EP4237803A1 - Measuring device for metering fluids, and method for metering by means of a measuring device of this type - Google Patents

Measuring device for metering fluids, and method for metering by means of a measuring device of this type

Info

Publication number
EP4237803A1
EP4237803A1 EP21830586.0A EP21830586A EP4237803A1 EP 4237803 A1 EP4237803 A1 EP 4237803A1 EP 21830586 A EP21830586 A EP 21830586A EP 4237803 A1 EP4237803 A1 EP 4237803A1
Authority
EP
European Patent Office
Prior art keywords
dosing
line
measuring device
fluid
unit housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21830586.0A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Sailer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP4237803A1 publication Critical patent/EP4237803A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/12Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/003Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/90Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with positive-displacement meter or turbine meter to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/04Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
    • G01F3/06Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
    • G01F3/10Geared or lobed impeller meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0688Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by combined action on throttling means and flow sources

Definitions

  • the invention relates to a measuring device for dosing fluids with a container in which the fluid is stored, a fluid inlet which is fluidly connected to the container, a fluid outlet which is fluidly connected to a dosing point, a dosing line via which the fluid inlet is connected to the fluid outlet, and in which a feed pump, a density sensor and a flow meter are arranged, and with a return line, which branches off from the dosing line downstream of the flow meter and opens into the container, and a method for dosing with such a measuring device.
  • Such measuring devices are used, for example, for oil consumption measurements on test benches for internal combustion engines, with the consumption measurements being able to be carried out both on engines from the automotive sector and on large engines.
  • the challenge with these measuring devices is that it must be possible to measure small amounts of oil of around 10g to be replenished with an accuracy of around 1g and, on the other hand, to be able to fill a complete oil pan with a measurement uncertainty of 1%, as is the case, for example is necessary for a test stand preparation or an oil pan calibration procedure.
  • the required accuracies must also be observed when vibrations occur.
  • a device for measuring fluid consumption is known from EP 1 729 100 A1.
  • This includes a continuously operating flow sensor, a pressure regulator and a winningpump pe, which are arranged in a metering line, and a return line for returning the fluid to the container and a conditioning device that at least one heat exchanger, which is used to generate an average temperature of the fluid and to stabilize the energy in the measuring circuit.
  • the outlay on equipment is relatively high, so that a large amount of space is required. This is undesirable above all because this device must be arranged in the immediate vicinity of the engine in order to avoid measurement errors due to temperature gradients between the flow sensor and the internal combustion engine, since otherwise metering errors are caused due to the thermal expansion of the fluid in the metering line.
  • the task is therefore to create a measuring device for dosing fluids and a corresponding method with which both small quantities of fluid that are redosed and large quantities with high throughputs can be measured with a high level of accuracy.
  • the space requirement in the vicinity of the dosing point m should be minimized.
  • it is desirable that the measurement accuracy is maintained even during longer pauses or changes in the ambient temperature. The manufacturing costs should nevertheless be reduced.
  • the measuring device has a container in which the fluid, such as oil, is stored.
  • a fluid inlet is connected to the container, while a fluid outlet can be fluidically connected to a dosing point, which can be a consumer, such as an internal combustion engine, but can also be an oil pan.
  • a dosing line is located between the fluid inlet and the fluid outlet, in which a feed pump, a density sensor and a flow meter are arranged are.
  • a return line branches off the metering line downstream of the flow meter and empties into the reservoir so that the fluid can be recirculated between measurements.
  • the flow meter is arranged in a measuring unit housing.
  • the pump unit housing is detachably connected to the measuring unit housing via a connecting section of the metering line, so that the fluid can flow from the pump unit housing into the measuring unit housing via this connecting section.
  • the container which can take up a lot of space depending on the measurement to be made, and the pump unit housing can be arranged accordingly in another room or at any position at a distance from the measuring unit housing.
  • Coriolis meters can be used as flow meters, but because of their small cross-sections they produce a greater pressure loss and are therefore usually replaced by volumetric displacement meters in the case of highly viscous fluids, where the temperature and density must be measured to convert them into a mass flow.
  • the object is also achieved by a method in which, before dosing, the fluid is circulated via the return line, with the fluid being removed in the lower area of the container and returned in the upper area of the container.
  • This flushing process equalizes the temperature over the entire circuit. This means that changes in temperature of the fluid over time are significantly reduced during the measurement, which also means that the Density changes otherwise resulting from this are eliminated and/or at least slowed down and minimized, which could lead to measurement errors. Temperature changes during the following measurements only occur very sluggishly.
  • the density sensor is preferably arranged in the pump unit housing downstream of the feed pump in the metering line. This serves in particular to convert a volume flow into a mass flow.
  • the density meter is arranged in the pump unit housing, the base density measured by the density meter is converted into the actual medium density at the flow meter using a known thermal expansion coefficient that is dependent on the fluid, for which the temperature prevailing there must be known.
  • a filter is arranged in the feed pump housing upstream of the feed pump in the metering line, which filter serves to filter out dirt from the fluid and which prevents damage to the density sensor, the flow meter or the feed pump.
  • a non-return valve is arranged in the measuring unit housing upstream of the flow meter in the dosing line, which prevents the fluid from flowing back through the flow meter, which can lead to measurement errors.
  • a temperature sensor is arranged in the measuring unit housing directly downstream of the flow meter in the dosing line.
  • the temperature sensor is used to calculate the correct density of the fluid when converting a volume flow into a mass flow.
  • a choke is also placed downstream of the flow meter and protects it from damage or malfunction due to excessive flow applied pressure differences, which are limited to permissible values by the throttle.
  • a shut-off valve is also arranged in front of the fluid outlet, and the line between the fluid outlet and the shut-off valve should be as short as possible.
  • the shut-off valve is closed when there is flow through the return line and between measurements in order to be able to separate the measuring unit from the dosing point.
  • a fluid return valve should be arranged in the return line in order to be able to shut off the return line during the measurements.
  • a differential pressure sensor which measures a differential pressure across the flow meter, is preferably arranged on the dosing line in the measuring unit housing.
  • the differential pressure sensor ensures that the pressure loss in the flow meter does not become too great.
  • the throttle can be readjusted accordingly if the pressure differential is too high.
  • the differential pressure sensor can be used to also record the respective differential pressures on the flow meter, which depend on the viscosity of the measurement medium, when calibrating the flow meter with different flow rates. If this calibration is repeated with several media of different viscosity, then (particularly when using a volumetric displacement meter) the measurement accuracy can subsequently be improved during a measurement process by including this calibration data in the event of any changes in the viscosity of the measurement medium.
  • the density sensor in the pump unit housing can advantageously be bypassed via a shut-off device.
  • a density sensor occurring undesirably high pressure loss which can occur especially when measuring highly viscous fluids, can be eliminated from the measuring circuit.
  • the delivery pump can be bypassed via a proportional valve, since in this way the delivery flow in the metering line can be adjusted by changing the flow resistance in this bypass line. This is necessary above all in order to reduce the volume flow before the end of a batch dosing and thus to be able to set an exact dosing quantity.
  • the delivery pump can be bypassed via a safety valve. This serves to protect the downstream components and hose lines from excessive pressure.
  • the return line preferably branches off geodetically upwards from the metering line downstream of the flow meter. Air bubbles that are between the flow meter and the branch of the return line at the start of dosing are thus discharged upwards in the direction of the return line due to the lower density instead of being conveyed in the direction of the dosing point, where they would lead to large measurement errors. During the following flushing processes, these air bubbles are reliably discharged to the container.
  • the dosing line extends behind the flow meter in a descending direction, so that air bubbles are also discharged from this area of the dosing line into the return line and erroneous measurements are avoided.
  • the dosing line extends upwards from the fluid outlet, in which case it extends upwards Section of the metering line, the shut-off valve and the throttle are arranged. In this way, air bubbles can be reliably discharged from the entire area between the junction of the return line and the fluid outlet.
  • the dosing line extends steadily increasing from the fluid outlet into the return line to the fluid return valve. This constant training ensures that any air bubbles that are present actually get into the return line and can thus be removed from the system during the flushing process.
  • the continuously rising section of the dosing line is made of a material with a thermal conductivity coefficient of more than 30W/mK and is thermally insulated. Due to this good heat conduction on the dosing line and the simultaneous insulation to the outside, the heat of the fluid in the system during a flushing process is also transferred to the area that is not flushed through, in which the throttle and the shut-off valve are arranged. In this way, temperature differences between this section of the dosing line and the rest of the dosing line, which could lead to measurement errors, can be eliminated or at least significantly reduced.
  • the flow meter is a Coriolis flow meter or a volumetric displacement meter.
  • a mass flow can be determined directly and without additional calculation steps. However, this causes increased pressure losses due to narrow line cross-sections, especially with high viscosities of the measuring fluid.
  • a rotary displacement meter is used, the measured volume flow of which can also be converted into a mass flow via the density and also provides precise measured values.
  • the throttle is advantageously designed as a sleeve introduced into the metering line to narrow the cross section.
  • the sleeve has the throttling function to reduce the pressure difference across the flow meter and to reduce the flow cross section, which means that the temperature in the area of the throttle is quickly adjusted to the temperature of the flushed line section of the metering line he follows.
  • the fluid return valve is opened before metering and the shut-off valve in the metering line in the measuring unit housing is closed.
  • the fluid is then conveyed in a circuit by the feed pump until the temperature of the fluid at the temperature sensor is approximately constant. This means that the entire system adapts to an average temperature of the fluid due to the circulating fluid.
  • the feed pump is then switched off and the fluid return valve is closed.
  • the shut-off valve is opened for dosing and measuring the mass flow, so that the feed pump delivers the fluid to the dosing point, while the mass flow is measured via the flow meter.
  • a measuring device for dosing fluids and a method for dosing fluids with such a measuring device are thus created, with which errors caused by temperature differences in the system are significantly reduced by temperature compensation in the system. Nevertheless, it is possible to place the measuring unit close to the dosing point with little space requirement, while the container with the fluid and the pump unit can be set up at a greater distance. In this way, the space requirement on the test stand is minimized and measurement errors due to temperature differences between the measuring point and the dosing point avoided. Measurement errors caused by dosing lines leading to a dosing point with fluid in them are excluded. In this way, very precise measured values can be achieved with a simple and inexpensive structure.
  • the figure shows a flow diagram of a measuring device according to the invention.
  • the measuring device has a container 10 in which the fluid to be metered is stored.
  • a container 10 in which the fluid to be metered is stored.
  • This can be, for example, an oil pan that provides oil to a dosing point 11, such as a large internal combustion engine on a test stand, with the oil consumption being measured.
  • a fluid inlet 12 into a metering line 13 .
  • This section of the metering line 13 is designed as a hose line and is connected via a hose coupling 14 to a pump unit housing 16 in which the metering line 13 continues.
  • a filter 18 is arranged in the metering line 13, through which solids are separated from the fluid flow.
  • This metering line leads further to a winningpum pe 20, through which the fluid is conveyed from the container 10 and through the metering line 13.
  • the feed pump 20 can be bypassed either via a proportional valve 22 or a safety valve 24 .
  • the safety valve 24 protects the lines, components and couplings of the measuring device from closing high pressures by the safety valve 24 opens when the pressure is too high, causing the pump pressure of the randomlypum pe 20 falls.
  • a density sensor 26 is also arranged in the metering line 13 in the pump unit housing 16 and is used to measure the density of the fluid in order to convert a volume flow into a mass flow. This density depends on the temperature, so that the density measured by the density sensor 26 must be converted to an actual density in the area of a volume flow measurement, depending on the temperature present there.
  • a bypass line 30 bypassing the density sensor 26 is provided, in which a shut-off device 28 is arranged so that the Bypass line 30 can be opened or closed, with opening of the bypass line 30, the flow in the metering line 13 and the metering point 1 1 is increased.
  • the feed pump 20 with the filter 18 and the density sensor 26 and the valves 22, 24, 28 and bypass lines 25, 30 described form a pump unit 32 in the present embodiment, which is arranged in the pump unit housing 16.
  • the dosing line 13 Downstream of the density sensor 26 m, the dosing line 13 first ends at a further hose coupling 14 provided on the pump unit housing 16.
  • a connecting section 33 of the dosing line 13 is attached to this according to the invention, with any other coupling also being possible within the meaning of the invention.
  • This connecting section leads to a further hose coupling 14, which is fixed to a measuring unit housing 34, so that the pump unit housing 16 and the measuring unit housing 34 can be arranged at any desired distance from one another.
  • the dosing line 13 continues accordingly in the measuring unit housing.
  • a non-return valve 36 is arranged upstream of a flow meter 38, which prevents fluid from flowing in the reverse direction through the flow meter 38.
  • this can be designed as a Coriolis flow meter or a volumetric displacement meter such as a gear, oval wheel or screw spindle meter.
  • a differential pressure sensor 40 can be arranged in a pressure line 41 surrounding the flow meter 38, via which the pressure drop across the flow meter 38 can be determined accordingly defined value must not be exceeded.
  • an adjustable throttle 44 is arranged downstream of the flow meter 38 in the measuring unit housing 34 in the dosing line 13, via which the pressure drop across the flow meter 38 can be adjusted depending on the measured values of the differential pressure sensor 40.
  • Temperature sensor 42 is arranged via which the fluid temperature is measured which is used both to assess whether there is an approximately uniform temperature distribution in the entire measuring device and to be able to correct the density to calculate a mass flow.
  • a shut-off valve 46 is also arranged in the metering line 13 downstream of the throttle 44 in front of a fluid outlet 48 via which the connection to the metering point is established.
  • the shut-off valve 46 serves to be able to separate the measuring device from the dosing point 11 fluidically.
  • a return line 50 branches off from the dosing line 13 between the flow meter 38 and the throttle 44, in which a fluid return valve 52 is arranged, which is designed as a switching valve so that the return line 50 can be released or closed.
  • the return line 50 leads via a connecting section 54 between the measuring unit housing 34 and the pump unit housing 16 into the pump unit housing and ends downstream of the pump unit housing in an upper region of the container 10.
  • the connection of the individual line sections inside and outside of the pump unit housing 16 and the measuring unit housing 34 takes place again via hose couplings 14, with any other connections of the power sections being conceivable here as well.
  • the flow meter 38 with its pressure line 41, the check valve 36, the throttle 44, the shut-off valve 46, the fluid return valve 52 and the temperature sensor 42 form a measuring unit 56 which is arranged in the common measuring unit housing 34 and which requires little installation space and can be arranged in the immediate vicinity of the dosing point 11.
  • a downstream section 49 of the dosing line 13 extends continuously upwards from the fluid outlet 48 via the shut-off valve 46 and via the throttle 44 to the return line 50 in the measuring unit housing 34 . This section 49 should also be placed as close to the flow meter 38 as possible.
  • a rinsing process is carried out before each metering.
  • the shut-off valve 46 is closed and the fluid return valve 52 is opened.
  • the fluid is then circulated out of the container via the metering line 13 and the return line 50 and fed back into the container 10 via the pump unit 32 and the measuring unit 56, whereby the gas bubbles are initially removed from the section of the return line 50 upstream of the fluid return valve 52 into the container 10 and can thus no longer falsify measurements.
  • this promotion has the consequence that a temperature equalization takes place between the various sections of the metering line 13, the container 10 and the return line 50, since the supply in the upper area of the container 10 and the discharge from the lower area of the container 10 and the uniform flow through all line sections sets an average temperature which is independent of the distance from the container 10 to the pump unit 32 and the pump unit 32 to the measuring unit 56 and which can be measured by the temperature sensor 42, so that dosing, if desired, only begins when the temperature differences move within a specified interval over a defined period of time. As soon as this is the case, the feed pump PE 20 is first issued, and the fluid return valve 52 is closed.
  • the delivery pump 20 is switched on again and the shut-off valve 46 is opened, so that the fluid is now delivered from the container 10 via the delivery pump 20 and the flow meter 38 to the fluid outlet and thus to the metering point. This also ensures that the entire mass flow takes place exclusively via the metering line 13 .
  • the flow meter 38 measures the mass flow or volume flow that is conducted via it and thus supplied to the dosing point 11, which can be converted into a mass flow using the determined density.
  • the temperature of the fluid remains largely constant, so that very precise measurement results can be achieved. Errors caused by a distance and any associated temperature difference between the flow meter 38 and the dosing point 11 are also avoided, since the measuring unit 56 can be arranged in the immediate vicinity of the dosing point 11 without requiring more space than the pump unit 32 and the container 10 can be arranged at a distance of several meters from the measuring unit 56, since the measuring device is divided into different units which are only connected to one another by detachable lines. With such a measuring device, both large and small dosing quantities can be determined very precisely. The measuring accuracy is maintained even with longer pause times or changed ambient temperatures. Nevertheless, this structure is very inexpensive, since few components are required. For example, heat exchangers for establishing temperature equilibrium can be dispensed with.
  • the density sensor can also be arranged at any position or in an additional bypass line.
  • the return line can also be routed outside the pump unit housing, so that the container can be connected directly to the measuring unit.
  • a narrowing of the cross-section can be used by inserting a sleeve to reduce the pressure difference at the flow meter.
  • a throttle can also be dispensed with if necessary, particularly in the case of volumetric displacement meters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The invention relates to measuring devices for metering fluids, comprising: a container (10) in which the fluid is stored; a fluid inlet (12) that is fluidically connected to the container (10); a fluid outlet (48) that can be fluidically connected to a metering point (11); a metering line (13), via which the fluid inlet (12) is connected to the fluid outlet (48), and in which a delivery pump (20), a density sensor (26) and a flowmeter (38) are situated; and comprising a return line (50) which branches from the metering line (13) downstream of the flowmeter (38) and opens into the container (10). In order both to obtain precise measurement results and to minimise the space requirement at the metering point (11) while requiring simple equipment, according to the invention the flowmeter (38) is situated in a measuring-unit housing (34) which is spaced apart from a pump-unit housing (16) in which at least the delivery pump (20) is situated, wherein the pump-unit housing (16) and the measuring-unit housing (34) are detachably interconnected via a connection portion (33) of the metering line (13).

Description

Messvorrichtung zur Dosierung von Fluiden sow ie Verfahren zur Dosierung m it einer derartigen Messvorrichtung Measuring device for dosing fluids and method for dosing with such a measuring device
Die Erfindung betrifft eine Messvorrichtung zur Dosierung von Fluiden m it einem Behälter, in dem das Fluid gespeichert ist, einem Fluideinlass, der fluidisch m it dem Behälter verbunden ist, einem Fluidauslass, der fluidisch m it einer Dosierstelle verbindbar ist, einer Dosierleitung, über die der Fluideinlass m it dem Fluidauslass verbunden ist, und in der eine Förderpumpe, ein Dichtesensor und ein Durchflussmesser angeordnet sind, und m it einer Rückführleitung, die stromabwärts des Durchflussmessers von der Dosierleitung abzweigt und in den Behälter m ündet sowie ein Verfahren zur Dosierung m it einer derartigen Messvorrichtung. The invention relates to a measuring device for dosing fluids with a container in which the fluid is stored, a fluid inlet which is fluidly connected to the container, a fluid outlet which is fluidly connected to a dosing point, a dosing line via which the fluid inlet is connected to the fluid outlet, and in which a feed pump, a density sensor and a flow meter are arranged, and with a return line, which branches off from the dosing line downstream of the flow meter and opens into the container, and a method for dosing with such a measuring device.
Derartige Messvorrichtungen werden beispielsweise für Ölverbrauchsmessungen an Testständen von Verbrennungsmotoren verwendet, wobei die Verbrauchsmessungen sowohl an Motoren aus dem Automobilbereich als auch an Großmotoren vorgenom men werden können. Die Herausforderung bei diesen Messvorrichtungen besteht darin, dass sowohl kleine nachzudosierende Ölmengen von etwa 10g m it einer Genauigkeit von etwa 1 g gemessen werden können müssen und andererseits auch die Füllung einer kompletten Ölwanne mit einer Messunsicherheit von 1 % vorgenommen werden können soll, wie dies beispielsweise bei einer Prüfstandsvorbereitung oder einer Ölwannenkalibrierprozedur notwendig ist. Die geforderten Genauigkeiten sind auch bei auftretenden Vibrationen einzuhalten. Such measuring devices are used, for example, for oil consumption measurements on test benches for internal combustion engines, with the consumption measurements being able to be carried out both on engines from the automotive sector and on large engines. The challenge with these measuring devices is that it must be possible to measure small amounts of oil of around 10g to be replenished with an accuracy of around 1g and, on the other hand, to be able to fill a complete oil pan with a measurement uncertainty of 1%, as is the case, for example is necessary for a test stand preparation or an oil pan calibration procedure. The required accuracies must also be observed when vibrations occur.
Eine Vorrichtung zur Messung des Fluidverbrauchs ist aus der EP 1 729 100 A1 bekannt. Diese umfasst einen kontinuierlich arbeitenden Durchflusssensor, einen Druckregler und eine Förderpum pe, die in einer Dosierleitung angeordnet sind, und eine Rückführleitung zur Rückführung des Fluids in den Behälter sowie eine Konditioniereinrichtung, die zum indest einen Wärmetauscher aufweist, der zur Erzeugung einer m ittleren Tem peratur des Fluids und einer Stabilisierung der Energie im Messkreis dient. Der apparative Aufwand ist jedoch relativ hoch, so dass ein großer Platzbedarf besteht. Dies ist vor allem unerwünscht, weil diese Vorrichtung zur Vermeidung von Messfehlern durch Temperaturgradienten zwischen dem Durchflusssensor und dem Verbrennungsmotor in unm ittelbarer Nähe zum Motor angeordnet werden muss, da andernfalls aufgrund der therm ischen Expansion des in der Dosierleitung befindlichen Fluids Dosierfehler verursacht werden. Diese entstehen vor allem bei unterschiedlichen Umgebungstem peraturen an der Messvorrichtung beziehungsweise am Behälter, insbesondere am Öltank und an der Dosierstelle beziehungsweise am Verbraucher. A device for measuring fluid consumption is known from EP 1 729 100 A1. This includes a continuously operating flow sensor, a pressure regulator and a Förderpump pe, which are arranged in a metering line, and a return line for returning the fluid to the container and a conditioning device that at least one heat exchanger, which is used to generate an average temperature of the fluid and to stabilize the energy in the measuring circuit. However, the outlay on equipment is relatively high, so that a large amount of space is required. This is undesirable above all because this device must be arranged in the immediate vicinity of the engine in order to avoid measurement errors due to temperature gradients between the flow sensor and the internal combustion engine, since otherwise metering errors are caused due to the thermal expansion of the fluid in the metering line. These arise above all at different ambient temperatures on the measuring device or on the container, in particular on the oil tank and at the dosing point or at the consumer.
Es stellt sich daher die Aufgabe, eine Messvorrichtung zur Dosierung von Fluiden sowie ein entsprechendes Verfahren zu schaffen, m it denen sowohl kleine nachdosierte Fluidmengen als auch große Mengen m it hohen Durchsätzen m it einer hohen Genauigkeit gemessen werden können. Dabei soll der Platzbedarf in der Nähe der Dosierstelle m inimiert werden. Des Weiteren ist es wünschenswert, dass die Messgenauigkeit auch bei längeren Pausen oder Änderungen der Umgebungstem peratur erhalten bleibt. Die Herstellkosten sollen dennoch reduziert werden. The task is therefore to create a measuring device for dosing fluids and a corresponding method with which both small quantities of fluid that are redosed and large quantities with high throughputs can be measured with a high level of accuracy. The space requirement in the vicinity of the dosing point m should be minimized. Furthermore, it is desirable that the measurement accuracy is maintained even during longer pauses or changes in the ambient temperature. The manufacturing costs should nevertheless be reduced.
Diese Aufgabe wird durch eine Messvorrichtung zur Dosierung von Fluiden m it den Merkmalen des Hauptanspruchs 1 gelöst. This problem is solved by a measuring device for dosing fluids with the features of main claim 1 .
Die Messvorrichtung weist einen Behälter auf, in dem das Fluid, wie beispielsweise Öl gespeichert ist. Ein Fluideinlass ist m it dem Behälter verbunden, während ein Fluidauslass fluidisch mit einer Dosierstelle, welche ein Verbraucher, wie ein Verbrennungsmotor sein kann aber auch eine Ölwanne sein kann, verbindbar ist. Zwischen dem Fluideinlass und dem Fluidauslass befindet sich eine Dosierleitung, in der eine Förderpumpe, ein Dichtensensor und ein Durchflussmesser angeordnet sind. Eine Rückführleitung zweigt von der Dosierleitung stromabwärts des Durchflussmessers ab und m ündet in den Behälter, so dass das Fluid zwischen den Messungen im Kreis geführt werden kann. Erfindungsgemäß ist der Durchflussmesser in einem Messeinheitsgehäuse angeordnet. The measuring device has a container in which the fluid, such as oil, is stored. A fluid inlet is connected to the container, while a fluid outlet can be fluidically connected to a dosing point, which can be a consumer, such as an internal combustion engine, but can also be an oil pan. A dosing line is located between the fluid inlet and the fluid outlet, in which a feed pump, a density sensor and a flow meter are arranged are. A return line branches off the metering line downstream of the flow meter and empties into the reservoir so that the fluid can be recirculated between measurements. According to the invention, the flow meter is arranged in a measuring unit housing.
Dieses ist mit einem Abstand, der mehrere Meter betragen kann, zu einem Pum peneinheitsgehäuse angeordnet, in welchem zumindest die Förderpumpe angeordnet ist. Das Pumpeneinheitsgehäuse ist mit dem Messeinheitsgehäuse über einen Verbindungsabschnitt der Dosierleitung lösbar m iteinander verbunden, so dass über diesen Verbindungsabschnitt das Fluid vom Pum peneinheitsgehäuse in das Messeinheitsgehäuse strömen kann. So wird es möglich, den Platzbedarf an der Dosierstelle zu m inimieren und dennoch sicherzustellen, dass der gemessene Massenstrom dem tatsächlich zur Dosierstelle zugeführten Massenstrom entspricht, da durch die nahe Anordnung gleiche Temperaturen und somit gleiche Dichten des Fluids vorausgesetzt werden können. Der Behälter, der je nach vorzunehmender Messung einen großen Platzbedarf aufweisen kann und das Pum peneinheitsgehäuse können entsprechend in einem anderen Raum oder an einer beliebigen Position im Abstand vom Messeinheitsgehäuse angeordnet werden. Als Durchflussmesser können Coriolismesser genutzt werden, die jedoch wegen ihrer geringen Querschnitte einen größeren Druckverlust erzeugen und so bei hochviskosen Fluiden zumeist durch Volumenverdrängungszähler ersetzt werden, bei deren Verwendung die Tem peratur und die Dichte zur Umrechnung in einen Massenstrom gemessen werden m üssen. This is arranged at a distance, which can be several meters, from a pump unit housing, in which at least the feed pump is arranged. The pump unit housing is detachably connected to the measuring unit housing via a connecting section of the metering line, so that the fluid can flow from the pump unit housing into the measuring unit housing via this connecting section. This makes it possible to minimize the space required at the dosing point and still ensure that the measured mass flow corresponds to the mass flow actually supplied to the dosing point, since the same temperatures and thus the same densities of the fluid can be assumed due to the close arrangement. The container, which can take up a lot of space depending on the measurement to be made, and the pump unit housing can be arranged accordingly in another room or at any position at a distance from the measuring unit housing. Coriolis meters can be used as flow meters, but because of their small cross-sections they produce a greater pressure loss and are therefore usually replaced by volumetric displacement meters in the case of highly viscous fluids, where the temperature and density must be measured to convert them into a mass flow.
Die Aufgabe wird auch durch ein Verfahren gelöst, bei dem vor der Dosierung das Fluid über die Rückführleitung im Kreis geführt wird, wobei das Fluid im unteren Bereich des Behälters entnom men wird und im oberen Bereich des Behälters zurückgeführt wird. Durch diesen Spülvorgang erfolgt ein Tem peraturausgleich über den gesamten Kreislauf. Dies führt dazu, dass zeitliche Tem peraturänderungen des Fluids während der Messung deutlich verringert werden, wodurch auch die daraus sonst folgenden Dichteänderungen entfallen und/oder zum indest verlangsamt und m inim iert werden, die zu Messfehlern führen könnten. Temperaturänderungen während der folgenden Messungen treten so lediglich sehr träge auf. The object is also achieved by a method in which, before dosing, the fluid is circulated via the return line, with the fluid being removed in the lower area of the container and returned in the upper area of the container. This flushing process equalizes the temperature over the entire circuit. This means that changes in temperature of the fluid over time are significantly reduced during the measurement, which also means that the Density changes otherwise resulting from this are eliminated and/or at least slowed down and minimized, which could lead to measurement errors. Temperature changes during the following measurements only occur very sluggishly.
Vorzugsweise ist im Pumpeneinheitsgehäuse stromabwärts der Förderpumpe in der Dosierleitung der Dichtesensor angeordnet. Dieser dient insbesondere zur Um rechnung eines Volumenstroms in einen Massenstrom . Bei Anordnung des Dichtemessers im Pum peneinheitsgehäuse erfolgt eine Umrechnung der vom Dichtemesser gemessenen Basisdichte in die tatsächliche Mediendichte am Durchflussmesser mittels eines bekannten vom Fluid abhängigen thermischen Ausdehnungskoeffizienten, wozu die dort herrschende Temperatur bekannt sein m uss. The density sensor is preferably arranged in the pump unit housing downstream of the feed pump in the metering line. This serves in particular to convert a volume flow into a mass flow. When the density meter is arranged in the pump unit housing, the base density measured by the density meter is converted into the actual medium density at the flow meter using a known thermal expansion coefficient that is dependent on the fluid, for which the temperature prevailing there must be known.
Des Weiteren ist es vorteilhaft, wenn im Förderpumpengehäuse stromaufwärts der Förderpum pe in der Dosierleitung ein Filter angeordnet ist, der dazu dient, Schm utzstoffe aus dem Fluid auszufiltern, und durch die Schäden am Dichtesensor, am Durchflussmesser oder an der Förderpumpe verm ieden werden. Furthermore, it is advantageous if a filter is arranged in the feed pump housing upstream of the feed pump in the metering line, which filter serves to filter out dirt from the fluid and which prevents damage to the density sensor, the flow meter or the feed pump.
I n einer bevorzugten Ausführungsform ist im Messeinheitsgehäuse stromaufwärts des Durchflussmessers in der Dosierleitung ein Rückschlagventil angeordnet, durch das ein Rückströmen des Fluids durch den Durchflussmesser, was zu Messfehlern führen kann, verhindert wird. In a preferred embodiment, a non-return valve is arranged in the measuring unit housing upstream of the flow meter in the dosing line, which prevents the fluid from flowing back through the flow meter, which can lead to measurement errors.
Des Weiteren ist im Messeinheitsgehäuse unmittelbar stromabwärts des Durchflussmessers in der Dosierleitung ein Tem peratursensor angeordnet. Der Tem peratursensor dient zur Berechnung der korrekten Dichte des Fluids bei der Um rechnung eines Volumenstroms in einen Massenstrom . Eine Drossel ist ebenfalls stromabwärts des Durchflussmessers angeordnet und schützt diesen vor Schäden oder Funktionsstörungen durch zu hohe anliegende Druckdifferenzen, die durch die Drossel auf zulässige Werte begrenzt werden. Furthermore, a temperature sensor is arranged in the measuring unit housing directly downstream of the flow meter in the dosing line. The temperature sensor is used to calculate the correct density of the fluid when converting a volume flow into a mass flow. A choke is also placed downstream of the flow meter and protects it from damage or malfunction due to excessive flow applied pressure differences, which are limited to permissible values by the throttle.
Ein Absperrventil wird zusätzlich vor dem Fluidauslass angeordnet, wobei die Leitung zwischen dem Fluidauslass und dem Absperrventil möglichst kurz ausgeführt werden sollte. Das Absperrventil wird bei Durchströmung der Rückführleitung und zwischen den Messungen geschlossen, um die Messeinheit von der Dosierstelle trennen zu können. A shut-off valve is also arranged in front of the fluid outlet, and the line between the fluid outlet and the shut-off valve should be as short as possible. The shut-off valve is closed when there is flow through the return line and between measurements in order to be able to separate the measuring unit from the dosing point.
Des Weiteren sollte in der Rückführleitung ein Fluidrückführventil angeordnet werden, um die Rückführleitung während der Messungen absperren zu können. Furthermore, a fluid return valve should be arranged in the return line in order to be able to shut off the return line during the measurements.
An der Dosierleitung im Messeinheitsgehäuse ist vorzugsweise ein Differenzdrucksensor angeordnet, der einen Differenzdruck über den Durchflussmesser misst. Mittels des Differenzdrucksensors wird sichergestellt, dass der Druckverlust im Durchflussmesser nicht zu groß wird. I n Abhängigkeit der Daten des Differenzdrucksensors kann bei zu hohen Druckdifferenzen die Drossel entsprechend nachgeregelt werden. Des Weiteren kann der Differenzdrucksensor dafür verwendet werden, bei der Kalibrierung des Durchflussmessers mit verschiedenen Durchflussraten auch die jeweiligen Differenzdrücke am Durchflussmesser aufzunehmen, welche von der Viskosität des Messmediums abhängig sind. Wird diese Kalibrierung mit mehreren Medien unterschiedlicher Viskosität wiederholt, so kann (insbesondere bei Verwendung eines Volumenverdrängerzählers) in weiterer Folge während eines Messvorgangs durch Einbezug dieser Kalibrierdaten die Messgenauigkeit bei etwaigen Viskositätsänderungen des Messmediums verbessert werden. A differential pressure sensor, which measures a differential pressure across the flow meter, is preferably arranged on the dosing line in the measuring unit housing. The differential pressure sensor ensures that the pressure loss in the flow meter does not become too great. Depending on the data from the differential pressure sensor, the throttle can be readjusted accordingly if the pressure differential is too high. Furthermore, the differential pressure sensor can be used to also record the respective differential pressures on the flow meter, which depend on the viscosity of the measurement medium, when calibrating the flow meter with different flow rates. If this calibration is repeated with several media of different viscosity, then (particularly when using a volumetric displacement meter) the measurement accuracy can subsequently be improved during a measurement process by including this calibration data in the event of any changes in the viscosity of the measurement medium.
Der Dichtesensor im Pum peneinheitsgehäuse ist vorteilhaft über ein Absperrorgan umgehbar. So kann ein am Dichtesensor auftretender unerwünscht hoher Druckverlust, der vor allem bei der Messung hochviskoser Fluide auftreten kann, aus dem Messkreis elim iniert werden. The density sensor in the pump unit housing can advantageously be bypassed via a shut-off device. Thus, a density sensor occurring undesirably high pressure loss, which can occur especially when measuring highly viscous fluids, can be eliminated from the measuring circuit.
Auch kann es vorteilhaft sein, wenn die Förderpum pe über ein Proportionalventil umgehbar ist, da auf diese Weise der Förderstrom in der Dosierleitung durch Änderung des Ström ungswiderstandes in dieser Bypassleitung eingestellt werden kann. Dies ist vor allem erforderlich, um den Volumenstrom vor dem Ende einer Chargendosierung zu verringern und so eine exakte Dosiermenge einstellen zu können. It can also be advantageous if the delivery pump can be bypassed via a proportional valve, since in this way the delivery flow in the metering line can be adjusted by changing the flow resistance in this bypass line. This is necessary above all in order to reduce the volume flow before the end of a batch dosing and thus to be able to set an exact dosing quantity.
Des Weiteren ist es nützlich, wenn die Förderpum pe über ein Sicherheitsventil umgehbar ist. Dieses dient dem Schutz der nachfolgenden Kom ponenten und Schlauchleitungen vor zu hohen Drücken. It is also useful if the delivery pump can be bypassed via a safety valve. This serves to protect the downstream components and hose lines from excessive pressure.
Vorzugsweise zweigt die Rückführleitung stromabwärts des Durchflussmessers geodätisch von der Dosierleitung nach oben ab. Luftblasen, welche sich beim Start der Dosierung zwischen dem Durchflussmesser und der Abzweigung der Rückführleitung befinden, werden so durch die geringere Dichte nach oben in Richtung der Rückführleitung abgeführt anstatt in Richtung der Dosierstelle gefördert zu werden, wo sie zu großen Messfehlern führen würden. Bei folgenden Spülvorgängen werden diese Luftblasen zuverlässig zum Behälter hin abgeführt. The return line preferably branches off geodetically upwards from the metering line downstream of the flow meter. Air bubbles that are between the flow meter and the branch of the return line at the start of dosing are thus discharged upwards in the direction of the return line due to the lower density instead of being conveyed in the direction of the dosing point, where they would lead to large measurement errors. During the following flushing processes, these air bubbles are reliably discharged to the container.
I n einer weiterführenden bevorzugten Ausführungsform erstreckt sich die Dosierleitung hinter dem Durchflussmesser in absteigender Richtung, so dass auch Luftblasen aus diesem Bereich der Dosierleitung in die Rückführleitung abgeführt werden und Fehlmessungen verm ieden werden. In a further preferred embodiment, the dosing line extends behind the flow meter in a descending direction, so that air bubbles are also discharged from this area of the dosing line into the return line and erroneous measurements are avoided.
Besonders bevorzugt ist es, wenn die Dosierleitung sich aufsteigend vom Fluidauslass erstreckt, wobei in dem sich aufsteigend erstreckenden Abschnitt der Dosierleitung das Absperrventil und die Drossel angeordnet sind. So können Luftblasen aus dem gesamten Bereich zwischen der Abzweigung der Rückführleitung und dem Fluidauslass zuverlässig abgeführt werden. It is particularly preferred if the dosing line extends upwards from the fluid outlet, in which case it extends upwards Section of the metering line, the shut-off valve and the throttle are arranged. In this way, air bubbles can be reliably discharged from the entire area between the junction of the return line and the fluid outlet.
I n einer hierzu weiterführenden Ausbildung der Erfindung erstreckt sich die Dosierleitung stetig steigend vom Fluidauslass in die Rückführleitung bis zum Fluidrückführventil. Durch diese stetige Ausbildung wird sichergestellt, dass vorhandene Luftblasen tatsächlich bis in die Rückführleitung gelangen und so beim Spülvorgang aus dem System entfernt werden können. In a further embodiment of the invention, the dosing line extends steadily increasing from the fluid outlet into the return line to the fluid return valve. This constant training ensures that any air bubbles that are present actually get into the return line and can thus be removed from the system during the flushing process.
Vorzugsweise ist der stetig steigende Abschnitt der Dosierleitung aus einem Material m it einem Wärmeleitungskoeffizienten von über 30W/m K hergestellt und therm isch isoliert. Durch diese gute Wärmeleitung an der Dosierleitung und die gleichzeitige Isolierung nach außen wird die Wärme des Fluids im System bei einem Spülvorgang auch in den nicht durchspülten Bereich übertragen, in dem die Drossel und das Absperrventil angeordnet sind. So können Temperaturdifferenzen zwischen diesem Teilstück der Dosierleitung und der übrigen Dosierleitung, die zu Messfehlern führen könnten, elim iniert oder zum indest deutlich verringert werden. Preferably, the continuously rising section of the dosing line is made of a material with a thermal conductivity coefficient of more than 30W/mK and is thermally insulated. Due to this good heat conduction on the dosing line and the simultaneous insulation to the outside, the heat of the fluid in the system during a flushing process is also transferred to the area that is not flushed through, in which the throttle and the shut-off valve are arranged. In this way, temperature differences between this section of the dosing line and the rest of the dosing line, which could lead to measurement errors, can be eliminated or at least significantly reduced.
I n einer bevorzugten Ausführungsform ist der Durchflussmesser ein Coriolisdurchflussmesser oder ein Volumenverdrängerzähler. Mit dem Coriolisdurchflussmesser kann direkt und ohne zusätzliche Rechenschritte ein Massenstrom bestim mt werden, allerdings bewirkt dieser aufgrund enger Leitungsquerschnitte insbesondere bei hohen Viskositäten des Messfluids erhöhte Druckverluste. I n diesen Fällen wird ein rotatorischer Verdrängerzähler eingesetzt, dessen gemessener Volumenstrom über die Dichte ebenfalls in einen Massenstrom umgerechnet werden kann und ebenfalls genaue Messwerte liefert. Die Drossel ist vorteilhafterweise als in die Dosierleitung eingeführte Hülse zur Querschnittsverengung ausgebildet. Dies hat einerseits den Vorteil einer sehr kostengünstigen Lösung und andererseits wird durch die Hülse die Drosselfunktion zur Reduzierung der Druckdifferenz über den Durchflussmesser und zur Verringerung des Durchströmungsquerschnitts, wodurch eine schnelle Angleichung der Tem peratur im Bereich der Drossel an die Tem peratur des durchspülten Leitungsabschnitts der Dosierleitung erfolgt. In a preferred embodiment, the flow meter is a Coriolis flow meter or a volumetric displacement meter. With the Coriolis flow meter, a mass flow can be determined directly and without additional calculation steps. However, this causes increased pressure losses due to narrow line cross-sections, especially with high viscosities of the measuring fluid. In these cases, a rotary displacement meter is used, the measured volume flow of which can also be converted into a mass flow via the density and also provides precise measured values. The throttle is advantageously designed as a sleeve introduced into the metering line to narrow the cross section. On the one hand, this has the advantage of a very cost-effective solution and, on the other hand, the sleeve has the throttling function to reduce the pressure difference across the flow meter and to reduce the flow cross section, which means that the temperature in the area of the throttle is quickly adjusted to the temperature of the flushed line section of the metering line he follows.
I n einer bevorzugten ausführungsform des erfindungsgemäßen Verfahrens wird vor der Dosierung das Fluidrückführventil geöffnet und das Absperrventil in der Dosierleitung im Messeinheitsgehäuse geschlossen. Daraufhin wird durch die Förderpumpe das Fluid im Kreis gefördert bis die Temperatur des Fluids am Temperatursensor etwa konstant ist. Dies bedeutet, dass sich durch das umlaufende Fluid die gesamte Anlege an eine Durchschnittstemperatur des Fluids angleicht. Anschließend wird die Förderpumpe ausgestellt und das Fluidrückführventil geschlossen. I m Folgenden wird zur Dosierung und Messung des Massenstroms das Absperrventil geöffnet, so dass die Förderpumpe das Fluid zur Dosierstelle fördert, während über den Durchflussmesser der Massenstrom gemessen wird. In a preferred embodiment of the method according to the invention, the fluid return valve is opened before metering and the shut-off valve in the metering line in the measuring unit housing is closed. The fluid is then conveyed in a circuit by the feed pump until the temperature of the fluid at the temperature sensor is approximately constant. This means that the entire system adapts to an average temperature of the fluid due to the circulating fluid. The feed pump is then switched off and the fluid return valve is closed. In the following, the shut-off valve is opened for dosing and measuring the mass flow, so that the feed pump delivers the fluid to the dosing point, while the mass flow is measured via the flow meter.
Es wird som it eine Messvorrichtung zur Dosierung von Fluiden und ein Verfahren zur Dosierung von Fluiden m it einer derartigen Messvorrichtung geschaffen, m it denen durch einen Temperaturausgleich im System Fehler durch Tem peraturunterschiede im System deutlich reduziert werden. Dennoch wird es möglich die Messeinheit mit wenig Bauraumbedarf nahe an der Dosierstelle zu platzieren, während der Behälter m it dem Fluid und die Pum peneinheit in größerer Entfernung dazu eingerichtet werden können. So wird am Versuchsstand der Platzbedarf m inimiert und Messfehler durch Tem peraturunterschiede zwischen der Messstelle und der Dosierstelle vermieden. Messfehler durch zu einer Dosierstelle führende Dosierleitungen mit darin stehendem Fluid werden ausgeschlossen. So werden sehr genaue Messwerte mit einem einfachen und kostengünstigen Aufbau erzielt. A measuring device for dosing fluids and a method for dosing fluids with such a measuring device are thus created, with which errors caused by temperature differences in the system are significantly reduced by temperature compensation in the system. Nevertheless, it is possible to place the measuring unit close to the dosing point with little space requirement, while the container with the fluid and the pump unit can be set up at a greater distance. In this way, the space requirement on the test stand is minimized and measurement errors due to temperature differences between the measuring point and the dosing point avoided. Measurement errors caused by dosing lines leading to a dosing point with fluid in them are excluded. In this way, very precise measured values can be achieved with a simple and inexpensive structure.
Ein Ausführungsbeispiel einer erfindungsgemäßen Messvorrichtung zur Dosierung von Fluiden ist in der Figur dargestellt und wird mit dem zugehörigen erfindungsgemäßen Verfahren nachfolgend beschrieben. An exemplary embodiment of a measuring device according to the invention for dosing fluids is shown in the figure and is described below with the associated method according to the invention.
Die Figur zeigt ein Fließschema einer erfindungsgemäßen Messvorrichtung. The figure shows a flow diagram of a measuring device according to the invention.
Die erfindungsgemäße Messvorrichtung weist einen Behälter 10 auf, in dem das zu dosierende Fluid gespeichert wird. Dies kann beispielsweise eine Ölwanne sein, die Öl einer Dosierstelle 1 1 , wie beispielsweise einem großen Verbrennungsmotor an einem Teststand zur Verfügung stellt, wobei der Ölverbrauch gemessen werden soll. The measuring device according to the invention has a container 10 in which the fluid to be metered is stored. This can be, for example, an oil pan that provides oil to a dosing point 11, such as a large internal combustion engine on a test stand, with the oil consumption being measured.
I m unteren Bereich des Behälters 10 ist eine Öffnung ausgebildet, welche einen Fluideinlass 12 in eine Dosierleitung 13 bildet. Dieser Abschnitt der Dosierleitung 13 ist als Schlauchleitung ausgebildet und über eine Schlauchkupplung 14 m it einem Pumpeneinheitsgehäuse 16 verbunden, in dem sich die Dosierleitung 13 fortsetzt. In the lower area of the container 10 there is an opening which forms a fluid inlet 12 into a metering line 13 . This section of the metering line 13 is designed as a hose line and is connected via a hose coupling 14 to a pump unit housing 16 in which the metering line 13 continues.
I m Pum peneinheitsgehäuse 16 ist ein Filter 18 in der Dosierleitung 13 angeordnet, über den Feststoffe aus dem Fluidstrom abgeschieden werden. Diese Dosierleitung führt weiter zu einer Förderpum pe 20, über die das Fluid aus dem Behälter 10 und durch die Dosierleitung 13 gefördert wird. Die Förderpumpe 20 ist im vorliegenden Ausführungsbeispiel wahlweise über ein Proportionalventil 22 oder ein Sicherheitsventil 24 umgehbar. Das Sicherheitsventil 24 schützt die Leitungen, Kom ponenten und Kupplungen der Messvorrichtung vor zu hohen Drücken, indem das Sicherheitsventil 24 bei zu hohem Druck öffnet, wodurch der Pumpendruck der Förderpum pe 20 fällt. Das alternativ oder zusätzlich in einer weiteren die Förderpum pe 20 bypassierenden Umgehungsleitung 25 angeordnete Proportionalventil 22 dient der Regelung des Durchströmungsquerschnitts und damit des Strömungswiderstandes in dieser Umgehungsleitung 25, wodurch die Durchflussrate in der Dosierleitung 13 geändert werden kann, um beispielsweise einen exakten Dosierstopp-Zeitpunkt einstellen zu können, indem der dosierte Massenstrom vor dem Ende der Dosierung langsam verringert wird. In the pump unit housing 16, a filter 18 is arranged in the metering line 13, through which solids are separated from the fluid flow. This metering line leads further to a Förderpum pe 20, through which the fluid is conveyed from the container 10 and through the metering line 13. In the present exemplary embodiment, the feed pump 20 can be bypassed either via a proportional valve 22 or a safety valve 24 . The safety valve 24 protects the lines, components and couplings of the measuring device from closing high pressures by the safety valve 24 opens when the pressure is too high, causing the pump pressure of the Förderpum pe 20 falls. The proportional valve 22, which is alternatively or additionally arranged in another bypass line 25 that bypasses the delivery pump 20, is used to regulate the flow cross section and thus the flow resistance in this bypass line 25, whereby the flow rate in the metering line 13 can be changed, for example to set an exact metering stop time by slowly reducing the dosed mass flow before the end of dosing.
Ebenfalls im Pumpeneinheitsgehäuse 16 ist in der Dosierleitung 13 ein Dichtesensor 26 angeordnet, über den die Dichte des Fluids zur Umrechnung eines Volumenstroms in einen Massenstrom gemessen wird. Diese Dichte ist tem peraturabhängig, so dass eine Um rechnung der vom Dichtesensor 26 gemessenen Dichte auf eine tatsächliche Dichte im Bereich einer Volumenstrommessung in Abhängigkeit der dort vorliegenden Tem peratur vorgenom men werden m uss. Für den Fall, dass der Ström ungswiderstand des Dichtesensors 26 zu hoch ist, so dass die in der Dosierleitung 13 gewünschte Durchflussrate nicht erreicht werden kann, wird eine den Dichtesensor 26 umgehende Bypassleitung 30 vorgesehen, in der ein Absperrorgan 28 angeordnet ist, so dass die Bypassleitung 30 geöffnet oder geschlossen werden kann, wobei bei Öffnung der Bypassleitung 30 der Durchfluss in der Dosierleitung 13 und zur Dosierstelle 1 1 erhöht wird. A density sensor 26 is also arranged in the metering line 13 in the pump unit housing 16 and is used to measure the density of the fluid in order to convert a volume flow into a mass flow. This density depends on the temperature, so that the density measured by the density sensor 26 must be converted to an actual density in the area of a volume flow measurement, depending on the temperature present there. In the event that the flow resistance of the density sensor 26 is too high so that the desired flow rate in the metering line 13 cannot be achieved, a bypass line 30 bypassing the density sensor 26 is provided, in which a shut-off device 28 is arranged so that the Bypass line 30 can be opened or closed, with opening of the bypass line 30, the flow in the metering line 13 and the metering point 1 1 is increased.
Somit bilden die Förderpumpe 20 mit dem Filter 18 und dem Dichtesensor 26 sowie den beschriebenen Ventilen 22, 24, 28 und Umgehungsleitungen 25, 30 im vorliegenden Ausführungsbeispiel eine Pumpeneinheit 32, die im Pum peneinheitsgehäuse 16 angeordnet ist. Stromabwärts des Dichtesensors 26 m ündet die Dosierleitung 13 zunächst an einer weiteren am Pum peneinheitsgehäuse 16 vorgesehenen weiteren Schlauchkupplung 14. An dieser ist erfindungsgemäß ein Verbindungsabschnitt 33 der Dosierleitung 13 befestigt, wobei jegliche andere Kopplung ebenfalls im Sinne der Erfindung möglich ist. Dieser Verbindungsabschnitt führt zu einer weiteren Schlauchkupplung 14, die an einem Messeinheitsgehäuse 34 befestigt ist, so dass das Pum peneinheitsgehäuse 16 und das Messeinheitsgehäuse 34 in einem beliebigen Abstand zueinander angeordnet werden können. Thus, the feed pump 20 with the filter 18 and the density sensor 26 and the valves 22, 24, 28 and bypass lines 25, 30 described form a pump unit 32 in the present embodiment, which is arranged in the pump unit housing 16. Downstream of the density sensor 26 m, the dosing line 13 first ends at a further hose coupling 14 provided on the pump unit housing 16. A connecting section 33 of the dosing line 13 is attached to this according to the invention, with any other coupling also being possible within the meaning of the invention. This connecting section leads to a further hose coupling 14, which is fixed to a measuring unit housing 34, so that the pump unit housing 16 and the measuring unit housing 34 can be arranged at any desired distance from one another.
I m Messeinheitsgehäuse setzt sich die Dosierleitung 13 entsprechend fort. I n der Dosierleitung 13 im Messeinheitsgehäuse 34 ist ein Rückschlagventil 36 stromaufwärts eines Durchflussmessers 38 angeordnet, welches verhindert, dass Fluid in umgekehrter Richtung durch den Durchflussmesser 38 strömt. Dieser ist je nach vorhandener Viskosität als Coriolisdurchflussmesser oder Volumenverdrängerzähler wie beispielsweise Zahnrad-, Ovalrad- oder Schraubenspindelzähler auszuführen. The dosing line 13 continues accordingly in the measuring unit housing. In the dosing line 13 in the measuring unit housing 34, a non-return valve 36 is arranged upstream of a flow meter 38, which prevents fluid from flowing in the reverse direction through the flow meter 38. Depending on the viscosity, this can be designed as a Coriolis flow meter or a volumetric displacement meter such as a gear, oval wheel or screw spindle meter.
I n einer den Durchflussmesser 38 umgehenden Druckleitung 41 kann ein Differenzdrucksensor 40 angeordnet werden, über den entsprechend der Druckabfall über den Durchflussmesser 38 bestimmt werden kann, was insbesondere dann sinnvoll ist, wenn es sich um einen Durchflussmesser handelt, bei dem der Druckverlust im Betrieb einen definierten Wert nicht überschreiten darf. I n diesem Fall ist stromabwärts des Durchflussmessers 38 im Messeinheitsgehäuse 34 in der Dosierleitung 13 eine einstellbare Drossel 44 angeordnet, über die in Abhängigkeit der Messwerte des Differenzdrucksensors 40 der Druckabfall über den Durchflussmesser 38 eingestellt werden kann. A differential pressure sensor 40 can be arranged in a pressure line 41 surrounding the flow meter 38, via which the pressure drop across the flow meter 38 can be determined accordingly defined value must not be exceeded. In this case, an adjustable throttle 44 is arranged downstream of the flow meter 38 in the measuring unit housing 34 in the dosing line 13, via which the pressure drop across the flow meter 38 can be adjusted depending on the measured values of the differential pressure sensor 40.
Des Weiteren ist in unmittelbarer Nähe zum Durchflussmesser 38 einFurthermore, in the immediate vicinity of the flow meter 38 is a
Temperatursensor 42 angeordnet, über den die Fluidtem peratur gemessen wird, welche sowohl dazu genutzt wird, einzuschätzen, ob in der gesamten Messvorrichtung eine etwa gleichmäßige Temperaturverteilung vorliegt als auch um eine Korrektur der Dichte zur Berechnung eines Massenstroms vornehmen zu können. Temperature sensor 42 is arranged via which the fluid temperature is measured which is used both to assess whether there is an approximately uniform temperature distribution in the entire measuring device and to be able to correct the density to calculate a mass flow.
Stromabwärts der Drossel 44 ist in der Dosierleitung 13 auch noch ein Absperrventil 46 vor einem Fluidauslass 48 angeordnet, über den die Verbindung zu Dosierstelle hergestellt wird. Das Absperrventil 46 dient dazu die Messvorrichtung von der Dosierstelle 1 1 fluidisch trennen zu können. A shut-off valve 46 is also arranged in the metering line 13 downstream of the throttle 44 in front of a fluid outlet 48 via which the connection to the metering point is established. The shut-off valve 46 serves to be able to separate the measuring device from the dosing point 11 fluidically.
Von der Dosierleitung 13 zweigt zwischen dem Durchflussmesser 38 und der Drossel 44 eine Rückführleitung 50 ab, in der ein Fluidrückführventil 52 angeordnet ist, welches als Schaltventil ausgebildet ist, so dass die Rückführleitung 50 freigegeben oder geschlossen werden kann. Die Rückführleitung 50 führt über einen Verbindungsabschnitt 54 zwischen dem Messeinheitsgehäuse 34 und dem Pumpeneinheitsgehäuse 16 in das Pum peneinheitsgehäuse und m ündet stromabwärts des Pum peneinheitsgehäuses in einen oberen Bereich des Behälters 10. Die Verbindung der einzelnen Leitungsabschnitte innerhalb und außerhalb des Pum peneinheitsgehäuses 16 und des Messeinheitsgehäuses 34 erfolgt erneut über Schlauchkupplungen 14, wobei auch hier beliebige andere Verbindungen der Leistungsabschnitte denkbar sind. A return line 50 branches off from the dosing line 13 between the flow meter 38 and the throttle 44, in which a fluid return valve 52 is arranged, which is designed as a switching valve so that the return line 50 can be released or closed. The return line 50 leads via a connecting section 54 between the measuring unit housing 34 and the pump unit housing 16 into the pump unit housing and ends downstream of the pump unit housing in an upper region of the container 10. The connection of the individual line sections inside and outside of the pump unit housing 16 and the measuring unit housing 34 takes place again via hose couplings 14, with any other connections of the power sections being conceivable here as well.
Der Durchflussmesser 38 mit seiner Druckleitung 41 , das Rückschlagventil 36, die Drossel 44, das Absperrventil 46, das Fluidrückführventil 52 und der Tem peratursensor 42 bilden im vorliegenden Ausführungsbeispiel eine Messeinheit 56, die im gemeinsamen Messeinheitsgehäuse 34 angeordnet ist und die einen geringen Bauraum bedarf aufweist und in unm ittelbarer Nähe zur Dosierstelle 1 1 angeordnet werden kann. Ein stromabwärtiger Abschnitt 49 der Dosierleitung 13 erstreckt sich vom Fluidauslass 48 über das Absperrventil 46 und über die Drossel 44 bis in die Rückführleitung 50 im Messeinheitsgehäuse 34 stetig aufsteigend. Dieser Abschnitt 49 sollte auch möglichst nah am Durchflussmesser 38 platziert werden. Dies dient dazu, dass Gasblasen zwischen dem Durchflussmesser 38 und dem Fluidauslass 48 in die Rückführleitung 50 aufsteigen und so nicht zur Dosierstelle 1 1 gelangen, da dies zu einer Verfälschung der Messergebnisse führen würde, da diese Gasblasen als gefüllter Leitungsabschnitt am Durchflussmesser 38 m itgemessen werden würden, wenn die Gasblasen nicht abgeführt würden. In the present exemplary embodiment, the flow meter 38 with its pressure line 41, the check valve 36, the throttle 44, the shut-off valve 46, the fluid return valve 52 and the temperature sensor 42 form a measuring unit 56 which is arranged in the common measuring unit housing 34 and which requires little installation space and can be arranged in the immediate vicinity of the dosing point 11. A downstream section 49 of the dosing line 13 extends continuously upwards from the fluid outlet 48 via the shut-off valve 46 and via the throttle 44 to the return line 50 in the measuring unit housing 34 . This section 49 should also be placed as close to the flow meter 38 as possible. This serves to ensure that gas bubbles rise between the flow meter 38 and the fluid outlet 48 in the return line 50 and thus do not reach the dosing point 11, as this would lead to a falsification of the measurement results, since these gas bubbles are measured as a filled line section on the flow meter 38 would if the gas bubbles were not discharged.
Erfindungsgemäß wird vor jeder Dosierung zunächst ein Spülvorgang durchgeführt. Hierzu wird das Absperrventil 46 geschlossen und das Fluidrückführventil 52 geöffnet. Durch Bestrom ung der Förderpumpe 20 wird daraufhin über die Dosierleitung 13 und die Rückführleitung 50 das Fluid im Kreis aus dem Behälter und über die Pum peneinheit 32 und die Messeinheit 56 zurück in den Behälter 10 gefördert, wodurch zunächst die Gasblasen aus dem Abschnitt der Rückführleitung 50 stromaufwärts des Fluidrückführventils 52 in den Behälter 10 gefördert werden und so keine Messungen mehr verfälschen können. Des Weiteren hat diese Förderung zur Folge, dass ein Tem peraturausgleich zwischen den verschiedenen Abschnitten der Dosierleitung 13, dem Behälter 10 und der Rückführleitung 50 erfolgt, da sich durch das Zuführen im oberen Bereich des Behälters 10 und das Abführen aus dem unteren Bereich des Behälters 10 und das gleichmäßige Durchströmen aller Leitungsabschnitte eine Durchschnittstemperatur einstellt, welche unabhängig von der Entfernung des Behälters 10 zur Pum peneinheit 32 und der Pumpeneinheit 32 zur Messeinheit 56 ist und die vom Tem peratursensor 42 gemessen werden kann, so dass eine Dosierung, falls gewünscht, erst begonnen wird, wenn sich über einen definierten Zeitabschnitt die Temperaturdifferenzen innerhalb eines vorgegebenen I ntervalls bewegen. Sobald dies der Fall ist wird die Förderpum pe 20 zunächst ausgestellt, und das Fluidrückführventil 52 geschlossen. Zum Starten des Dosiervorgangs wird die Förderpum pe 20 wieder eingeschaltet und das Absperrventil 46 geöffnet, so dass nunmehr das Fluid aus dem Behälter 10 über die Förderpumpe 20 und den Durchflussmesser 38 zum Fluidauslass und somit zur Dosierstelle gefördert werden. So wird auch sichergestellt, dass der gesamte Massenfluss ausschließlich über die Dosierleitung 13 erfolgt. Der Durchflussmesser 38 misst im Betrieb den über ihn geführten und dam it der Dosierstelle 1 1 zugeführten Massenstrom oder Volumenstrom , der m ittels der erm ittelten Dichte in einen Massenstrom umgerechnet werden kann. According to the invention, a rinsing process is carried out before each metering. For this purpose, the shut-off valve 46 is closed and the fluid return valve 52 is opened. By energizing the feed pump 20, the fluid is then circulated out of the container via the metering line 13 and the return line 50 and fed back into the container 10 via the pump unit 32 and the measuring unit 56, whereby the gas bubbles are initially removed from the section of the return line 50 upstream of the fluid return valve 52 into the container 10 and can thus no longer falsify measurements. Furthermore, this promotion has the consequence that a temperature equalization takes place between the various sections of the metering line 13, the container 10 and the return line 50, since the supply in the upper area of the container 10 and the discharge from the lower area of the container 10 and the uniform flow through all line sections sets an average temperature which is independent of the distance from the container 10 to the pump unit 32 and the pump unit 32 to the measuring unit 56 and which can be measured by the temperature sensor 42, so that dosing, if desired, only begins when the temperature differences move within a specified interval over a defined period of time. As soon as this is the case, the feed pump PE 20 is first issued, and the fluid return valve 52 is closed. To start the dosing process, the delivery pump 20 is switched on again and the shut-off valve 46 is opened, so that the fluid is now delivered from the container 10 via the delivery pump 20 and the flow meter 38 to the fluid outlet and thus to the metering point. This also ensures that the entire mass flow takes place exclusively via the metering line 13 . During operation, the flow meter 38 measures the mass flow or volume flow that is conducted via it and thus supplied to the dosing point 11, which can be converted into a mass flow using the determined density.
Dabei bleibt die Tem peratur des Fluids weitestgehend konstant, so dass sehr genaue Messergebnisse erzielt werden. Auch Fehler durch einen Abstand und eine dam it eventuell verbundene Tem peraturdifferenz zwischen dem Durchflussmesser 38 und der Dosierstelle 1 1 werden vermieden, da die Messeinheit 56 in unmittelbarer Nähe zur Dosierstelle 1 1 angeordnet werden kann, ohne dass ein erhöhter Platzbedarf besteht, denn die Pumpeneinheit 32 und der Behälter 10 können in mehreren Metern Abstand zur Messeinheit 56 angeordnet werden, da die Messvorrichtung in verschiedene Einheiten unterteilt ist, die lediglich durch lösbare Leitungen miteinander verbunden sind. Durch eine derartige Messvorrichtung können sowohl große als auch kleine Dosiermengen sehr genau bestim mt werden. Die Messgenauigkeit wird auch bei längeren Pausenzeiten oder veränderten Umgebungstemperaturen beibehalten. Dennoch ist dieser Aufbau sehr kostengünstig, da wenige Bauteile benötigt werden. So kann beispielsweise auf Wärmetauscher zur Herstellung eines Temperaturgleichgewichtes verzichtet werden. The temperature of the fluid remains largely constant, so that very precise measurement results can be achieved. Errors caused by a distance and any associated temperature difference between the flow meter 38 and the dosing point 11 are also avoided, since the measuring unit 56 can be arranged in the immediate vicinity of the dosing point 11 without requiring more space than the pump unit 32 and the container 10 can be arranged at a distance of several meters from the measuring unit 56, since the measuring device is divided into different units which are only connected to one another by detachable lines. With such a measuring device, both large and small dosing quantities can be determined very precisely. The measuring accuracy is maintained even with longer pause times or changed ambient temperatures. Nevertheless, this structure is very inexpensive, since few components are required. For example, heat exchangers for establishing temperature equilibrium can be dispensed with.
Zusätzlich werden Messfehler durch Gasblasen in der Dosierleitung zuverlässig vermieden. In addition, measurement errors caused by gas bubbles in the dosing line are reliably avoided.
Es sollte deutlich sein, dass der Schutzbereich der vorliegendenIt should be clear that the scope of protection of the present
Hauptansprüche nicht auf das beschriebene Ausführungsbeispiel begrenzt ist. So sind alle gestrichelt dargestellten Bauteile lediglich optional vorhanden. Auch kann der Dichtesensor an einer beliebigen Position oder in einer zusätzlichen Bypassleitung angeordnet werden. Die Rückführleitung kann auch außerhalb des Pumpeneinheitsgehäuses geführt und so der Behälter direkt mit der Messeinheit verbunden werden. Statt der einstellbaren Drossel kann eine Querschnittsverengung durch eine eingesteckte Hülse zur Verm inderung der Druckdifferenz am Durchflussmesser eingesetzt werden. Auf eine Drossel kann gegebenenfalls insbesondere bei Volumenverdrängerzählern ebenfalls verzichtet werden. Main claims not limited to the described embodiment is. All components shown in dashed lines are only optionally available. The density sensor can also be arranged at any position or in an additional bypass line. The return line can also be routed outside the pump unit housing, so that the container can be connected directly to the measuring unit. Instead of the adjustable throttle, a narrowing of the cross-section can be used by inserting a sleeve to reduce the pressure difference at the flow meter. A throttle can also be dispensed with if necessary, particularly in the case of volumetric displacement meters.

Claims

Patentansprüche Messvorrichtung zur Dosierung von Fluiden m it einem Behälter ( 10), in dem das Fluid gespeichert ist, einem Fluideinlass (12) , der fluidisch m it dem Behälter ( 10) verbunden ist, einem Fluidauslass (48) , der fluidisch mit einer Dosierstelle (1 1 ) verbindbar ist, einer Dosierleitung ( 13) , über die der Fluideinlass ( 12) mit dem Fluidauslass (48) verbunden ist, und in der eine Förderpum pe (20) , ein Dichtesensor (26), und ein Durchflussmesser (38) angeordnet sind, und m it einer Rückführleitung (50) , die stromabwärts des Durchflussmessers (38) von der Dosierleitung (13) abzweigt und in den Behälter ( 10) mündet, dadurch gekennzeichnet, dass der Durchflussmesser (38) in einem Messeinheitsgehäuse (34) angeordnet ist, welches beabstandet zu einem Pum peneinheitsgehäuse ( 16) angeordnet ist, in welchem zum indest die Förderpumpe (20) angeordnet ist, wobei das Pumpeneinheitsgehäuse (16) m it dem Messeinheitsgehäuse (34) über einen Verbindungsabschnitt (33) der Dosierleitung ( 13) lösbar miteinander verbunden sind. Messvorrichtung zur Dosierung von Fluiden nach Anspruch 1 , dadurch gekennzeichnet, dass der Dichtesensor (26) im Pumpeneinheitsgehäuse ( 16) stromabwärts der Förderpumpe (20) in der Dosierleitung ( 13) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Pum peneinheitsgehäuse (16) stromaufwärts der Förderpum pe (20) in der Dosierleitung (13) ein Filter ( 18) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Messeinheitsgehäuse (34) stromaufwärts des Durchflussmessers (38) in der Dosierleitung ( 13) ein Rückschlagventil (36) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Messeinheitsgehäuse (34) unmittelbar stromabwärts des Durchflussmessers (38) in der Dosierleitung ( 13) ein Tem peratursensor (42) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Messeinheitsgehäuse (34) stromabwärts des Durchflussmessers (38) in der Dosierleitung ( 13) eine Drossel (44) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Messeinheitsgehäuse (34) stromabwärts des Durchflussmessers (38) in der Dosierleitung ( 13) unmittelbar stromaufwärts des Fluidauslasses (48) ein Absperrventil (46) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Rückführleitung (50) ein Fluidrückführventil (52) angeordnet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Dosierleitung (13) im Messeinheitsgehäuse (34) ein Differenzdrucksensor (40) angeordnet ist, der einen Differenzdruck über den Durchflussmesser (38) m isst. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dichtesensor (26) über ein Absperrorgan (28) umgehbar ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Förderpum pe (20) über ein Proportionalventil (22) umgehbar ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Förderpum pe (20) über ein Sicherheitsventil (24) umgehbar ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführleitung (50) stromabwärts des Durchflussmessers (38) von der Dosierleitung (13) geodätisch nach oben abzweigt. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Dosierleitung ( 13) stromabwärts des Durchflussmessers (38) in absteigender Richtung erstreckt. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dosierleitung ( 13) sich aufsteigend vom Fluidauslass (48) erstreckt, wobei in dem sich aufsteigend erstreckenden Abschnitt (49) der Dosierleitung ( 13) das Absperrventil (46) und die Drossel (44) angeordnet sind. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Dosierleitung ( 13) stetig steigend vom Fluidauslass (48) in die Rückführleitung (50) bis zum Fluidrückführventil (52) erstreckt. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der stetig steigende Abschnitt (49) der Dosierleitung ( 13) aus einem Material mit einem Wärmeleitungskoeffizienten von über 30W/m K hergestellt ist und therm isch isoliert ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchflussmesser (38) ein Coriolisdurchflussmesser oder ein Volumenverdrängerzähler ist. Messvorrichtung zur Dosierung von Fluiden nach einem der Ansprüche 5 bis 18, dadurch gekennzeichnet, dass die Drossel (44) als in die Dosierleitung ( 13) eingeführte Hülse zur Querschnittsverengung ausgebildet ist. Messvorrichtung zur Dosierung von Fluiden nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Pum peneinheitsgehäuse (16) m it dem Messeinheitsgehäuse (34) über einen Verbindungsabschnitt (54) der Rückführleitung (50) lösbar m iteinander verbunden sind. Verfahren zur Dosierung m it einer Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor der Dosierung das Fluid über die Dosierleitung und die Rückführleitung (50) im Kreis geführt wird, wobei das Fluid im unteren Bereich des Behälters ( 10) entnom men wird und im oberen Bereich des Behälters ( 10) zurückgeführt wird. Verfahren zur Dosierung nach Anspruch 21 m it einer Messvorrichtung nach Anspruch 7 und 8, dadurch gekennzeichnet, dass vor der Dosierung das Fluidrückführventil (52) geöffnet wird, das Absperrventil (46) in der Dosierleitung ( 13) im Messeinheitsgehäuse (34) geschlossen wird und das Fluid durch die Förderpum pe (20) im Kreis gefördert wird bis die Temperatur des Fluids am Tem peratursensor (42) konstant ist und anschließend die Förderpumpe (20) ausgestellt wird und das Fluidrückführventil (52) geschlossen wird und im Folgenden zur Messung des Massenstroms das Absperrventil (46) geöffnet wird und das Fluid über die Förderpum pe (20) zur Dosierstelle (1 1 ) gefördert wird, während über den Durchflussmesser (38) der Massenstrom gemessen wird. Claims Measuring device for dosing fluids with a container (10) in which the fluid is stored, a fluid inlet (12) which is fluidly connected to the container (10), a fluid outlet (48) which is fluidly connected to a dosing point (1 1) can be connected, a dosing line (13), via which the fluid inlet (12) is connected to the fluid outlet (48), and in which a delivery pump (20), a density sensor (26), and a flow meter (38 ) are arranged, and with a return line (50) which branches off from the dosing line (13) downstream of the flow meter (38) and opens into the container (10), characterized in that the flow meter (38) is in a measuring unit housing (34 ) is arranged, which is arranged at a distance from a pump unit housing (16), in which at least the feed pump (20) is arranged, the pump unit housing (16) having the measuring unit housing (34) via a connecting section (33) of the dosing oil line (13) are detachably connected to each other. Measuring device for dosing fluids according to Claim 1, characterized in that the density sensor (26) is arranged in the pump unit housing (16) downstream of the feed pump (20) in the dosing line (13). Measuring device for dosing fluids according to one of the preceding claims, characterized in that a filter (18) is arranged in the pump unit housing (16) upstream of the delivery pump (20) in the metering line (13). Measuring device for dosing fluids according to one of the preceding claims, characterized in that a check valve (36) is arranged in the measuring unit housing (34) upstream of the flow meter (38) in the dosing line (13). Measuring device for dosing fluids according to one of the preceding claims, characterized in that a temperature sensor (42) is arranged in the measuring unit housing (34) immediately downstream of the flow meter (38) in the dosing line (13). Measuring device for dosing fluids according to one of the preceding claims, characterized in that a throttle (44) is arranged in the measuring unit housing (34) downstream of the flow meter (38) in the dosing line (13). Measuring device for dosing fluids according to one of the preceding claims, characterized in that a shut-off valve (46) is arranged in the measuring unit housing (34) downstream of the flow meter (38) in the dosing line (13) directly upstream of the fluid outlet (48). Measuring device for dosing fluids according to one of the preceding claims, characterized in that a fluid return valve (52) is arranged in the return line (50). Measuring device for metering fluids according to one of the preceding claims, characterized in that a differential pressure sensor (40) is arranged on the metering line (13) in the measuring unit housing (34), which measures a differential pressure across the flow meter (38). Measuring device for dosing fluids according to one of the preceding claims, characterized in that the density sensor (26) can be bypassed via a shut-off element (28). Measuring device for dosing fluids according to one of the preceding claims, characterized in that the feed pump (20) can be bypassed via a proportional valve (22). Measuring device for dosing fluids according to one of the preceding claims, characterized in that the feed pump (20) can be bypassed via a safety valve (24). Measuring device for dosing fluids according to one of the preceding claims, characterized in that the return line (50) branches off geodetically upwards from the dosing line (13) downstream of the flow meter (38). Measuring device for dosing fluids according to one of the preceding claims, characterized in that the dosing line (13) extends downstream of the flow meter (38) in a descending direction. Measuring device for dosing fluids according to one of the preceding claims, characterized in that the dosing line (13) extends upwards from the fluid outlet (48), the shut-off valve (46) and the throttle (44) are arranged. Measuring device for dosing fluids according to one of the preceding claims, characterized in that the dosing line (13) rises steadily from the fluid outlet (48) into the return line (50) to the fluid return valve (52). Measuring device for dosing fluids according to any one of the preceding claims, characterized in that the steadily rising section (49) of the dosing pipe (13) is made of a material with a thermal conductivity coefficient greater than 30W/mK and is thermally insulated. Measuring device for dosing fluids according to one of the preceding claims, characterized in that the flow meter (38) is a Coriolis flow meter or a volumetric displacement meter. Measuring device for metering fluids according to one of Claims 5 to 18, characterized in that the throttle (44) is designed as a sleeve introduced into the metering line (13) to narrow the cross section. Measuring device for dosing fluids according to one of the preceding claims, characterized in that the pump unit housing (16) is detachably connected to the measuring unit housing (34) via a connecting section (54) of the return line (50). Method for dosing with a measuring device according to one of the preceding claims, characterized in that prior to dosing the fluid is circulated via the dosing line and the return line (50), the fluid being removed from the lower region of the container (10). and is returned in the upper region of the container (10). Method for dosing according to Claim 21 with a measuring device according to Claims 7 and 8, characterized in that before dosing the fluid return valve (52) is opened, the shut-off valve (46) in the dosing line (13) in the measuring unit housing (34) is closed and the fluid is circulated by the feed pump (20) until the temperature of the fluid at the temperature sensor (42) is constant and then the feed pump (20) is switched off and the fluid return valve (52) is closed and then to measure the mass flow the check valve (46) is opened and the fluid via the Förderpum pe (20) to Metering point (1 1) is funded while the flow meter (38) is measured, the mass flow.
EP21830586.0A 2020-11-11 2021-11-10 Measuring device for metering fluids, and method for metering by means of a measuring device of this type Pending EP4237803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50974/2020A AT524206B1 (en) 2020-11-11 2020-11-11 Measuring device for dosing fluids and method for dosing with such a measuring device
PCT/AT2021/060425 WO2022099340A1 (en) 2020-11-11 2021-11-10 Measuring device for metering fluids, and method for metering by means of a measuring device of this type

Publications (1)

Publication Number Publication Date
EP4237803A1 true EP4237803A1 (en) 2023-09-06

Family

ID=79021799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21830586.0A Pending EP4237803A1 (en) 2020-11-11 2021-11-10 Measuring device for metering fluids, and method for metering by means of a measuring device of this type

Country Status (5)

Country Link
US (1) US20240003727A1 (en)
EP (1) EP4237803A1 (en)
CN (1) CN116648603A (en)
AT (1) AT524206B1 (en)
WO (1) WO2022099340A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525901B1 (en) * 2022-04-19 2023-09-15 Avl List Gmbh Mass flow control system for metering fluids and method for metering fluids with such a mass flow control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708710B1 (en) * 1997-10-30 2004-03-23 Rpm Industries, Inc. Vehicle fluid change apparatus and method
US6471487B2 (en) * 2001-01-31 2002-10-29 Micro Motion, Inc. Fluid delivery system
AT7888U3 (en) 2005-05-27 2006-07-15 Avl List Gmbh METHOD AND DEVICE FOR CONTINUOUS MEASUREMENT OF DYNAMIC FLUID CONSUMPTION
AT515306B1 (en) * 2014-07-24 2015-08-15 Avl List Gmbh Fuel consumption measuring system and method for measuring a fuel consumption of an internal combustion engine
DE102017115400A1 (en) * 2017-07-10 2019-01-10 Endress + Hauser Messtechnik Gmbh+Co. Kg measuring system

Also Published As

Publication number Publication date
WO2022099340A1 (en) 2022-05-19
US20240003727A1 (en) 2024-01-04
AT524206B1 (en) 2022-04-15
AT524206A4 (en) 2022-04-15
CN116648603A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
EP3019846B1 (en) Device and method for continuously measuring the dynamic fuel consumption of an internal combustion engine
EP1729100A1 (en) Method and device for continuously measuring a dynamic fluid consumption
EP3172426B1 (en) Fuel consumption measuring system and method for measuring the fuel consumption of an ic engine
WO2008095836A2 (en) Method and device for continuously measuring dynamic fluid consumption
WO2012007227A1 (en) Test bench for fluid pumps and fluid injectors
EP4237803A1 (en) Measuring device for metering fluids, and method for metering by means of a measuring device of this type
DE102005032324A1 (en) Continuous temperature control system for injection or pressure die casting tools has mixing and throttle valves connected to cooling and heating feed lines and temperature sensor and flow meter linked to control unit in return line
WO2009146817A2 (en) Temperature device having flow measurement
DE2434872B2 (en) Method for detecting a leak in a pipeline
WO2012007229A1 (en) Test bench and method for testing fluid pumps and fluid injectors
AT505035B1 (en) DEVICE AND METHOD FOR MEASURING FLOW RESISTANCES
AT521086B1 (en) Conditioning device for regulating a gaseous or
EP3997424B1 (en) Measuring system for measuring a flow
WO2011083036A2 (en) Arrangement for measuring the viscosity of a fluid having a uniform controlled temperature
DE112015001921T5 (en) System and method for injecting oil into an air conditioning circuit
EP2293005B1 (en) Flow monitoring of a heat exchanger
AT523657B1 (en) Fuel consumption measurement system
EP1154205B1 (en) Heat transport system with heat production installation having flow rate control
EP0205056A1 (en) Flow controller
DE202009016079U1 (en) Arrangement for measuring the viscosity of a uniformly tempered liquid
AT525901B1 (en) Mass flow control system for metering fluids and method for metering fluids with such a mass flow control system
EP2226582B1 (en) Tempering device for liquids
DE1498337A1 (en) Method and device for temperature control
WO2020150760A1 (en) Pressure-regulating device for a fuel consumption measurement system
AT256497B (en) System for testing measuring equipment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240516