EP4229119A1 - Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material - Google Patents
Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating materialInfo
- Publication number
- EP4229119A1 EP4229119A1 EP21786978.3A EP21786978A EP4229119A1 EP 4229119 A1 EP4229119 A1 EP 4229119A1 EP 21786978 A EP21786978 A EP 21786978A EP 4229119 A1 EP4229119 A1 EP 4229119A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- polyol
- polyisocyanurate foam
- mass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006260 foam Substances 0.000 title claims abstract description 113
- 229920000582 polyisocyanurate Polymers 0.000 title claims abstract description 93
- 239000011495 polyisocyanurate Substances 0.000 title claims abstract description 93
- 239000000203 mixture Substances 0.000 title claims abstract description 86
- 239000011810 insulating material Substances 0.000 title claims description 21
- 229920005862 polyol Polymers 0.000 claims abstract description 130
- 150000003077 polyols Chemical class 0.000 claims abstract description 125
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 69
- 239000004088 foaming agent Substances 0.000 claims abstract description 51
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 51
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 51
- 229920000642 polymer Polymers 0.000 claims abstract description 50
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 48
- 229920000570 polyether Polymers 0.000 claims abstract description 48
- 229920000728 polyester Polymers 0.000 claims abstract description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 10
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 26
- 238000005187 foaming Methods 0.000 claims description 19
- 239000012948 isocyanate Substances 0.000 claims description 7
- 150000002513 isocyanates Chemical class 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 description 29
- 229920005906 polyester polyol Polymers 0.000 description 17
- -1 polyoxypropylene Polymers 0.000 description 15
- 229920005830 Polyurethane Foam Polymers 0.000 description 14
- 239000011496 polyurethane foam Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000003063 flame retardant Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 125000000524 functional group Chemical group 0.000 description 11
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 9
- 238000005829 trimerization reaction Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000007259 addition reaction Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000007142 ring opening reaction Methods 0.000 description 4
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 2
- LKLLNYWECKEQIB-UHFFFAOYSA-N 1,3,5-triazinane Chemical compound C1NCNCN1 LKLLNYWECKEQIB-UHFFFAOYSA-N 0.000 description 2
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920005883 amine-based polyether polyol Polymers 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229960004132 diethyl ether Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 229930187760 maximol Natural products 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920005903 polyol mixture Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- RLEFZEWKMQQZOA-UHFFFAOYSA-M potassium;octanoate Chemical compound [K+].CCCCCCCC([O-])=O RLEFZEWKMQQZOA-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 description 1
- LDTMPQQAWUMPKS-OWOJBTEDSA-N (e)-1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)\C=C\Cl LDTMPQQAWUMPKS-OWOJBTEDSA-N 0.000 description 1
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- DMUPYMORYHFFCT-UPHRSURJSA-N (z)-1,2,3,3,3-pentafluoroprop-1-ene Chemical compound F\C=C(/F)C(F)(F)F DMUPYMORYHFFCT-UPHRSURJSA-N 0.000 description 1
- ZUAQTIHDWIHCSV-UPHRSURJSA-N (z)-1,2,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C(/F)C(F)F ZUAQTIHDWIHCSV-UPHRSURJSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- WZLFPVPRZGTCKP-UHFFFAOYSA-N 1,1,1,3,3-pentafluorobutane Chemical compound CC(F)(F)CC(F)(F)F WZLFPVPRZGTCKP-UHFFFAOYSA-N 0.000 description 1
- NLOLSXYRJFEOTA-UHFFFAOYSA-N 1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)C=CC(F)(F)F NLOLSXYRJFEOTA-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- MTZUIIAIAKMWLI-UHFFFAOYSA-N 1,2-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC=C1N=C=O MTZUIIAIAKMWLI-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- ZGDSDWSIFQBAJS-UHFFFAOYSA-N 1,2-diisocyanatopropane Chemical compound O=C=NC(C)CN=C=O ZGDSDWSIFQBAJS-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- ADQQGJLCEXHTRW-UHFFFAOYSA-N 1-(dimethylamino)hexan-1-ol Chemical compound CCCCCC(O)N(C)C ADQQGJLCEXHTRW-UHFFFAOYSA-N 0.000 description 1
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- IVJXXQSXKSRPIL-UHFFFAOYSA-N 2,4-bis[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC=C(O)C(CN(C)C)=C1 IVJXXQSXKSRPIL-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- QHTUMQYGZQYEOZ-UHFFFAOYSA-N 2-(4-methylpiperazin-1-yl)ethanol Chemical compound CN1CCN(CCO)CC1 QHTUMQYGZQYEOZ-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- VKBVRNHODPFVHK-UHFFFAOYSA-N 2-[2-(diethylamino)ethoxy]ethanol Chemical compound CCN(CC)CCOCCO VKBVRNHODPFVHK-UHFFFAOYSA-N 0.000 description 1
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 1
- LSYBWANTZYUTGJ-UHFFFAOYSA-N 2-[2-(dimethylamino)ethyl-methylamino]ethanol Chemical compound CN(C)CCN(C)CCO LSYBWANTZYUTGJ-UHFFFAOYSA-N 0.000 description 1
- JRENXZBKMHPULY-UHFFFAOYSA-N 2-chloro-1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)C=C(Cl)C(F)(F)F JRENXZBKMHPULY-UHFFFAOYSA-N 0.000 description 1
- OQISUJXQFPPARX-UHFFFAOYSA-N 2-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C OQISUJXQFPPARX-UHFFFAOYSA-N 0.000 description 1
- SVNWKKJQEFIURY-UHFFFAOYSA-N 2-methyl-1-(2-methylpropyl)imidazole Chemical compound CC(C)CN1C=CN=C1C SVNWKKJQEFIURY-UHFFFAOYSA-N 0.000 description 1
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 1
- FIROAKDNSCQSTG-UHFFFAOYSA-N 3,3-dichloro-3-fluoroprop-1-ene Chemical compound FC(Cl)(Cl)C=C FIROAKDNSCQSTG-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- GZGKPOCYYNKGCV-UHFFFAOYSA-N 5-(dimethylamino)-3-methylpentan-1-ol Chemical compound OCCC(C)CCN(C)C GZGKPOCYYNKGCV-UHFFFAOYSA-N 0.000 description 1
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 1
- PJMDLNIAGSYXLA-UHFFFAOYSA-N 6-iminooxadiazine-4,5-dione Chemical compound N=C1ON=NC(=O)C1=O PJMDLNIAGSYXLA-UHFFFAOYSA-N 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- PEYZIFREGNMXEE-UHFFFAOYSA-N N=C=O.N=C=O.C1CCCCC1C(C)(C)C1CCCCC1 Chemical compound N=C=O.N=C=O.C1CCCCC1C(C)(C)C1CCCCC1 PEYZIFREGNMXEE-UHFFFAOYSA-N 0.000 description 1
- INWVTRVMRQMCCM-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 INWVTRVMRQMCCM-UHFFFAOYSA-N 0.000 description 1
- QORUGOXNWQUALA-UHFFFAOYSA-N N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 QORUGOXNWQUALA-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KXBFLNPZHXDQLV-UHFFFAOYSA-N [cyclohexyl(diisocyanato)methyl]cyclohexane Chemical compound C1CCCCC1C(N=C=O)(N=C=O)C1CCCCC1 KXBFLNPZHXDQLV-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- FBYUNLMTXMFAQK-UHFFFAOYSA-N butyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCCC.CCCCCCCCCCCC(=O)OCCCC FBYUNLMTXMFAQK-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical compound O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000013038 hand mixing Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- DWFKOMDBEKIATP-UHFFFAOYSA-N n'-[2-[2-(dimethylamino)ethyl-methylamino]ethyl]-n,n,n'-trimethylethane-1,2-diamine Chemical compound CN(C)CCN(C)CCN(C)CCN(C)C DWFKOMDBEKIATP-UHFFFAOYSA-N 0.000 description 1
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 1
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 1
- BXYVQNNEFZOBOZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]-n',n'-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCNCCCN(C)C BXYVQNNEFZOBOZ-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- PLYIPBIZXSTXCW-UHFFFAOYSA-N octanoic acid;tin Chemical compound [Sn].CCCCCCCC(O)=O PLYIPBIZXSTXCW-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- HXSACZWWBYWLIS-UHFFFAOYSA-N oxadiazine-4,5,6-trione Chemical compound O=C1ON=NC(=O)C1=O HXSACZWWBYWLIS-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 1
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N tolylenediamine group Chemical group CC1=C(C=C(C=C1)N)N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- KVMPUXDNESXNOH-UHFFFAOYSA-N tris(1-chloropropan-2-yl) phosphate Chemical compound ClCC(C)OP(=O)(OC(C)CCl)OC(C)CCl KVMPUXDNESXNOH-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/09—Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
- C08G18/092—Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/046—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4018—Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4205—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
- C08G18/4208—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
- C08G18/4211—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
- C08G18/4213—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from terephthalic acid and dialcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4829—Polyethers containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5033—Polyethers having heteroatoms other than oxygen having nitrogen containing carbocyclic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/028—Composition or method of fixing a thermally insulating material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0264—Polyester
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0278—Polyurethane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0033—Foam properties having integral skins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2115/00—Oligomerisation
- C08G2115/02—Oligomerisation to isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/16—Unsaturated hydrocarbons
- C08J2203/162—Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
Definitions
- the present invention relates to a composition for forming a polyisocyanurate foam, a polyisocyanurate foam formed from the composition, and a thermal insulating material comprising the foam. More specifically, the present invention relates to a composition for forming a polyisocyanurate foam having excellent surface quality of a formed article, in particular, a polyisocyanurate foam having excellent smoothness.
- polyurethane foams in particular, a rigid polyurethane foam has been widely used as a foaming thermal insulating material due to its excellent thermal insulating property.
- Polyurethane foams are usually produced by mixing a polyol and a polyisocyanate together with a catalyst, a foaming agent, a foam stabilizer, or the like appropriately blended as necessary to cause foaming.
- polyisocyanurate foam a resin-based foam called “polyisocyanurate foam” has been known.
- a polyisocyanate used for formation of a foam can generate an isocyanurate ring via its trimerization reaction.
- a resin-based foam having an isocyanurate ring structure in a certain proportion or more may be referred to as “polyisocyanurate foam” distinguished from general polyurethane foams.
- the polyisocyanurate foam contains many isocyanurate ring structures, and thus has high flame retardancy.
- Patent Literature 1 JP 2014-530282 A (Patent Literature 1) describes an invention related to a polyesterpolyether polyol for obtaining a polyurethane product and a polyisocyanurate product, which is suitable for mixing with another polyol or another material mutually compatible with polyester polyol.
- Patent Literature 1 is a polyester-polyether polyol produced by 1) a step of mixing an alcohol having a nominal functional value of 3 and a molecular weight of 90 to 500 and phthalic anhydride under the condition of formation of a phthalic anhydride half ester; and 2) a step of alkoxylating the half ester formed in the step 1 to form a polyester-polyether polyol having a hydroxy number of 200 to 350, where when the alcohol is polyether polyol, the polyether polyol contains at least 70 wt.% of polyoxypropylene.
- Patent Literature 1 describes that use of such a polyester-polyether polyol allows a polyol mixture to exhibit favorable compatibility with a hydrocarbon-based foaming agent and also allows the resulting foam to have a favorable strength.
- Patent Literature 2 describes an invention related to a production method of a half-rigid or soft polyurethane foam formed article having an integral skin layer on the surface thereof.
- the invention described in Patent Literature 2 is a method for producing a polyurethane foam formed article, the method comprising injecting a reactive stock solution composition prepared by mixing a polyol composition containing at least a polyol compound, a crosslinking agent, a catalyst, and a foaming agent, and a polyisocyanate component into a mold to form a formed body having integral skin, in which 100 parts by weight of the polyol compound contains 70 to 95 parts by weight of a difunctional polyol compound having a molecular weight of 500 to 4,000 and 30 to 5 parts by weight of a multifunctional polyol of three-or more functional polyol, the foaming agent is water, and the formed body has a surface rigidity measured with an Asker C durometer of 45 degrees or less.
- Patent Literature 2 describes that a polyol composition, which contains water as a foaming agent, has high viscosity and thus there has been need to use a high-pressure foaming machine.
- Patent Literature 2 describes that, according to the invention described in Patent Literature 2, use of a specific polyol mixture allows formation using a low-pressure foaming machine of an existing facility without updating to a production facility to the high-pressure foaming machine, and it is possible to provide a method for producing a polyurethane foam formed article having integral skin, which does not cause problems such as odor even in a case of using the polyurethane foam formed article for furniture and the like used in the room.
- HFC-based foaming agents such as HFC-134a, HFC-245fa, and HFC-365mfc have been used.
- these hydrofluorocarbon-based foaming agents are recognized as being alternative fluorocarbon which causes less or no ozone layer depletion
- hydrofluorocarbon-based foaming agents which are chemically stable, have high global warming potential.
- HFO hydrofluoroolefm
- Patent Literature 1 JP 2014-530282 A
- Patent Literature 2 JP 2004-224967 A
- the present inventors studied use of a hydrofluoroolefin (HFO) as a foaming agent for a polyisocyanurate foam, and found that, in a case where a polyisocyanurate foam and a surface material are integrally formed, the smoothness of the surface material of the resulting formed article is inferior to a case of another foaming agent, leading to a problem of deterioration of the surface quality.
- HFO hydrofluoroolefin
- an object of the present invention is to solve the above problem of the conventional art, and provide a composition for forming a polyisocyanurate foam having excellent surface quality of a formed article, in particular, a polyisocyanurate foam having excellent smoothness. Further, another object of the present invention is to provide a polyisocyanurate foam formed form the composition, and a thermal insulating material comprising the foam.
- the present inventors confirm that use of a hydrofluoroolefm (HFO) as a foaming agent causes shrinkage of a polyisocyanurate foam, and consider that such shrinkage tends to deteriorate the smoothness of the surface material.
- HFO hydrofluoroolefm
- a process of forming a polyisocyanurate foam generally includes (1) foaming via a reaction of a polyisocyanate and water; (2) forming a urethane bond via a reaction of a polyisocyanate and a polyol; and (3) forming an isocyanurate ring via a trimerization reaction of a polyisocyanate, and the reactions start in this order.
- an HFO as a foaming agent, the HFO volatiles through the foaming in above (1) before gas bubbles are generated, thus causing shrinkage of the polyisocyanurate foam.
- a polyisocyanurate foam having excellent smoothness of a surface material can be formed by using a hydroxy group-containing polymer containing a polyester alcohol and a specific polyether polyol in a specific amount, in a composition for forming a polyisocyanurate foam containing an HFO as a foaming agent, and thus accomplished the present invention.
- the composition of the present invention is a composition for forming a polyisocyanurate foam, the composition comprising: a polymer having a hydroxy group; a polyisocyanate; and a foaming agent, in which the foaming agent comprises a hydrofluoroolefm; the polymer having a hydroxy group comprises a polyester alcohol, and a polyether polyol having a hydroxyl value of 350 to 700 mgKOH/g and obtained by adding propylene oxide to a trifunctional polyol as a starting substance; the amount of the polyester alcohol is 15 parts by mass or more relative to 100 parts by mass of the composition; and the amount of the polyether polyol is 0.2 to 5 parts by mass relative to 100 parts by mass of the composition.
- the composition has an isocyanate index of 250 or more.
- the viscosity of the polymer having a hydroxy group contained in the composition is 2,500 mPas (25 °C) or more.
- the amount of the polyester alcohol is 20 parts by mass or more relative to 100 parts by mass of the composition.
- polyisocyanurate foam of the present invention is a polyisocyanurate foam formed by foaming the composition.
- the polyisocyanurate foam is a polyisocyanurate foam with a surface material.
- thermal insulating material of the present invention is a thermal insulating material comprising the polyisocyanurate foam.
- composition of the present invention it is possible to provide a composition for forming a polyisocyanurate foam having excellent surface quality of a formed article, in particular, a polyisocyanurate foam having excellent smoothness.
- polyisocyanurate foam of the present invention it is possible to provide a polyisocyanurate foam formed from such a composition.
- thermal insulating material of the present invention it is possible to provide a thermal insulating material comprising such a polyisocyanurate foam.
- the polyisocyanurate foam is a resin-based foam obtained from a polyol and a polyisocyanate similarly to a polyurethane foam, and contains a polymer having a urethane bond. Meanwhile, the polyisocyanurate foam contains many isocyanurate ring structures, and thus is distinguished from the polyurethane foam. An isocyanurate ring generated via a trimerization reaction of a polyisocyanate is bonded to a polymer having a urethane bond.
- a part of the isocyanurate ring may be present in the polyisocyanurate foam as a trimer itself which is not bonded to the polymer having a urethane bond.
- a resin constituting a polyurethane foam is referred to as “urethane resin”, whereas a resin constituting a polyisocyanurate foam is also referred to as “polyisocyanurate resin”.
- the polyisocyanurate foam refers to a polyisocyanurate foam that has an isocyanate index of 150 or more, and is formed by using a trimerization catalyst.
- composition for forming a polyisocyanurate foam of the present invention contains a polyol, a polyisocyanate, and a foaming agent. Mixing of these components promotes a reaction of the polyol and polyisocyanate, thus enabling formation of a polyisocyanurate foam.
- composition for forming a polyisocyanurate foam of the present invention is also referred to as “composition of the present invention”.
- the composition of the present invention contains a polymer having a hydroxy group.
- the polymer contains a polyol, and may also contain a polymer having one hydroxy group.
- the resulting polyester polyol includes a polyester polymer having one hydroxy group.
- such a polymer is also referred to as “polyester alcohol” considering that a polymer having one hydroxy group can be contained as described above.
- the polyol is a compound having a plurality of hydroxy groups, and is preferably a polymeric polyol.
- Specific examples of the polyol include a polyether polyol, a polyester polyol, a polycarbonate polyol, a polylactone polyol, a polybutadiene polyol, a polymer polyol, and a Mannich polyol.
- the amount of the polymer having a hydroxy group is appropriately adjusted depending on the amount of the polyisocyanate.
- the amount of the polymer having a hydroxy group is 20 to 35 parts by mass relative to 100 parts by mass of the composition.
- the polymer having a hydroxy group may be used alone, or two or more types thereof may be used in combination.
- polyether polyol examples include poly oxyalkylene polyols.
- the polyoxyalkylene polyol can be produced by subjecting, for example, a compound having two or more active hydrogen-containing groups such as hydroxy groups, primary amino groups, secondary amino groups, and other active hydrogen-containing groups, as a starting raw material, to a ring-opening addition reaction with an alkylene oxide.
- Example of the starting raw material of the polyoxyalkylene polyol include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1 ,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, trimethylol propane, pentaerythritol, diglycerin, mannose, sucrose, fructose, dextrose, and sorbitol; alkanolamines such as ethanolamine, diethanolamine, triethanolamine, and methyl di ethanolamine; polyvalent amines such as ethylenediamine, tolylenediamine, diethyltoluenediamine, 1,3 -propanediamine, 1,6-hexanediamine, isophoronediamine, diethylenetriamine, and triethylenepentaamine; polyhydric phenols such as bisphenol A, bisphenol F, resorcinol, and hydro
- alkylene oxide to cause a ring-opening addition reaction in the production of the polyoxyalkylene polyol examples include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and styrene oxide. These alkylene oxides may be used alone, or two or more types of thereof may be used in combination.
- polymer polyol examples include polymer polyols in which polymer fine particles such as polyacrylonitrile fine particles and polystyrene fine particles are dispersed in a polyoxyalkylene polyol.
- the polymer polyol includes a polyoxyalkylene polyol, and thus is one type of poly ether polyol.
- the Mannich polyol can be produced by subjecting phenols, aldehydes, alkanolamines, or the like to a condensation reaction, and, as necessary, further performing a ring-opening addition reaction of an alkylene oxide such as ethylene oxide and propylene oxide.
- the Mannich polyol has a plurality of ether bonds in the molecule, and thus is one type of poly ether polyol.
- polyether polyol examples include polyoxyalkylene polyols such as (di)ethylene-based glycol polyether polyol, (di)propylene glycol-based polyether polyol, (di)glycerin-based polyether polyol, trimethylolpropane-based polyether polyol, pentaerythritol- based polyether polyol, sucrose-based polyether polyol, dextrose-based polyether polyol, sorbitol-based polyether polyol, mono(di, tri)ethanolamine-based polyether polyol, ethylenediamine-based polyether polyol, triethylenediamine-based polyether polyol, and bisphenol A-based polyether polyol which are obtained via an addition reaction of ethylene oxide and/or propylene oxide; polymer polyols in which polymer fine particles are dispersed in a poly oxyalkylene polyol, and a Mannich polyol.
- the polyester polyol can be produced by adjusting the production condition of a polyester.
- the polyester polyol include a polyester polyol having a hydroxy group at least both terminals in the main chain. More specific examples of the polyester polyol include a straight-chain polyester polyol and a polyester polyol slightly branched.
- the polyester polyol can be prepared by using an aliphatic, alicyclic, or aromatic dicarboxylic acid, a diol, an optional polyvalent carboxylic acid and/or a trifunctional or more polyol by a known method. [0035]
- the polylactone polyol is a homopolymer or a copolymer of lactone, and examples of the polylactone polyol include a polylactone having a hydroxy group at at least both terminals in the main chain.
- the polylactone polyol can be produced by using, as a starting raw material, for example, a compound having two or more active hydrogen-containing groups as described in the above polyoxyalkylene polyol, and subjecting a lactone such as a-caprolactone, P-butyrolactone, y-butyrolactone, y-valerolactone, 5-valerolactone to a ring-opening addition reaction.
- the polylactone polyol has a plurality of ester bonds in the molecule, and thus is one type of polyester polyol.
- the polycarbonate polyol can be produced by adjusting the production condition of a polycarbonate.
- examples of the polycarbonate polyol include a polycarbonate having a hydroxy group at least both terminals in the main chain.
- examples of the polybutadiene polyol include a polybutadiene having a hydroxy group at least both terminals in the main chain.
- the polymer having a hydroxy group contains a polyester alcohol.
- polyester alcohol refers to a polyester polyol that can contain a polyester having one hydroxy group.
- the polyester alcohol has excellent combustibility and can provide a polyisocyanurate foam suitable for thermal insulating materials.
- the amount of the polyester alcohol is preferably 15 parts by mass or more, more preferably 15 to 30 parts by mass, and even more preferably 20 parts by mass or more, most preferably 20 to 30 parts by mass relative to 100 parts by mass of the composition of the present invention.
- Use of the polyester alcohol in the above specific amount can ensure excellent combustibility. Further, use of the polyester alcohol in the above specific amount also allows control of the timing of volatilization of the HFO with a balance between a relatively hydrophobic polyester alcohol and a hydrophilic trifunctional polyether having a high hydroxy group, which is preferable.
- the hydroxyl value of the polyester alcohol is preferably 150 to 500 mgKOH/g, and more preferably 150 to 300 mgKOH/g.
- the molecular weight of the polyester alcohol is preferably 200 to 800 g/mol, and more preferably 230 to 750 g/mol.
- the number of functional groups of the polyester alcohol is preferably 1 to 4, and more preferably 1.3 to 2.5.
- the hydroxyl value refers to the number of mg of potassium hydroxide required for neutralization of free hydroxyl groups that have been completely acetylated with carboxylic anhydride (for example, acetic anhydride or phthalic anhydride) in 1 g of a sample (see, JIS K 1557 2007).
- the molecular weight of the polymer having a hydroxy group or polyol is the number average molecular weight measured by gel permeation chromatography in terms of polystyrene.
- the polymer having a hydroxy group may contain a polyester polyol having an acid group such as a carboxyl group.
- An acidic moiety of such a polyester polyol can retard a reaction of a polyol and a polyisocyanate, but makes the level of reactivity of the polyol and polyisocyanate approximately the same, thus enabling an increase in the amount of the trimerization catalyst. This can promote a nurate -formation reaction (formation of an isocyanurate ring).
- the polymer having a hydroxy group contains a poly ether polyol having a hydroxyl value of 350 to 700 mgKOH/g and obtained by adding propylene oxide to a trifunctional polyol as a starting substance.
- this polyether polyol is also referred to as “polyether polyol (a)” for the sake of convenience.
- the polyether polyol (a) is a trifunctional polyether polyol having a high hydroxyl value, and has hydrophilic properties which are easily dissolved in water due to its structure. Two hydroxy groups out of three hydroxy groups react in the initial stage in the reaction with a polyisocyanate, but the remaining one hydroxy group reacts a little late due to its conformation. As the reaction proceeds, the polyether polyol (a) forms a hydrophobic structure. However, the one remaining hydroxy group, which does not react, can maintain a hydrophilic structure until a somewhat later stage.
- the hydrofluoroolefm (HFO) as a foaming agent is hydrophobic, and thus moves to the hydrophobic side in the process of the reaction of the polyol and polyisocyanate.
- the HFO also volatiles with a gradual increase in the reaction heat.
- a large number of hydrophobic structures such as polyester alcohol causes the HFO to be dissolved well, and thus the HFO instantly volatiles with a certain reaction heat.
- the instant volatilization of the HFO softens a resin at a specific site due to high solubility of the HFO in the resin. Such softness of resin presumably causes shrinkage of the foam, and thus deteriorates the smoothness of the surface of the surface material.
- the polyether polyol (a) can maintain a hydrophilic structure until a somewhat later stage as described above, and thus can control dissolving of the HFO in a resin obtained from a raw material containing a hydrophobic polyester alcohol in a predetermined amount or more.
- the polyether polyol (a) can solve the problem of softness of resin at a specific site.
- the amount of the polyether polyol (a) is preferably 0.2 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass relative to 100 parts by mass of the composition of the present invention. An excessive amount of the polyether polyol (a) tends to result in occurrence of wrinkles on the surface of the foam.
- the hydroxyl value of the polyether polyol (a) is 350 to 700 mgKOH/g, preferably 400 to 650 mgKOH/g, and more preferably 450 to 600 mgKOH/g.
- the molecular weight of the polyether polyol (a) is, for example, 200 to 500 g/mol, preferably 250 to 450 g/mol, and more preferably 280 to 400 g/mol.
- Examples of the trifunctional polyol which is the starting substance of the polyether polyol (a) include glycerin and trimethylolpropan.
- the viscosity of the polymer having a hydroxy group contained in the composition of the present invention is preferably 2,500 mPas (25°C) or more, more preferably 2,500 to 5,000 mPas (25°C), and even more preferably 2,500 to 4,000 mPas (25°C).
- the viscosity of the polymer having a hydroxy group can be easily increased by, for example, using an aromatic amine-based polyether polyol.
- the viscosity of the polymer having a hydroxy group contained in the composition of the present invention refers to the viscosity of the entire polymer having a hydroxy group.
- the viscosity can be determined from the viscosity and the mass fraction of each polymer having a hydroxy group.
- the viscosities of polymers having a hydroxy group are respectively defined as V 1 , V 2 y, and V n
- the mass fractions of polymers having a hydroxy group in the entire polymer having a hydroxy group are respectively defined as W 1 , W 2 ,”’, and W n .
- the viscosity is determined by the following equation.
- Viscosity of polymer having hydroxy group cxp/W 1 x 1 n( V 1 ) + W 2 x ln(V 2 ) + ••• + W n x In (V n )) [0054]
- the polyisocyanate is a compound having a plurality of isocyanate groups.
- the polyisocyanate include aliphatic, alicyclic, aromatic, or aromatic-aliphatic polyisocyanates.
- the polyisocyanate include modified products of these polyisocyanates.
- the modified product of a polyisocyanate include polyisocyanates having a structure such as uretdione, isocyanurate, urethan, urea, allophanate, biuret, carbodiimide, iminooxadiazinedione, oxadiazinetrione, and oxazolidone.
- polyisocyanate an isocyanate group -containing prepolymer obtained by reacting a polyol and a polyisocyanate may also be used.
- the polyisocyanate may be used alone, or two or more types thereof may be used in combination.
- examples of the aromatic polyisocyanate include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate.
- Examples of the alicyclic polyisocyanate include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and dimethyldicyclohexylmethane diisocyanate.
- Examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, and hexamethylene diisocyanate.
- the polyisocyanate preferably has an isocyanate group content of 20 to 40 mass%, and even more preferably 25 to 35 mass%.
- the isocyanate group content is determined in accordance with JIS K 1603-1:2007.
- the amount of the polyisocyanate can be indicated by, for example, the isocyanate index.
- the isocyanate index is adjusted to high from the viewpoint of formation of the polyisocyanurate foam.
- the isocyanate index is preferably 250 or more, more preferably 250 to 500, and even more preferably 250 to 350.
- the isocyanate index is a value obtained by multiplying the ratio of the isocyanate group of the polyisocyanate to the total of active hydrogen, which reacts with the isocyanate group, of the polyol, foaming agent, and the like by 100.
- the foaming agent is generally classified into a physical foaming agent and a chemical foaming agent.
- the foaming agent may be used alone, or two or more types thereof may be used in combination.
- the physical foaming agent and the chemical foaming agent may be used in combination.
- the amount of the foaming agent is preferably 0.5 to 15 parts by mass, and more preferably 2.0 to 12 parts by mass relative to 100 parts by mass of the composition of the present invention.
- the physical foaming agent examples include fluorocarbons such as a hydrochlorofluorocarbon (HCFC) and a hydrofluorocarbon (HFC); hydrofluoroolefin (HFO), hydrocarbons such as heptane, hexane, pentane, and cyclopentane, and carbon dioxide.
- examples of the chemical foaming agent include water, and carboxylic acids such as formic acid, and acetic acid.
- the composition of the present invention contains hydrofluoroolefin as a foaming agent.
- the hydrofluoroolefin (HFO) is a foaming agent suitably used as a physical foaming agent that does not correspond to fluorocarbons.
- the HFO is an olefin compound containing a fluorine atom, and includes an HFO further containing a halogen atom other than the fluorine atom (for example, a chlorine atom).
- an HFO further containing a chlorine atom is also referred to as “hydrochlorofluoroolefin (HCFO)”.
- the composition of the present invention preferably contains a hydrochlorofluoroolefin. Note that the HFO and the HCFO are distinguished in some cases, but in the present specification, the HFO includes the HCFO as described above.
- the number of carbon atoms of the hydrofluoroolefin is preferably 2 to 5.
- the number of fluorine atoms of the hydrofluoroolefin is preferably 3 to 7.
- the molecular weight of the HFO is preferably 100 to 200 g/mol.
- the HFO include 1, 2, 3,3,3- pentafluoropropene, 1,3,3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene, 1, 2,3,3- tetrafluoropropene, 3,3,3-trifluoropropene, 1,1,1,4,4,4-hexafluorobutene, l-chloro-3,3,3- trifluoropropene, 2-chloro-3,3,3-trifluoropropene, 3, 3 -dichloro-3 -fluoropropene, 2-chloro- 1,1,1,4,4,4-hexafluorobutene, and 2-chloro-l,l,l,3,4,4,4-heptafluorobutene.
- the HFO may be any of a cis-isomer and a trans-isomer. These HFOs may be used alone, or two or more types thereof may be used in combination. [0063]
- the amount of the hydrofluoroolefin is, for example, 0.5 to 15 parts by mass, and preferably 2 to 12 parts by mass relative to 100 parts by mass of the composition of the present invention.
- the composition of the present invention preferably contains water as a foaming agent from the viewpoint of improving the appearance and strength of the foam.
- the amount of the water is, for example, 0.2 to 10 parts by mass, and preferably 0.5 to 2 parts by mass relative to 100 parts by mass of the composition of the present invention.
- the composition of the present invention preferably contains a catalyst.
- the catalyst include a catalyst for promoting a reaction of water and a polyisocyanate (foaming catalyst), a catalyst for promoting a reaction of a polyol and a polyisocyanate (resinification catalyst), and a catalyst for promoting a trimerization reaction of a polyisocyanate (i.e., formation of an isocyanurate ring) (trimerization catalyst).
- the composition of the present invention is a composition for forming a polyisocyanurate foam, and thus contains at least a trimerization catalyst.
- foaming catalyst examples include dimorpholine-2,2-diethylether, N,N,N’,N”,N”-pentamethyldiethylenetriamine, bis(dimethylaminoethyl)ether, 2-(2- diethylaminoethoxy)ethanol, and N,N,N’-trimethyl-N’-hydroxyethyl-bisaminoethyl ether.
- the resinification catalyst examples include amine catalysts such as triethylenediamine, N,N-dimethylcyclohexylamine, N,N,N’,N’-tetramethylethylenediamine, N,N,N ’ ,N ” ,N ” ’ ,N ” ’ -hexamethyltri ethylenetetramine , N -dimethy laminoethy 1 -N ’ - methylpiperazine, N,N,N’,N’-tetramethylhexamethylenediamine, 1,2-dimethylimidazole, 1- isobutyl-2 -methylimidazole, N,N-dimethylaminopropylamine, and bis(dimethylaminopropyl)amine; alkanol amine catalysts such as N,N-dimethylaminoethanol,
- N,N,N’-trimethylaminoethylethanolamine N-(3-dimethylaminopropyl)-N,N- diisopropanolamine, N-(2-hydroxyethyl)-N’-methylpiperazine, N,N -dimethylaminohexanol, and 5-dimethylamino-3-methyl-l-pentanol
- metal catalysts such as stannous octanoate, stannic dibutyl dilaurate, lead octylate, bismuth carboxylate, and a zirconium complex.
- amine catalysts and alkanolamine catalysts amine carbonates synthesized by adding carbonic acid, and amine carboxylic acid salts synthesized by adding carboxylic acid such as formic acid, and acetic acid may be used.
- trimerization catalyst examples include aromatic compounds such as 2,4,6- tris(dialkylaminoalkyl)hexahydro-S-triazine, l,3,5-tris(N,N-dimethylaminopropyl)hexahydro-S- triazine, 2,4,6-tris(dimethylaminomethyl)phenol, and 2,4-bis(dimethylaminomethyl)phenol; carboxylic acid alkali metal salts such as potassium acetate, potassium 2 -ethylhexanoate, and potassium octylate; and quaternary ammonium salts of carboxylic acid or other onium salts. [0069]
- the amount of the catalyst is, for example, 0.1 to 5 parts by mass, and preferably 0.2 to 3 parts by mass relative to 100 parts by mass of the composition of the present invention.
- the catalyst may be used alone, or two or more types thereof may be used in combination.
- the composition of the present invention may contain a foam stabilizer.
- the foam stabilizer is preferably a surfactant.
- the surfactant includes ionic surfactants such as an anionic surfactant, a cationic surfactant, and an amphoteric surfactant; and nonionic surfactants.
- the surfactant is preferably a nonionic surfactant.
- Preferred specific examples of the surfactant include silicone-based surfactants and fluorine-based surfactants.
- the amount of the foam stabilizer is preferably 1 to 5 parts by mass relative to 100 parts by mass of the composition of the present invention.
- the foam stabilizer may be used alone, or two or more types thereof may be used in combination. [0071]
- the composition of the present invention may contain a flame retardant.
- the flame retardant is preferably a phosphorus-based flame retardant.
- Preferred specific examples of the phosphorus-based flame retardant include tricresyl phosphate (TCP), triethyl phosphate (TEP), tris([3-chloroethyl)phosphate (TCEP), and tris([3-chloropropyl)phosphate (TCPP).
- solid (powder) flame retardants such as ammonium polyphosphate and amorphous phosphorus are used as necessary.
- the amount of the flame retardant is preferably 3 to 15 parts by mass relative to 100 parts by mass of the composition of the present invention.
- the flame retardant may be used alone, or two or more types thereof may be used in combination.
- composition of the present invention may appropriately contain, as other components, additives such as a coloring agent, a filler, an antioxidant, an ultraviolet absorbent, a thermal stabilizer, a photostabilizer, a plasticizer, an antifungal agent, an antibacterial agent, a crosslinking agent, a solvent, a viscosity reducing agent, a pressure reducing agent, and a separation preventing agent, as necessary.
- additives such as a coloring agent, a filler, an antioxidant, an ultraviolet absorbent, a thermal stabilizer, a photostabilizer, a plasticizer, an antifungal agent, an antibacterial agent, a crosslinking agent, a solvent, a viscosity reducing agent, a pressure reducing agent, and a separation preventing agent, as necessary.
- additives such as a coloring agent, a filler, an antioxidant, an ultraviolet absorbent, a thermal stabilizer, a photostabilizer, a plasticizer, an antifungal agent, an antibacterial agent, a crosslinking agent, a
- composition of the present invention can be prepared by mixing various components appropriately selected as necessary.
- the composition of the present invention can be prepared by mixing a polyol component containing a polymer having a hydroxy group and a polyisocyanate component composed of a polyisocyanate.
- the composition of the present invention is constituted by a stock solution containing a pair of a polyol component and a polyisocyanate component in many cases.
- the polyol component contains a polymer having a hydroxy group, and usually contains a foaming agent, a foam stabilizer, a catalyst.
- the polyol component may further contain a flame retardant or an additional additive.
- the polyisocyanate component is composed of a polyisocyanate, and may also contain additives such as a foaming agent and a flame retardant.
- the foaming agent may be compounded during mixing of the polyol component and the polyisocyanate component.
- the polyisocyanurate foam of the present invention is obtained by foaming the composition for forming a polyisocyanurate foam described above.
- the composition of the present invention contains a polyol and a polyisocyanate. Thus, mixing of both components promotes reaction, thus enabling formation of a polyisocyanurate foam.
- the temperature at the time of forming the polyisocyanurate foam is preferably 20 to 80°C.
- the method for foaming the polyisocyanurate foam is not particularly limited, and known foaming means, for example, hand mixing foaming, simple foaming, an injection method, a froth injection method, and a spraying method can be utilized.
- the method for forming a polyurethane foam is not particularly limited, and known forming means such as mold forming, slab forming, laminate forming, and on-site foam forming can be utilized.
- the polyisocyanurate foam of the present invention can be suitably used for various applications such as marine vessels, vehicles, plants, thermal insulating devices, building, civil engineering, furniture, and interior decorations.
- the polyisocyanurate foam of the present invention can be used for thermal insulating materials, specifically, thermal insulating devices, for example, thermal insulating members of cold storage warehouses and freezing storage warehouses.
- the polyisocyanurate foam of the present invention is preferably a polyisocyanurate foam with a surface material, and even more preferably a polyisocyanurate foam with a metal surface material.
- the polyisocyanurate foam with a surface material is a plate-shaped composite material in which a surface material such as a foil or a plate is atached to one surface or both surfaces of a polyisocyanurate foam.
- the polyisocyanurate foam with a surface material can be used as a thermal insulating material for various applications.
- an adherend such as a surface material
- examples of the adherend include aluminum and alloys thereof, stainless steel and alloys thereof, iron and alloys thereof, and copper and alloys thereof.
- a surface to which the composition of the present invention is atached may be subjected to coating as desired.
- the coating include organic polymer coating agents such as polyester resin.
- the thickness of the adherend is preferably 0.2 to 0.6 mm.
- the density of the polyisocyanurate foam of the present invention is, for example, 5 to 80 kg/m 3 , preferably 25 to 70kg/m 3 , and even more preferably 40 to 65 kg/m 3 .
- the density of the polyisocyanurate foam is measured in accordance with JIS K 7222:2005.
- the thermal conductivity is preferably 0.0185 to 0.0280 W/nrK, and even more preferably 0.0190 to 0.0260 W/nrK.
- the thermal conductivity is measured in accordance with JIS A 1412-2: 1999.
- the polyisocyanurate foam of the present invention can exhibit excellent flame retardancy.
- excellent flame retardancy means that the total heat release as measured by the heat release test method (cone calorimeter method) of ISO 5660 is 8 MJ/m 2 or less.
- the total heat release is preferably 8 MJ/m 2 or less, and even more preferably 7 MJ/m 2 or less
- the maximum heat release rate is preferably 150 kw/m 2 or less, and even more preferably 60 kw/m 2 or less
- the heating loss is preferably 50 wt.% or less, and even more preferably 20 wt.% or less.
- the measurement method by the heat release test method (cone calorimeter method) of ISO 5660 is according to the method described in Examples described later.
- the polyisocyanurate foam of the present invention has excellent flame retardancy, and thus can be applied to various applications that require flame retardancy.
- the flame -retardant polyisocyanurate foam of the present invention can be advantageously utilized as building materials and thermal insulating materials used for multiple dwelling houses such as apartments, detached houses, various facilities including school building and commercial building, pipe arrangement in the factory, automobiles, and railway vehicles.
- polyisocyanurate foam of the present invention can also be used in the production of on-site fabrication type thermal insulating materials and dew condensation preventing materials used by a spraying method, and building materials such as a panel and a board in the factory line.
- thermo insulating material comprising the flame-retardant polyisocyanurate foam of the present invention.
- a building material comprising the flame -retardant polyisocyanurate foam of the present invention.
- the thermal insulating material of the present invention is a thermal insulating material comprising the polyisocyanurate foam of the present invention described above.
- Examples of the thermal insulating material include thermal insulating members, for example, thermal insulating devices of cold storage warehouses and freezing storage warehouses.
- the thermal insulating material of the present invention can be used for multiple dwelling houses such as apartments, detached houses, various facilities including school building and commercial building, freezing storage warehouses, bathtubs, pipe arrangement in the factory, automobiles, and railway vehicles.
- a mixed solution prepared by mixing a polymer having a hydroxy group, a foaming agent, and the like (polyol component) and a polyisocyanate are mixed at a predetermined compounding ratio, and then injected into a mold including metal surface materials disposed on the top and bottom of the mold at a constant temperature and pressure by using a high-pressure foaming machine, thus preparing a polyisocyanurate foam.
- the depth of a part around the injection portion of the lower surface of the polyisocyanurate foam after a lapse of a predetermined time is measured.
- High-pressure foaming machine (HK-650P, available from Hennecke)
- Stopwatch (having a function of measuring a lap time)
- Polyester alcohol A polyester alcohol [PHANTOL 6301: available from Showa Denko Materials Co., Ltd.], number of functional groups: 1.7, hydroxyl value: 250 mgKOH/g, viscosity: 2,500 mPa-s (25°C)
- Polyol B polyester polyol [Maximol RFK-505: available from Kawasaki Kasei Chemicals Ltd.], number of functional groups: 2.0, hydroxyl value: 250 mgKOH/g, viscosity: 5,300 mPa-s (25°C)
- Polyol C aromatic amine-based polyether polyol [SBU polyol Z450: available from Sumika Covestro Urethane Co., Ltd.], number of functional groups: 4, hydroxyl value: 340 mgKOH/g, viscosity: 12,000 mPa-s (25°C)
- Polyol D polyether polyol [SBU polyol S429: available from Sumika Covestro Urethane Co., Ltd.], number of functional groups: 3, hydroxyl value: 250 mgKOH/g, viscosity: 230 mPa-s (25°C)
- Polyol E propoxylated polyether polyol [MULTRANOL 9158: available from Sumika Covestro Urethane Co., Ltd.], number of functional groups: 3, hydroxyl value: 470 mgKOH/g, viscosity: 450 mPa-s (25 °C)
- Polyol F propoxylated polyether polyol [SUMIPHEN TM: available from Sumika Covestro Urethane Co., Ltd.], number of functional groups: 3, hydroxyl value: 370 mgKOH/g, viscosity: 600 mPa-s (25 °C)
- Polyol G propoxylated polyether polyol [SUMIPHEN VO: available from Sumika Covestro Urethane Co., Ltd.], number of functional groups: 3, hydroxyl value 550 mgKOH/g, viscosity: 1,600 mPa-s (25°C)
- Polyol H polyester polyol [Maximol RAK-253: available from Kawasaki Kasei Chemicals Ltd.], number of functional groups: 2, hydroxyl value: 360 mgKOH/g, viscosity: 3,200 mPa-s (25°C), acid value: 180 mgKOH/g
- Polyol I propoxylated polyether polyol [SBU polyol H438: available from Sumika Covestro Urethane Co., Ltd.], number of functional groups: 3, hydroxyl value: 390 mgKOH/g, viscosity: 350 mPa-s (25°C)
- Polyisocyanate Polymeric MDI [SUMIDULE 44V20 L: available from Sumika
- Foaming agent B HCFO-1233zd (molecular weight: 130)
- Foaming agent C HFO-1224yd (molecular weight: 148.5)
- Foaming agent D HFO-1336mzz (Z)(molecular weight: 164)
- Catalyst A dimorpholine-2,2-diethylether
- Catalyst B 1,2-dimethylimidazole (70 mass%) + diethylene glycol (30 mass%)
- Catalyst C potassium octylate
- Foam stabilizer silicone-based nonionic surfactant [TEGOSTAB B8460: available from Evonik Japan Co., Ltd.]
- a predetermined amount of a foaming agent is added to the mixed solution confirmed in 2), and then the contents are sufficiently mixed. After the mixing, a foaming agent that has been weighed and reduced in amount is added, and the contents are mixed again.
- Tables 1 and 2 show the formulation of polyol components (parts by mass) Production of polyisocyanurate foam>
- a composition for forming a foam is injected into the center portion of a mold that has been heated to 55°C in advance and includes aluminum surface materials disposed on the top and bottom of the mold (inside dimensions: length: 2,000 mm, width: 900 mm, thickness: 100 mm).
- the composition is injected in an amount such that the mold is not fully filled with the polyisocyanurate foam in the lengthwise direction of the mold. Semicircular both ends of the polyisocyanurate foam are cut off, thus sampling a rectangular parallelepiped. The weight and volume of the sample are measured, and the just density (kg/m 3 ) is calculated. The density of the sample filled in the mold refers to a just density.
- the just weight of the mold (inside dimensions: length: 2,000 mm, width: 900 mm, thickness: 100 mm) is calculated from the just density.
- the composition is injected in an amount 1.25 times the calculated just weight, thus producing a polyisocyanurate foam formed article.
- a linear scale is placed so as to be a right angle on the surface material on the lower surface side in which urethane has been injected.
- the maximum value of the gap between the linear scale and the surface material is measured by using a thickness gauge (Niigata Seiki Co., Ltd., 100ML) or a taper gauge (Niigata Seiki Co., Ltd., 270A).
- Tables 1 and 2 show the obtained results as “maximum recession of the injection lower surface”.
- ⁇ Surface was smooth, and the image of the fluorescent lamp was observed as a straight line. o; Surface was smooth, and the image of the fluorescent lamp was observed as a straight line, but the surface appeared to have a slight recess and protrusion. x; Surface was not smooth, and weaving of the image of the fluorescent lamp was observed.
- a mixed solution in an amount that does not overflow was injected into a 2L DESCUP at a predetermined temperature and pressure, and the mixed solution was touched with disposable chopsticks during injection.
- the time period until the mixed solution begins to form threads was measured as the gelling time (second). Tables 1 and 2 show the measurement results.
- the flame retardancy (total heat release) of the polyisocyanurate foam was measured by the following apparatus under the following conditions in accordance with ISO 5660. Tables 1 and 2 show the evaluation results.
- Sample position 60 mm (distance from a cone heater to a surface material which is a sample surface)
- Sample size 100 x 100 x 40 mm (cut out at a portion including a surface material of a lower surface having no recession at the center portion of the panel)
- Tables 1 and 2 show that polyisocyanurate foams of Examples have excellent surface quality of a formed article compared to Comparative Examples 1 to 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020172551A JP2022064051A (en) | 2020-10-13 | 2020-10-13 | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material |
EP20213890.5A EP4011945A1 (en) | 2020-12-14 | 2020-12-14 | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material |
PCT/EP2021/077854 WO2022078899A1 (en) | 2020-10-13 | 2021-10-08 | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4229119A1 true EP4229119A1 (en) | 2023-08-23 |
Family
ID=78080360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21786978.3A Pending EP4229119A1 (en) | 2020-10-13 | 2021-10-08 | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4229119A1 (en) |
JP (1) | JP2023551761A (en) |
WO (1) | WO2022078899A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4301432B2 (en) | 2003-01-24 | 2009-07-22 | 東洋ゴム工業株式会社 | Method for producing polyurethane foam molded article |
WO2012105657A1 (en) * | 2011-02-02 | 2012-08-09 | 旭硝子株式会社 | Process for production of hard foam synthetic resin |
RU2609019C2 (en) | 2011-10-14 | 2017-01-30 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Hybrid polyester-polyether polyols for improved demold expansion in polyurethane rigid foams |
EP3307799A4 (en) * | 2015-06-12 | 2018-11-07 | Icp Adhesives And Sealants, Inc. | Marine foam |
EP3354671A1 (en) * | 2017-01-31 | 2018-08-01 | Covestro Deutschland AG | Method for the preparation of polyurethane (pur) and polyurethane/polyisocyanurate (pur/pir) - rigid foams |
-
2021
- 2021-10-08 WO PCT/EP2021/077854 patent/WO2022078899A1/en unknown
- 2021-10-08 JP JP2023522460A patent/JP2023551761A/en active Pending
- 2021-10-08 EP EP21786978.3A patent/EP4229119A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022078899A1 (en) | 2022-04-21 |
JP2023551761A (en) | 2023-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002536516A (en) | Water-foamed rigid polyurethane foam with fine cells | |
JP7477519B2 (en) | Rigid polyurethane foam formulations and foams made therefrom | |
JP2022523800A (en) | HSFO-containing isocyanate-reactive compositions, related foam-forming compositions, and PUR-PIR foams. | |
JP2022524030A (en) | Their use in the manufacture of polyol blends and PUR-PIR foam forming compositions | |
JPWO2010052860A1 (en) | Foamable composition for polyurethane foam and polyurethane foam | |
CN113272352B (en) | Rigid polyurethane foam comprising a silicone-rich nucleating agent | |
JP7508443B2 (en) | Environmentally friendly polyurethane spray foam system | |
KR102048074B1 (en) | Polymer composition for heat insulating material using recycled pet | |
BR112014029715A2 (en) | polyol, method for producing rigid polyurethane foams or rigid polyisocyanurate foams, rigid polyurethane foam, use of rigid polyurethane foams and polyol component. | |
JP2003246829A (en) | Process for preparing rigid polyisocyanurate foam | |
EP4229119A1 (en) | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material | |
EP4229108B1 (en) | Composition for forming polyurethane foam, polyurethane foam, and thermal insulating material | |
KR102461461B1 (en) | Polyol composition for polyisocyanuarte foam comprising eco-friendly blowing agents and polyisocyanurate foam for pipe cover using the same | |
EP4011945A1 (en) | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material | |
JP5263645B2 (en) | Water foaming rigid polyurethane foam composition and rigid polyurethane foam | |
EP3798245A1 (en) | Composition for forming polyisocyanurate foam and polyisocyanurate foam | |
AU2021295848A1 (en) | Polyisocyanurate resin foam having high compressive strength, low thermal conductivity, and high surface quality | |
EP4011929A1 (en) | Composition for forming polyurethane foam, polyurethane foam, and thermal insulating material | |
JP2022064051A (en) | Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material | |
JP7491726B2 (en) | Polyurethane foam raw material composition | |
JP2022064050A (en) | Composition for forming polyurethane foam, polyurethane foam, and thermal insulating material | |
JP2021147530A (en) | Composition for polyurethane foam raw material | |
EP4121471A1 (en) | Composition for polyurethane foam raw material | |
JP2024056519A (en) | Composition for ingredient of polyisocyanurate foam, and polyisocyanurate foam | |
JP2023094361A (en) | Composition for preparing polyisocyanurate foam and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230515 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240603 |