mindestens zehn, insbesondere mindestens 100, insbesondere mindestens 500, insbesondere linear unabhängigen und/oder rasterförmig über eine Oberfläche des Infrastrukturbauteils verteilten, Relativpositionen mit mindestens einem, insbesondere jeweils einem, Referenzwert. Hierdurch wird vorteilhaft erreicht, dass auch lokale Verformungen des Infrastrukturbauteils erfasst werden können. According to one aspect of the invention, the deformation of the infrastructure component is determined by comparing at least three, in particular at least ten, in particular at least 100, in particular at least 500, in particular linearly independent and/or distributed in a grid over a surface of the infrastructure component, relative positions with at least one, in particular one each, reference value. This advantageously means that local deformations of the infrastructure component can also be detected.
Ein Verfahren nach Anspruch 11 gewährleistet die besonders präzise Bestimmung der Verformung des Infrastrukturbauteils. Das Geometriemodell kann ein CAD-Modell sein. Das Strukturmodell kann ein FEM-Modell sein. Das mindestens eine Referenz-Bildpaar kann von dem Infrastrukturbauteil in einem unbelasteten Zustand und/oder dem Fixieren des Infrastrukturbauteils in der Soll-Bauteilanordnung und/oder jeweils nach Ablauf einer Wartungsperiode erfasst worden sein. Der Referenzwert und/oder der Verformungs-Schwellenwert können anhand eines Strukturmodells, insbesondere eines FEM-Modells, insbesondere unter virtueller Beaufschlagung des Infrastrukturbauteils mit Lasten, insbesondere mit den im Einsatz des Infrastrukturbauteils zu erwartenden Lasten, errechnet werden. Beispielsweise kann der Verformungs-Schwellenwert für die jeweilige Abweichung der Relativposition von dem Referenzwert anhand des Strukturmodells als maximal zulässige Beanspruchung des Infrastrukturbauteils bestimmt werden. Somit kann anhand des Vergleichsergebnises zwischen dem jeweiligen Referenzwert und der Relativposition die Beanspruchung des Infrastrukturbauteils im Verhältnis zu einer zulässigen Beanspruchung bestimmt werden. A method according to claim 11 ensures the particularly precise determination of the deformation of the infrastructure component. The geometry model can be a CAD model. The structural model can be an FEM model. The at least one pair of reference images can have been captured of the infrastructure component in an unloaded state and/or the fixing of the infrastructure component in the desired component arrangement and/or after a maintenance period has expired. The reference value and/or the deformation threshold value can be determined using a structural model, in particular an FEM model, in particular under virtual loading of the infrastructure component with loads, in particular with the loads to be expected when the infrastructure component is in use. For example, the deformation threshold value for the respective deviation of the relative position from the reference value can be determined using the structural model as the maximum permissible stress on the infrastructure component. The stress on the infrastructure component in relation to a permissible stress can thus be determined on the basis of the result of the comparison between the respective reference value and the relative position.
Ein Verfahren nach Anspruch 12 macht Beanspruchungen, insbesondere Überbeanspruchungen, des Infrastrukturbauteils beim Transport erkennbar. Vorzugsweise erfolgt das Überwachen der Verformung des Infrastrukturbauteils beim Verlagern periodisch, insbesondere mit der vorstehend beschriebenen Messfrequenz. Hierdurch wird zuverlässig verhindert, dass kurzzeitige Spitzenverformungen, insbesondere Lastspitzen, unerkannt bleiben. A method according to claim 12 makes stresses, in particular overstresses, of the infrastructure component during transport recognizable. The monitoring of the deformation of the infrastructure component during displacement preferably takes place periodically, in particular with the measurement frequency described above. This reliably prevents brief peak deformations, in particular load peaks, from remaining undetected.
Gemäß einem Aspekt der Erfindung werden die bestimmten Verformungen dokumentiert, insbesondere in dem Speicherelement einer Auswerteeinheit abgespeichert. Vorzugsweise werden die Verformungsinformationen in einer Datenbank zur Lebenszyklusüberwachung des jeweiligen Infrastrukturbauteils gespeichert. According to one aspect of the invention, the deformations determined are documented, in particular stored in the memory element of an evaluation unit. The deformation information is preferably stored in a database for life cycle monitoring of the respective infrastructure component.
Anhand der mindestens einen Relativposition, insbesondere anhand des Vergleichs der mindestens einen Relativposition mit dem mindestens einen Referenzwert, können Beanspruchungen des Infrastrukturbauteils auf Grundlage eines Strukturmodells, insbesondere eines FEM-Modells, berechnet werden. Beispielsweise können anhand der mindestens einen Relativposition Spannungen in dem Infrastrukturbauteil bestimmt werden. Based on the at least one relative position, in particular based on the comparison of the at least one relative position with the at least one reference value, stresses on the infrastructure component Based on a structural model, in particular an FEM model, are calculated. For example, stresses in the infrastructure component can be determined based on the at least one relative position.
Ein Verfahren nach Anspruch 13 ermöglicht die Reduktion der auf das Infrastrukturbauteil beim Verlagern wirkenden Beanspruchungen. Beispielsweise kann anhand des Vergleichsergebnisses derart auf die Verlagerung Einfluss genommen werden, dass ein Schwellenwert der Verformung nicht überschritten wird. Vorzugsweise erfolgt anhand der Verformung ein geregeltes Verlagern des Infrastrukturbauteils derart, dass die Verformungen minimiert werden. A method according to claim 13 enables the stresses acting on the infrastructure component during relocation to be reduced. For example, based on the result of the comparison, the displacement can be influenced in such a way that a threshold value of the deformation is not exceeded. A controlled displacement of the infrastructure component preferably takes place on the basis of the deformation in such a way that the deformations are minimized.
Das Infrastrukturbauteil kann insbesondere in Echtzeit vermessen werden. Hierunter wird verstanden, dass die Zeitdauer zwischen der Bilderfassung und der Bestimmung der mindestens einen Relativposition maximal 1 s, insbesondere maximal 0,1, insbesondere maximal 0,01 s, beträgt. Hierdurch kann die Anordnung des Infrastrukturbauteils besonders effizient gesteuert, insbesondere geregelt, werden. The infrastructure component can in particular be measured in real time. This means that the time between the image acquisition and the determination of the at least one relative position is a maximum of 1 s, in particular a maximum of 0.1, in particular a maximum of 0.01 s. As a result, the arrangement of the infrastructure component can be controlled, in particular regulated, in a particularly efficient manner.
Ein Verfahren nach Anspruch 14 ermöglicht eine besonders detaillierte Vermessung des Infrastrukturbauteils. Vorzugsweise werden Relativpositionen von mindestens zwei Messpunkten, insbesondere zum Überwachen einer Linearerstreckung, der Bauteilposition und/oder der Bauteilorientierung, insbesondere von mindestens drei Messpunkten, insbesondere zum Überwachen einer Krümmung des Infrastrukturbauteils, insbesondere von mindestens vier, insbesondere mindestens fünf, insbesondere mindestens zehn, insbesondere mindestens 50, insbesondere mindestens 100, insbesondere mindestens 1000, Messpunkten, bestimmt. Ein Verfahren nach Anspruch 15 ist besonders robust und zuverlässig ausführbar. Die mindestens eine Markierung kann an das Infrastrukturbauteil starr oder beweglich, insbesondere linear verschiebbar, gekoppelt sein. Die Markierung kann einen Reflektor zur Reflexion von Licht aufweisen. Vorzugsweise umfasst die Markierung ein Verbindungsmittel zum positionsgenauen Anordnen an dem Infrastrukturbauteil. Gemäß einem Aspekt der Erfindung wird die Markierung an einer vorgegebenen Position des Infrastrukturbauteils angebracht. Die Markierung kann ein Muster zur einfacheren und/oder automatisierten Erkennbarkeit der Markierung aufweisen. Vorzugsweise umfasst die Markierung, insbesondere das Muster, eine eindeutige Identifikationsinformation. Die eindeutige Identifikationsinformation ist vorzugsweise einem individuellen Messpunkt zugewiesen. Hierdurch kann eine, insbesondere automatisierte, Zuordnung der erfassten Relativposition zu dem jeweiligen Messpunkt erfolgen. Das Verfahren ist somit besonders zuverlässig und robust gegenüber Bedienfehlem ausführbar. Durch das Koppeln der mindestens einen, insbesondere visuellen, Markierung, kann das Infrastrukturbauteil besonders präzise vermessen werden. Derartige Markierungen werden auch als Messmarken bezeichnet. A method according to claim 14 enables a particularly detailed measurement of the infrastructure component. Preferably, relative positions of at least two measuring points, in particular for monitoring a linear extent, the component position and/or the component orientation, in particular of at least three measuring points, in particular for monitoring a curvature of the infrastructure component, in particular of at least four, in particular at least five, in particular at least ten, in particular at least 50, in particular at least 100, in particular at least 1000 measuring points. A method according to claim 15 can be carried out particularly robustly and reliably. The at least one marking can be rigidly or movably coupled to the infrastructure component, in particular linearly displaceable. The marking can have a reflector for reflecting light. The marking preferably includes a connecting means for the precise positioning on the infrastructure component. According to one aspect of the invention, the marking is attached to a predetermined position of the infrastructure component. The marking can have a pattern for easier and/or automated identification of the marking. The marking, in particular the pattern, preferably includes unique identification information. The unique identification information is preferably assigned to an individual measurement point. In this way, an in particular automated assignment of the recorded relative position to the respective measuring point can take place. The method can thus be implemented in a particularly reliable and robust manner with respect to operating errors. By coupling the at least one, in particular visual, marking, the infrastructure component can be measured particularly precisely. Such markings are also referred to as measuring marks.
Eine weitere Aufgabe der Erfindung besteht darin, ein mobiles Messsystem zum Vermessen eines Infrastrukturbauteils, insbesondere eines Gleisstrukturbauteils, zu schaffen, das insbesondere sehr wirtschaftlich und flexibel einsetzbar ist und besonders präzise Messergebnisse bereitstellt. A further object of the invention is to create a mobile measuring system for measuring an infrastructure component, in particular a track structure component, which can be used very economically and flexibly and provides particularly precise measurement results.
Diese Aufgabe wird durch ein mobiles Messsystem mit den Merkmalen des Anspruchs 16 gelöst. Die Vorteile des mobilen Messsystems entsprechen den Vorteilen des vorstehend beschriebenen Verfahrens. Insbesondere kann das mobile Messsystem mit mindestens einem der Merkmale weitergebildet sein, die vorstehend in Zusammenhang mit dem Verfahren beschrieben sind. This task is solved by a mobile measuring system with the features of claim 16 . The advantages of the mobile measuring system correspond to the advantages of the method described above. Especially the mobile measuring system can be further developed with at least one of the features that are described above in connection with the method.
Die Auswerteeinheit umfasst vorzugsweise einen Prozessor zur Verarbeitung digitaler Daten, insbesondere in Echtzeit, und/oder ein Speicherelement zum Speichern der Daten und/oder eine Benutzerschnittstelle zum Austausch von Informationen mit dem Benutzer. Zwischen der Auswerteeinheit und der Stereokamera besteht vorzugsweise eine, insbesondere kabelgebundene, Signalverbindung. Vorzugsweise umfasst die Auswerteeinheit einen Desktop-PC, ein Notebook und/oder einen Tablet-PC und/oder ein Smartphone. The evaluation unit preferably includes a processor for processing digital data, in particular in real time, and/or a storage element for storing the data and/or a user interface for exchanging information with the user. There is preferably a signal connection, in particular a cable connection, between the evaluation unit and the stereo camera. The evaluation unit preferably includes a desktop PC, a notebook and/or a tablet PC and/or a smartphone.
Das mobile Messsystem ist vorzugsweise zum Ausführen des vorstehend beschriebenen Verfahrens ausgebildet. Auf dem Speicherelement der Auswerteeinheit kann ein Computerprogramm zum Ausführen des vorstehend beschriebenen Verfahrens hinterlegt sein. The mobile measuring system is preferably designed to carry out the method described above. A computer program for executing the method described above can be stored on the memory element of the evaluation unit.
Die Erfindung betrifft auch ein Computerprogramm zum Ausführen des vorstehend beschriebenen Verfahrens. The invention also relates to a computer program for carrying out the method described above.
Vorzugsweise umfasst das mobile Messsystem eine Fixiereinheit zum Festlegen der Anordnung des Messsystems, insbesondere zum Fixieren des Messsystems am Boden. Die Fixiereinheit kann ein Stativ und/oder einen Fahrwagen, insbesondere einen auf Schienen verfahrbaren Messwagen, umfassen. Die Fixiereinheit ist vorzugsweise zur vollständigen Festlegung der Messposition und/oder der Messorientierung des Messsystems ausgebildet. Hierdurch kann das Bestimmen der Relativposition, insbesondere das Bestimmen der Anordnung des Infrastiukturbauteils in dem globalen Koordinatensystem, besonders präzise und robust erfolgen. The mobile measuring system preferably includes a fixing unit for determining the arrangement of the measuring system, in particular for fixing the measuring system on the ground. The fixing unit can include a tripod and/or a carriage, in particular a measuring carriage that can be moved on rails. The fixing unit is preferably designed to completely determine the measurement position and/or the measurement orientation of the measurement system. This allows the determination of the relative position, in particular the determination of the arrangement of the infrastructural component in the global coordinate system, be carried out particularly precisely and robustly.
Ein mobiles Messsystem nach Anspruch 17 ist besonders flexibel und wirtschaftlich im Betrieb. Das Messmittel kann zum Erfassen der Kameraposition und/oder der Kameraorientierung relativ zu der Messposition und/oder der Messorientierung ausgebildet sein. Das Messmittel kann zum analogen oder digitalen Erfassen der Kameraanordnung ausgebildet sein. Vorzugsweise ist die Auswerteeinheit zum automatisierten Erfassen der Kameraanordnung relativ zu der Messanordnung mittels des Messmittels ausgebildet. Das Messmittel kann mindestens einen Winkelsensor zum Erfassen der Kameraorientierung relativ zu der Messorientierung und/oder einen Wegsensor zum Erfassen der Kameraposition relativ zu der Messposition aufweisen. Vorzugsweise ist der Winkelsensor als Drehgeber an einem Schwenkgelenk zwischen der Stereokamera und der Fixiereinheit und/oder der Positionsbestimmungseinheit ausgebildet. Der Wegsensor kann als Linearführung zwischen der Stereokamera und der Fixiereinheit ausgebildet sein. Vorzugsweise ist die Auswerteeinheit dazu ausgebildet, die Kameraanordnung relativ zu der Messanordnung beim Erfassen des Bildpaares des Infrastrukturbauteils zu erfassen. Somit kann die Stereokamera zur Verfolgung eines über das Messfeld der Stereokamera verlagerten Messpunkts bewegt, insbesondere geschwenkt, werden. Die Position des Messpunkts kann somit auch bei einer Verlagerung der Stereokamera stets in dem Messkoordinatensystem und/oder in dem globalen Koordinatensystem berechnet werden. Das Messfeld des Messsystems ist somit gegenüber dem Messfeld der Stereokamera deutlich vergrößert. Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele anhand der Figuren. Es zeigen: A mobile measuring system according to claim 17 is particularly flexible and economical to operate. The measuring means can be designed to detect the camera position and/or the camera orientation relative to the measuring position and/or the measuring orientation. The measuring means can be designed for analog or digital detection of the camera arrangement. The evaluation unit is preferably designed for the automated detection of the camera arrangement relative to the measuring arrangement by means of the measuring means. The measuring means can have at least one angle sensor for detecting the camera orientation relative to the measurement orientation and/or a displacement sensor for detecting the camera position relative to the measurement position. The angle sensor is preferably designed as a rotary encoder on a swivel joint between the stereo camera and the fixing unit and/or the position determination unit. The path sensor can be designed as a linear guide between the stereo camera and the fixing unit. The evaluation unit is preferably designed to capture the camera arrangement relative to the measurement arrangement when capturing the image pair of the infrastructure component. The stereo camera can thus be moved, in particular pivoted, in order to track a measurement point displaced over the measurement field of the stereo camera. The position of the measurement point can thus always be calculated in the measurement coordinate system and/or in the global coordinate system even if the stereo camera is displaced. The measuring field of the measuring system is thus significantly larger than the measuring field of the stereo camera. Further features, details and advantages of the invention result from the following description of several exemplary embodiments with reference to the figures. Show it:
Fig. 1 eine schematische Darstellung eines mobilen Messsystems mit einer Stereokamera, einer Auswerteeinheit und einer Positionsbestimmungseinheit, wobei das Messsystem zum Vermessen eines Gleisstrukturbauteils, insbesondere einer Fertigbetonplatte zum Bau eines schwellenlosen Gleises, eingesetzt ist, 1 shows a schematic representation of a mobile measuring system with a stereo camera, an evaluation unit and a position determination unit, the measuring system being used to measure a structural track component, in particular a precast concrete slab for the construction of a sleeper-free track,
Fig. 2 eine Draufsicht auf das Messsystem in Fig. 1, wobei von der Stereokamera erfasste, an das Infrastrukturbauteil gekoppelte Messpunkte und von der Positionsbestimmungseinheit erfasste Vermessungspunkte zusammen mit einem globalen Koordinatensystem, einem Mess-Koordinatensystem und einem Kamera-Koordinatensystem dargestellt sind, 2 shows a plan view of the measuring system in FIG. 1, wherein measuring points detected by the stereo camera and coupled to the infrastructure component and measuring points detected by the position determination unit are shown together with a global coordinate system, a measuring coordinate system and a camera coordinate system,
Fig. 3 eine perspektivische Darstellung des Messsystem und des Infrastrukturbauteils in Fig. 1 weiter im Detail, wobei an dem Infrastrukturbauteil mehrere Markierungen zur Keimzeichnung der Messpunkte angebracht sind, 3 shows a perspective representation of the measuring system and the infrastructure component in FIG.
Fig. 4 eine schematische Darstellung des mobilen Messsystems in Fig. 1, wobei das Messsystem zum Vermessen eines Gebäudeelements eingesetzt ist, Fig. 5 eine schematische Darstellung des mobilen Messsystems in Fig. 1, wobei das Messsystem zum Vermessen eines Brückenstrukturelements, insbesondere eines Brückenträgers, eingesetzt ist, bzw. 4 shows a schematic representation of the mobile measuring system in FIG. 1, the measuring system being used for measuring a building element, 5 shows a schematic representation of the mobile measuring system in FIG.
Fig. 6 eine perspektivische Darstellung des Messsystems in Fig. 1, wobei das Messsystem zum Vermessen von Schienen durch Erfassen des Bewegungspfads von relativ zu dem Gleis bewegten Messpunkten eingesetzt ist. 6 is a perspective view of the measurement system of FIG. 1, the measurement system being used to measure rails by detecting the path of movement of measurement points moved relative to the track.
Anhand der Fig. 1 bis Fig. 3 ist ein erstes Ausführungsbeispiel eines Verfahrens zum Vermessen eines Infrastrukturbauteils 1 mittels eines mobilen Messsystems 2 beschrieben. Das Infrastrukturbauteil 1 ist ein Gleisstrukturbauteil, insbesondere eine Fertigbetonplatte zum Bau eines schwellenlosen Gleises 3. Zum Befestigen von Schienen 4 weist das Infrastrukturbauteil 1 Auflageelemente 5 auf. An den Auflageelementen 5 sind Bohrungen 6 zum Befestigen von Spannklemmen 7 angeordnet. A first exemplary embodiment of a method for measuring an infrastructure component 1 using a mobile measuring system 2 is described with reference to FIGS. 1 to 3 . The infrastructure component 1 is a structural track component, in particular a precast concrete slab for constructing a track 3 without sleepers. The infrastructure component 1 has support elements 5 for fastening rails 4 . Bores 6 for attaching tension clamps 7 are arranged on the support elements 5 .
In der Umgebung des Messsystems 2 bzw. des Infrastrukturbauteils 1 befinden sich Vermessungspunkte 8. Vermessungspunkte 8 sind am Boden oder an Gebäuden fixierte Punkte, die als Ausgangs- oder Zielpunkte bei der Landvermessung oder im Bauwesen dienen. Zum Erfassen der Position der Vermessungspunkte 8 werden in die Vermessungspunkte 8 eingestellte Reflektorstäbe 9 verwendet. Die Reflektorstäbe 9 sind besonders einfach und zuverlässig sensorisch erfassbar. Üblicherweise umfasst ein Reflektorstab 9 ein optisch erfassbares Zielfenster 10, das zum Erfassen des Vermessungspunkts 8 in einem bestimmten Abstand vertikal oberhalb von diesem angeordnet wird. Das Messsystem 2 weist eine Stereokamera 11 und eine Positionsbestim- mungseinheit 12 auf. Zum stabilen Aufstellen des Messsystems 2 auf dem Boden umfasst das Messsystem 2 ein Stativ 13, insbesondere ein Dreibein. Ferner umfasst das Messsystem 2 eine Auswerteeinheit 14 zum Verarbeiten der von der Stereokamera 11 und der Positionsbestimmungseinheit 12 erfassten Daten. Surveying points 8 are located in the vicinity of the measuring system 2 or the infrastructure component 1. Surveying points 8 are points fixed on the ground or on buildings, which serve as starting or target points in land surveying or in construction. Reflector rods 9 placed in the survey points 8 are used to detect the position of the survey points 8 . The reflector rods 9 can be detected by sensors in a particularly simple and reliable manner. A reflector rod 9 usually comprises an optically detectable target window 10 which is arranged vertically above the survey point 8 at a specific distance therefrom in order to detect it. The measuring system 2 has a stereo camera 11 and a position determination unit 12 . In order to set up the measuring system 2 stably on the floor, the measuring system 2 comprises a tripod 13, in particular a tripod. Furthermore, the measuring system 2 includes an evaluation unit 14 for processing the data recorded by the stereo camera 11 and the position determination unit 12 .
Die Positionsbestimmungseinheit 12 ist an dem Stativ 13 angebracht. Eine Hochachse 15 der Positionsbestimmungseinheit 12 ist mittels des Stativs 13 vertikal ausrichtbar. Ein Laserdistanzmessgerät 16 der Positionsbestimmungseinheit 12 ist über ein Horizontalgelenk 17 um eine Horizontalachse 18 und über ein Vertikalgelenk 19 um eine Vertikalachse 20 schwenkbar an dem Stativ 13 angebracht. Die beiden Gelenke 17, 19 sind jeweils mit einem nicht dargestellten Drehgeber 20a, 20b zum Erfassen der Orientierung des Laserdistanzmessgeräts 16 ausgebildet. Mittels dieser Drehgeber 20a, 20b und aufgrund der vertikalen Ausrichtung der Hochachse 15 ist die Orientierung des Laserdistanzmessgeräts 16 vollständig bestimmbar. The position determination unit 12 is attached to the tripod 13 . A vertical axis 15 of the position determination unit 12 can be aligned vertically by means of the stand 13 . A laser distance measuring device 16 of the position determination unit 12 is attached to the stand 13 so as to be pivotable about a horizontal axis 18 via a horizontal joint 17 and about a vertical axis 20 via a vertical joint 19 . The two joints 17, 19 are each formed with a rotary encoder 20a, 20b, not shown, for detecting the orientation of the laser distance measuring device 16. The orientation of the laser distance measuring device 16 can be completely determined by means of these rotary encoders 20a, 20b and due to the vertical alignment of the vertical axis 15.
Das Laserdistanzmessgerät 16 ist dazu ausgebildet, einen Reflektorab stand bi, b , bs zu den Vermessungspunkten 8, insbesondere zu den Zielfenstem 10 der Reflektorstäbe 9, zu erfassen. Zum Ausrichten des Laserdistanzmessgeräts 16 in Richtung des jeweiligen Zielfensters 10 ist dieses um die Gelenke 17, 19 schwenkbar. Die erfassten Reflektorabstände bi, bi, bs sind zusammen mit den von den Drehgebem 20a, 20b erfassten Drehwinkeln ßi, ßi, ßs, yi, yi, y3 über eine Signal Verbindung 21 an die Auswerteeinheit 14 übertragbar. Die Stereokamera 11 weist zwei Digitalkameras 22 auf. Die Digitalkameras 22 sind in einem Kameraabstand D voneinander angeordnet. Insbesondere sind die beiden Digitalkameras 22 in vertikaler Richtung auf derselben Höhe angeordnet. Die Stereokamera 11 ist derart mit der Positionsbestimmungseinheit 12 verbunden, dass diese mittels des Vertikalgelenks 19 um die Vertikalachse 20 schwenkbar gelagert ist, nicht jedoch um die Horizontalachse 18. Die Orientierung der Stereokamera 11 relativ zu dem Stativ 13 ist ausschließlich um die Vertikalachse 20 einstellbar. Bei den Digitalkameras 22 handelt es sich um Full-HD-Kameras mit einer Auflösung von 1920x1080 Pixeln. The laser distance measuring device 16 is designed to detect a reflector distance bi, b, bs from the measurement points 8, in particular from the target window 10 of the reflector rods 9. In order to align the laser distance measuring device 16 in the direction of the respective target window 10, it can be pivoted about the joints 17, 19. The detected reflector distances bi, bi, bs can be transmitted to the evaluation unit 14 via a signal connection 21 together with the angles of rotation βi, βi, βs, yi, yi, y3 detected by the rotary encoders 20a, 20b. The stereo camera 11 has two digital cameras 22 . The digital cameras 22 are arranged at a camera distance D from one another. In particular, the two digital cameras 22 are arranged at the same height in the vertical direction. The stereo camera 11 is connected to the position determination unit 12 in such a way that it can be pivoted about the vertical axis 20 by means of the vertical joint 19, but not about the horizontal axis 18. The orientation of the stereo camera 11 relative to the tripod 13 can only be adjusted about the vertical axis 20. The digital cameras 22 are full HD cameras with a resolution of 1920x1080 pixels.
Das Messsystem 2 weist eine Beleuchtungseinheit 23 auf. Die Beleuchtungseinheit ist mittig zwischen den Digitalkameras 22 angeordnet. Zur Reduktion von Fremdlichteinflüssen ist die Beleuchtungseinheit 23 zum Abstrahlen von Infrarotlicht ausgebildet. The measuring system 2 has an illumination unit 23 . The lighting unit is arranged centrally between the digital cameras 22 . In order to reduce the influence of extraneous light, the lighting unit 23 is designed to emit infrared light.
An das Infrastrukturbauteil 1 sind Markierungen 24, in Form von Reflektoren, gekoppelt. Die jeweilige Markierung 24 ist mittels einer Markierbefestigung 25 an dem Infrastrukturbauteil 1, insbesondere an den Bohrungen 6, angebracht. Markings 24 in the form of reflectors are coupled to the infrastructure component 1 . The respective marking 24 is attached to the infrastructure component 1 , in particular to the bores 6 , by means of a marking attachment 25 .
Die Markierungen 24 sind um Markervektoren Ci, Ci, C3, C4, C5 versetzt zu der Stereokamera 11, insbesondere zu einem Ursprung 26 eines Kamera- Koordinatensystems 27, angeordnet. Die Reflektorab stände bi, b , b3 sind gegenüber dem Ursprung 28 eines Mess-Koordinatensystems 29 des Messsystems 2 bestimmt. Ein globales Koordinatensystem 30 hat den Ursprung 31. Die Auswerteeinheit 14 umfasst einen Prozessor 32 zum Verarbeiten von Daten, eine Benutzerschnittstelle 33 zum Austausch von Informationen mit dem Benutzer und ein Speicherelement 34 zum Speichern digitaler Daten. Der Prozessor 32 steht über die Signal Verbindung 21 mit dem Messsystem 2, mit der Benutzer Schnittstelle 33 und dem Speicherelement 34 in Signalverbindung. Die Benutzer Schnittstelle 33 weist einen berührungsempfindlichen Bildschirm auf. Die Auswerteeinheit 14 kann beispielsweise ein Desktop-PC, ein Laptop, ein Tablet-PC oder ein Smartphone sein. The markings 24 are arranged offset by marker vectors Ci, Ci, C3, C4, C5 in relation to the stereo camera 11, in particular in relation to an origin 26 of a camera coordinate system 27. The distances between the reflectors bi, b, b3 are determined relative to the origin 28 of a measuring coordinate system 29 of the measuring system 2. A global coordinate system 30 has the origin 31. The evaluation unit 14 includes a processor 32 for processing data, a user interface 33 for exchanging information with the user and a storage element 34 for storing digital data. The processor 32 is in signal connection with the measuring system 2 , with the user interface 33 and the memory element 34 via the signal connection 21 . The user interface 33 has a touch-sensitive screen. The evaluation unit 14 can be a desktop PC, a laptop, a tablet PC or a smartphone, for example.
Die Funktionsweise des Messsystems 2 ist wie folgt: The functioning of the measuring system 2 is as follows:
Zum Bau des Gleises 3 werden die Infrastrukturbauteile 1 in Form der Betonfertigplatten fortlaufend aneinander angelegt. Insbesondere werden die Infrastrukturbauteile 1 hierzu nacheinander aus einer Transportposition in eine individuelle Soll-Bauteilposition verlagert. In der Soll-Bauteilposition wird das jeweilige Infrastrukturbauteil 1 vorzugsweise in einer Soll-Bauteilorientierung angeordnet. Das Verlagern des Infrastrukturbauteils 1 kann beispielsweise mittels eines Krans 35 erfolgen. Zur präzisen, plangemäßen Positionierung und Orientierung des Infrastrukturbauteils 1 kommt das Messsystem 2 zum Einsatz. To build the track 3, the infrastructure components 1 in the form of precast concrete slabs are continuously applied to one another. For this purpose, in particular, the infrastructure components 1 are successively shifted from a transport position to an individual target component position. In the target component position, the respective infrastructure component 1 is preferably arranged in a target component orientation. The infrastructure component 1 can be moved, for example, by means of a crane 35 . The measuring system 2 is used for the precise, planned positioning and orientation of the infrastructure component 1 .
Das Messsystem 2 wird derart an dem Infrastrukturbauteil 1 angeordnet, dass das Messfeld 36 der Stereokamera 11, insbesondere ein Überlappungsbereich von Sichtfeldem der beiden Digitalkameras 22, das Infrastrukturbauteil 1 und die daran gekoppelten Markierungen 24 zumindest in der Soll-Bauteilposition überlappt. Hierdurch wird gewährleistet, dass beide Digitalkameras 22 das Infrastrukturbauteil 1 und die daran angebrachten Markierungen 24 beim Anordnen des Infrastrukturbauteils 1 er- fassen können. Die Hochachse 15 des Messsystems 2 wird mittels des Stativs 13, insbesondere mittels einer analogen oder digitalen Wasserwaage, vertikal ausgerichtet. Das Stativ 13 wird am Boden fixiert und im Verlauf des sich anschließenden Messverfahrens auch nicht mehr bewegt. The measuring system 2 is arranged on the infrastructure component 1 in such a way that the measuring field 36 of the stereo camera 11, in particular an overlapping area of fields of view of the two digital cameras 22, overlaps the infrastructure component 1 and the markings 24 coupled to it, at least in the target component position. This ensures that both digital cameras 22 can see the infrastructure component 1 and the markings 24 attached to it when the infrastructure component 1 is arranged. can grasp. The vertical axis 15 of the measuring system 2 is aligned vertically by means of the tripod 13, in particular by means of an analog or digital spirit level. The stand 13 is fixed to the ground and also no longer moves in the course of the subsequent measurement process.
Das Mess-Koodinatensystem 29 ist starr mit der Fixiereinheit 13 verbunden bzw. durch die Fixiereinheit 13 festgelegt und damit in Bezug auf das globale Koordinatensystem 30 fixiert. Die Messposition des Messsystems 2, insbesondere der Ursprung 28 und die Ausrichtung des Mess-Koordina- tensystems 29, in dem globalen Koordinatensystem 30 werden bestimmt. Hierzu werden die Reflektorstäbe 9 auf den in der Umgebung des Messsystems 2 befindlichen Vermessungspunkten 8 angeordnet. Das Laserdistanzmessgerät 16 wird nacheinander auf die jeweiligen Zielfenster 10 der Reflektorstäbe 9 ausgerichtet. Für jeden Vermessungspunkt 8 werden der jeweilige Reflektorab stand bi, b , b3, der jeweilige Drehwinkel ßi, ßz, ß3 um die Horizontalachse 20 und der jeweilige Drehwinkel yi, yz, y3 um die Vertikalachse 19, insbesondere zusammen mit der Höhe des jeweiligen Zielfensters 10 über dem Vermessungspunkt 8, bestimmt. Diese Informationen werden über die Signal Verbindung 21 an den Prozessor 32 übermittelt. The measuring coordinate system 29 is rigidly connected to the fixing unit 13 or fixed by the fixing unit 13 and is thus fixed in relation to the global coordinate system 30 . The measurement position of the measurement system 2, in particular the origin 28 and the orientation of the measurement coordinate system 29, in the global coordinate system 30 are determined. For this purpose, the reflector rods 9 are arranged on the measurement points 8 located in the vicinity of the measurement system 2 . The laser distance measuring device 16 is successively aligned with the respective target windows 10 of the reflector rods 9 . For each surveying point 8, the respective reflector distance bi, b, b3, the respective angle of rotation ßi, ßz, ß3 around the horizontal axis 20 and the respective angle of rotation yi, yz, y3 around the vertical axis 19, in particular together with the height of the respective target window 10 above survey point 8. This information is transmitted to the processor 32 via the signal connection 21 .
In dem Speicher 34 sind zu jedem der Vermessungspunkte 8 Koordinaten hinterlegt, die der Position des jeweiligen Vermessungspunkts 8 in dem globalen Koordinatensystem 30 entsprechen. Aus den Koordinaten der Vermessungspunkte 8 und den erfassten Messpositionswerte werden mittels des Prozessors 32 die Messposition, insbesondere der Ursprung 28 und die Orientierung des Mess-Koordinatensystems 29, in dem globalen Koordinatensystem 30 über gängige Vektorrechnung bestimmt und in dem Speicherelement 34 hinterlegt. Der Ursprung 26 des Kamera-Koordinatensystems 27 ist um einen Mess- Kamera-Vektor t versetzt zu dem Ursprung 28 des Mess-Koordinatensys- tems 29 angeordnet. Der Mess-Kamera-Vektor t ist hinsichtlich seiner Länge und seines Vertikalanteils aufgrund der gewählten Befestigung der Stereokamera 11 unveränderlich. Der Horizontalanteil des Mess-Kamera- Vektors t ist abhängig von der Orientierung der Stereokamera 11 um die Vertikalachse 20. Der Mess-Kamera-Vektor t wird anhand seiner bekannten Länge, dem ebenfalls bekannten Vertikalanteil und dem mittels des Drehgebers 20b des Vertikalgelenks 19 ermittelten Horizontalanteils bestimmt. Anhand des Mess-Kamera-Vektors t und der Messposition, insbesondere des Ursprungs 28 und der Orientierung des Mess-Koordinatensys- tems 29, werden der Ursprung 26 und die Orientierung des Kamera-Koordinatensystems 27 in dem globalen Koordinatensystem 30 bestimmt. Somit können von der Stereokamera 11 erfasste Relativpositionen der Messpunkte 37, 38, 39, 40, 41 über gängige, in der Auswerteeinheit 14, insbesondere von dem Prozessor 32, ausgeführte Koordinatentransformationen, in dem globalen Koordinatensystem 30 bestimmt werden. Stored in the memory 34 for each of the survey points 8 are coordinates which correspond to the position of the respective survey point 8 in the global coordinate system 30 . The measuring position, in particular the origin 28 and the orientation of the measuring coordinate system 29, in the global coordinate system 30 is determined by means of common vector calculation using the processor 32 and stored in the memory element 34 from the coordinates of the measurement points 8 and the recorded measurement position values. The origin 26 of the camera coordinate system 27 is offset by a measurement camera vector t to the origin 28 of the measurement coordinate system 29 . The measuring camera vector t is unchangeable with regard to its length and its vertical portion due to the chosen attachment of the stereo camera 11 . The horizontal component of the measurement camera vector t depends on the orientation of the stereo camera 11 about the vertical axis 20. The measurement camera vector t is determined based on its known length, the likewise known vertical component and the horizontal component determined by means of the rotary encoder 20b of the vertical joint 19 definitely. The origin 26 and the orientation of the camera coordinate system 27 in the global coordinate system 30 are determined on the basis of the measuring camera vector t and the measuring position, in particular the origin 28 and the orientation of the measuring coordinate system 29 . Thus, relative positions of the measurement points 37, 38, 39, 40, 41 recorded by the stereo camera 11 can be determined in the global coordinate system 30 via common coordinate transformations executed in the evaluation unit 14, in particular by the processor 32.
Während des Erfassens des Bildpaares mittels der Stereokamera 11 ist diese vorzugsweise relativ zu dem Mess-Koordinatensystem 29, insbesondere zu dem Stativ 13, fixiert. Hierdurch kann das Bildpaar besonders präzise und robust erfasst werden. During the recording of the pair of images by means of the stereo camera 11, this is preferably fixed relative to the measuring coordinate system 29, in particular to the stand 13. As a result, the pair of images can be recorded particularly precisely and robustly.
Alternativ kann die Stereokamera 11 während des Erfassens des Infrastrukturbauteils 1, insbesondere kontinuierlich und/oder entsprechend der Verlagerungsbewegung des Infrastrukturbauteils 1 relativ zu dem Mess-Koordi- natensystem 29 beweget, insbesondere geschwenkt, insbesondere um die Vertikalachse 20 geschwenkt, werden. Gemäß einer weiteren alternativen Ausführungsform ist die Stereokamera 11 starr mit dem Mess-Koordinatensystem 29, insbesondere mit dem Stativ 13, verbunden. Ein Vertikalgelenk 19 ist dabei nicht vorgesehen. Die Stereokamera 11 kann relativ zu dem Mess-Koordinatensystem 29 nicht geschwenkt werden. Alternatively, the stereo camera 11 can be moved, in particular pivoted, in particular pivoted about the vertical axis 20, relative to the measuring coordinate system 29 during the detection of the infrastructure component 1, in particular continuously and/or corresponding to the displacement movement of the infrastructure component 1. According to a further alternative embodiment, the stereo camera 11 is rigidly connected to the measuring coordinate system 29, in particular to the stand 13. A vertical joint 19 is not provided. The stereo camera 11 cannot be pivoted relative to the measurement coordinate system 29 .
Die Anordnung des Infrastrukturbauteils 1 ist durch dessen Position und Orientierung bestimmt. Die Bauteilposition ist durch den Ursprung 42 eines Bauteil-Koordinatensystems 43 bestimmt. Die Bauteilorientierung ist durch die Orientierung des Bauteil-Koordinatensystems 43 bestimmt. The arrangement of the infrastructure component 1 is determined by its position and orientation. The component position is determined by the origin 42 of a component coordinate system 43 . The orientation of the component is determined by the orientation of the component coordinate system 43 .
Die Position der Messpunkte 37, 38, 39, 40, 41 an dem Infrastrukturbauteil 1 ist bekannt, insbesondere ist diese in einem entsprechenden Datensatz in dem Speicherelement 34 hinterlegt. Hieraus wird die Anordnung des Bauteil-Koordinatensystems 43 mit dem Ursprung 42 relativ zu den Messpunkten 37, 38, 39, 40, 41, insbesondere mittels des Prozessors 32, berechnet. Über gängige Koordinatentransformationsverfahren ist die Bauteilanordnung, insbesondere sind die Bauteilposition und die Bauteilorientierung in dem globalen Koordinatensystem 30 bestimmbar. In dem globalen Koordinatensystem 30 ist die Bauteilposition anhand des von dem Ursprung 31 auf den Ursprung 42 weisenden Bauteilpositionsvektors p bestimmt. Die Bauteilorientierung kann in dem globalen Koordinatensystem 30 beispielsweise anhand eines entsprechenden Bauteilorientierung s vektors für das Bauteil-Koordinatensystem 43 angegeben werden. The position of the measuring points 37, 38, 39, 40, 41 on the infrastructure component 1 is known; in particular, this is stored in a corresponding data record in the memory element 34. From this, the arrangement of the component coordinate system 43 with the origin 42 relative to the measuring points 37, 38, 39, 40, 41 is calculated, in particular by means of the processor 32. The arrangement of the components, in particular the component position and the component orientation, can be determined in the global coordinate system 30 using common coordinate transformation methods. The component position is determined in the global coordinate system 30 using the component position vector p pointing from the origin 31 to the origin 42 . The component orientation can be specified in the global coordinate system 30, for example using a corresponding component orientation s vector for the component coordinate system 43.
Mittels des Krans 35 wird das Infrastrukturbauteil 1 aus einer Bevorratungs-Bauteilanordnung in eine Soll-Bauteilanordnung verlagert. Die Bauteilanordnung wird während des Verlagerns des Infrastrukturbauteils 1 fortwährend mittels des Messsystems 2 bestimmt. Insbesondere erfolgt das Bestimmen der Bauteilanordnung mit einer Frequenz in einem Bereich von 10 Hz bis 100 Hz, insbesondere mit einer Frequenz von 55 Hz. The infrastructure component 1 is moved from a storage component arrangement to a target component arrangement by means of the crane 35 . The component arrangement is changed during the relocation of the infrastructure component 1 continuously determined by means of the measuring system 2. In particular, the component arrangement is determined with a frequency in a range from 10 Hz to 100 Hz, in particular with a frequency of 55 Hz.
Die Soll-Bauteilanordnung ist für jedes der Infrastrukturbauteile 1 in dem Speicherelement 34 hinterlegt. Die Soll-Bauteilanordnung des jeweiligen Infrastrukturbauteils 1 ist vorzugsweise zusammen mit einer individuellen Identifikationsinformation oder einer fortlaufenden Nummer in dem Speicherelement 34 hinterlegt. Anhand der individuellen Identifikationsinformation oder der fortlaufenden Nummer kann der Benutzer über die Benutzerschnittstelle 33 die für das momentan anzuordnende Infrastrukturbauteil 1 zutreffende Soll-Bauteilanordnung auswählen. The desired component arrangement is stored in the storage element 34 for each of the infrastructure components 1 . The desired component arrangement of the respective infrastructure component 1 is preferably stored in the storage element 34 together with individual identification information or a sequential number. Using the individual identification information or the sequential number, the user can use the user interface 33 to select the target component arrangement that is appropriate for the infrastructure component 1 that is currently to be arranged.
Die Soll-Bauteilanordnung umfasst beispielsweise einen Soll-Bauteilpositi- onsvektor und einen Soll-Bauteilorientierungsvektor. Mittels des Prozessors 32 wird die erfasste Bauteilanordnung fortwährend, insbesondere mit der Frequenz in dem Bereich von 10 Hz bis 100 Hz, insbesondere mit der Frequenz von 55 Hz, mit der Soll-Bauteilanordnung verglichen. Das Vergleichsergebnis ist durch die Differenz zwischen der Soll-Bauteilanordnung und der Bauteilanordnung bestimmt. Das Vergleichsergebnis wird dem Benutzer über die Benutzerschnittstelle 33 in Form eines Differenz- Positionsvektors und eines Differenz-Orientierungvektors angezeigt. The target component arrangement includes, for example, a target component position vector and a target component orientation vector. By means of the processor 32, the detected component arrangement is continuously compared with the target component arrangement, in particular with the frequency in the range from 10 Hz to 100 Hz, in particular with the frequency of 55 Hz. The comparison result is determined by the difference between the target component arrangement and the component arrangement. The result of the comparison is displayed to the user via the user interface 33 in the form of a difference position vector and a difference orientation vector.
Das Verlagern des Infrastrukturbauteils 1 erfolgt anhand des Vergleichsergebnisses. Insbesondere kann das Infrastrukturbauteil 1 mittels des Krans 35 automatisiert, insbesondere geregelt, in die Soll-Bauteilanordnung verlagert werden. Unterschreitet das Vergleichsergebnis, insbesondere der Differenz-Positionsvektor und der Differenz-Orientierungsvektor, einen vorgegebene Anordnungs-Schwellenwert, so ist eine zulässige Bauteilanordnung erreicht. Das Infrastrukturbauteil 1 wird in dieser Anordnung fixiert. Das Verfahren zum Anordnen des Infrastrukturbauteils 1 ist beendet. Ein weiteres Infrastrukturbauteil 1 kann entsprechend dem vorstehend beschriebenen Verfahren aus der Bevorratungs-Bauteilanordnung in die Soll- Bauteilanordnung überführt und dort fixiert werden. The infrastructure component 1 is relocated using the result of the comparison. In particular, the infrastructure component 1 can be relocated to the target component arrangement in an automated manner, in particular in a controlled manner, by means of the crane 35 . If the result of the comparison, in particular the differential position vector and the differential orientation vector, falls below a predetermined arrangement threshold value, a permissible component arrangement is reached. The infrastructure component 1 is fixed in this arrangement. The method for arranging the infrastructure component 1 is ended. A further infrastructure component 1 can be transferred from the storage component arrangement to the desired component arrangement and fixed there in accordance with the method described above.
Mittels des Messsystems 2 kann, zusätzlich oder alternativ zum Bestimmen der Anordnung des Infrastrukturbauteils 1, eine Verformung des Infrastrukturbauteils 1 bestimmt werden. Die Markervektoren c werden hierzu entsprechend dem vorstehend beschriebenen Verfahren durch Erfassen von Bildpaaren mittels der Stereokamera bestimmt. Eine Transformation der Markerpositionen in das globale Koordinatensystem 30 ist zum Bestimmen der Verformung des Infrastrukturbauteils 1 nicht erforderlich. In addition or as an alternative to determining the arrangement of the infrastructure component 1, a deformation of the infrastructure component 1 can be determined by means of the measuring system 2. For this purpose, the marker vectors c are determined according to the method described above by capturing image pairs using the stereo camera. A transformation of the marker positions into the global coordinate system 30 is not required to determine the deformation of the infrastructure component 1 .
Die Position der Markierungen 24 werden mittels des Prozessors 32 anhand der Markervektoren c in dem Bauteil-Koordinatensystem 43 bestimmt. In dem Speicherelement 34 sind Soll-Markerpositionen der Markierelemente 24, insbesondere für jedes individuelle Infrastrukturbauteil 1, hinterlegt. Die entsprechenden Soll-Markierpositionen sind von dem Benutzer über die Benutzerschnittstelle 33 anhand einer für das Infrastrukturbauteil 1 einzigartigen Identifikationsinformation auswählbar. Mittels des Prozessors 32 werden die Markerpositionen mit den Soll-Markerpositionen verglichen. Das Vergleichsergebnis wird als Differenz zwischen der Soll- Markerposition und der Markerposition bestimmt. Das Vergleichsergebnis korreliert mit einer Verformung des Infrastrukturbauteils 1. Das Bestimmen des Vergleichsergebnisses erfolgt beispielsweise während des Verlagerns des Infrastrukturbauteils 1, insbesondere zwischen der Bevorratungs-Bauteilanordnung und der Soll-Bauteilanordnung, und/oder in der Soll-Bauteilanordnung, insbesondere vor dem Fixieren oder im Anschluss an das Fixieren des Infrastrukturbauteils 1, und/oder zu Wartungszwecken nach Ablauf einer bestimmten Wartungsperiode. The position of the markings 24 is determined by the processor 32 using the marker vectors c in the component coordinate system 43 . Target marker positions of the marking elements 24 , in particular for each individual infrastructure component 1 , are stored in the storage element 34 . The corresponding target marking positions can be selected by the user via the user interface 33 using identification information that is unique to the infrastructure component 1 . The marker positions are compared with the target marker positions by means of the processor 32 . The comparison result is determined as the difference between the target marker position and the marker position. The result of the comparison correlates with a deformation of infrastructure component 1. The comparison result is determined, for example, during the relocation of the infrastructure component 1, in particular between the storage component arrangement and the target component arrangement, and/or in the target component arrangement, in particular before the fixing or after the fixing of the infrastructure component 1, and/or or for maintenance purposes after a certain maintenance period has expired.
Vorzugsweise erfolgt das Verlagern des Infrastrukturbauteils 1 derart, dass ein Verformungs- Schwellenwert nicht überschritten wird. Eine Reduktion der Verformung kann beispielsweise durch gleichmäßigeres Verlagern oder zusätzliche Aufhängungspunkte erreicht werden. The displacement of the infrastructure component 1 preferably takes place in such a way that a deformation threshold value is not exceeded. A reduction in the deformation can be achieved, for example, by more even displacement or additional suspension points.
Das Vergleichsergebnis der Verformung wird fortwährend in dem Speicherelement 34 abgespeichert. Die Dokumentation der Verformung ermöglicht eine verbesserte Qualitätssicherung. Das nach der Wartungsperiode bestimmte Vergleichsergebnis kann eine Grundlage für die Entscheidung über Instandhaltungsmaßnahmen sein. Hierzu kann insbesondere ein Vergleich zwischen der Soll-Markerposition und der Markerposition, die im Anschluss an das Fixieren des Infrastrukturbauteils 1 und/oder Ablauf einer Wartungsperiode bestimmt wurden, erfolgen. Auch die nach Ablauf einer Wartungsperiode bestimmte Bauteilanordnung kann zum Bestimmen des Vergleichsergebnisses mit der Soll-Bauteilanordnung und/oder der Bauteilanordnung im Anschluss an das Fixieren des Infrastrukturbauteils 1 verglichen werden. The comparison result of the deformation is continuously stored in the storage element 34 . The documentation of the deformation enables improved quality assurance. The comparison result determined after the maintenance period can be a basis for the decision on maintenance measures. For this purpose, in particular, a comparison can be made between the target marker position and the marker position that was determined following the fixing of the infrastructure component 1 and/or the end of a maintenance period. The arrangement of components determined after a maintenance period can also be compared to the target arrangement of components and/or the arrangement of components following the fixing of the infrastructure component 1 in order to determine the result of the comparison.
Das vorstehend beschriebene Verfahren ermöglicht eine besonders präzise und wiederholgenaue Positionierung von Infrastrukturbauteilen 1, insbesondere in einem globalen Koordinatensystem 30. Das Verfahren macht Beanspruchungen, insbesondere Überbeanspruchungen, von Infrastrukturbauteilen 1 beim Transport und/oder beim Fixieren erkennbar. Die Wartung von Infrastrukturbauteilen 1 kann in besonders effizienter und zuverlässiger Weise erfolgen. Infrastrukturbauteile 1 sind mittels des vorstehend beschriebenen Verfahrens beim Einbau und während ihrer Nutzungsdauer hinsichtlich ihrer Anordnung und Beanspruchung besonders flexibel, zuverlässig, effizient und wirtschaftlich überwachbar. The method described above enables infrastructure components 1 to be positioned particularly precisely and with repeat accuracy, in particular in a global coordinate system 30. The method makes Stresses, in particular overstresses, recognizable from infrastructure components 1 during transport and/or when fixing. Infrastructure components 1 can be maintained in a particularly efficient and reliable manner. Infrastructure components 1 can be monitored particularly flexibly, reliably, efficiently and economically with regard to their arrangement and stress by means of the method described above during installation and during their service life.
Anhand der Fig. 4 und Fig. 5 sind zwei weitere Beispiele zur Verwendung des vorstehend beschriebenen Messsystems 2 bzw. Anwendungsbeispiele des vorstehend beschriebenen Verfahrens erläutert. Im Unterschied zu dem vorstehend beschriebenen Ausführungsbeispiel ist das in der Fig. 4 dargestellte Infrastrukturbauteil 1 ein Gebäudeelement, insbesondere eine Fertigbetonwand. Gemäß dem vorstehend beschriebenen Verfahren wird das Infrastrukturbauteil 1 mittels des Messsystems 2 präzise in die Soll-Bauteilanordnung verlagert. Das Verlagern des Infrastrukturbauteils 1 erfolgt manuell anhand des von dem Messsystem 2 bestimmten Vergleichsergebnisses. Two further examples of the use of the measuring system 2 described above or application examples of the method described above are explained with reference to FIGS. 4 and 5 . In contrast to the exemplary embodiment described above, the infrastructure component 1 shown in FIG. 4 is a building element, in particular a precast concrete wall. According to the method described above, the infrastructure component 1 is moved precisely into the target component arrangement by means of the measuring system 2 . The infrastructure component 1 is relocated manually using the comparison result determined by the measuring system 2 .
Das in der Fig. 5 dargestellte Ausführungsbeispiel unterscheidet sich von den vorstehend beschriebenen Ausführungsbeispielen dadurch, dass die von dem Messsystem 2 erfassten Infrastrukturbauteile 1 ein Brückenträger und ein Brückenpfeiler sind. Das als Brückenträger ausgebildete Infrastrukturbauteil 1 wird entsprechend des vorstehend beschriebenen Verfahrens mittels eines Krans 35 in die Soll-Bauteilanordnung verlagert, wobei das Verlagern automatisiert anhand eines gemäß dem vorstehend beschriebenen Verfahrens bestimmten Vergleichsergebnisses zwischen der Bauteilanordnung und der Soll-Bauteilanordnung erfolgt. Beim Verlagern und/oder in der Soll-Bauteilanordnung wird die Verformung des Infrastrukturbau- teils 1 gemäß dem vorstehend beschriebenen Verfahren bestimmt und überwacht. Ferner werden die Markerpositionen der als Brückenträger und Brückenpfeiler ausgebildeten Infrastrukturbauteile 1, insbesondere im Anschluss an die Fertigstellung der Brücke und/oder nach vorgegebenen Wartungsperioden, zum Bestimmen neuer Verformungen erfasst. Anhand des Verformungsbilds können beispielsweise Risse in dem Infrastrukturbauteil 1 identifiziert werden. Anhand der bestimmten Verformungen, insbesondere anhand eines daraus bestimmten Verformungs- und/oder Rissfort- schritts, kann über möglicherweise notwendige Instandhaltungsmaßnahmen entschieden werden. The exemplary embodiment shown in FIG. 5 differs from the exemplary embodiments described above in that the infrastructure components 1 detected by the measuring system 2 are a bridge girder and a bridge pier. The infrastructure component 1 embodied as a bridge girder is relocated to the target component arrangement by means of a crane 35 in accordance with the method described above, with the relocation taking place automatically using a comparison result between the component arrangement and the target component arrangement determined in accordance with the method described above. When relocating and/or in the target component arrangement, the deformation of the infrastructure part 1 determined and monitored in accordance with the procedure described above. Furthermore, the marker positions of the infrastructure components 1 designed as bridge girders and bridge piers are recorded, in particular after the completion of the bridge and/or after specified maintenance periods, in order to determine new deformations. For example, cracks in the infrastructure component 1 can be identified on the basis of the deformation image. Based on the determined deformations, in particular based on a deformation and/or crack progress determined therefrom, a decision can be made about maintenance measures that may be necessary.
Anhand der Fig. 6 ist ein weiteres Verfahren zum Vermessen eines Infrastrukturbauteils 1 bzw. ein weiteres Anwendungsbeispiel zur Verwendung des Messsystems 2 beschrieben. Im Unterschied zu den vorstehend beschriebenen Ausführungsbeispielen sind die Markierungen 24 an einem Messwagen 44, der als Schienenfahrzeug ausgebildet ist, angebracht. Über den Messwagen 44 sind die Markierungen 24 und die damit gekennzeichneten Messpunkte 37, 38 an die Schienen 4, welche die zu vermessenden Infrastrukturbauteile 1 darstellen, gekoppelt. A further method for measuring an infrastructure component 1 or a further application example for using the measuring system 2 is described with reference to FIG. 6 . In contrast to the exemplary embodiments described above, the markings 24 are attached to a measuring carriage 44 which is designed as a rail vehicle. The markings 24 and the measuring points 37, 38 marked therewith are coupled to the rails 4, which represent the infrastructure components 1 to be measured, via the measuring carriage 44.
Zum Vermessen der Infrastrukturbauteile 1, insbesondere der Schienen 4, werden die Markierungen 24 mittels des Messwagens 44 im Messfeld 36 des Messsystems 2 über die Schienen 4 verlagert. Das Messsystem 2 erfasst dabei fortwährend, insbesondere mit einer Messfrequenz von 10 Hz, die Relativpositionen der an die Infrastrukturbauteile 1 gekoppelten Messpunkte 37, 38. Die Fahrgeschwindigkeit des Messwagens 44 liegt vorzugsweise in einem Bereich von 2 m/s bis 20 m/s. Anhand des zeitlichen Verlaufs der Relativpositionen werden Bewegung strajektorien 44a der Messpunkte 37, 38 bestimmt. Die Anordnung der Markierungen 24 relativ zu den Schienen 4, insbesondere in einer Ebene senkrecht zu der Fahrrichtung 45, ist bekannt, insbesondere durch den Messwagen 44 fest vorgegeben oder veränderlich und wird an dem Messwagen 44 erfasst. Anhand des zeitlichen Verlaufs der Relativpositionen wird mittels der Auswerteeinheit 14, insbesondere mittels des Prozessors 32, die Position der Schienen 4 in aufeinanderfolgenden Zeitpunkten und damit an unterschiedlichen Punkten entlang der Fahrrichtung 45, in dem globalen Koordinatensystem 30 bestimmt. Die Bauteilan- Ordnung der Infrastrukturbauteile 1, insbesondere der Verlauf der Schienen 4, ist hierdurch in dem globalen Koordinatensystem 30 bestimmbar. To measure the infrastructure components 1 , in particular the rails 4 , the markings 24 are moved over the rails 4 in the measuring field 36 of the measuring system 2 by means of the measuring carriage 44 . The measuring system 2 continuously records the relative positions of the measuring points 37, 38 coupled to the infrastructure components 1, in particular with a measuring frequency of 10 Hz. The driving speed of the measuring car 44 is preferably in a range of 2 m/s to 20 m/s. Movement trajectories 44a of the measuring points 37, 38 are determined on the basis of the course of the relative positions over time. The arrangement of the markings 24 relative to the rails 4, in particular in a plane perpendicular to the direction of travel 45, is known, in particular fixed or variable by the measuring carriage 44 and is recorded on the measuring carriage 44. The position of the rails 4 at successive points in time and thus at different points along the direction of travel 45 in the global coordinate system 30 is determined by means of the evaluation unit 14, in particular by means of the processor 32, based on the course of the relative positions over time. The component arrangement of the infrastructure components 1, in particular the course of the rails 4, can be determined in the global coordinate system 30 as a result.
Das Verfahren entspricht im Übrigen dem Verfahren entsprechend den vorstehend beschriebenen Ausführungsbeispielen. Das Verfahren ermöglicht eine besonders präzise und effiziente Bestimmung der Bauteilanordnung in dem globalen Koordinatensystem 30, insbesondere beim Gleisbau, nach dem Verlegen der Schienen 4 und/oder zu Wartungszwecken nach dem Ablauf einer bestimmten Wartungsperiode. The method otherwise corresponds to the method according to the exemplary embodiments described above. The method enables a particularly precise and efficient determination of the component arrangement in the global coordinate system 30, in particular during track construction, after the rails 4 have been laid and/or for maintenance purposes after a specific maintenance period has expired.

Claims

- 34 - Patentansprüche - 34 - Claims
1. Verfahren zum Vermessen eines Infrastrukturbauteils (1), insbesondere eines Gleisstrukturbauteils, umfassend die Schritte: 1. A method for measuring an infrastructure component (1), in particular a structural track component, comprising the steps:
Bereitstellen eines mobilen Messsystems (2) mit einer Stereokamera (11), Providing a mobile measuring system (2) with a stereo camera (11),
Anordnen des Messsystems (2) an dem Infrastrukturbauteil (1), Erfassen mindestens eines Bildpaares von dem Infrastrukturbauteil (1) mittels der Stereokamera (11), Arranging the measuring system (2) on the infrastructure component (1), capturing at least one pair of images of the infrastructure component (1) using the stereo camera (11),
Bestimmen einer Relativposition mindestens eines an das Infrastrukturbauteil (1) gekoppelten Messpunkts (37, 38, 39, 40, 41) anhand des mindestens einen Bildpaares, und Determining a relative position of at least one measuring point (37, 38, 39, 40, 41) coupled to the infrastructure component (1) using the at least one pair of images, and
Bestimmen einer Verformung des Infrastrukturbauteils (1) anhand der mindestens einen Relativposition und/oder Erfassen einer Messposition des Messsystems (2) in einem globalen Koordinatensystem (30). Determining a deformation of the infrastructure component (1) based on the at least one relative position and/or detecting a measurement position of the measurement system (2) in a global coordinate system (30).
2. Verfahren nach Anspruch 1, gekennzeichnet durch Bestimmen einer Bauteilanordnung des Infrastrukturbauteils (1) in dem globalen Koordinatensystem (30) anhand der mindestens einen Relativposition und der Messposition. 2. The method according to claim 1, characterized by determining a component arrangement of the infrastructure component (1) in the global coordinate system (30) based on the at least one relative position and the measurement position.
3. Verfahren nach Anspruch 2, gekennzeichnet durch Vergleichen der Bauteilanordnung mit einer Soll-Bauteilanordnung zum Bestimmen eines Vergleichsergebnisses. 3. The method according to claim 2, characterized by comparing the component arrangement with a target component arrangement to determine a comparison result.
4. Verfahren nach Anspruch 3, gekennzeichnet durch Verlagern des Infrastrukturbauteils (1) anhand des Vergleichsergebnisses. - 35 - 4. The method according to claim 3, characterized by relocating the infrastructure component (1) based on the comparison result. - 35 -
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Erfassen der Bildpaare zu mehreren aufeinanderfolgenden Zeitpunkten erfolgt. 5. The method as claimed in one of the preceding claims, characterized in that the image pairs are recorded at a plurality of consecutive points in time.
6. Verfahren nach Anspruch 5, gekennzeichnet durch Bestimmen eines Bewegungspfads des mindestens einen Messpunkts (37, 38, 39, 40, 41) anhand der mehreren Bildpaare. 6. The method according to claim 5, characterized by determining a movement path of the at least one measuring point (37, 38, 39, 40, 41) based on the plurality of image pairs.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Erfassen der Bildpaare mit einer Frequenz von mindestens 0, 1 Hz erfolgt. 7. The method as claimed in claim 5 or 6, characterized in that the image pairs are recorded at a frequency of at least 0.1 Hz.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Bestimmen der Messposition des Messsystems (2) in dem globalen Koordinatensystem (30) das Erfassen von Vermessungspunkten (8) und/oder eines Satellitennavigationssignals umfasst. 8. The method according to any one of the preceding claims, characterized in that determining the measurement position of the measurement system (2) in the global coordinate system (30) includes the detection of survey points (8) and / or a satellite navigation signal.
9. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch Bestimmen einer Kameraanordnung der Stereokamera (11) relativ zu der Messposition des Messsystems (2) beim Erfassen des mindestens einen Bildpaares. 9. The method according to any one of the preceding claims, characterized by determining a camera arrangement of the stereo camera (11) relative to the measurement position of the measurement system (2) when capturing the at least one pair of images.
10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Bestimmen der Verformung des Infrastrukturbauteils (1) durch Vergleichen der mindestens einen Relativposition mit mindestens einem Referenzwert erfolgt. erfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Referenzwert anhand eines Geometriemodells und/oder eines Strukturmo- dells des Infrastrukturbauteils (1) und/oder anhand mindestens eines Referenz-Bildpaares des Infrastrukturbauteils (1) bestimmt wird. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch Überwachen der Verformung des Infrastrukturbauteils (1) beim Verlagern des Infrastrukturbauteils (1). Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch Verlagern des Infrastrukturbauteils (1) anhand der Verformung. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch Erfassen der Relativposition von mindestens drei Messpunkten (37, 38, 39, 40, 41) des Infrastrukturbauteils (1) anhand des mindestens einen Bildpaares. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch Erfassen des mindestens einen Messpunkts (37, 38, 39, 40, 41) durch Erfassen einer an das Infrastrukturbauteil (1) gekoppelten Markierung (24). Mobiles Messsystem (2) zum Erfassen eines Infrastrukturbauteils (1), insbesondere eines Gleisstrukturbauteils, aufweisend eine Stereokamera (11) zum Erfassen mindestens eines Bildpaares des Infrastrukturbauteils (1), eine Auswerteeinheit (14) zum Bestimmen der Relativposition mindestens eines mit dem Infrastrukturbauteil (1) gekoppelten Messpunkts (37, 38, 39, 40, 41) anhand des mindestens einen Bildpaares, und eine Positionsbestimmungseinheit (12) zum Bestimmen einer10. The method according to any one of the preceding claims, characterized in that the determination of the deformation of the infrastructure component (1) is carried out by comparing the at least one relative position with at least one reference value. experienced according to claim 10, characterized in that the reference value is determined using a geometric model and/or a structural model of the infrastructure component (1) and/or using at least one reference image pair of the infrastructure component (1). Method according to one of the preceding claims, characterized by monitoring the deformation of the infrastructure component (1) when the infrastructure component (1) is relocated. Method according to one of the preceding claims, characterized by relocating the infrastructure component (1) based on the deformation. Method according to one of the preceding claims, characterized by detecting the relative position of at least three measuring points (37, 38, 39, 40, 41) of the infrastructure component (1) using the at least one pair of images. Method according to one of the preceding claims, characterized by detecting the at least one measuring point (37, 38, 39, 40, 41) by detecting a marking (24) coupled to the infrastructure component (1). Mobile measuring system (2) for recording an infrastructure component (1), in particular a track structure component, having a stereo camera (11) for recording at least one pair of images of the infrastructure component (1), an evaluation unit (14) for determining the relative position of at least one connected to the infrastructure component (1 ) paired Measuring point (37, 38, 39, 40, 41) based on the at least one pair of images, and a position determination unit (12) for determining a
Messposition des Messsystems (2) in einem globalen Koordinaten- system (30). Mobiles Messsystem (2) nach Anspruch 16, gekennzeichnet durch ein Messmittel (20a, 20b) zum Erfassen einer Kameraanordnung der Stereokamera (11) relativ zu der Messposition des Messsystems (2). Measuring position of the measuring system (2) in a global coordinate system (30). Mobile measuring system (2) according to Claim 16, characterized by measuring means (20a, 20b) for detecting a camera arrangement of the stereo camera (11) relative to the measuring position of the measuring system (2).
EP21805490.6A 2020-11-11 2021-11-03 Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component Pending EP4244117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50972/2020A AT524402A1 (en) 2020-11-11 2020-11-11 Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component
PCT/EP2021/080431 WO2022101061A1 (en) 2020-11-11 2021-11-03 Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component

Publications (1)

Publication Number Publication Date
EP4244117A1 true EP4244117A1 (en) 2023-09-20

Family

ID=78536219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21805490.6A Pending EP4244117A1 (en) 2020-11-11 2021-11-03 Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component

Country Status (3)

Country Link
EP (1) EP4244117A1 (en)
AT (1) AT524402A1 (en)
WO (1) WO2022101061A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT18073U1 (en) 2022-07-26 2023-12-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and system for measuring the position of a reference object, in particular a fixed point for measuring a track structure element and measuring arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068012B2 (en) * 2012-06-14 2017-01-25 東日本旅客鉄道株式会社 Roadbed shape measuring method, roadbed shape measuring device, and vehicle
WO2014046213A1 (en) * 2012-09-21 2014-03-27 株式会社タダノ Periphery-information acquisition device for vehicle
US10062176B2 (en) * 2016-02-24 2018-08-28 Panasonic Intellectual Property Management Co., Ltd. Displacement detecting apparatus and displacement detecting method
AT518579B1 (en) 2016-04-15 2019-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and measuring system for detecting a fixed point next to a track
AT518692B1 (en) * 2016-06-13 2019-02-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H Method and system for maintaining a track for rail vehicles
CN109186902A (en) * 2018-09-26 2019-01-11 中国计量大学 A kind of bridge structure health detection system of view-based access control model sensing
CN109823965B (en) * 2019-03-21 2020-02-11 中建五局土木工程有限公司 Hoisting deformation monitoring system and method for underground continuous wall reinforcement cage
NO345381B1 (en) * 2019-04-09 2021-01-11 Bane Nor Sf Device, system and method for lubricating a railway switch

Also Published As

Publication number Publication date
WO2022101061A1 (en) 2022-05-19
AT524402A1 (en) 2022-05-15

Similar Documents

Publication Publication Date Title
Sutter et al. A semi-autonomous mobile robot for bridge inspection
AT518692B1 (en) Method and system for maintaining a track for rail vehicles
EP2638358B1 (en) Device for measuring and marking of points along horizontal contour lines
DE112005003494T5 (en) Method and device for controlling a machine element
EP1862593B2 (en) GPS aided continuous route survey system with multi sensors
EP4244117A1 (en) Method and mobile measuring system for measuring an infrastructure component, in particular a track structure component
DE102004007830A1 (en) Localization and marking method for faults on car bodies in which fault locations are determined by comparing electronically stored construction data with images recorded using an optical recording arrangement
EP3835485B1 (en) Measuring system for a construction machine
EP2444361A2 (en) Bridge bottom view device
EP3781906B1 (en) Method and device for determining a highly precise position of a vehicle
DE102018220159B4 (en) Method and system for providing transformation parameters
DE102016207181B4 (en) Method and system for determining a position of a vehicle on a roadway
WO2019091513A1 (en) Calibration of a stationary camera system for detecting the position of a mobile robot
WO2024022864A1 (en) Method and system for measuring the position of a reference object, in particular of a fixed point, for measuring a structural track element, and measuring assembly
EP2017574A2 (en) Method for geodesic monitoring of rails
DE102008032786A1 (en) Device for determining position of vehicle, is mobile along course in direction of motion, and has optical position mark reader for line-wise scanning from position marks
EP4402087A1 (en) Crane
EP2584418A1 (en) Method and device for locating a grasping point of an object in an assembly
DE19918215C2 (en) Method for measuring radial deformations of a tunnel construction and device for carrying out the method
WO2017207364A1 (en) Device for measuring objects
DE102021208976A1 (en) Method and system for controlling a work machine
EP4074920A1 (en) Method and system for producing a concrete component or construction section according to planning data and use
WO2019206625A1 (en) Locating system and method for determining a current position in a lift shaft of a lift system
DE102020205552A1 (en) Dynamic route planning of a drone-based review of route facilities on a route
DE10132309B4 (en) Visual inspection procedure and control system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)