EP4217197A1 - Composite pane having electrically controllable optical properties - Google Patents

Composite pane having electrically controllable optical properties

Info

Publication number
EP4217197A1
EP4217197A1 EP21766619.7A EP21766619A EP4217197A1 EP 4217197 A1 EP4217197 A1 EP 4217197A1 EP 21766619 A EP21766619 A EP 21766619A EP 4217197 A1 EP4217197 A1 EP 4217197A1
Authority
EP
European Patent Office
Prior art keywords
pane
layer
functional element
state
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21766619.7A
Other languages
German (de)
French (fr)
Inventor
Michael Labrot
Adil JAAFAR
Amaury PATISSIER
Laurent Maillaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP4217197A1 publication Critical patent/EP4217197A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10513Electrochromic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/083Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer infrared absorbing

Definitions

  • the present invention relates to a composite pane with electrically switchable optical properties and a method for producing a composite pane.
  • a vehicle occupant closes a mechanical shutter of a sunroof, they often do more than just reduce the amount of light entering the vehicle interior. Instead, it may be intended to be protected from heat from thermal radiation entering the vehicle.
  • This dimming function can be achieved by a composite pane with electrically controllable optical properties that allow light transmission to be altered in response to an applied voltage. Electrochromic materials can be used for this.
  • the inventors have found that, with some electrochromic materials, there can be a shift in the transmission spectra into the infrared range between the bright state and the darkened state. In this case, the pane is darkened in the visible spectral range, but the heat radiation enters the interior of the vehicle more intensely. This can lead to uncomfortable thermal irritation for the vehicle occupant.
  • a composite pane with electrically controllable optical properties with an outer pane and an inner pane, which are connected to one another over an intermediate layer; an electrochromic functional element with electrically controllable optical properties within the intermediate layer, in which the total solar energy transmission TTS is higher in the darkened state than in the bright state and/or the energy transmission TE is higher in the darkened state than in the bright state; and at least one infrared protective layer which is arranged or applied on an inside surface of the inner pane facing the intermediate layer, on an inside surface of the outer pane facing the intermediate layer or within the intermediate layer, the infrared protective layer having at least one silver-containing layer.
  • the infrared protective layer interacts with the electrochromic functional element in such a way that the total solar energy transmission TTS through the laminated pane (100) in the darkened state is lower than in the bright state and/or the energy transmission TE through the laminated pane (100) in the darkened state is lower than is in the bright state.
  • the infrared protective layer has at least one silver-containing layer.
  • the infrared protection layer blocks infrared radiation and allows visible light to pass through.
  • This laminated glass pane also prevents the ingress of infrared radiation if there is a shift in the transmission spectra as a result of the switching of the electrochromic functional element.
  • the laminated glass pane can be used, for example, in the automotive sector. In this case, the inner pane is adjacent to the vehicle interior, whereas the outer pane is adjacent to the outside environment.
  • Electrochromic functional elements change from darkened to bright states by means of reversible redox reactions.
  • the visible spectral range or visible light is understood to mean the spectral range from 380 nm to 780 nm.
  • blocking infrared radiation means that the infrared protective layer at least partially reflects and/or absorbs infrared radiation.
  • the infrared protection layer particularly preferably reflects infrared radiation.
  • the reflection of the infrared radiation has the advantage that the laminated pane does not heat up as much.
  • An electrochromic functional element is an element which has optical properties that can be switched, controlled or regulated. The transmission of light can be actively influenced by applying an electrical voltage. Installed in the laminated pane, a user can, for example, switch from a transparent (lighter state) to a less transparent state, ie dark or darkened state of the laminated pane. Gradations are also possible.
  • Electrochromic functional elements which the laminated pane according to the invention can have are known to the person skilled in the art. These can be constructed, for example, as disclosed in US Pat. No. 5,321,544, US Pat. No. 5,404,244, US Pat. No. 7,372,610 B2, US Pat.
  • the electrochromic functional element preferably includes in the following order:
  • the first surface electrode and the second surface electrode are intended to be electrically connected to a voltage source. All of the layers mentioned are preferably firmly connected to one another. All of the layers mentioned are preferably arranged congruently with one another.
  • the working electrode is also often referred to as an electrochromic layer and the counter-electrode as an ion storage device.
  • the working electrode and the counter-electrode are capable of reversibly storing charges.
  • the oxidation states of the working electrode in the stored and stored state differ in their coloring, with one of these states being light and another darkened.
  • the storage reaction can be controlled via the externally applied potential difference.
  • the color of the electrochromic functional element that can be set via the electrical potential is preferably set in a color range from blue to black; the color that can be set is in particular black.
  • the electrical potential range for changing between light and dark of the electrochromic functional element is preferably 0 V to 7 V and particularly preferably 0.5 V to 5 V direct voltage.
  • the first surface electrode and the second surface electrode are preferably transparent and electrically conductive.
  • the first flat electrode and the second flat electrode particularly preferably contain silver, gold, copper, nickel, chromium, tungsten, graphite, molybdenum and/or a transparent conductive oxide, preferably indium tin oxide (ITO), fluorine-doped tin oxide (SnÜ2:F) , antimony-doped tin oxide, aluminum-doped zinc oxide, boron-doped zinc oxide or gallium-doped zinc oxide.
  • ITO indium tin oxide
  • SnÜ2:F fluorine-doped tin oxide
  • antimony-doped tin oxide aluminum-doped zinc oxide
  • boron-doped zinc oxide or gallium-doped zinc oxide preferably indium tin oxide (ITO), fluorine-doped tin oxide (SnÜ2:F) , antimony-doped tin oxide, aluminum-doped zinc oxide, boron-doped zinc oxide or gallium-d
  • first surface electrode and/or the second surface electrode are based on a metal, they preferably have a total layer thickness of 1 nm to 50 nm, preferably 2 nm to 30 nm, particularly preferably 3 nm to 15 nm. If the first surface electrode and/or the second surface electrode is based on a transparent conductive oxide, they preferably have a total thickness of 20 nm to 2 ⁇ m, particularly preferably 50 nm to 1 ⁇ m, very particularly preferably 100 nm to 600 nm and in particular from 300 nm to 500 nm. This achieves advantageous electrical contacting of the working electrode and counterelectrode and good horizontal conductivity of the layers. According to the invention, the first and second surface electrodes are thin layers.
  • a polymeric material If something is designed “on the basis” of a polymeric material, the majority of it, ie at least 50%, preferably at least 60% and in particular at least 70%, consists of this material. It can also contain other materials such as stabilizers or plasticizers.
  • the total layer resistance of the first flat electrode and the second flat electrode is preferably 0.01 ohms/square to 100 ohms/square, particularly preferably ohms/square to 20 ohms/square, very particularly preferably 0.5 ohms/square to 5 ohms/square . In this area there is a sufficiently large current flow between the electrodes of the electrochromic functional element ensured, which enables optimal functioning of the working electrode and counter electrode.
  • the working electrode can be based on an inorganic or organic material.
  • the working electrode is preferably based on tungsten oxide, but can also be based on molybdenum, titanium or niobium oxide and mixtures thereof.
  • the working electrode can also be based on polypyrrole, PEDOT (poly-3,4-ethylenedioxythiophene), and polyaniline and mixtures thereof.
  • the counter-electrode can be formed, for example, on the basis of titanium oxide, cerium oxide, iron(II) hexacyanidoferrate(II/II) (Fe4[Fe(CN)6h) and nickel oxide, as well as mixtures thereof.
  • the electrolyte is ionically conductive and may be based on a layer of hydrated tantalum oxide and a layer of hydrated antimony oxide. Alternatively, the electrolyte can also be based on a polymer that contains lithium ions or be based on tantalum(V) oxide and/or zirconium(IV) oxide.
  • the electrochromic functional element contains no electrolyte, with the working electrode itself functioning as the electrolyte.
  • the working electrode itself functioning as the electrolyte.
  • tungsten oxide can assume the function of an electrolyte.
  • the electrochromic functional element preferably also includes a first film and a second film.
  • the first surface electrode is arranged on the first foil with a surface facing away from the working electrode, and the second surface electrode is arranged on the second foil with a surface facing away from the counter-electrode.
  • the first film and/or the second film are preferably transparent.
  • the first film and/or the second film are preferably based on transparent polyethylene terephthalate, polycarbonate and/or polycaprolactone.
  • the total layer thickness of the electrochromic functional element is preferably from 0.2 mm to 0.5 mm for this embodiment.
  • the outer pane and the inner pane each have an outside surface which faces away from the intermediate layer. If something is arranged "area-wise between the outer pane and the inner pane", this means within the meaning of the invention that it can be arranged on the electrochromic functional element, between the inner surface of the outer pane or the inner surface of the inner pane. In this case, it can be applied spatially directly to the outer pane or the inner pane or it can be arranged on the inner pane or the outer pane by additional layers, such as a covering print.
  • area it is meant that something extends over a majority of the entire major surface of the laminated pane. Preferably something extends over at least 60%, particularly preferably over at least 70%, very particularly preferably over at least 90% and in particular over 100% over the main surface of the laminated pane.
  • the expression "bright state” in connection with the electrochromic functional element means in the context of the invention that the electrochromic functional element has a maximum light transmittance for visible light with a light transmittance (TL) of at least 15%, preferably at least 30%, particularly preferably at least 50% .
  • the expression “dark state” or “darkened state” in connection with the electrochromic functional element means that the electrochromic functional element has a minimum light transmission for visible light with a light transmittance (TL) of at most 10%, preferably at most 5% and in particular at most 1%. having.
  • the light transmission through the laminated pane (100) in the darkened state of the electrochromic functional element (107) is less than or equal to 15%, preferably less than or equal to 10%. With light transmissions of 15% or less, the brightness is noticeably reduced for an occupant of a vehicle in which such a composite pane is used, for example, as a roof pane. This improves the comfort of the vehicle.
  • the infrared protective layer is arranged over the area between the outer pane and the functional element. This achieves the technical advantage, for example, that the infrared light cannot enter the functional element and cannot heat it up, and the best thermal comfort is achieved.
  • the infrared protective layer is arranged over the area between the inner pane and the electrochromic functional element. This achieves the technical advantage, for example, that entry of infrared light can be effectively suppressed
  • the infrared protective layer is applied to the inside surface of the outer pane or to a polyethylene terephthalate layer, with the polyethylene terephthalate layer being arranged within the intermediate layer.
  • the layers of the infrared protective layer can be applied to the polyethylene terephthalate layer in a coating process.
  • the polyethylene terephthalate layer serves as a substrate for the metal layers. This also achieves the technical advantage, for example, that the infrared light can be effectively blocked.
  • the infrared protective layer comprises at least one silver layer and preferably several silver layers.
  • Such silver layers have a particularly advantageous electrical conductivity combined with high transmission in the visible spectral range.
  • the thickness of a silver layer is preferably from 5 nm to 50 nm, particularly preferably from 8 nm to 25 nm. In this range for the thickness of the silver layer, an advantageously high transmission in the visible spectral range and a particularly advantageous electrical conductivity are achieved.
  • At least one dielectric layer is preferably arranged in each case between two adjacent silver layers of the coating.
  • a further dielectric layer is preferably arranged below the first and/or above the last silver layer.
  • a dielectric layer contains at least a single layer of a dielectric material, for example containing a nitride such as silicon nitride or an oxide such as aluminum oxide.
  • dielectric layers can also comprise a plurality of individual layers, for example individual layers of a dielectric material, smoothing layers, matching layers, blocking layers and/or antireflection layers.
  • the thickness of a dielectric layer is, for example, from 10 nm to 200 nm. This achieves the technical advantage, for example, that infrared light can be effectively blocked. Infrared light blocking is achieved particularly well when the infrared protective layer has at least two Silver layers, particularly preferably three silver layers and in particular exactly three silver layers.
  • the energy transmission TE in the bright state of the laminated pane in the spectral range from 800 nm to 2500 nm is less than or equal to 25%, preferably less than or equal to 15% and in particular less than or equal to 5%.
  • the total solar energy transmission TTS is preferably less than or equal to 35%, particularly preferably less than or equal to 25%, in particular less than or equal to 15% for the laminated pane in the bright state. This also achieves the technical advantage, for example, that heating behind the laminated glass pane is effectively reduced.
  • the light transmission TL through the compound pane in the bright state of the electrochromic functional element is preferably greater than or equal to 5%, particularly preferably greater than or equal to 10% and very particularly preferably greater than or equal to 20%.
  • the light transmission TL through the compound pane in the darkened state of the electrochromic functional element is preferably less than or equal to 10%, particularly preferably less than or equal to 5% and in particular less than or equal to 1%. These are degrees of transmission for light which, in the respective case (bright or darkened), are perceived as pleasant by the occupants of a vehicle with such a laminated pane.
  • Energy transmission TE and total solar energy transmission TTS are a measure of the amount of heat entering a vehicle or building through the composite pane. Very high TE or TTS values therefore mean that a building or vehicle absorbs a lot of heat. This generally worsens the thermal comfort for the occupants or occupants.
  • the averaging for light transmittance TL, energy transmittance TE and total solar energy transmittance TTS can be calculated according to ISO 9050 (2003-08) for
  • TE and TTS can also be determined using ISO 13837 (2008-04) for vehicle glazing.
  • D is the relative spectral distribution of the illuminant used (A) (see ISO/CIE 10526)
  • T( ) is the spectral transmittance of the glazing
  • V(A is the sensitivity curve of the human eye (see ISO/CIE 10527)
  • A is the wavelength interval is.
  • TTS is the sum of TE and the secondary heat transfer.
  • Secondary heat transfer means heat components that are based on convection and the infrared radiation re-emitted by the glass.
  • the laminated pane comprises an emissivity-reducing coating.
  • the emissivity-reducing coating is preferably applied to the outside surface of the inner pane.
  • the emissivity-reducing coating is a coating that reflects thermal radiation. Such a coating is often also referred to as a low-E coating or low-emissivity coating. It has the function of preventing the radiation of heat into the interior (thermal radiation from the pane itself) and also the radiation of heat from the interior. under emissivity is understood within the meaning of the invention, the normal emissivity at 283 K according to the standard EN 12898.
  • the emissivity-reducing coating is preferably a sequence of thin layers (layer structure, layer stack).
  • One layer is an electrically conductive layer, whereas the optical properties (transmission and reflectivity) of the coating are largely determined by the other layers and can thus be specifically adjusted through their design.
  • so-called antireflection coatings or antireflection coatings which have a low refractive index of preferably at most 1.8 and particularly preferably at most 1.6, have a particular influence.
  • these anti-reflection coatings can increase the transmission through the pane and reduce the reflectivity. The effect depends crucially on the refractive index and layer thickness.
  • the emissivity-reducing coating contains at least one transparent, electrically conductive oxide (TCO, transparent conductive oxide).
  • TCO transparent, electrically conductive oxide
  • the emissivity-reducing coating preferably contains indium tin oxide (ITO, indium tin oxide).
  • the emissivity-reducing coating can also contain, for example, indium-zinc mixed oxide (IZO), gallium-doped tin oxide (GZO), fluorine-doped tin oxide (SnO2:F) or antimony-doped tin oxide (SnO2:Sb).
  • ITO indium tin oxide
  • IZO indium-zinc mixed oxide
  • GZO gallium-doped tin oxide
  • SnO2:F fluorine-doped tin oxide
  • SnO2:Sb antimony-doped tin oxide
  • Such layers (TCO layers) are preferably arranged between two dielectric layers. Examples of common dielectric layers are:
  • Anti-reflection layers that reduce the reflection of visible light and thus increase the transparency of the coated pane, for example based on silicon nitride, silicon-metal mixed nitrides such as silicon zirconium nitride, titanium oxide, aluminum nitride or tin oxide, with layer thicknesses of 10 nm to 100 nm, for example;
  • Matching layers which improve the crystallinity of the electrically conductive layer, for example based on zinc oxide (ZnO), with layer thicknesses of, for example, 3 nm to 20 nm;
  • Smoothing layers which improve the surface structure for the overlying layers, for example based on a non-crystalline oxide of tin, silicon, titanium, zirconium, hafnium, zinc, gallium and/or Indium, in particular based on tin-zinc mixed oxide (ZnSnO), with layer thicknesses of 3 nm to 20 nm, for example.
  • ZnSnO tin-zinc mixed oxide
  • the emissivity-reducing coating is preferably built up in one of the following sequences, starting from the surface to be coated:
  • the thickness of the electrically conductive layer is preferably from 50 nm to 130 nm, particularly preferably from 60 nm to 120 nm, for example from 70 nm to 100 nm. This achieves particularly good results in terms of optical transparency.
  • the thickness of each silicon nitride layer is independently preferably from 1 nm to 100 nm, particularly preferably from 5 nm to 70 nm and in particular from 8 nm to 65 nm.
  • the thickness of the silicon oxide layer is independently preferably from 5 nm to 80 nm , particularly preferably from 10 nm to 60 nm and in particular from 15 nm to 50 nm. In this layer thickness range, particularly good results are achieved in relation to the amount of reflected thermal radiation and the emission reduction.
  • the emissivity-reducing coating and the infrared protection layer are preferably transparent and do not noticeably restrict the view through the pane.
  • the absorption of the emissivity-reducing coating and the infrared protection layer is preferably from about 1% to about 20% in the visible spectral range.
  • Emissivity-reducing coatings which the laminated pane according to the invention can have are known to the person skilled in the art. These can be designed, for example, as disclosed in WO2018206236A1.
  • the infrared protective layer is designed to reflect impinging infrared light.
  • the technical advantage is also achieved, for example, that a lower Energy transmission TE and a lower total solar energy transmission TTS can be achieved.
  • the infrared protective layer is designed to absorb incident infrared light. This also achieves the technical advantage, for example, that entry of infrared light is reduced.
  • the electrochromic functional element is arranged between two layers comprising polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) and/or cycloolefin polymer (COP).
  • the layers are preferably based on polyvinyl butyral (PVB).
  • the layers preferably contain at least one plasticizer. This achieves the technical advantage, for example, that the functional element is embedded between two suitable layers.
  • the intermediate layer is thus preferably formed from two layers.
  • the electrochromic functional element is surrounded all around by a third layer.
  • the third layer is designed like a frame with a recess into which the electrochromic functional element is inserted.
  • the third layer can be formed by a thermoplastic film, which preferably comprises polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) and/or cycloolefin polymer (COP) and preferably at least one plasticizer the recess has been introduced by cutting out.
  • the third layer can also be composed of several foil sections around the functional element.
  • the intermediate layer is then formed from a total of at least three layers arranged areally one on top of the other, with the middle layer having a recess in which the electrochromic functional element is arranged.
  • the third layer is sandwiched between the first and second layers, with the side edges of all layers preferably being in registry.
  • the third layer preferably has approximately the same thickness as the functional element. This compensates for the local thickness difference that is introduced by the locally limited functional element, so that glass breakage during lamination can be avoided and an improved visual appearance is created.
  • at least one of the layers comprises dye molecules for neutralizing the color of the electrochromic functional element.
  • the color of the electrochromic functional element can be neutralized when looking through the laminated pane.
  • the color of the dye molecules or thermoplastic layer is preferably yellow or orange.
  • the electrochromic functional element and/or the infrared protective layer has a thickness of 0.1 mm to 1 mm, preferably 0.3 nm to 0.5 mm nm. This achieves the technical advantage, for example, that the transparency of the laminated pane is only slightly impaired in the visible range.
  • the outer pane and/or the inner pane contain or consist of soda-lime glass, quartz glass or borosilicate glass.
  • the inner pane and/or the outer pane have a thickness of 0.5 mm to 15 mm, particularly preferably 1 mm to 5 mm. This also achieves the technical advantage, for example, that particularly suitable materials are used for the outer pane and/or the inner pane.
  • the outer pane and the inner pane can be flat glass (flat glass). This is particularly useful for applications in the building sector. Alternatively, the outer pane and the inner pane can also be curved. This is particularly useful for applications in the automotive sector.
  • this technical problem is solved by a method for producing a laminated pane with a pane and an inner pane which are connected to one another over an area by an intermediate layer.
  • the procedure includes the steps: An infrared protective layer comprising at least one silver-containing layer is arranged or applied to an inner surface of the outer pane facing the intermediate layer, an inner surface of the inner pane facing the intermediate layer or within the intermediate layer.
  • An electrochromic functional element with electrically controllable optical properties is arranged within the intermediate layer, with the total solar energy transmission TTS of the electrochromic functional element being higher in the darkened state than in the bright state and/or the energy transmission TE of the electrochromic functional element being higher in the darkened state than in the bright state is.
  • the infrared protective layer interacts with the electrochromic functional element in such a way that the total solar energy transmission TTS through the laminated pane is lower in the darkened state than in the bright state and/or the energy transmission TE through the laminated pane in the darkened state is lower than in the bright state.
  • the invention also extends to the use of the composite pane according to the invention in means of transport for traffic on land, in the air or on water, in particular in motor vehicles, the composite pane being used for example as a side window and/or glass roof, preferably as a glass roof.
  • the use of the laminated pane as a vehicle glass roof is preferred.
  • the laminated pane according to the invention can also be used as a functional and/or decorative individual piece and as a built-in part in furniture, appliances and buildings.
  • the laminated pane can also be used as part of a transparent display.
  • FIG. 1 shows a schematic cross-sectional view through a laminated pane with multiple layers
  • Fig. 2 transmission spectra of an electrochromic functional element in the bright and darkened state without an infrared protective layer
  • FIG. 6 shows a further schematic stack structure with a tinted thermoplastic layer
  • FIG. 11 is a block diagram of a method of making a laminated pane.
  • the composite pane 100 has multiple layers.
  • An outer pane 103 is connected over an area to an inner pane 105 via an intermediate layer 111 .
  • the outer pane 103 and the inner pane 105 are permanently and stably connected to one another by lamination via the intermediate layer 111 .
  • the intermediate layer 111 comprises at least one thermoplastic adhesive film.
  • the thermoplastic adhesive film contains at least one thermoplastic polymer, preferably ethylene vinyl acetate (EVA) and/or polyvinyl butyral (PVB). This achieves a connection between the intermediate layer 111 and the outer pane 103 and the inner pane 105 .
  • EVA ethylene vinyl acetate
  • PVB polyvinyl butyral
  • thermoplastic adhesive film can also contain, for example, at least polyurethane, polyethylene, polyethylene terephthalate, polypropylene, polycarbonate, polymethyl methacrylate, polyacrylate, polyvinyl chloride, polyacetate resin, casting resins, acrylates, fluorinated ethylene propylene, polyvinyl fluoride and/or ethylene tetrafluoroethylene.
  • the thickness of the thermoplastic adhesive film is preferably from 0.25 mm to 1 mm, for example 0.38 mm or 0.76 mm.
  • An electrochromic functional element 107 with electrically controllable optical properties is arranged in the intermediate layer 111 and can be electrically controlled back and forth between a bright state and a darkened state. In the bright state, the functional element 107 reduces the infrared radiation and in the darkened switched state, the functional element 107 is more permeable to infrared radiation (see FIG. 2).
  • the intermediate layer 111 also has an infrared protective layer 109 for blocking infrared radiation and two polycaprolactone layers (PCL layers) 113 between which the functional element 107 is arranged.
  • the functional element 107 can be applied, for example, to the inside surface of the outer pane 103 or the inner pane 105 .
  • the inside surface is the surface of a pane that faces the intermediate layer.
  • the functional element 107 is arranged in terms of area between at least two thermoplastic adhesive films.
  • Functional element 107 is connected to outer pane 103 via at least one first thermoplastic adhesive film and to inner pane 105 via at least one second thermoplastic adhesive film.
  • the first and the second thermoplastic adhesive film are in contact with the outer pane 103 and the inner pane 105, respectively, and cause the functional element 107 to be bonded to the outer pane 103 and the inner pane 105 to form the composite pane 100.
  • the outer pane 103 and the inner pane 105 can generally be non-tempered, partially tempered or toughened glass, preferably flat glass, float glass, quartz glass, borosilicate glass, soda-lime glass or clear plastics, preferably rigid clear plastics, in particular polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, polystyrene , Polyamide, polyester, polyvinyl chloride and / or mixtures thereof and preferably have a thickness of 0.5 mm to 15 mm, particularly preferably from 1 mm to 5 mm.
  • the transmission of the electrochromic functional element 107 in the dark state or darkened state is lower than in the light state.
  • the transmission of the electrochromic functional element 107 is higher in the darkened state than in the bright state. In this case, the spectrum is shifted when the functional element 107 is switched.
  • the transmission curves show that the bright state blocks the infrared light and the darkened state allows the infrared light to pass.
  • the energy transmission TE and the total solar energy transmission TTS for the darkened state are therefore higher than for the light state.
  • 3 shows transmission spectra of the electrochromic functional element 107 without the infrared protective layer 109 in the bright state and in the darkened state. These transmission spectra correspond to those from FIG. 2. In addition, the reflection spectra of the functional element 107 in the bright state and in the dark state or darkened state are shown.
  • FIG. 4 shows the transmission spectra of the electrochromic functional element 107 in the bright state and in the dark or darkened state with the additional infrared protective layer 109.
  • the transmission of infrared light is essentially blocked when the functional element 107 is in the darkened state.
  • the reflection of the infrared light is higher when the functional element 107 is in the darkened state.
  • the thermal irritation caused by the infrared radiation can be prevented by the infrared protective layer 109, such as, for example, infrared-absorbing polyvinyl butyral (PVB) or infrared-reflecting layers.
  • a suitable infrared protective layer 109 can be determined by simulation and optical measurements of the stack structure of the laminated pane 100. The aim is that the energy transmission TE is greater in the bright state than in the darkened state (TE(bright) > TE(darkened)) and the total solar energy transmission TTS is also greater in the bright state than in the darkened state (TTS(bright) > TTS(darkened)).
  • a bluish color of the electrochromic (EC) functional element 107 in the darkened state 203 can be neutralized by adding a yellow PVB interlayer.
  • the following values result for the light transmission TL, the energy transmission TE and the total solar energy transmission TTS.
  • the layer sequences mentioned below go in order from the outside to the inside.
  • the inner pane 105 and the outer pane 103 consist, for example, of soda-lime glass.
  • the inner pane 105 and the outer pane 103 consist, for example, of soda-lime glass.
  • the infrared protective layer is an infrared-absorbing layer based on PVB.
  • the infrared protection layer 109 is a combination of multiple non-metallic interference layers applied to a film that reflects infrared solar energy with minimal effect on visible transmission.
  • the infrared protective layer 109 in this example consists of a silver-containing, transparent polyethylene terephthalate (PET) film sandwiched between PVB-based layers 113 to provide a protective barrier against harmful solar radiation.
  • the infrared protection layer 109 has in this Example 3 silver layers. The silver layers are separated from each other by dielectric layers.
  • the infrared protection layer 109 is silver-based and reflects light in the infrared range from 800 nm upwards.
  • the infrared protection layer 109 has 2 silver layers in this example.
  • the infrared protective layer 109 is applied directly to the inside surface, ie the surface facing the layers 113, of the outer pane 103.
  • the infrared protective layer 109 with 3 layers of silver blocks the TE and TTS through the laminated pane even better than the infrared protective layer 109 as shown in Example 6. 7.
  • the low-emissivity emissivity-reducing coating 117 (Low E layer) is a layer configured to reflect the thermal radiation at room temperature or to lower the emission.
  • the emissivity-reducing coating 117 is, for example, a layer sequence having an ITO layer.
  • the wavelength range of the reflection is 10 pm, for example. Since the glass is not transparent in this wavelength range, this layer is on the outside surface of the inner pane 100.
  • Figures 4, 7 and 8 show the optical performance of the above example number 6, in which an infrared protection layer 109 with 3 silver layers is used. It is found that the infrared transmission of the composite pane 100 in the darkened state can be completely suppressed, except for a small peak around a wavelength of 800 nm.
  • a particularly preferred stack structure for an application in the automotive sector is a combination with an emissivity-reducing coating 117 as in Example shown with number 7.
  • a color matching of the laminated pane 100 can be carried out.
  • electrochromic molecules to the electrochromic device 107 that switch to yellow or red to produce an overall neutral gray color.
  • dyes can also be used in the thermoplastic layer 113.
  • Such inked Thermoplastic layers 113 which are preferably based on PVB, cannot be actively switched and affect both the bright and the darkened state equally.
  • FIG 5 shows a schematic stack structure of the laminated glass pane 100.
  • the stack structure corresponds to the example with the number 7 with two clear layers 113 which are formed, for example, on the basis of PVB.
  • the laminated pane 100 has an emissivity-reducing coating 117 on the outside surface of the inner pane 105 .
  • the laminated pane 100 has different colorings in the light, ie transparent, state and darkened state (see Table 1).
  • Table 1 Colorations for the light and darkened state of the laminated pane 100 from FIG.
  • Fig. 6 shows another schematic stack structure of the laminated glass pane 100.
  • the stack structure corresponds to example number 7, in which the clear thermoplastic layer 113, for example based on PVB, is replaced by a colored, yellow thermoplastic layer 115, which is based, for example, on formed by PVB has been replaced.
  • a color balance with regard to the functional element 107 is thereby achieved.
  • Color matching is performed on the colored yellow layer 115.
  • the concentration of a dye can be adjusted to the thickness of the layer 115.
  • a neutral gray color of the laminated pane 100 is obtained if the color values of the functional layer 107 are in the blue range.
  • the laminated pane 100 has corresponding colorings in the light, ie transparent, state and darkened state (see Table 2).
  • Table 2 Colorations for the light and darkened state of the laminated pane 100 from Figure 6.
  • a colored layer 115 which is based on PVB
  • other layers can be used, such as ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) or cycloolefin polymer (COP).
  • EVA ethylene-vinyl acetate copolymer
  • PU polyurethane
  • COP cycloolefin polymer
  • FIG. 7A shows another schematic cross-sectional view through a laminated pane 100 with multiple layers.
  • FIG. 7B shows the spectra associated with FIG. 7A.
  • the laminated pane 100 has a tinted lower glass (VG10) as the inner pane 105 .
  • the tinted glass is a gray glass with a light transmission of 28%.
  • the infrared protective layer 109 is a three-layer silver layer on the inside surface of the outer pane 103. This structure of the laminated pane 100 also covers a realistic application due to the lower light transmission and achieves improved color neutrality.
  • FIG. 8A shows another schematic cross-sectional view through a composite pane 100 with multiple layers.
  • FIG. 8B shows the spectra associated with FIG. 8A.
  • the laminated pane 100 has a tinted lower glass (VG10) as the inner pane 105 and an emissivity-reducing coating 117 which is designed to reflect thermal radiation at room temperature or to reduce emissions.
  • the emissivity-reducing coating is, for example, a layer sequence having an ITO layer.
  • the tinted glass is a gray glass with a light transmission of 28%.
  • the infrared protective layer 109 is, for example, a three-layer silver layer which is on the inside surface of the outer pane 103 is applied. A realistic application is covered by this structure of the laminated pane 100 due to the lower light transmission.
  • the structure with the emissivity-reducing coating 117 (low E layer) has approximately the same spectrum and thus TL and TE as that shown in Figure 7B, without the emissivity-reducing coating 117.
  • the composite pane 100 with the emissivity-reducing coating 117 but has significantly better TTS values. This effect is achieved by the emissivity-reducing coating 117 .
  • SPD functional element SPD - suspended particle device
  • the SPD functional element is inserted into a laminated pane 100 and the stack structure of the laminated pane 100 is:
  • the inner pane 105 and the outer pane 103 consist, for example, of soda-lime glass.
  • the transmission of the SPD functional element is lower in the dark or darkened state than in the bright state.
  • the transmission of the SPD Functional element in the darkened state especially in the more frequented infrared range (780 nm to 1300 nm), also lower than in the bright state. In this case, there is no spectrum shift when switching the SPD functional element.
  • the transmission curves show that SPD devices do not have the problem that the light state blocks the infrared light and the dark state allows the infrared light to pass.
  • the energy transmission TE and the total solar energy transmission TTS for the darkened state are significantly lower than for the light state.
  • the other electrochromic functional element differs from the electrochromic functional elements 107 from Examples 1 to 7 and Figures 1 to 8.
  • the other electrochromic functional element is used in a laminated pane 100 and the stacked structure of the laminated pane 100 is:
  • the transmission of the other electrochromic functional element is lower in the dark or darkened state than in the light state.
  • the transmission of the other electrochromic functional element is slightly lower in the darkened state than in the bright state.
  • the transmission curves show that not all electrochromic functional elements have the problem that the bright state blocks the infrared light and the dark one State that allows infrared light to pass.
  • the energy transmission TE and the total solar energy transmission TTS for the darkened state are significantly lower for certain electrochromic functional elements (e.g. the one shown in this example) than for the light state.
  • step S101 an infrared protection layer 109 for blocking infrared radiation is applied to an outer pane 103 or an inner pane 104 or arranged within an intermediate layer 111.
  • step S102 an electrochromic functional element 107 with electrically controllable optical properties is arranged within the intermediate layer 111.
  • the total solar energy transmission TTS is higher in the darkened state than in the bright state and/or the energy transmission TE is higher in the darkened state than in the bright state.
  • the outer pane 103 and the inner pane 105 are then connected to one another via the intermediate layer 111 to form a composite pane 100 .
  • the total solar energy transmission TTS through the laminated pane 100 is lower in the darkened state than in the bright state and/or the energy transmission TE through the laminated pane (100) is lower in the darkened state than in the bright state.
  • This laminated pane 100 meets the automotive manufacturers' expectations in terms of thermal comfort (TTS(light)>TTS(darkened)), aesthetics (color) and durability.
  • the composite pane 100 achieves the technical advantage that unwanted heating of a vehicle interior and thermal irritation of a vehicle occupant are prevented.
  • All of the features explained and shown in connection with individual embodiments of the invention can be provided in different combinations in the object according to the invention in order to realize their advantageous effects at the same time.
  • All method steps can be implemented by devices that are suitable for carrying out the respective method step.
  • All functions performed by physical features can be a method step of a method.

Abstract

The invention relates to a composite pane (100) with electrically controllable optical properties, comprising: - an outer pane (103) and an inner pane (105) which are connected together over the surfaces thereof via an intermediate layer (111); - an electrochromic functional element (107) with electrically controllable optical properties within the intermediate layer (111), the total solar energy transmission TTS being greater in the darkened state than in the brightened state and/or the energy transmission TE being higher in the darkened state than in the brightened state in the functional element; and - an infrared protection layer (109) which has at least one silver-containing layer and is applied or arranged onto the inner surface of the inner pane (105) facing the intermediate layer (111), onto the inner surface of the outer pane (103) facing the intermediate layer (111), or within the intermediate layer (111), said infrared protection layer interacting with the electrochromic functional element (107) such that the total solar energy transmission TTS through the composite pane (100) is lower in the darkened state than in the brightened state and/or the energy transmission TE through the composite pane (100) is lower in the darkened state than in the brightened state.

Description

Verbundscheibe mit elektrisch steuerbaren optischen Eigenschaften Composite pane with electrically controllable optical properties
Die vorliegende Erfindung betrifft eine Verbundscheibe mit elektrisch schaltbaren optischen Eigenschaften und ein Verfahren zum Herstellen einer Verbundscheibe. The present invention relates to a composite pane with electrically switchable optical properties and a method for producing a composite pane.
Wenn ein Fahrzeuginsasse eine mechanische Blende eines Schiebdachs schließt, möchte dieser oft nicht nur die Lichtmenge reduzieren, die in das Fahrzeuginnere eintritt. Stattdessen kann es beabsichtigt sein, vor Wärme durch Wärmestrahlung geschützt zu werden, die ins Fahrzeug gelangt. Diese Abdunkelungsfunktion kann durch eine Verbundscheibe mit elektrisch steuerbaren optischen Eigenschaften erreicht werden, die es erlaubt, eine Lichttransmission in Reaktion auf eine angelegte Spannung zu ändern. Hierzu können elektrochrome Materialien verwendet werden. When a vehicle occupant closes a mechanical shutter of a sunroof, they often do more than just reduce the amount of light entering the vehicle interior. Instead, it may be intended to be protected from heat from thermal radiation entering the vehicle. This dimming function can be achieved by a composite pane with electrically controllable optical properties that allow light transmission to be altered in response to an applied voltage. Electrochromic materials can be used for this.
Im Allgemeinen findet bei diesen Technologien bei einer Abdunkelung mit niedrigerer Lichttransmission auch immer eine Abnahme einer Wärmeübertragung statt, d.h. eine niedrigere Energietransmission (TE - Transmitted Energy) und eine niedrigere totale solare Energietransmission (TTS - Transmission of total Solar Energy). Umgekehrt geht eine Aufhellung mit höherer Lichttransmission immer mit einer Zunahme der Wärmeübertragung einher. SPD- (suspended particle devices) und einige elektrochrome Elemente funktionieren auf diese Art und Weise. In general, with these technologies, when darkened with lower light transmission, there is always a decrease in heat transfer, i.e. lower TE (Transmitted Energy) and lower total solar energy transmission (TTS - Transmission of total Solar Energy). Conversely, brightening with higher light transmission is always accompanied by an increase in heat transfer. SPD (suspended particle devices) and some electrochromic elements work in this way.
Die Erfinder haben allerdings herausgefunden, dass es bei einigen elektrochromen Materialien vorkommen kann, dass zwischen dem hellen Zustand und dem abgedunkelten Zustand eine Verschiebung der Transmissionsspektren in den Infrarotbereich stattfindet. In diesem Fall ist die Scheibe zwar im sichtbaren Spektralbereich abgedunkelt, die Wärmestrahlung tritt jedoch verstärkt in den Innenraum des Fahrzeugs. Dies kann zu einer unangenehmen thermischen Irritation des Fahrzeuginsassen führen. However, the inventors have found that, with some electrochromic materials, there can be a shift in the transmission spectra into the infrared range between the bright state and the darkened state. In this case, the pane is darkened in the visible spectral range, but the heat radiation enters the interior of the vehicle more intensely. This can lead to uncomfortable thermal irritation for the vehicle occupant.
Es ist die Aufgabe der vorliegenden Erfindung, eine Verbundscheibe bereitzustellen, mit der thermische Irritationen verhindert werden können, die bei einer Verschiebung der Transmissionsspektren beim Steuern von elektrochromen Funktionselementen auftreten können. Gemäß einem ersten Aspekt wird diese technische Aufgabe durch eine Verbundscheibe mit elektrisch steuerbaren optischen Eigenschaften gelöst, mit einer Außenscheibe und einer Innenscheibe, die über eine Zwischenschicht flächenmäßig miteinander verbunden sind; einem elektrochromen Funktionselement mit elektrisch steuerbaren optischen Eigenschaften innerhalb der Zwischenschicht, bei dem die totale solare Energietransmission TTS im abgedunkelten Zustand höher als im hellen Zustand ist und/oder die Energietransmission TE im abgedunkelten Zustand höher als im hellen Zustand ist; und zumindest einer Infrarot-Schutzschicht, welche auf einer der Zwischenschicht zugewandten innenseitigen Oberfläche der Innenscheibe, einer der Zwischenschicht zugewandten innenseitigen Oberfläche der Außenscheibe oder innerhalb der Zwischenschicht angeordnet oder aufgebracht ist, wobei die Infrarot- Schutzschicht zumindest eine silberhaltige Schicht aufweist. Die Infrarot-Schutzschicht wirkt derart mit dem elektrochromen Funktionselement zusammen, dass die totale solare Energietransmission TTS durch die Verbundscheibe (100) im abgedunkelten Zustand niedriger als im hellen Zustand ist und/oder die Energietransmission TE durch die Verbundscheibe (100) im abgedunkelten Zustand niedriger als im hellen Zustand ist. It is the object of the present invention to provide a laminated pane with which thermal irritations can be prevented, which can occur when the transmission spectra are shifted when controlling electrochromic functional elements. According to a first aspect, this technical problem is solved by a composite pane with electrically controllable optical properties, with an outer pane and an inner pane, which are connected to one another over an intermediate layer; an electrochromic functional element with electrically controllable optical properties within the intermediate layer, in which the total solar energy transmission TTS is higher in the darkened state than in the bright state and/or the energy transmission TE is higher in the darkened state than in the bright state; and at least one infrared protective layer which is arranged or applied on an inside surface of the inner pane facing the intermediate layer, on an inside surface of the outer pane facing the intermediate layer or within the intermediate layer, the infrared protective layer having at least one silver-containing layer. The infrared protective layer interacts with the electrochromic functional element in such a way that the total solar energy transmission TTS through the laminated pane (100) in the darkened state is lower than in the bright state and/or the energy transmission TE through the laminated pane (100) in the darkened state is lower than is in the bright state.
Die Infrarot-Schutzschicht weist zumindest eine silberhaltige Schicht auf. Die Infrarot- Schutzschicht blockiert Infrarotstrahlung und lässt sichtbares Licht passieren. Durch diese Verbundglasscheibe wird dadurch ein Eintreten von Infrarotstrahlung auch dann verhindert, wenn es zu einer Verschiebung der Transmissionsspektren durch das Schalten des elektrochromen Funktionselements kommt. Die Verbundglasscheibe kann beispielsweise im Automobilbereich eingesetzt werden. In diesem Fall ist die Innenscheibe angrenzend an den Fahrzeuginnenraum, wohingegen die Außenscheibe an die äußere Umgebung angrenzend ist. Elektrochrome Funktionselement wechseln von abgedunkelten zu hellen Zuständen mittels reversibler Redoxreaktionen. Unter dem sichtbaren Spektralbereich oder sichtbarem Licht wird der Spektralbereich von 380 nm bis 780 nm verstanden. The infrared protective layer has at least one silver-containing layer. The infrared protection layer blocks infrared radiation and allows visible light to pass through. This laminated glass pane also prevents the ingress of infrared radiation if there is a shift in the transmission spectra as a result of the switching of the electrochromic functional element. The laminated glass pane can be used, for example, in the automotive sector. In this case, the inner pane is adjacent to the vehicle interior, whereas the outer pane is adjacent to the outside environment. Electrochromic functional elements change from darkened to bright states by means of reversible redox reactions. The visible spectral range or visible light is understood to mean the spectral range from 380 nm to 780 nm.
Im Sinne der Erfindung ist mit „blockieren von Infrarotstrahlung“ gemeint, dass die Infrarotschutzschicht zumindest teilweise Infrarotstrahlung reflektiert und/oder absorbiert. Besonders bevorzugt reflektiert die Infrarotschutzschicht Infrarotstrahlung. Die Reflexion der Infrarotstrahlung weist den Vorteil auf, dass die Verbundscheibe sich nicht so stark erwärmt. Ein elektrochromes Funktionselement ist ein Element, welches schalt-, steuer- oder regelbare optische Eigenschaften besitzt. Über das Anlegen einer elektrischen Spannung kann die Transmission von Licht aktiv beeinflusst werden. Eingebaut in die Verbundscheibe kann ein Benutzer beispielsweise von einem transparenten (heller Zustand) in einen weniger transparenten Zustand, also dunklen bzw. abgedunkelten Zustand der Verbundscheibe schalten. Es sind auch Abstufungen möglich. In the context of the invention, “blocking infrared radiation” means that the infrared protective layer at least partially reflects and/or absorbs infrared radiation. The infrared protection layer particularly preferably reflects infrared radiation. The reflection of the infrared radiation has the advantage that the laminated pane does not heat up as much. An electrochromic functional element is an element which has optical properties that can be switched, controlled or regulated. The transmission of light can be actively influenced by applying an electrical voltage. Installed in the laminated pane, a user can, for example, switch from a transparent (lighter state) to a less transparent state, ie dark or darkened state of the laminated pane. Gradations are also possible.
Elektrochrome Funktionselemente, welche die erfindungsgemäße Verbundscheibe aufweisen kann, sind dem Fachmann bekannt. Diese können beispielsweise wie in US 5321544, US 5404244, US 7372610 B2, US 7593154 B2, WO 2012/007334 A1 , WO 2017/102900 A1 oder US 20120026573 A1 offenbart aufgebaut sein. Electrochromic functional elements which the laminated pane according to the invention can have are known to the person skilled in the art. These can be constructed, for example, as disclosed in US Pat. No. 5,321,544, US Pat. No. 5,404,244, US Pat. No. 7,372,610 B2, US Pat.
Das elektrochrome Funktionselement umfasst vorzugsweise in folgender Reihenfolge:The electrochromic functional element preferably includes in the following order:
- eine erste Flächenelektrode, - a first surface electrode,
- eine Arbeitselektrode, - a working electrode,
- einen Elektrolyten, - an electrolyte,
- eine Gegenelektrode und - a counter electrode and
- eine zweite Flächenelektrode. - a second surface electrode.
Die erste Flächenelektrode und die zweite Flächenelektrode sind dafür vorgesehen mit einer Spannungsquelle elektrisch verbunden zu sein. Alle genannten Schichten sind vorzugsweise fest miteinander verbunden. Alle genannten Schichten sind vorzugsweise deckungsgleich zueinander angeordnet. Die Arbeitselektrode wird häufig auch elektrochrome Schicht und die Gegenelektrode lonenspeicher genannt. The first surface electrode and the second surface electrode are intended to be electrically connected to a voltage source. All of the layers mentioned are preferably firmly connected to one another. All of the layers mentioned are preferably arranged congruently with one another. The working electrode is also often referred to as an electrochromic layer and the counter-electrode as an ion storage device.
Die Arbeitselektrode und die Gegenelektrode sind in der Lage reversibel Ladungen einzulagern. Die Oxidationszustände der Arbeitselektrode im eingelagerten und ausgelagerten Zustand unterscheiden sich dabei in ihrer Farbgebung, wobei einer dieser Zustände hell und ein anderer abgedunkelt ist. Die Einlagerungsreaktion ist über die von außen angelegte Potentialdifferenz steuerbar. Die über das elektrische Potential einstellbare Farbe des elektrochromen Funktionselement ist bevorzugt in einem Farbbereich von blau bis schwarz angesetzt, insbesondere ist die einstellbare Farbe schwarz. Der elektrische Potentialbereich zum Wechseln zwischen hell und dunkel des elektrochromen Funktionselementes liegt vorzugsweise bei 0 V bis 7 V und besonders bevorzugt bei 0,5 V bis 5 V Gleichspannung. Die erste Flächenelektrode und die zweite Flächenelektrode sind bevorzugt transparent und elektrisch leitfähig. Sie enthalten bevorzugt zumindest ein Metall, eine Metalllegierung oder ein transparentes leitfähiges Oxid (transparent conducting oxide, TCO). Die erste Flächenelektrode und die zweite Flächenelektrode enthalten besonders bevorzugt Silber, Gold, Kupfer, Nickel, Chrom, Wolfram, Graphit, Molybdän und/oder ein transparentes leitfähiges Oxid, bevorzugt Indium-Zinnoxid (ITO), Fluor-dotiertes Zinnoxid (SnÜ2:F), Antimon-dotiertes Zinnoxid, Aluminium-dotiertes Zinkoxid, Bordotiertes Zinkoxid oder Gallium-dotiertes Zinkoxid. The working electrode and the counter-electrode are capable of reversibly storing charges. The oxidation states of the working electrode in the stored and stored state differ in their coloring, with one of these states being light and another darkened. The storage reaction can be controlled via the externally applied potential difference. The color of the electrochromic functional element that can be set via the electrical potential is preferably set in a color range from blue to black; the color that can be set is in particular black. The electrical potential range for changing between light and dark of the electrochromic functional element is preferably 0 V to 7 V and particularly preferably 0.5 V to 5 V direct voltage. The first surface electrode and the second surface electrode are preferably transparent and electrically conductive. They preferably contain at least one metal, one metal alloy or one transparent conducting oxide (transparent conducting oxide, TCO). The first flat electrode and the second flat electrode particularly preferably contain silver, gold, copper, nickel, chromium, tungsten, graphite, molybdenum and/or a transparent conductive oxide, preferably indium tin oxide (ITO), fluorine-doped tin oxide (SnÜ2:F) , antimony-doped tin oxide, aluminum-doped zinc oxide, boron-doped zinc oxide or gallium-doped zinc oxide.
Sind die erste Flächenelektrode und/oder die zweite Flächenelektrode auf Basis eines Metalls ausgebildet, weisen sie vorzugsweise eine Gesamtschichtdicke von jeweils 1 nm bis 50 nm, bevorzugt 2 nm bis 30 nm, besonders bevorzugt 3 nm bis 15 nm auf. Sind die erste Flächenelektrode und/oder die zweite Flächenelektrode auf Basis eines transparenten leitfähigen Oxides ausgebildet, weisen sie vorzugsweise eine Gesamtdicke von 20 nm bis 2 pm, besonders bevorzugt von 50 nm bis 1 pm, ganz besonders bevorzugt von 100 nm bis 600 nm und insbesondere von 300 nm bis 500 nm auf. Damit werden eine vorteilhafte elektrische Kontaktierung der Arbeitselektrode und Gegenelektrode sowie eine gute horizontale Leitfähigkeit der Schichten erreicht. Es handelt sich bei der ersten und der zweiten Flächenelektrode im Sinne der Erfindung um dünne Schichten. If the first surface electrode and/or the second surface electrode are based on a metal, they preferably have a total layer thickness of 1 nm to 50 nm, preferably 2 nm to 30 nm, particularly preferably 3 nm to 15 nm. If the first surface electrode and/or the second surface electrode is based on a transparent conductive oxide, they preferably have a total thickness of 20 nm to 2 μm, particularly preferably 50 nm to 1 μm, very particularly preferably 100 nm to 600 nm and in particular from 300 nm to 500 nm. This achieves advantageous electrical contacting of the working electrode and counterelectrode and good horizontal conductivity of the layers. According to the invention, the first and second surface electrodes are thin layers.
Ist etwas „auf Basis“ eines polymerischen Materials ausgebildet, so besteht es mehrheitlich, also zu mindestens 50 %, vorzugsweise zu mindestens 60 % und insbesondere zu mindestens 70%, aus diesem Material. Es kann also noch weitere Materialien wie beispielsweise Stabilisatoren oder Weichmacher enthalten. If something is designed “on the basis” of a polymeric material, the majority of it, ie at least 50%, preferably at least 60% and in particular at least 70%, consists of this material. It can also contain other materials such as stabilizers or plasticizers.
Ist von dünnen Schichten (Dünnschichten) die Rede gilt: ist etwas „auf Basis“ eines Materials ausgebildet, so besteht es mehrheitlich aus diesem Material, insbesondere im Wesentlichen aus diesem Material neben etwaigen Verunreinigungen oder Dotierungen. When talking about thin layers (thin layers), the following applies: if something is “based on” a material, then it consists mainly of this material, in particular essentially of this material in addition to any impurities or dopings.
Der Schichtwiderstand der ersten Flächenelektrode und der zweiten Flächenelektrode beträgt in Summe bevorzugt 0,01 Ohm/Quadrat bis 100 Ohm/Quadrat, besonders bevorzugt Ohm/Quadrat bis 20 Ohm/Quadrat, ganz besonders bevorzugt 0,5 Ohm/Quadrat bis 5 Ohm/Quadrat. In diesem Bereich ist ein hinreichend großer Stromfluss zwischen den Elektroden des elektrochromen Funktionselementes sichergestellt, der eine optimale Funktionsweise der Arbeitselektrode und Gegenelektrode ermöglicht. The total layer resistance of the first flat electrode and the second flat electrode is preferably 0.01 ohms/square to 100 ohms/square, particularly preferably ohms/square to 20 ohms/square, very particularly preferably 0.5 ohms/square to 5 ohms/square . In this area there is a sufficiently large current flow between the electrodes of the electrochromic functional element ensured, which enables optimal functioning of the working electrode and counter electrode.
Die Arbeitselektrode kann auf Basis eines anorganischem oder organischem Material ausgebildet sein. Die Arbeitselektrode ist vorzugsweise auf Basis von Wolframoxid ausgebildet kann jedoch auch auf Basis von Molybdän-, Titan- oder Nioboxid sowie Mischungen davon ausgebildet sein. Die Arbeitselektrode kann auch auf Basis von Polypyrrol, PEDOT (Poly-3,4-ethylendioxythiophen), und Polyanilin sowie Mischungen davon ausgebildet sein. Die Gegenelektrode kann beispielsweise auf Basis von Titanoxid, Ceroxid, Eisen(l I l)-hexacyanidoferrat(l l/l 11) (Fe4[Fe(CN)6h) und Nickeloxid ausgebildet sein sowie Mischungen davon. Der Elektrolyt ist ionenleitfähig und kann auf Basis einer Schicht von hydratisiertem Tantaloxid und einer Schicht von hydratisiertem Antimonoxid ausgebildet sein. Alternativ kann der Elektrolyt auch auf Basis eines Polymers, welches Lithiumionen enthält, ausgebildet sein oder auf Basis von Tantal(V)- oxid und/oder Zirconium(IV)-oxid ausgebildet sein. The working electrode can be based on an inorganic or organic material. The working electrode is preferably based on tungsten oxide, but can also be based on molybdenum, titanium or niobium oxide and mixtures thereof. The working electrode can also be based on polypyrrole, PEDOT (poly-3,4-ethylenedioxythiophene), and polyaniline and mixtures thereof. The counter-electrode can be formed, for example, on the basis of titanium oxide, cerium oxide, iron(II) hexacyanidoferrate(II/II) (Fe4[Fe(CN)6h) and nickel oxide, as well as mixtures thereof. The electrolyte is ionically conductive and may be based on a layer of hydrated tantalum oxide and a layer of hydrated antimony oxide. Alternatively, the electrolyte can also be based on a polymer that contains lithium ions or be based on tantalum(V) oxide and/or zirconium(IV) oxide.
In einer alternativen Ausführungsform enthält das elektrochrome Funktionselement keinen Elektrolyten, wobei die Arbeitselektrode selbst als Elektrolyt fungiert. So kann beispielsweise Wolframoxid je nach Oxidationszustand die Funktion eines Elektrolyten übernehmen. Derartige Ausführungsformen sind beispielsweise in US 2014/0022621 A1 offenbart. Besonders sei auf Figur 4F der US 2014/0022621 A1 verwiesen. In an alternative embodiment, the electrochromic functional element contains no electrolyte, with the working electrode itself functioning as the electrolyte. For example, depending on the oxidation state, tungsten oxide can assume the function of an electrolyte. Such embodiments are disclosed, for example, in US 2014/0022621 A1. Particular reference is made to FIG. 4F of US 2014/0022621 A1.
Das elektrochrome Funktionselement umfasst vorzugsweise außerdem eine erste Folie und eine zweite Folie. Die erste Flächenelektrode ist hierbei mit einer von der Arbeitselektrode abgewandten Fläche auf der ersten Folie angeordnet und die zweite Flächenelektrode ist mit einer von der Gegenelektrode abgewandten Fläche auf der zweiten Folie angeordnet. Die erste Folie und/oder die zweite Folie sind vorzugsweise transparent. Die erste Folie und/oder die zweite Folie sind vorzugsweise auf Basis von transparentem Polyethylenterephthalat, Polycarbonat und/oder Polycaprolacton ausgebildet. Die Gesamtschichtdicke des elektrochromen Funktionselementes beträgt für diese Ausführungsform vorzugsweise von 0,2 mm bis 0,5 mm. The electrochromic functional element preferably also includes a first film and a second film. The first surface electrode is arranged on the first foil with a surface facing away from the working electrode, and the second surface electrode is arranged on the second foil with a surface facing away from the counter-electrode. The first film and/or the second film are preferably transparent. The first film and/or the second film are preferably based on transparent polyethylene terephthalate, polycarbonate and/or polycaprolactone. The total layer thickness of the electrochromic functional element is preferably from 0.2 mm to 0.5 mm for this embodiment.
Außerdem weisen die Außenscheibe und die Innenscheibe jeweils eine außenseitige Oberfläche auf, welche von der Zwischenschicht abgewandt ist. Wenn etwas „flächenmäßig zwischen der Außenscheibe und der Innenscheibe“ angeordnet ist, bedeutet dies im Sinne der Erfindung, dass es auf dem elektrochromen Funktionselement, zwischen der auf der innenseitigen Oberfläche der Außenscheibe oder der innenseitigen Oberfläche der Innenscheibe angeordnet sein kann. Es kann in diesem Fall räumlich direkt auf der Außenscheibe oder der Innenscheibe aufgebracht sein oder durch weitere Schichten, wie beispielsweise einem Abdeckdruck, auf der Innenscheibe oder der Außenscheibe angeordnet sein. Mit dem Wort „flächenmäßig“ ist gemeint, dass etwas sich über einen Großteil der gesamten Hauptfläche der Verbundscheibe erstreckt. Vorzugsweise erstreckt sich etwas über mindestens 60%, besonders bevorzugt über mindestens 70%, ganz besonders bevorzugt über mindestens 90% und insbesondere über 100% über die Hauptfläche der Verbundscheibe. In addition, the outer pane and the inner pane each have an outside surface which faces away from the intermediate layer. If something is arranged "area-wise between the outer pane and the inner pane", this means within the meaning of the invention that it can be arranged on the electrochromic functional element, between the inner surface of the outer pane or the inner surface of the inner pane. In this case, it can be applied spatially directly to the outer pane or the inner pane or it can be arranged on the inner pane or the outer pane by additional layers, such as a covering print. By the word "area" it is meant that something extends over a majority of the entire major surface of the laminated pane. Preferably something extends over at least 60%, particularly preferably over at least 70%, very particularly preferably over at least 90% and in particular over 100% over the main surface of the laminated pane.
Der Ausdruck „heller Zustand“ im Zusammenhang mit dem elektrochromen Funktionselement bedeutet im Sinne der Erfindung, dass das elektrochrome Funktionselement eine maximale Lichtdurchlässigkeit für sichtbares Licht mit einer Lichtransmission (TL) von mindestens 15 %, vorzugsweise mindestens 30 %, besonders bevorzugt mindestens 50 % aufweist. Entsprechend bedeutet der Ausdruck „dunkler Zustand“ oder „abgedunkelter Zustand“ im Zusammenhang mit dem elektrochromen Funktionselement, dass das elektrochrome Funktionselement eine minimale Lichtdurchlässigkeit für sichtbares Licht mit einer Lichtransmission (TL) von höchstens 10 %, bevorzugt höchstens 5 % und insbesondere höchstens 1 % aufweist. The expression "bright state" in connection with the electrochromic functional element means in the context of the invention that the electrochromic functional element has a maximum light transmittance for visible light with a light transmittance (TL) of at least 15%, preferably at least 30%, particularly preferably at least 50% . Correspondingly, the expression "dark state" or "darkened state" in connection with the electrochromic functional element means that the electrochromic functional element has a minimum light transmission for visible light with a light transmittance (TL) of at most 10%, preferably at most 5% and in particular at most 1%. having.
In einer besonders vorteilhaften Ausführungsform der Erfindung ist die Lichttransmission durch die Verbundscheibe (100) im abgedunkelten Zustand des elektrochromen Funktionselementes (107) kleiner oder gleich 15 % ist, bevorzugt kleiner oder gleich 10 % ist. Bei Lichttransmissionen von 15 % oder weniger ist für einen Insassen eines Fahrzeugs, in dem eine solche Verbundscheibe beispielsweise als Dachscheibe eingesetzt wird, die Helligkeit spürbar herabgesetzt. Dadurch verbessert sich der Komfort des Fahrzeugs. In a particularly advantageous embodiment of the invention, the light transmission through the laminated pane (100) in the darkened state of the electrochromic functional element (107) is less than or equal to 15%, preferably less than or equal to 10%. With light transmissions of 15% or less, the brightness is noticeably reduced for an occupant of a vehicle in which such a composite pane is used, for example, as a roof pane. This improves the comfort of the vehicle.
In einer besonders vorteilhaften Ausführungsform der Verbundscheibe ist die Infrarot- Schutzschicht flächenmäßig zwischen der Außenscheibe und dem Funktionselement angeordnet. Dadurch wird beispielsweise der technische Vorteil erreicht, dass das Infrarotlicht nicht in das Funktionselement eintreten kann und dieses nicht erwärmen kann und der beste thermische Komfort erreicht wird. In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe ist die Infrarot- Schutzschicht flächenmäßig zwischen der Innenscheibe und dem elektrochromen Funktionselement angeordnet. Dadurch wird beispielsweise der technische Vorteil erreicht, dass ein Eintritt von Infrarotlicht wirksam unterdrückt werden kann In a particularly advantageous embodiment of the laminated pane, the infrared protective layer is arranged over the area between the outer pane and the functional element. This achieves the technical advantage, for example, that the infrared light cannot enter the functional element and cannot heat it up, and the best thermal comfort is achieved. In a further advantageous embodiment of the laminated pane, the infrared protective layer is arranged over the area between the inner pane and the electrochromic functional element. This achieves the technical advantage, for example, that entry of infrared light can be effectively suppressed
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe ist die Infrarot- Schutzschicht auf der innenseitigen Oberfläche der Außenscheibe oder auf einer Polyethylenterephthalat-Schicht aufgebracht, wobei die Polyethylenterephthalat-Schicht innerhalb der Zwischenschicht angeordnet ist. Die Schichten der Infrarot-Schutzschicht können in einem Beschichtungsverfahren auf die Polyethylenterephthalat-Schicht aufgebracht sein. Die Polyethylenterephthalat-Schicht dient als Substrat für die Metallschichten. Dadurch wird beispielsweise ebenfalls der technische Vorteil erreicht, dass das Infrarotlicht wirksam blockiert werden kann. In a further advantageous embodiment of the laminated pane, the infrared protective layer is applied to the inside surface of the outer pane or to a polyethylene terephthalate layer, with the polyethylene terephthalate layer being arranged within the intermediate layer. The layers of the infrared protective layer can be applied to the polyethylene terephthalate layer in a coating process. The polyethylene terephthalate layer serves as a substrate for the metal layers. This also achieves the technical advantage, for example, that the infrared light can be effectively blocked.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe umfasst die Infrarot-Schutzschicht mindestens eine Silberschicht und vorzugsweise mehrere Silberschichten. Solche Silberschichten weisen eine besonders vorteilhafte elektrische Leitfähigkeit bei gleichzeitiger hoher Transmission im sichtbaren Spektralbereich auf. Die Dicke einer Silberschicht beträgt bevorzugt von 5 nm bis 50 nm, besonders bevorzugt von 8 nm bis 25 nm. In diesem Bereich für die Dicke der Silberschicht wird eine vorteilhaft hohe Transmission im sichtbaren Spektralbereich und eine besonders vorteilhafte elektrische Leitfähigkeit erreicht. In a further advantageous embodiment of the laminated pane, the infrared protective layer comprises at least one silver layer and preferably several silver layers. Such silver layers have a particularly advantageous electrical conductivity combined with high transmission in the visible spectral range. The thickness of a silver layer is preferably from 5 nm to 50 nm, particularly preferably from 8 nm to 25 nm. In this range for the thickness of the silver layer, an advantageously high transmission in the visible spectral range and a particularly advantageous electrical conductivity are achieved.
Vorzugsweise ist jeweils zwischen zwei benachbarten Silberschichten der Beschichtung zumindest eine dielektrische Schicht angeordnet. Bevorzugt ist unterhalb der ersten und/oder oberhalb der letzten Silberschicht eine weitere dielektrische Schicht angeordnet. Eine dielektrische Schicht enthält zumindest eine Einzelschicht aus einem dielektrischen Material, beispielsweise enthaltend ein Nitrid wie Siliziumnitrid oder ein Oxid wie Aluminiumoxid. Dielektrische Schichten können aber auch mehrere Einzelschichten umfassen, beispielsweise Einzelschichten eines dielektrischen Materials, Glättungsschichten, Anpassungsschichten, Blockerschichten und/oder Antireflexionsschichten. Die Dicke einer dielektrischen Schicht beträgt beispielsweise von 10 nm bis 200 nm. Dadurch wird beispielsweise der technische Vorteil erreicht, dass das Infrarotlicht wirksam blockiert werden kann. Die Blockierung von Infrarotlicht wird besonders gut dann erreicht, wenn die Infrarot-Schutzschicht mindestens zwei Silberschichten, besonders bevorzugt drei Silberschichten und insbesondere genau drei Silberschichten umfasst. At least one dielectric layer is preferably arranged in each case between two adjacent silver layers of the coating. A further dielectric layer is preferably arranged below the first and/or above the last silver layer. A dielectric layer contains at least a single layer of a dielectric material, for example containing a nitride such as silicon nitride or an oxide such as aluminum oxide. However, dielectric layers can also comprise a plurality of individual layers, for example individual layers of a dielectric material, smoothing layers, matching layers, blocking layers and/or antireflection layers. The thickness of a dielectric layer is, for example, from 10 nm to 200 nm. This achieves the technical advantage, for example, that infrared light can be effectively blocked. Infrared light blocking is achieved particularly well when the infrared protective layer has at least two Silver layers, particularly preferably three silver layers and in particular exactly three silver layers.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe ist die Energietransmission TE im hellen Zustand der Verbundscheibe im Spektralbereich von 800 nm bis 2500 nm kleiner oder gleich 25 % ist, bevorzugt kleiner oder gleich 15 % und insbesondere kleiner oder gleich 5 %. In a further advantageous embodiment of the laminated pane, the energy transmission TE in the bright state of the laminated pane in the spectral range from 800 nm to 2500 nm is less than or equal to 25%, preferably less than or equal to 15% and in particular less than or equal to 5%.
Vorzugsweise ist die totale solare Energietransmission TTS kleiner oder gleich 35 %, besonders bevorzugt kleiner oder gleich 25 %, insbesondere kleiner oder gleich 15 % für die Verbundscheibe im hellen Zustand. Dadurch wird beispielsweise ebenfalls der technische Vorteil erreicht, dass eine Erwärmung hinter der Verbundglasscheibe wirksam verringert wird. The total solar energy transmission TTS is preferably less than or equal to 35%, particularly preferably less than or equal to 25%, in particular less than or equal to 15% for the laminated pane in the bright state. This also achieves the technical advantage, for example, that heating behind the laminated glass pane is effectively reduced.
Vorzugsweise ist die Lichttransmission TL durch die Verbundscheibe im hellen Zustand des elektrochromen Funktionselementes größer oder gleich 5 %, besonders bevorzugt größer oder gleich 10 % und ganz besonders bevorzugt größer oder gleich 20%. Die Lichttransmission TL ist vorzugsweise durch die Verbundscheibe im abgedunkelten Zustand des elektrochromen Funktionselementes kleiner oder gleich 10 %, besonders bevorzugt kleiner oder gleich 5 % und insbesondere kleiner oder gleich 1 %. Dies sind Transmissionsgrade für Licht, die im jeweiligen Fall (hell oder abgedunkelt) als angenehm für Insassen in einem Fahrzeug mit einer solchen Verbundscheibe empfunden werden. The light transmission TL through the compound pane in the bright state of the electrochromic functional element is preferably greater than or equal to 5%, particularly preferably greater than or equal to 10% and very particularly preferably greater than or equal to 20%. The light transmission TL through the compound pane in the darkened state of the electrochromic functional element is preferably less than or equal to 10%, particularly preferably less than or equal to 5% and in particular less than or equal to 1%. These are degrees of transmission for light which, in the respective case (bright or darkened), are perceived as pleasant by the occupants of a vehicle with such a laminated pane.
Die Energietransmission TE und die totale solare Energietransmission TTS sind ein Maß für die Menge der Wärme, welche durch die Verbundscheibe in ein Fahrzeug oder Gebäude eintritt. Sehr hohe TE- oder TTS-Werte bedeuten also, dass ein Gebäude oder Fahrzeug sehr viel Wärme aufnimmt. Dies verschlechtert in der Regel den Wärmekomfort für die Insassen bzw. Bewohner. Energy transmission TE and total solar energy transmission TTS are a measure of the amount of heat entering a vehicle or building through the composite pane. Very high TE or TTS values therefore mean that a building or vehicle absorbs a lot of heat. This generally worsens the thermal comfort for the occupants or occupants.
Die Mittelwertbildung für Lichttransmissionsgrad TL, Energietransmission TE und totale solare Energietransmission TTS kann gemäß ISO 9050 (2003-08) fürThe averaging for light transmittance TL, energy transmittance TE and total solar energy transmittance TTS can be calculated according to ISO 9050 (2003-08) for
Gebäudeverglasungen erfolgen. Die Bestimmung von TE und TTS kann auch mittels ISO 13837 (2008-04) für Fahrzeugverglasungen erfolgen. Zur Berechnung der TL für den sichtbaren Spektralbereich (von 380 nm bis 780 nm) wird die folgende Formel angewendet: wobei D die relative spektrale Verteilung der verwendeten Lichtart (A) (siehe ISO/CIE 10526) ist, T( ) die spektrale Durchlässigkeit der Verglasung ist, V(A die Empfindlichkeitskurve des menschlichen Auges (siehe ISO/CIE 10527) und A das Wellenlängenintervall ist. Building glazing takes place. TE and TTS can also be determined using ISO 13837 (2008-04) for vehicle glazing. To calculate the TL for the visible spectral range (from 380 nm to 780 nm) the following formula is applied: where D is the relative spectral distribution of the illuminant used (A) (see ISO/CIE 10526), T( ) is the spectral transmittance of the glazing, V(A is the sensitivity curve of the human eye (see ISO/CIE 10527) and A is the wavelength interval is.
Zur Berechnung der TE wird die folgende Formel angewendet: wobei Sz die relative spektrale Verteilung der Sonnenstrahlung ist. TTS wiederum ist die Summe aus TE und dem sekundären Wärmetransfer. Mit sekundärem Wärmetransfer sind Wärmeanteile gemeint, die auf Konvektion und der vom Glas re-emittierter Infrarotstrahlung beruhen. The following formula is used to calculate the TE: where S z is the relative spectral distribution of solar radiation. TTS, in turn, is the sum of TE and the secondary heat transfer. Secondary heat transfer means heat components that are based on convection and the infrared radiation re-emitted by the glass.
Wobei he und ^ jeweils die Wärmeübergangskoeffizienten für den Wärmeübergang nach außen und innen darstellen. Gemäß der ISO 9050 Norm sind folgende Zahlenwerte zu verwenden: he = 23 W/(m2K) und h, = (3, 6+4,4 8 /0,837) W/(m2K), E stellt die Emissivität der Schicht dar. Where h e and ^ represent the heat transfer coefficients for outward and inward heat transfer, respectively. According to the ISO 9050 standard, the following numerical values are to be used: h e = 23 W/(m 2 K) and h i = (3.6+4.4 8 /0.837) W/(m 2 K), E represents the emissivity the layer.
In einer besonders vorteilhaften Ausführungsform der Erfindung umfasst die Verbundscheibe eine Emissivitäts-mindernde Beschichtung. Die Emissivitäts-mindernde Beschichtung ist vorzugsweise auf der außenseitigen Oberfläche der Innenscheibe aufgebracht. Durch die Kombination der Infrarot-Schutzschicht mit der Emissivitäts- mindernden Schicht kann die totale solare Energietransmission TTS besonders stark im abgedunkelten Zustand des elektrochromen Funktionselementes abgesenkt werden. In a particularly advantageous embodiment of the invention, the laminated pane comprises an emissivity-reducing coating. The emissivity-reducing coating is preferably applied to the outside surface of the inner pane. By combining the infrared protective layer with the emissivity-reducing layer, the total solar energy transmission TTS can be reduced particularly sharply in the darkened state of the electrochromic functional element.
Die Emissivitäts-mindernde Beschichtung ist eine Wärmestrahlung reflektierende Beschichtung. Eine solche Beschichtung wird häufig auch als Low-E-Beschichtung oder Beschichtung niedriger Emissivität bezeichnet. Sie hat die Funktion, die Einstrahlung von Wärme in den Innenraum zu vermeiden (thermische Strahlung der Scheibe selbst) und ebenso die Abstrahlung von Wärme aus dem Innenraum heraus. Unter Emissivität wird im Sinne der Erfindung der normale Emissionsgrad bei 283 K nach der Norm EN 12898 verstanden. The emissivity-reducing coating is a coating that reflects thermal radiation. Such a coating is often also referred to as a low-E coating or low-emissivity coating. It has the function of preventing the radiation of heat into the interior (thermal radiation from the pane itself) and also the radiation of heat from the interior. under emissivity is understood within the meaning of the invention, the normal emissivity at 283 K according to the standard EN 12898.
Die Emissivitäts-mindernde Beschichtung ist vorzugsweise eine Abfolge dünner Schichten (Schichtaufbau, Schichtstapel). Eine Schicht ist dabei eine elektrisch leitfähige Schicht, wohingegen die optischen Eigenschaften (Transmission und Reflexivität) der Beschichtung weitestgehend durch die übrigen Schichten bestimmt werden und dadurch durch ihre Ausgestaltung gezielt eingestellt werden können. Einen besonderen Einfluss haben in diesem Zusammenhang sogenannte Entspiegelungsschichten oder Antireflexionsschichten, die einen geringen Brechungsindex von vorzugsweise höchstens 1,8 und besonders bevorzugt höchstens 1 ,6 aufweisen. Diese Entspiegelungsschichten können insbesondere infolge von Interferenzeffekten die Transmission durch die Scheibe erhöhen und die Reflexivität verringern. Die Wirkung hängt entscheidend von Brechungsindex und Schichtdicke ab. The emissivity-reducing coating is preferably a sequence of thin layers (layer structure, layer stack). One layer is an electrically conductive layer, whereas the optical properties (transmission and reflectivity) of the coating are largely determined by the other layers and can thus be specifically adjusted through their design. In this context, so-called antireflection coatings or antireflection coatings, which have a low refractive index of preferably at most 1.8 and particularly preferably at most 1.6, have a particular influence. As a result of interference effects in particular, these anti-reflection coatings can increase the transmission through the pane and reduce the reflectivity. The effect depends crucially on the refractive index and layer thickness.
Die Emissivitäts-mindernde Beschichtung enthält in einer vorteilhaften Ausgestaltung zumindest ein transparentes, elektrisch leitfähiges Oxid (TCO, transparent conductive oxide). Solche Schichten sind korrosionsbeständig und können auf exponierten Oberflächen eingesetzt werden. Die Emissivitäts-mindernde Beschichtung enthält bevorzugt Indium-Zinnoxid (ITO, indium tin oxide). Die Emissivitäts-mindernde Beschichtung kann alternativ aber auch beispielsweise Indium-Zink-Mischoxid (IZO), Gallium-dotiertes Zinnoxid (GZO), Fluor-dotiertes Zinnoxid (SnO2:F) oder Antimondotiertes Zinnoxid (SnO2:Sb) enthalten. Vorzugsweise sind solche Schichten (TCO- Schichten) zwischen zwei dielektrischen Schichten angeordnet. Gebräuchliche dielektrische Schichten sind beispielsweise: In an advantageous embodiment, the emissivity-reducing coating contains at least one transparent, electrically conductive oxide (TCO, transparent conductive oxide). Such coatings are corrosion resistant and can be used on exposed surfaces. The emissivity-reducing coating preferably contains indium tin oxide (ITO, indium tin oxide). Alternatively, the emissivity-reducing coating can also contain, for example, indium-zinc mixed oxide (IZO), gallium-doped tin oxide (GZO), fluorine-doped tin oxide (SnO2:F) or antimony-doped tin oxide (SnO2:Sb). Such layers (TCO layers) are preferably arranged between two dielectric layers. Examples of common dielectric layers are:
Entspiegelungsschichten, welche die Reflexion von sichtbarem Licht senken und somit die Transparenz der beschichteten Scheibe erhöhen, beispielsweise auf Basis von Siliziumnitrid, Silizium-Metall-Mischnitriden wie Siliziumzirkoniumnitrid, Titanoxid, Aluminiumnitrid oder Zinnoxid, mit Schichtdicken von beispielsweise 10 nm bis 100 nm; Anti-reflection layers that reduce the reflection of visible light and thus increase the transparency of the coated pane, for example based on silicon nitride, silicon-metal mixed nitrides such as silicon zirconium nitride, titanium oxide, aluminum nitride or tin oxide, with layer thicknesses of 10 nm to 100 nm, for example;
Anpassungsschichten, welche die Kristal linität der elektrisch leitfähigen Schicht verbessern, beispielsweise auf Basis von Zinkoxid (ZnO), mit Schichtdicken von beispielsweise 3 nm bis 20 nm; Matching layers which improve the crystallinity of the electrically conductive layer, for example based on zinc oxide (ZnO), with layer thicknesses of, for example, 3 nm to 20 nm;
Glättungsschichten, welche die Oberflächenstruktur für die darüber liegenden Schichten verbessern, beispielsweise auf Basis eines nichtkristallinen Oxids von Zinn, Silizium, Titan, Zirkonium, Hafnium, Zink, Gallium und/oder Indium, insbesondere auf Basis von Zinn-Zink-Mischoxid (ZnSnO), mit Schichtdicken von beispielsweise 3 nm bis 20 nm. Smoothing layers which improve the surface structure for the overlying layers, for example based on a non-crystalline oxide of tin, silicon, titanium, zirconium, hafnium, zinc, gallium and/or Indium, in particular based on tin-zinc mixed oxide (ZnSnO), with layer thicknesses of 3 nm to 20 nm, for example.
Vorzugsweise ist die Emissivitäts-mindernde Beschichtung in einer der folgenden Reihenfolge, ausgehend von der zu beschichtenden Oberfläche, aufgebaut: The emissivity-reducing coating is preferably built up in one of the following sequences, starting from the surface to be coated:
SiO — ITO — SiN — SiO oder SiO — ITO — SiN — SiO or
SiN - SiO - ITO - SiN - SiO. SiN - SiO - ITO - SiN - SiO.
Diese Schichtabfolgen haben sich als besonders vorteilhaft in Bezug auf die Menge der reflektierten Wärmstrahlung und der Emissionssenkung erwiesen. These layer sequences have proven to be particularly advantageous with regard to the amount of reflected thermal radiation and the reduction in emissions.
Die Dicke der elektrisch leitfähigen Schicht beträgt bevorzugt von 50 nm bis 130 nm, besonders bevorzugt von 60 nm bis 120 nm, beispielsweise von 70 nm bis 100 nm. Damit werden besonders gute Ergebnisse hinsichtlich optischer Transparenz erzielt. Die Dicke jeder Siliciumnitrid-Schicht beträgt unabhängig voneinander bevorzugt von 1 nm bis 100 nm, besonders bevorzugt von 5 nm bis 70 nm und insbesondere von 8 nm bis 65 nm. Die Dicke der Siliciumoxid-Schicht beträgt unabhängig voneinander bevorzugt von 5 nm bis 80 nm, besonders bevorzugt von 10 nm bis 60 nm und insbesondere von 15 nm bis 50 nm. In diesem Schichtdickenbereich werden besonders gute Ergebnisse in Bezug auf die Menge der reflektierten Wärmstrahlung und der Emissionssenkung erzielt. The thickness of the electrically conductive layer is preferably from 50 nm to 130 nm, particularly preferably from 60 nm to 120 nm, for example from 70 nm to 100 nm. This achieves particularly good results in terms of optical transparency. The thickness of each silicon nitride layer is independently preferably from 1 nm to 100 nm, particularly preferably from 5 nm to 70 nm and in particular from 8 nm to 65 nm. The thickness of the silicon oxide layer is independently preferably from 5 nm to 80 nm , particularly preferably from 10 nm to 60 nm and in particular from 15 nm to 50 nm. In this layer thickness range, particularly good results are achieved in relation to the amount of reflected thermal radiation and the emission reduction.
Die Emissivitäts-mindernden Beschichtung und die Infrarot-Schutzschicht sind vorzugsweise transparent und schränken die Durchsicht durch die Scheibe nicht merklich ein. Die Absorption der Emissivitäts-mindernden Beschichtung und der Infrarot-Schutzschicht beträgt bevorzugt von etwa 1 % bis etwa 20 % im sichtbaren Spektralbereich. The emissivity-reducing coating and the infrared protection layer are preferably transparent and do not noticeably restrict the view through the pane. The absorption of the emissivity-reducing coating and the infrared protection layer is preferably from about 1% to about 20% in the visible spectral range.
Emissivitäts-mindernde Beschichtungen welche die erfindungsgemäße Verbundscheibe aufweisen kann, sind dem Fachmann bekannt. Diese können beispielsweise wie in WO2018206236A1 offenbart ausgebildet sein. Emissivity-reducing coatings which the laminated pane according to the invention can have are known to the person skilled in the art. These can be designed, for example, as disclosed in WO2018206236A1.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe ist die Infrarot- Schutzschicht ausgebildet, auftreffendes Infrarotlicht zu reflektieren. Dadurch wird beispielsweise ebenfalls der technische Vorteil erreicht, dass eine niedrigere Energietransmission TE und eine niedrigere totale solare Energietransmission TTS erreicht werden. In a further advantageous embodiment of the laminated pane, the infrared protective layer is designed to reflect impinging infrared light. As a result, the technical advantage is also achieved, for example, that a lower Energy transmission TE and a lower total solar energy transmission TTS can be achieved.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe ist die Infrarot- Schutzschicht ausgebildet, auftreffendes Infrarotlicht zu absorbieren. Dadurch wird beispielsweise ebenfalls der technische Vorteil erreicht, dass ein Eintritt von Infrarotlicht vermindert wird. In a further advantageous embodiment of the laminated pane, the infrared protective layer is designed to absorb incident infrared light. This also achieves the technical advantage, for example, that entry of infrared light is reduced.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe ist das elektrochrome Funktionselement zwischen zwei Schichten angeordnet, die Polyvinylbutyral (PVB), Ethylen-Vinylacetat-Copolymer (EVA), Polyurethan (PU) und/oder Cycloolefin-Polymer (COP) umfassen. Die Schichten sind vorzugsweise auf Basis von Polyvinylbutyral (PVB) aufgebaut. Bevorzugt enthalten die Schichten mindestens einen Weichmacher. Dadurch wird beispielsweise der technische Vorteil erreicht, dass das Funktionselement zwischen zwei geeigneten Schichten eingebettet ist. Die Zwischenschicht ist damit vorzugsweise aus zwei Schichten gebildet. In a further advantageous embodiment of the laminated pane, the electrochromic functional element is arranged between two layers comprising polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) and/or cycloolefin polymer (COP). The layers are preferably based on polyvinyl butyral (PVB). The layers preferably contain at least one plasticizer. This achieves the technical advantage, for example, that the functional element is embedded between two suitable layers. The intermediate layer is thus preferably formed from two layers.
In weiteren bevorzugten Ausgestaltung ist das elektrochrome Funktionselement, genauer die Seitenkanten des Funktionselements, umlaufend von einer dritten Schicht umgeben. Die dritte Schicht ist rahmenartig ausgebildet mit einer Aussparung, in welche das elektrochrome Funktionselement eingelegt wird. Die dritte Schicht kann durch eine thermoplastische Folie, welche vorzugsweise Polyvinylbutyral (PVB), Ethylen-Vinylacetat-Copolymer (EVA), Polyurethan (PU) und/oder Cycloolefin-Polymer (COP) und vorzugsweise mindestens einen Weichmacher umfasst, gebildet werden, in welche die Aussparung durch Ausschneiden eingebracht worden ist. Alternativ kann die dritte Schicht auch aus mehreren Folienabschnitten um das Funktionselement zusammengesetzt werden. Die Zwischenschicht ist dann aus insgesamt mindestens drei flächig aufeinander angeordneten Schichten gebildet, wobei die mittlere Schicht eine Aussparung ausweist, in der das elektrochrome Funktionselement angeordnet ist. Bei der Herstellung wird die dritte Schicht zwischen der ersten und der zweiten Schicht angeordnet, wobei die Seitenkanten aller Schichten bevorzugt in Deckung befindlich sind. Die dritte Schicht weist bevorzugt etwa die gleiche Dicke auf wie das Funktionselement. Dadurch wird der lokale Dickenunterschied, der durch das örtlich begrenzte Funktionselement eingebracht wird, kompensiert, so dass Glasbruch beim Laminieren vermieden werden kann und ein verbessertes optisches Erscheinungsbild entsteht. In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe umfasst zumindest eine der Schichten Farbstoffmoleküle zum farblichen Neutralisieren des elektrochromen Funktionselements. Alternativ kann auch durch das hinzufügen einer gefärbten thermoplastischen Schicht, vorzugsweise einer gefärbten PVB-Folie, die Farbe des elektrochromen Funktionselementes bei Durchsicht durch die Verbundscheibe neutralisiert werden. Die Farbe der Farbstoffmoleküle oder thermoplastischen Schicht ist vorzugsweise gelb oder orange. Der Vorteil dieser Ausführungsform wird dadurch erreicht, dass die Eigenfarbe des elektrochromen Funktionselements kompensiert werden kann. In a further preferred configuration, the electrochromic functional element, more precisely the side edges of the functional element, is surrounded all around by a third layer. The third layer is designed like a frame with a recess into which the electrochromic functional element is inserted. The third layer can be formed by a thermoplastic film, which preferably comprises polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) and/or cycloolefin polymer (COP) and preferably at least one plasticizer the recess has been introduced by cutting out. Alternatively, the third layer can also be composed of several foil sections around the functional element. The intermediate layer is then formed from a total of at least three layers arranged areally one on top of the other, with the middle layer having a recess in which the electrochromic functional element is arranged. In manufacture, the third layer is sandwiched between the first and second layers, with the side edges of all layers preferably being in registry. The third layer preferably has approximately the same thickness as the functional element. This compensates for the local thickness difference that is introduced by the locally limited functional element, so that glass breakage during lamination can be avoided and an improved visual appearance is created. In a further advantageous embodiment of the laminated pane, at least one of the layers comprises dye molecules for neutralizing the color of the electrochromic functional element. Alternatively, by adding a colored thermoplastic layer, preferably a colored PVB film, the color of the electrochromic functional element can be neutralized when looking through the laminated pane. The color of the dye molecules or thermoplastic layer is preferably yellow or orange. The advantage of this embodiment is achieved in that the inherent color of the electrochromic functional element can be compensated.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe weist das elektrochrome Funktionselement und/oder die Infrarot-Schutzschicht eine Dicke von 0, 1 mm bis 1 mm, bevorzugt von 0,3 nm bis 0,5 mm nm, auf. Dadurch wird beispielsweise der technische Vorteil erreicht, dass die Transparenz der Verbundscheibe im sichtbaren Bereich wenig beeinträchtigt wird. In a further advantageous embodiment of the laminated pane, the electrochromic functional element and/or the infrared protective layer has a thickness of 0.1 mm to 1 mm, preferably 0.3 nm to 0.5 mm nm. This achieves the technical advantage, for example, that the transparency of the laminated pane is only slightly impaired in the visible range.
In einer weiteren vorteilhaften Ausführungsform der Verbundscheibe enthalten die Außenscheibe und/oder die Innenscheibe Kalk-Natron-Glas, Quarzglas oder Borosilikatglas oder bestehen daraus. Die Innenscheibe und/oder die Außenscheibe weisen eine Dicke von 0,5 mm bis 15 mm, besonders bevorzugt von 1 mm bis 5 mm auf. Dadurch wird beispielsweise ebenfalls der technische Vorteil erreicht, dass besonders geeignete Materialien für die Außenscheibe und/oder die Innenscheibe verwendet werden. In a further advantageous embodiment of the composite pane, the outer pane and/or the inner pane contain or consist of soda-lime glass, quartz glass or borosilicate glass. The inner pane and/or the outer pane have a thickness of 0.5 mm to 15 mm, particularly preferably 1 mm to 5 mm. This also achieves the technical advantage, for example, that particularly suitable materials are used for the outer pane and/or the inner pane.
Die Außenscheibe und die Innenscheibe können flaches Glas (Flachglas) sein. Dies bietet sich insbesondere für Anwendungen im Gebäudebereich an. Alternativ können die Außenscheibe und die Innenscheibe auch gebogen sein. Dies bietet sich insbesondere für Anwendungen im Fahrzeugbereich an. The outer pane and the inner pane can be flat glass (flat glass). This is particularly useful for applications in the building sector. Alternatively, the outer pane and the inner pane can also be curved. This is particularly useful for applications in the automotive sector.
Gemäß einem zweiten Aspekt wird diese technische Aufgabe durch ein Verfahren zum Herstellen einer Verbundscheibe mit einer und einer Innenscheibe, die über eine Zwischenschicht flächenmäßig miteinander verbunden sind gelöst. Das Verfahren umfasst die Schritte: Es wird eine Infrarot-Schutzschicht, aufweisend zumindest eine silberhaltige Schicht, auf eine der Zwischenschicht zugewandten, innenseitigen Oberfläche der Außenscheibe, eine der Zwischenschicht zugewandten, innenseitigen Oberfläche der Innenscheibe oder innerhalb der Zwischenschicht angeordnet oder aufgebracht. According to a second aspect, this technical problem is solved by a method for producing a laminated pane with a pane and an inner pane which are connected to one another over an area by an intermediate layer. The procedure includes the steps: An infrared protective layer comprising at least one silver-containing layer is arranged or applied to an inner surface of the outer pane facing the intermediate layer, an inner surface of the inner pane facing the intermediate layer or within the intermediate layer.
Es wird ein elektrochromes Funktionselement mit elektrisch steuerbaren optischen Eigenschaften innerhalb der Zwischenschicht angeordnet, wobei die totale solare Energietransmission TTS des elektrochromen Funktionselementes im abgedunkelten Zustand höher als im hellen Zustand ist und/oder die Energietransmission TE des elektrochromen Funktionselementes im abgedunkelten Zustand höher als im hellen Zustand ist. An electrochromic functional element with electrically controllable optical properties is arranged within the intermediate layer, with the total solar energy transmission TTS of the electrochromic functional element being higher in the darkened state than in the bright state and/or the energy transmission TE of the electrochromic functional element being higher in the darkened state than in the bright state is.
Die Infrarotschutzschicht wirkt dabei derart mit dem elektrochromen Funktionselement zusammen, dass die totale solare Energietransmission TTS durch die Verbundscheibe im abgedunkelten Zustand niedriger als im hellen Zustand ist und/oder die Energietransmission TE durch die Verbundscheibe im abgedunkelten Zustand niedriger als im hellen Zustand ist. The infrared protective layer interacts with the electrochromic functional element in such a way that the total solar energy transmission TTS through the laminated pane is lower in the darkened state than in the bright state and/or the energy transmission TE through the laminated pane in the darkened state is lower than in the bright state.
Weiterhin erstreckt sich die Erfindung auf die Verwendung der erfindungsgemäßen Verbundscheibe in Fortbewegungsmitteln für den Verkehr auf dem Lande, in der Luft oder zu Wasser, insbesondere in Kraftfahrzeugen, wobei die Verbundscheibe beispielsweise als Seitenscheibe und/oder Glasdach, bevorzugt als Glasdach verwendet werden kann. Bevorzugt ist die Verwendung der Verbundscheibe als Fahrzeug-Glasdach. Die erfindungsgemäße Verbundscheibe kann auch als funktionales und/oder dekoratives Einzelstück und als Einbauteil in Möbeln, Geräten und Gebäuden verwendet werden. Die Verbundscheibe kann auch als Bestandteil eines transparenten Displays verwendet werden. The invention also extends to the use of the composite pane according to the invention in means of transport for traffic on land, in the air or on water, in particular in motor vehicles, the composite pane being used for example as a side window and/or glass roof, preferably as a glass roof. The use of the laminated pane as a vehicle glass roof is preferred. The laminated pane according to the invention can also be used as a functional and/or decorative individual piece and as a built-in part in furniture, appliances and buildings. The laminated pane can also be used as part of a transparent display.
Die verschiedenen Ausgestaltungen der Erfindung können einzeln oder in beliebigen Kombinationen realisiert sein. Insbesondere sind die vorstehend genannten und nachstehend zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Die Erfindung wird anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein. Es zeigen: The various configurations of the invention can be implemented individually or in any combination. In particular, the features mentioned above and to be explained below can be used not only in the specified combinations, but also in other combinations or on their own, without departing from the scope of the present invention. The invention is explained in more detail with reference to a drawing and exemplary embodiments. The drawing is a schematic representation and not to scale. The drawing does not limit the invention in any way. Show it:
Fig. 1 eine schematische Querschnittsansicht durch eine Verbundscheibe mit mehreren Schichten, 1 shows a schematic cross-sectional view through a laminated pane with multiple layers,
Fig. 2 Transmissions-Spektren eines elektrochromen Funktionselements im hellen und im abgedunkelten Zustand ohne Infrarot-Schutzschicht, Fig. 2 transmission spectra of an electrochromic functional element in the bright and darkened state without an infrared protective layer,
Fig. 3 Transmissions- und Reflexionsspektren eines elektrochromenFig. 3 Transmission and reflection spectra of an electrochromic
Funktionselements im hellen und im abgedunkelten Zustand ohne die Infrarot-Schutzschicht, functional element in the light and darkened state without the infrared protective layer,
Fig. 4 Spektren eines elektrochromen Funktionselements im hellen und im abgedunkelten Zustand mit Infrarot-Schutzschicht, 4 spectra of an electrochromic functional element in the bright and in the darkened state with an infrared protective layer,
Fig. 5 einen schematischen Stapelaufbau mit einer Emissivitäts-mindernden Beschichtung, 5 shows a schematic stack structure with an emissivity-reducing coating,
Fig. 6 einen weiteren schematischen Stapelaufbau mit einer getönten thermoplastischen Schicht, 6 shows a further schematic stack structure with a tinted thermoplastic layer,
Fig. 7A einen weiteren schematischen Stapelaufbau, 7A another schematic stack structure,
Fig. 7B Spektren zu einem Stapelaufbau wie er in Figur 7A dargestellt ist, 7B spectra for a stack structure as shown in FIG. 7A,
Fig. 8A einen weiteren schematischen Stapelaufbau, 8A another schematic stack structure,
Fig. 8B Spektren zu einem Stapelaufbau wie er in Figur 8A dargestellt ist, 8B spectra for a stack structure as shown in FIG. 8A,
Fig. 9 Spektren zu einem Stapelaufbau umfassend ein SPD-Funktionselement ohne Infrarot-Schutzschicht, Fig. 10 Spektren zu einem Stapelaufbau umfassend ein anderes elektrochromes Funktionselement ohne Infrarot-Schutzschicht und 9 spectra for a stack structure comprising an SPD functional element without an infrared protective layer, 10 spectra for a stacked structure comprising another electrochromic functional element without an infrared protective layer and
Fig. 11 ein Blockdiagramm eines Verfahrens zum Herstellen einer Verbundscheibe. 11 is a block diagram of a method of making a laminated pane.
Fig. 1 zeigt eine schematische Querschnittsansicht durch eine Verbundscheibe 100 mit elektrisch steuerbaren optischen Eigenschaften. Die Verbundscheibe 100 weist mehrere Schichten auf. Eine Außenscheibe 103 ist über eine Zwischenschicht 111 flächenmäßig mit einer Innenscheibe 105 verbunden. Über die Zwischenschicht 111 sind die Außenscheibe 103 und die Innenscheibe 105 dauerhaft stabil durch Lamination miteinander verbunden. Die Zwischenschicht 111 umfasst zumindest eine thermoplastische Klebefolie. Die thermoplastische Klebefolie enthält zumindest ein thermoplastisches Polymer, bevorzugt Ethylenvinylacetat (EVA) und/oder Polyvinylbutyral (PVB). Damit wird eine Verbindung der Zwischenschicht 111 zur Außenscheibe 103 und zur Innenscheibe 105 erreicht. Die thermoplastische Klebefolie kann aber auch beispielsweise zumindest Polyurethan, Polyethylen, Polyethylenterephthalat, Polypropylen, Polycarbonat, Polymethylmetacrylat, Polyacrylat, Polyvinylchlorid, Polyacetatharz, Gießharze, Acrylate, Fluorinierte Ethylen- Propylen, Polyvinylfluorid und / oder Ethylen-Tetrafluorethylen enthalten. Die Dicke der thermoplastischen Klebefolie beträgt bevorzugt von 0,25 mm bis 1 mm, beispielsweise 0,38 mm oder 0,76 mm. 1 shows a schematic cross-sectional view through a laminated pane 100 with electrically controllable optical properties. The composite pane 100 has multiple layers. An outer pane 103 is connected over an area to an inner pane 105 via an intermediate layer 111 . The outer pane 103 and the inner pane 105 are permanently and stably connected to one another by lamination via the intermediate layer 111 . The intermediate layer 111 comprises at least one thermoplastic adhesive film. The thermoplastic adhesive film contains at least one thermoplastic polymer, preferably ethylene vinyl acetate (EVA) and/or polyvinyl butyral (PVB). This achieves a connection between the intermediate layer 111 and the outer pane 103 and the inner pane 105 . However, the thermoplastic adhesive film can also contain, for example, at least polyurethane, polyethylene, polyethylene terephthalate, polypropylene, polycarbonate, polymethyl methacrylate, polyacrylate, polyvinyl chloride, polyacetate resin, casting resins, acrylates, fluorinated ethylene propylene, polyvinyl fluoride and/or ethylene tetrafluoroethylene. The thickness of the thermoplastic adhesive film is preferably from 0.25 mm to 1 mm, for example 0.38 mm or 0.76 mm.
In der Zwischenschicht 111 ist ein elektrochromes Funktionselement 107 mit elektrisch steuerbaren optischen Eigenschaften angeordnet, das elektrisch zwischen einem hellen Zustand und einem abgedunkelten Zustand hin und her gesteuert werden kann. In dem hellen Zustand vermindert das Funktionselement 107 die Infrarotstrahlung und in dem abgedunkelt geschalteten Zustand ist das Funktionselement 107 für Infrarotstrahlung durchlässiger (Siehe Figur 2). Die Zwischenschicht 111 weist daneben eine Infrarot- Schutzschicht 109 zum Blockieren von Infrarotstrahlung und zwei Polycaprolacton- Schichten (PCL-Schichten) 113 auf, zwischen denen das Funktionselement 107 angeordnet ist. An electrochromic functional element 107 with electrically controllable optical properties is arranged in the intermediate layer 111 and can be electrically controlled back and forth between a bright state and a darkened state. In the bright state, the functional element 107 reduces the infrared radiation and in the darkened switched state, the functional element 107 is more permeable to infrared radiation (see FIG. 2). The intermediate layer 111 also has an infrared protective layer 109 for blocking infrared radiation and two polycaprolactone layers (PCL layers) 113 between which the functional element 107 is arranged.
Das Funktionselement 107 kann prinzipiell beispielsweise auf der innenseitigen Oberfläche der Außenscheibe 103 oder der Innenscheibe 105 aufgebracht sein. Mit der innenseitigen Oberfläche wird diejenige Oberfläche einer Scheibe bezeichnet, die der Zwischenschicht zugewandt ist. In einer bevorzugten Ausgestaltung ist das Funktionselement 107 flächenmäßig zwischen zumindest zwei thermoplastischen Klebefolien angeordnet. Das Funktionselement 107 ist dabei über zumindest eine erste thermoplastische Klebefolie mit der Außenscheibe 103 und über zumindest eine zweite thermoplastische Klebefolie mit der Innenscheibe 105 verbunden. Die erste und die zweite thermoplastische Klebefolie stehen dabei mit der Außenscheibe 103 beziehungsweise der Innenscheibe 105 in Kontakt und bewirken die Verklebung des Funktionselementes 107 mit der Außenscheibe 103 und der Innenscheibe 105 zur Verbundscheibe 100. In principle, the functional element 107 can be applied, for example, to the inside surface of the outer pane 103 or the inner pane 105 . With the The inside surface is the surface of a pane that faces the intermediate layer. In a preferred embodiment, the functional element 107 is arranged in terms of area between at least two thermoplastic adhesive films. Functional element 107 is connected to outer pane 103 via at least one first thermoplastic adhesive film and to inner pane 105 via at least one second thermoplastic adhesive film. The first and the second thermoplastic adhesive film are in contact with the outer pane 103 and the inner pane 105, respectively, and cause the functional element 107 to be bonded to the outer pane 103 and the inner pane 105 to form the composite pane 100.
Die Außenscheibe 103 und die Innenscheibe 105 können im Allgemeinen nichtvorgespanntes, teilvorgespanntes oder vorgespanntes Glas, bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas, Kalk- Natron-Glas oder klare Kunststoffe, bevorzugt starre klare Kunststoffe, insbesondere Polyethylen, Polypropylen, Polycarbonat, Polymethylmethacrylat, Polystyrol, Polyamid, Polyester, Polyvinylchlorid und/oder Gemische davon enthalten und bevorzugt eine Dicke von 0,5 mm bis 15 mm, besonders bevorzugt von 1 mm bis 5 mm aufweisen. The outer pane 103 and the inner pane 105 can generally be non-tempered, partially tempered or toughened glass, preferably flat glass, float glass, quartz glass, borosilicate glass, soda-lime glass or clear plastics, preferably rigid clear plastics, in particular polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, polystyrene , Polyamide, polyester, polyvinyl chloride and / or mixtures thereof and preferably have a thickness of 0.5 mm to 15 mm, particularly preferably from 1 mm to 5 mm.
Fig. 2 zeigt Transmissionsspektren des elektrochromen Funktionselements 107 ohne Infrarot-Schutzschicht 109 im hellen Zustand und im abgedunkelten Zustand als Funktion der Wellenlänge. 2 shows transmission spectra of the electrochromic functional element 107 without an infrared protective layer 109 in the bright state and in the darkened state as a function of the wavelength.
Im sichtbaren Spektralbereich (400-800 nm) ist die Transmission des elektrochromen Funktionselements 107 im dunklen Zustand bzw, abgedunkelten Zustand niedriger als im hellen Zustand. Im Infrarotbereich (800-2500 nm) ist hingegen die Transmission des elektrochromen Funktionselements 107 im abgedunkelten Zustand höher im als im hellen Zustand. In diesem Fall findet eine Verschiebung des Spektrums beim Schalten des Funktionselements 107 statt. In the visible spectral range (400-800 nm), the transmission of the electrochromic functional element 107 in the dark state or darkened state is lower than in the light state. In contrast, in the infrared range (800-2500 nm), the transmission of the electrochromic functional element 107 is higher in the darkened state than in the bright state. In this case, the spectrum is shifted when the functional element 107 is switched.
Die Transmissionskurven zeigen, dass der helle Zustand das Infrarotlicht blockiert und der abgedunkelte Zustand das Infrarotlicht passieren lässt. Die Energietransmission TE und die totale solare Energietransmission TTS für den abgedunkelten Zustand sind daher höher als für den hellen Zustand. Fig. 3 zeigt Transmissionsspektren des elektrochromen Funktionselements 107 ohne die Infrarot-Schutzschicht 109 im hellen Zustand und im abgedunkelten Zustand. Diese Transmissionsspektren entsprechen denjenigen aus Fig. 2. Zusätzlich sind die Reflexionsspektren des Funktionselements 107 im hellen Zustand und im dunklen Zustand bzw. abgedunkelten Zustand gezeigt. The transmission curves show that the bright state blocks the infrared light and the darkened state allows the infrared light to pass. The energy transmission TE and the total solar energy transmission TTS for the darkened state are therefore higher than for the light state. 3 shows transmission spectra of the electrochromic functional element 107 without the infrared protective layer 109 in the bright state and in the darkened state. These transmission spectra correspond to those from FIG. 2. In addition, the reflection spectra of the functional element 107 in the bright state and in the dark state or darkened state are shown.
Fig. 4 zeigt die Transmissionsspektren des elektrochromen Funktionselements 107 im hellen Zustand und im dunklen bzw. abgedunkelten Zustand mit der zusätzlichen Infrarot-Schutzschicht 109. Die Transmission von Infrarotlicht ist im abgedunkelten Zustand des Funktionselements 107 im Wesentlichen blockiert. Demgegenüber ist die Reflexion des Infrarotlichtes im abgedunkelten Zustand des Funktionselements 107 höher. 4 shows the transmission spectra of the electrochromic functional element 107 in the bright state and in the dark or darkened state with the additional infrared protective layer 109. The transmission of infrared light is essentially blocked when the functional element 107 is in the darkened state. In contrast, the reflection of the infrared light is higher when the functional element 107 is in the darkened state.
Durch die Infrarot-Schutzschicht 109, wie beispielsweise infrarotabsorbierendes Polyvinylbutyral (PVB) oder infrarotreflektierende Schichten, kann die thermische Irritation durch die Infrarotstrahlung verhindert werden. Eine geeignete Infrarot- Schutzschicht 109 kann durch Simulation und optische Messungen des Stapelaufbaus der Verbundscheibe 100 bestimmt werden. Das Ziel ist dabei, dass die Energietransmission TE im hellen Zustand größer als im abgedunkelten Zustand ist (TE(hell) > TE(abgedunkelt)) und die totale solare Energietransmission TTS im hellen Zustand ebenfalls größer als im abgedunkelten Zustand ist (TTS(hell) > TTS(abgedunkelt)). The thermal irritation caused by the infrared radiation can be prevented by the infrared protective layer 109, such as, for example, infrared-absorbing polyvinyl butyral (PVB) or infrared-reflecting layers. A suitable infrared protective layer 109 can be determined by simulation and optical measurements of the stack structure of the laminated pane 100. The aim is that the energy transmission TE is greater in the bright state than in the darkened state (TE(bright) > TE(darkened)) and the total solar energy transmission TTS is also greater in the bright state than in the darkened state (TTS(bright) > TTS(darkened)).
Es stellt sich heraus, dass silberbasierte Beschichtungen auf Glas oder Polyethylenterephthalat-Schichten (PET-Schichten) in der Lage sind, eine niedrigere Energietransmission TE und eine niedrigere totale solare Energietransmission TTS für den abgedunkelten Zustand als für den hellen Zustand zu bewirken. Der Grund hierfür ist, dass eine Silberbeschichtung eine hohe Reflexion im Nahinfrarotbereich aufweist und ebenfalls rotes Licht im sichtbaren Spektralbereich reflektiert. Durch eine Kombination einer silberbasierten Infrarot-Schutzschicht 109 mit dem elektrochromen Funktionselement 107 kann eine Infrarottransmission der Verbundscheibe 100 derart reduziert werden, dass die totale solare Energietransmission TTS für den abgedunkelten Zustand niedriger als für den hellen Zustand ist (TTS(abgedunkelt) < TTS(hell)). Ein Abdunkeln führt somit zu einem Schutz vor Wärmeentwicklung im Fahrzeug, was von den Fahrzeuginsassen erwartet wird. Daneben kann eine bläuliche Farbe des elektrochromen (EC) Funktionselements 107 im abgedunkelten Zustand 203 durch Hinzufügen einer gelben PVB-Zwischenschicht neutralisiert werden. It turns out that silver-based coatings on glass or polyethylene terephthalate (PET) films are able to induce a lower TE energy transmission and a lower total solar energy transmission TTS for the darkened state than for the light state. The reason for this is that a silver coating has a high reflection in the near infrared range and also reflects red light in the visible spectral range. By combining a silver-based infrared protective layer 109 with the electrochromic functional element 107, an infrared transmission of the laminated pane 100 can be reduced in such a way that the total solar energy transmission TTS for the darkened state is lower than for the light state (TTS(darkened) < TTS(bright )). Darkening thus leads to protection against heat generation in the vehicle, which is what the vehicle occupants expect. In addition, a bluish color of the electrochromic (EC) functional element 107 in the darkened state 203 can be neutralized by adding a yellow PVB interlayer.
Je nach Stapelaufbau ergeben sich folgende Werte für die Lichttransmission TL, die Energietransmission TE und die totale solare Energietransmission TTS. Die unten genannten Schichtfolgen gehen in Reihenfolge von außen nach innen. Depending on the stack structure, the following values result for the light transmission TL, the energy transmission TE and the total solar energy transmission TTS. The layer sequences mentioned below go in order from the outside to the inside.
1. Keine Infrarot-Schutzschicht 1. No infrared protection layer
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2,1 mm dicke Außenscheibe 103 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107/ eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick Inner pane 105
Die Innenscheibe 105 und die Außenscheibe 103 bestehen beispielsweise aus Kalk- Natron-Glas. The inner pane 105 and the outer pane 103 consist, for example, of soda-lime glass.
Lichttransmission TL (hell/abgedunkelt): 32% / 1 % Light transmission TL (bright/dim): 32% / 1%
Energietransmission TE (hell/abgedunkelt): 18% / 26 % Energy transmission TE (bright/dim): 18% / 26%
Totale solare Energietransmission TTS (hell/abgedunkelt): 38% / 44% Total solar energy transmission TTS (bright/darkened): 38% / 44%
2. Infrarotabsorbierendes PVB 2. Infrared absorbing PVB
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2,1 mm dicke Außenscheibe 103 / eine 0,38 mm dicke Infrarot-Schutzschicht 109 auf Basis von PVB / ein elektrochromes Funktionselement 107/ eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / a 0.38 mm thick infrared protection layer 109 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick Inner pane 105
Die Innenscheibe 105 und die Außenscheibe 103 bestehen beispielsweise aus Kalk- Natron-Glas. Die Infrarot-Schutzschicht ist in diesem Beispiel eine infrarotabsorbierende Schicht auf Basis von PVB. The inner pane 105 and the outer pane 103 consist, for example, of soda-lime glass. In this example, the infrared protective layer is an infrared-absorbing layer based on PVB.
Lichttransmission TL (hell/abgedunkelt): 31% / 1 % Light transmission TL (bright/dim): 31% / 1%
Energietransmission TE (hell/abgedunkelt): 17% / 20% Energy transmission TE (bright/dim): 17% / 20%
Totale solare Energietransmission TTS (hell/abgedunkelt): 38% / 40% 3. Nichtmetallische Infrarot-Schutzschicht Total solar energy transmission TTS (bright/darkened): 38% / 40% 3. Non-metallic infrared protection layer
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2,1 mm dicke Außenscheibe 103 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / a 0.38 mm thick, uncolored layer 113 based on PVB / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick inner pane 105
Lichttransmission TL (hell/abgedunkelt): 32% / 1 % Light transmission TL (bright/dim): 32% / 1%
Energietransmission TE (hell/abgedunkelt): 16% / 16% Energy transmission TE (bright/dim): 16% / 16%
Totale solare Energietransmission TTS (hell/abgedunkelt): 33% / 33% Total solar energy transmission TTS (bright/darkened): 33% / 33%
Bei der Infrarot-Schutzschicht 109 handelt es sich um eine Kombination aus mehreren nichtmetallischen Interferenzschichten, die auf einer Folie aufgebracht sind, die infrarote Sonnenenergie mit einem minimalen Effekt auf die Transmission im sichtbaren Bereich reflektiert. The infrared protection layer 109 is a combination of multiple non-metallic interference layers applied to a film that reflects infrared solar energy with minimal effect on visible transmission.
4. Infrarot-Schutzschicht mit 3 Silberschichten 4. Infrared protection layer with 3 layers of silver
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2,1 mm dicke Außenscheibe 103 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / a 0.38 mm thick, uncolored layer 113 based on PVB / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick inner pane 105
Lichttransmission TL (hell/abgedunkelt): 27% / 0,8% Light transmission TL (bright/dim): 27% / 0.8%
Energietransmission TE (hell/abgedunkelt): 12% / 4% Energy transmission TE (bright/dim): 12% / 4%
Totale solare Energietransmission TTS (hell/abgedunkelt): 27% / 21 % Total solar energy transmission TTS (bright/darkened): 27% / 21%
Die Infrarot-Schutzschicht 109 besteht in diesem Beispiel aus einemsilberhaltigen, transparenten Polyethylenterephthalat- (PET-) Film der zwischen Schichten 113 auf Basis von PVB eingebettet ist, um eine Schutzbarriere gegen schädliche Sonneneinstrahlung zu bewirken. Die Infrarot-Schutzschicht 109 weist in diesem Beispiel 3 Silberschichten auf. Die Silberschichten sind durch dielektrische Schichten voneinander getrennt. The infrared protective layer 109 in this example consists of a silver-containing, transparent polyethylene terephthalate (PET) film sandwiched between PVB-based layers 113 to provide a protective barrier against harmful solar radiation. The infrared protection layer 109 has in this Example 3 silver layers. The silver layers are separated from each other by dielectric layers.
5. Infrarot-Schutzschicht mit 2 Silberschichten 5. Infrared protection layer with 2 layers of silver
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2, 1 mm dicke Außenscheibe 103 / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick inner pane 105
Lichttransmission TL (hell/abgedunkelt): 26% / 0,8% Energietransmission TE (hell/abgedunkelt): 13% / 7% Totale solare Energietransmission TTS (hell/abgedunkelt): 29% / 25% Light transmission TL (bright/dim): 26% / 0.8% Energy transmission TE (bright/dim): 13% / 7% Total solar energy transmission TTS (bright/dim): 29% / 25%
Die Infrarot-Schutzschicht 109 ist silberbasiert und reflektiert Licht im Infrarotbereich ab 800 nm aufwärts. Die Infrarot-Schutzschicht 109 weist in diesem Beispiel 2 Silberschichten auf. Die Infrarot-Schutzschicht 109 wird in diesem Beispiel direkt auf die innenseitige Oberfläche, also die der Schichten 113 zugewandten Oberfläche, der Außenscheibe 103 aufgebracht. The infrared protection layer 109 is silver-based and reflects light in the infrared range from 800 nm upwards. The infrared protection layer 109 has 2 silver layers in this example. In this example, the infrared protective layer 109 is applied directly to the inside surface, ie the surface facing the layers 113, of the outer pane 103.
6. Infrarot-Schutzschicht mit 3 Silberschichten 6. Infrared protection layer with 3 layers of silver
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2, 1 mm dicke Außenscheibe 103 / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2, 1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick inner pane 105
Lichttransmission TL (hell/abgedunkelt): 25% / 0,8% Energietransmission TE (hell/abgedunkelt): 11 % / 3% Totale solare Energietransmission TTS (hell/abgedunkelt): 23% / 17% Light transmission TL (bright/dim): 25% / 0.8% Energy transmission TE (bright/dim): 11% / 3% Total solar energy transmission TTS (bright/dim): 23% / 17%
Die Infrarot-Schutzschicht 109 mit 3 Silberschichten blockiert die TE und TTS durch die Verbundscheibe noch besser als die Infrarot-Schutzschicht 109 wie in Beispiel 6 gezeigt. 7. Infrarot-Schutzschicht mit 3 Silberschichten und eine Emissivitäts-mindernde Beschichtung The infrared protective layer 109 with 3 layers of silver blocks the TE and TTS through the laminated pane even better than the infrared protective layer 109 as shown in Example 6. 7. Infrared protection layer with 3 layers of silver and an emissivity-reducing coating
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2, 1 mm dicke Außenscheibe 103 / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2, 1 mm dicke Innenscheibe 105 / eine Emissivitäts-mindernde Beschichtung 117 A 2.1 mm thick outer pane 103 / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick inner pane 105 / an emissivity-reducing coating 117
Die Emissivitäts-mindernde Beschichtung 117 mit niedriger Emissivität (Low E-Schicht) ist eine Schicht, die ausgebildet ist, die Wärmestrahlung bei Raumtemperatur zu reflektieren oder die Emission zu senken. Die Emissivitäts-mindernde Beschichtung 117 ist beispielsweise eine Schichtabfolge aufweisen eine ITO-Schicht. Der Wellenlängenbereich der Reflexion liegt beispielsweise bei 10 pm. Da das Glas in diesem Wellenlängenbereich nicht transparent ist, befindet sich diese Schicht auf der außenseitigen Oberfläche der Innenscheibe 100. The low-emissivity emissivity-reducing coating 117 (Low E layer) is a layer configured to reflect the thermal radiation at room temperature or to lower the emission. The emissivity-reducing coating 117 is, for example, a layer sequence having an ITO layer. The wavelength range of the reflection is 10 pm, for example. Since the glass is not transparent in this wavelength range, this layer is on the outside surface of the inner pane 100.
Lichttransmission TL (hell/abgedunkelt): 25% / 0,8% Energietransmission TE (hell/abgedunkelt): 11 % / 3% Totale solare Energietransmission TTS (hell/abgedunkelt): 20% /13% Light transmission TL (bright/darkened): 25% / 0.8% Energy transmission TE (bright/darkened): 11% / 3% Total solar energy transmission TTS (bright/darkened): 20% /13%
Die Figuren 4, 7 und 8 zeigen das optische Verhalten des oben genannten Beispiels mit der Nummer 6, bei dem eine Infrarot-Schutzschicht 109 mit 3 Silberschichten verwendet wird. Es zeigt sich, dass die Infrarottransmission der Verbundscheibe 100 im abgedunkelten Zustand vollständig unterdrückt werden kann, außer einer kleinen Spitze um eine Wellenlänge von 800 nm. Ein besonders bevorzugter Stapelaufbau für eine Anwendung im Automobilbereich ist eine Kombination mit einer Emissivitäts-mindernde Beschichtung 117 wie im Beispiel mit der Nummer 7 dargestellt. Figures 4, 7 and 8 show the optical performance of the above example number 6, in which an infrared protection layer 109 with 3 silver layers is used. It is found that the infrared transmission of the composite pane 100 in the darkened state can be completely suppressed, except for a small peak around a wavelength of 800 nm. A particularly preferred stack structure for an application in the automotive sector is a combination with an emissivity-reducing coating 117 as in Example shown with number 7.
Zudem kann ein Farbabgleich der Verbundscheibe 100 durchgeführt werden. Im Allgemeinen ist es ebenfalls möglich, elektrochrome Moleküle zu dem elektrochromen Funktionselement 107 hinzuzufügen, die zu Gelb oder Rot schalten, um insgesamt eine neutrale graue Farbe zu erzeugen. Als Alternative können auch Farbstoffe in der thermoplastischen Schicht 113 verwendet werden. Solche eingefärbten thermoplastischen Schichten 113, die vorzugsweise auf Basis von PVB ausgebildet sind, sind nicht aktiv schaltbar und beeinflussen sowohl den hellen als auch den abgedunkelten Zustand gleichermaßen. In addition, a color matching of the laminated pane 100 can be carried out. In general, it is also possible to add electrochromic molecules to the electrochromic device 107 that switch to yellow or red to produce an overall neutral gray color. As an alternative, dyes can also be used in the thermoplastic layer 113. Such inked Thermoplastic layers 113, which are preferably based on PVB, cannot be actively switched and affect both the bright and the darkened state equally.
Fig. 5 zeigt einen schematischen Stapelaufbau der Verbundglasscheibe 100. Der Stapelaufbau entspricht dem Beispiel mit der Nummer 7 mit zwei klaren Schichten 113 die beispielsweise auf Basis von PVB ausgebildet sind. Die Verbundscheibe 100 weist im Unterschied zu den Beispielen 1 bis 6 eine Emissivitäts-mindernde Beschichtung 117 auf der außenseitigen Oberfläche der Innenscheibe 105 auf. Die Verbundscheibe 100 hat unterschiedliche Färbungen im hellen, also transparenten, Zustand und abgedunkelten Zustand (siehe Tabelle 1). 5 shows a schematic stack structure of the laminated glass pane 100. The stack structure corresponds to the example with the number 7 with two clear layers 113 which are formed, for example, on the basis of PVB. In contrast to Examples 1 to 6, the laminated pane 100 has an emissivity-reducing coating 117 on the outside surface of the inner pane 105 . The laminated pane 100 has different colorings in the light, ie transparent, state and darkened state (see Table 1).
Tabelle 1 : Färbungen für den hellen und abgedunkelten Zustand der Verbundscheibe 100 aus Figur 5. Table 1: Colorations for the light and darkened state of the laminated pane 100 from FIG.
Fig. 6 zeigt einen weiteren schematischen Stapelaufbau der Verbundglasscheibe 100. Der Stapelaufbau entspricht dem Beispiel mit der Nummer 7, bei dem die klare thermoplastische Schicht 113, beispielsweise auf Basis von PVB ausgebildet, durch eine gefärbte, gelbe thermoplastische Schicht 115, die beispielsweise auf Basis von PVB ausgebildet ist, ersetzt worden ist. Dadurch wird ein Farbabgleich hinsichtlich des Funktionselementes 107 erzielt. Der Farbabgleich wird mit der gefärbten, gelben Schicht 115 durchgeführt. Die Konzentration eines Farbstoffes kann an die Dicke der Schicht 115 angepasst werden. Durch die gelbe Farbe der gefärbten Schicht 115 wird im Ergebnis eine neutrale graue Farbe der Verbundscheibe 100 erhalten, wenn die Farbwerte der Funktionsschicht 107 im Blaubereich liegen. Die Verbundscheibe 100 hat entsprechende Färbungen im hellen, also transparenten, Zustand und abgedunkelten Zustand (siehe Tabelle 2). Fig. 6 shows another schematic stack structure of the laminated glass pane 100. The stack structure corresponds to example number 7, in which the clear thermoplastic layer 113, for example based on PVB, is replaced by a colored, yellow thermoplastic layer 115, which is based, for example, on formed by PVB has been replaced. A color balance with regard to the functional element 107 is thereby achieved. Color matching is performed on the colored yellow layer 115. The concentration of a dye can be adjusted to the thickness of the layer 115. As a result of the yellow color of the colored layer 115, a neutral gray color of the laminated pane 100 is obtained if the color values of the functional layer 107 are in the blue range. The laminated pane 100 has corresponding colorings in the light, ie transparent, state and darkened state (see Table 2).
Tabelle 2: Färbungen für den hellen und abgedunkelten Zustand der Verbundscheibe 100 aus Figur 6. Statt einer gefärbten Schicht 115, die auf Basis von PVB ausgebildet ist, können andere Schichten verwendet werden wie beispielsweise aus Ethylen-Vinylacetat-Copolymer (EVA), Polyurethan (PU) oder Cycloolefin-Polymer (COP). Gleiches gilt für akustisches PVB oder PVB mit infrarotabsorbierenden Partikeln. Table 2: Colorations for the light and darkened state of the laminated pane 100 from Figure 6. Instead of a colored layer 115, which is based on PVB, other layers can be used, such as ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) or cycloolefin polymer (COP). The same applies to acoustic PVB or PVB with infrared-absorbing particles.
Fig. 7A zeigt eine weitere schematische Querschnittsansicht durch eine Verbundscheibe 100 mit mehreren Schichten. Die Fig. 7B zeigt die zu Fig. 7A dazugehörigen Spektren. Die Verbundscheibe 100 weist ein getöntes unteres Glas (VG10) als Innenscheibe 105 auf. Das getönte Glas ist ein graues Glas mit einer Lichttransmission von 28%. Die Infrarot-Schutzschicht 109 ist eine dreilagige Silber- Schicht auf der innenseitigen Oberfläche der Außenscheibe 103. Durch diesen Aufbau der Verbundscheibe 100 wird ebenfalls aufgrund der geringeren Lichttransmission ein realistischer Anwendungsfall abgedeckt und eine verbesserte Farbneutralität erreicht. FIG. 7A shows another schematic cross-sectional view through a laminated pane 100 with multiple layers. FIG. 7B shows the spectra associated with FIG. 7A. The laminated pane 100 has a tinted lower glass (VG10) as the inner pane 105 . The tinted glass is a gray glass with a light transmission of 28%. The infrared protective layer 109 is a three-layer silver layer on the inside surface of the outer pane 103. This structure of the laminated pane 100 also covers a realistic application due to the lower light transmission and achieves improved color neutrality.
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2, 1 mm dicke Außenscheibe 103 / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke getönte Innenscheibe 105 A 2.1 mm thick outer pane 103 / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick tinted inner pane 105
Lichttransmission TL (hell/abgedunkelt): 7,8% / 0,2% Light transmission TL (bright/dim): 7.8% / 0.2%
Energietransmission TE (hell/abgedunkelt): 3,5% / 0,7% Energy transmission TE (bright/dim): 3.5% / 0.7%
Totale solare Energietransmission TTS (hell/abgedunkelt): 17,5% / 15,6% Total solar energy transmission TTS (bright/darkened): 17.5% / 15.6%
Fig. 8A zeigt eine weitere schematische Querschnittsansicht durch eine Verbundscheibe 100 mit mehreren Schichten. Figur 8B zeigt die zu Figur 8A dazugehörigen Spektren. Die Verbundscheibe 100 weist ein getöntes unteres Glas (VG10) als Innenscheibe 105 und eine Emissivitäts-mindernde Beschichtung 117 auf, die ausgebildet ist, die Wärmestrahlung bei Raumtemperatur zu reflektieren oder die Emission zu senken. Die Emissivitäts-mindernde Beschichtung ist beispielsweise eine Schichtabfolge aufweisen eine ITO-Schicht. Das getönte Glas ist ein graues Glas mit einer Lichttransmission von 28%. Die Infrarot-Schutzschicht 109 ist beispielsweise eine dreilagige Silber-Schicht, welche auf der innenseitigen Oberfläche der Außenscheibe 103 aufgebracht ist. Durch diesen Aufbau der Verbundscheibe 100 wird aufgrund der geringeren Lichttransmission ein realistischer Anwendungsfall abgedeckt. Der Aufbau mit der Emissivitäts-mindernde Beschichtung 117 (low E-Schicht) hat annähernd das gleiche Spektrum und somit TL und TE wie das in Figur 7B dargestellte, ohne die Emissivitäts-mindernde Beschichtung 117. Die Verbundscheibe 100 mit der Emissivitäts- mindernde Beschichtung 117 weist aber signifikant bessere TTS Werte auf. Dieser Effekt wird durch die Emissivitäts-mindernde Beschichtung 117 erreicht. FIG. 8A shows another schematic cross-sectional view through a composite pane 100 with multiple layers. FIG. 8B shows the spectra associated with FIG. 8A. The laminated pane 100 has a tinted lower glass (VG10) as the inner pane 105 and an emissivity-reducing coating 117 which is designed to reflect thermal radiation at room temperature or to reduce emissions. The emissivity-reducing coating is, for example, a layer sequence having an ITO layer. The tinted glass is a gray glass with a light transmission of 28%. The infrared protective layer 109 is, for example, a three-layer silver layer which is on the inside surface of the outer pane 103 is applied. A realistic application is covered by this structure of the laminated pane 100 due to the lower light transmission. The structure with the emissivity-reducing coating 117 (low E layer) has approximately the same spectrum and thus TL and TE as that shown in Figure 7B, without the emissivity-reducing coating 117. The composite pane 100 with the emissivity-reducing coating 117 but has significantly better TTS values. This effect is achieved by the emissivity-reducing coating 117 .
Stapelaufbau - Schichtdicke: Stack structure - layer thickness:
Eine 2, 1 mm dicke Außenscheibe 103 / eine Infrarot-Schutzschicht 109 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein elektrochromes Funktionselement 107 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2,1 mm dicke getönte Innenscheibe 105 / eine Emissivitäts-mindernde Beschichtung 117 A 2.1 mm thick outer pane 103 / an infrared protection layer 109 / a 0.38 mm thick, uncolored layer 113 based on PVB / an electrochromic functional element 107 / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick tinted inner pane 105 / an emissivity-reducing coating 117
Lichttransmission TL (hell/abgedunkelt): 7,6% / 0,2% Energietransmission TE (hell/abgedunkelt): 3,4% / 0,7% Totale solare Energietransmission TTS (hell/abgedunkelt): 13,4% / 11 ,2% Light transmission TL (bright/darkened): 7.6% / 0.2% Energy transmission TE (bright/darkened): 3.4% / 0.7% Total solar energy transmission TTS (bright/darkened): 13.4% / 11 .2%
Fig. 9 zeigt ein Transmissionsspektrum für ein SPD-Funktionselement (SPD - suspended particle device) ohne Anwendung einer Infrarot-Schutzschicht 109 im hellen Zustand und im abgedunkelten Zustand als Funktion der Wellenlänge. Das SPD-Funktionselement ist in einer Verbundscheibe 100 eingesetzt und der Stapelaufbau der Verbundscheibe 100 ist: 9 shows a transmission spectrum for a SPD functional element (SPD - suspended particle device) without the application of an infrared protective layer 109 in the light state and in the darkened state as a function of wavelength. The SPD functional element is inserted into a laminated pane 100 and the stack structure of the laminated pane 100 is:
Eine 2, 1 mm dicke Außenscheibe 103 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein SPD-Funktionselement / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2, 1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / a 0.38 mm thick, uncolored layer 113 based on PVB / an SPD functional element / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick Inner pane 105
Die Innenscheibe 105 und die Außenscheibe 103 bestehen beispielsweise aus Kalk- Natron-Glas. The inner pane 105 and the outer pane 103 consist, for example, of soda-lime glass.
Im sichtbaren Spektralbereich (380 nm bis 780 nm) ist die Transmission des SPD- Funktionselement im dunklen Zustand bzw, abgedunkelten Zustand niedriger als im hellen Zustand. Im Infrarotbereich (780 nm bis 2500 nm) ist die Transmission des SPD- Funktionselementes im abgedunkelten Zustand, insbesondere in dem höher frequentierten Infrarotbereich (780 nm bis 1300 nm), ebenfalls niedriger als im hellen Zustand. In diesem Fall findet keine Verschiebung des Spektrums beim Schalten des SPD-Funktionselementes statt. In the visible spectral range (380 nm to 780 nm), the transmission of the SPD functional element is lower in the dark or darkened state than in the bright state. In the infrared range (780 nm to 2500 nm) the transmission of the SPD Functional element in the darkened state, especially in the more frequented infrared range (780 nm to 1300 nm), also lower than in the bright state. In this case, there is no spectrum shift when switching the SPD functional element.
Die Transmissionskurven zeigen, dass SPD-Funktionselemente nicht die Problematik aufweisen, dass der helle Zustand das Infrarotlicht blockiert und der dunkle Zustand das Infrarotlicht passieren lässt. Die Energietransmission TE und die totale solare Energietransmission TTS für den abgedunkelten Zustand sind deutlich niedriger als für den hellen Zustand. The transmission curves show that SPD devices do not have the problem that the light state blocks the infrared light and the dark state allows the infrared light to pass. The energy transmission TE and the total solar energy transmission TTS for the darkened state are significantly lower than for the light state.
Lichttransmission TL (hell/abgedunkelt): 38,7% / 0,8% Light transmission TL (bright/dim): 38.7% / 0.8%
Energietransmission TE (hell/abgedunkelt): 50,9% / 21 ,2% Energy transmission TE (bright/darkened): 50.9% / 21.2%
Totale solare Energietransmission TTS (hell/abgedunkelt): 62,3% / 40,8% Total solar energy transmission TTS (bright/darkened): 62.3% / 40.8%
Fig. 10 zeigt ein Transmissionsspektrum für ein anderes, nicht im Sinne der Erfindung funktionierendes, elektrochromes Funktionselement, ohne Anwendung einer Infrarot- Schutzschicht 109 im hellen Zustand und im abgedunkelten Zustand als Funktion der Wellenlänge. Das andere elektrochrome Funktionselement unterscheidet sich von den elektrochromen Funktionselementen 107 aus den Beispielen 1 bis 7 und Figuren 1 bis 8. Das andere elektrochrome Funktionselement ist in einer Verbundscheibe 100 eingesetzt und der Stapelaufbau der Verbundscheibe 100 ist: 10 shows a transmission spectrum for another electrochromic functional element that does not function in the sense of the invention, without the use of an infrared protective layer 109 in the bright state and in the darkened state as a function of the wavelength. The other electrochromic functional element differs from the electrochromic functional elements 107 from Examples 1 to 7 and Figures 1 to 8. The other electrochromic functional element is used in a laminated pane 100 and the stacked structure of the laminated pane 100 is:
Eine 2, 1 mm dicke Außenscheibe 103 / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / ein anderes elektrochromes Funktionselement / eine 0,38 mm dicke, ungefärbte Schicht 113 auf Basis von PVB / eine 2, 1 mm dicke Innenscheibe 105 A 2.1 mm thick outer pane 103 / a 0.38 mm thick, uncolored layer 113 based on PVB / another electrochromic functional element / a 0.38 mm thick, uncolored layer 113 based on PVB / a 2.1 mm thick Inner pane 105
Im sichtbaren Spektralbereich (400-800 nm) ist die Transmission des anderen elektrochromen Funktionselement im dunklen Zustand bzw, abgedunkelten Zustand niedriger als im hellen Zustand. Im Infrarotbereich (800-2500 nm) ist hingegen die Transmission des anderen elektrochromen Funktionselement im abgedunkelten Zustand geringfügig niedriger als im hellen Zustand. In the visible spectral range (400-800 nm), the transmission of the other electrochromic functional element is lower in the dark or darkened state than in the light state. In contrast, in the infrared range (800-2500 nm), the transmission of the other electrochromic functional element is slightly lower in the darkened state than in the bright state.
Die Transmissionskurven zeigen, dass nicht alle elektrochromen Funktionselemente die Problematik aufweisen, dass der helle Zustand das Infrarotlicht blockiert und der dunkle Zustand das Infrarotlicht passieren lässt. Die Energietransmission TE und die totale solare Energietransmission TTS für den abgedunkelten Zustand sind für bestimmte elektrochrome Funktionselemente (beispielsweise das in diesem Beispiel gezeigte) deutlich niedriger als für den hellen Zustand. The transmission curves show that not all electrochromic functional elements have the problem that the bright state blocks the infrared light and the dark one State that allows infrared light to pass. The energy transmission TE and the total solar energy transmission TTS for the darkened state are significantly lower for certain electrochromic functional elements (e.g. the one shown in this example) than for the light state.
Lichttransmission TL (hell/abgedunkelt): 56,9% / 2,8% Energietransmission TE (hell/abgedunkelt): 41 ,7% / 2,0% Totale solare Energietransmission TTS (hell/abgedunkelt): 55,6% / 27,2% Light transmission TL (bright/darkened): 56.9% / 2.8% Energy transmission TE (bright/darkened): 41.7% / 2.0% Total solar energy transmission TTS (bright/darkened): 55.6% / 27 .2%
Fig. 11 zeigt ein Blockdiagramm eines Verfahrens zum Herstellen der Verbundscheibe 100. Im Schritt S101 wird eine Infrarot-Schutzschicht 109 zum Blockieren der Infrarotstrahlung auf eine Außenscheibe 103 oder eine Innenscheibe 104 aufgebracht oder innerhalb einer Zwischenschicht 111 angeordnet. Im Schritt S102 wird ein elektrochromes Funktionselement 107 mit elektrisch steuerbaren optischen Eigenschaften innerhalb der Zwischenschicht 111 angeordnet. Bei dem elektrochromen Funktionselement ist die totale solare Energietransmission TTS im abgedunkelten Zustand höher als im hellen Zustand und/oder die Energietransmission TE im abgedunkelten Zustand höher als im hellen Zustand. Anschließend werden die Außenscheibe 103 und die Innenscheibe 105 über die Zwischenschicht 111 zu einer Verbundscheibe 100 miteinander verbunden. Die totale solare Energietransmission TTS durch die Verbundscheibe 100 ist dabei im abgedunkelten Zustand niedriger als im hellen Zustand und/oder die Energietransmission TE durch die Verbundscheibe (100) ist im abgedunkelten Zustand niedriger als im hellen Zustand. 11 shows a block diagram of a method for producing the laminated pane 100. In step S101, an infrared protection layer 109 for blocking infrared radiation is applied to an outer pane 103 or an inner pane 104 or arranged within an intermediate layer 111. In step S102, an electrochromic functional element 107 with electrically controllable optical properties is arranged within the intermediate layer 111. In the case of the electrochromic functional element, the total solar energy transmission TTS is higher in the darkened state than in the bright state and/or the energy transmission TE is higher in the darkened state than in the bright state. The outer pane 103 and the inner pane 105 are then connected to one another via the intermediate layer 111 to form a composite pane 100 . The total solar energy transmission TTS through the laminated pane 100 is lower in the darkened state than in the bright state and/or the energy transmission TE through the laminated pane (100) is lower in the darkened state than in the bright state.
Diese Verbundscheibe 100 erfüllt die Erwartungen der Automobilhersteller hinsichtlich eines thermischen Komforts (TTS(hell) > TTS(abgedunkelt)), der Ästhetik (Farbe) und einer Haltbarkeit. Durch die Verbundscheibe 100 wird der technische Vorteil erreicht, dass eine ungewollte Erwärmung eines Fahrzeuginnenraums und eine thermische Irritation eines Fahrzeuginsassen verhindert wird. This laminated pane 100 meets the automotive manufacturers' expectations in terms of thermal comfort (TTS(light)>TTS(darkened)), aesthetics (color) and durability. The composite pane 100 achieves the technical advantage that unwanted heating of a vehicle interior and thermal irritation of a vehicle occupant are prevented.
Alle in Verbindung mit einzelnen Ausführungsformen der Erfindung erläuterten und gezeigten Merkmale können in unterschiedlicher Kombination in dem erfindungsgemäßen Gegenstand vorgesehen sein, um gleichzeitig deren vorteilhafte Wirkungen zu realisieren. Alle Verfahrensschritte können durch Vorrichtungen implementiert werden, die zum Ausführen des jeweiligen Verfahrensschrittes geeignet sind. Alle Funktionen, die von gegenständlichen Merkmalen ausgeführt werden, können ein Verfahrensschritt eines Verfahrens sein. All of the features explained and shown in connection with individual embodiments of the invention can be provided in different combinations in the object according to the invention in order to realize their advantageous effects at the same time. All method steps can be implemented by devices that are suitable for carrying out the respective method step. All functions performed by physical features can be a method step of a method.
Der Schutzbereich der vorliegenden Erfindung ist durch die Ansprüche gegeben und wird durch die in der Beschreibung erläuterten oder den Figuren gezeigten Merkmale nicht beschränkt. The scope of protection of the present invention is given by the claims and is not limited by the features explained in the description or shown in the figures.
Bezugszeichenliste Reference List
100 Verbundglasscheibe 100 laminated glass pane
103 Außenscheibe 103 outer pane
105 Innenscheibe 105 inner pane
107 elektrochromes Funktionselement107 electrochromic functional element
109 Infrarot-Schutzschicht 109 infrared protection layer
111 Zwischenschicht 111 intermediate layer
113 Schicht 113 layer
115 gefärbte Schicht 115 colored layer
117 Emissivitäts-mindernde Beschichtung 117 Emissivity reducing coating

Claims

Patentansprüche patent claims
1. Verbundscheibe (100) mit elektrisch steuerbaren optischen Eigenschaften, mit: einer Außenscheibe (103) und einer Innenscheibe (105), die über eine Zwischenschicht (111) flächenmäßig miteinander verbunden sind; einem elektrochromen Funktionselement (107) mit elektrisch steuerbaren optischen Eigenschaften innerhalb der Zwischenschicht (111), bei dem die totale solare Energietransmission TTS im abgedunkelten Zustand höher als im hellen Zustand ist und/oder die Energietransmission TE im abgedunkelten Zustand höher als im hellen Zustand ist; und einer zumindest eine silberhaltige Schicht aufweisende Infrarot- Schutzschicht (109), die auf einer der Zwischenschicht (111) zugewandten, innenseitigen Oberfläche der Innenscheibe (105), auf einer der Zwischenschicht (111) zugewandten, innenseitigen Oberfläche der Außenscheibe (103) oder innerhalb der Zwischenschicht (111) aufgebracht oder angeordnet ist, welche derart mit dem elektrochromen Funktionselement (107) zusammenwirkt, dass die totale solare Energietransmission TTS durch die Verbundscheibe (100) im abgedunkelten Zustand niedriger als im hellen Zustand ist und/oder die Energietransmission TE durch die Verbundscheibe (100) im abgedunkelten Zustand niedriger als im hellen Zustand ist. 1. Laminated pane (100) with electrically controllable optical properties, having: an outer pane (103) and an inner pane (105), which are connected to one another in terms of surface area via an intermediate layer (111); an electrochromic functional element (107) with electrically controllable optical properties within the intermediate layer (111), in which the total solar energy transmission TTS is higher in the darkened state than in the bright state and/or the energy transmission TE is higher in the darkened state than in the bright state; and an infrared protective layer (109) having at least one silver-containing layer, which is on an inside surface of the inner pane (105) facing the intermediate layer (111), on an inside surface of the outer pane (103) facing the intermediate layer (111), or inside the intermediate layer (111) is applied or arranged, which interacts with the electrochromic functional element (107) in such a way that the total solar energy transmission TTS through the laminated pane (100) is lower in the darkened state than in the bright state and/or the energy transmission TE through the Composite pane (100) is lower in the darkened state than in the bright state.
2. Verbundscheibe (100) nach Anspruch 1 , wobei die Infrarot-Schutzschicht (109) flächenmäßig zwischen der Außenscheibe (103) und dem elektrochromen Funktionselement (107) angeordnet ist. 2. Laminated pane (100) according to claim 1, wherein the infrared protective layer (109) is arranged in terms of area between the outer pane (103) and the electrochromic functional element (107).
3. Verbundscheibe (100) nach einem der Ansprüche 1 oder 2, wobei die Infrarot- Schutzschicht (109) auf der, der Zwischenschicht (111) zugewandten Oberfläche der Außenscheibe (103) oder einer Polyethylenterephthalat-Schicht aufgebracht ist, wobei die Polyethylenterephthalat-Schicht mit der Infrarot-Schutzschicht (109) innerhalb der Zwischenschicht (111) angeordnet ist. 3. Laminate (100) according to one of claims 1 or 2, wherein the infrared protective layer (109) is applied to the, the intermediate layer (111) facing surface of the outer pane (103) or a polyethylene terephthalate layer, the polyethylene terephthalate layer is arranged with the infrared protection layer (109) within the intermediate layer (111).
4. Verbundscheibe (100) nach einem der Ansprüche 1 bis 3, wobei die Infrarot- Schutzschicht (109) mindestens 2 Silberschichten, bevorzugt mindestens 3 Silberschichten und insbesondere genau 3 Silberschichten umfasst. 4. Laminated pane (100) according to any one of claims 1 to 3, wherein the infrared protective layer (109) comprises at least 2 silver layers, preferably at least 3 silver layers and in particular exactly 3 silver layers.
5. Verbundscheibe (100) nach einem der Ansprüche 1 bis 4, wobei die totale solare Energietransmission TTS der Verbundscheibe (100) im hellen Zustand des elektrochromen Funktionselementes (107) kleiner oder gleich 35 % ist, bevorzugt kleiner oder gleich 25 % und insbesondere kleiner oder gleich 15 % ist. 5. Laminated pane (100) according to one of claims 1 to 4, wherein the total solar energy transmission TTS of the laminated pane (100) in the bright state of the electrochromic functional element (107) is less than or equal to 35%, preferably less than or equal to 25% and in particular less or equal to 15%.
6. Verbundscheibe (100) nach einem der Ansprüche 1 bis 5, wobei die Lichttransmission TL durch die Verbundscheibe (100) im hellen Zustand des elektrochromen Funktionselementes (107) größer oder gleich 5 %, bevorzugt größer oder gleich 10 % ist und insbesondere größer oder gleich 20 % ist. 6. Laminated pane (100) according to one of claims 1 to 5, wherein the light transmission TL through the laminated pane (100) in the bright state of the electrochromic functional element (107) is greater than or equal to 5%, preferably greater than or equal to 10% and in particular greater than or equal to is equal to 20%.
7. Verbundscheibe (100) nach einem der Ansprüche 1 bis 6, wobei eine Emissivitäts- mindernde Beschichtung (117) flächenmäßig auf einer von der7. laminated pane (100) according to any one of claims 1 to 6, wherein an emissivity-reducing coating (117) areally on one of the
Zwischenschicht (111) abgewandten, außenseitigen Oberfläche derIntermediate layer (111) facing away from the outside surface
Innenscheibe (105) aufgebracht ist. Inner pane (105) is applied.
8. Verbundscheibe (100) nach Anspruch 7, wobei die Emissivitäts-mindernde Beschichtung (117) ein elektrisch leitfähiges Oxid (TCO), vorzugsweise Indium- Zinn-Oxid (ITO), umfasst. 8. Laminated pane (100) according to claim 7, wherein the emissivity-reducing coating (117) comprises an electrically conductive oxide (TCO), preferably indium tin oxide (ITO).
9. Verbundscheibe (100) nach einem der Ansprüche 1 bis 8, wobei die Infrarot- Schutzschicht (109) ausgebildet ist, auftreffendes Infrarotlicht zu reflektieren. 9. Laminated pane (100) according to any one of claims 1 to 8, wherein the infrared protective layer (109) is designed to reflect incident infrared light.
10. Verbundscheibe (100) nach einem der Ansprüche 1 bis 9, wobei das elektrochrome Funktionselement (107) zwischen zwei Schichten (113) angeordnet ist, die Polyvinylbutyral (PVB), Ethylen-Vinylacetat-Copolymer (EVA), Polyurethan (PU) und/oder Cycloolefin-Polymer (COP) enthalten, mehrheitlich daraus bestehen oder vollständig daraus bestehen. 10. Laminated pane (100) according to any one of claims 1 to 9, wherein the electrochromic functional element (107) is arranged between two layers (113), the polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA), polyurethane (PU) and /or contain cycloolefin polymer (COP), consist mainly of it or consist entirely of it.
11. Verbundscheibe (100) nach Anspruch 10, wobei zumindest eine der Schichten (113) Farbstoffmoleküle zum farblichen Neutralisieren des elektrochromen Funktionselements (107) umfasst. Verbundscheibe (100) nach einem der Ansprüche 1 bis 11 , wobei die zumindest eine silberhaltige Schicht der Infrarot-Schutzschicht (109) eine Dicke von 5 nm bis 50 nm, bevorzugt von 8 nm bis 25 nm, aufweisen. Verbundscheibe (100) nach einem der Ansprüche 1 bis 12, wobei die Außenscheibe (103) und/oder die Innenscheibe (105) Kalk-Natron-Glas enthalten oder daraus bestehen und eine Dicke von 0,5 mm bis 15 mm, besonders bevorzugt von 1 mm bis 5 mm aufweisen. Verfahren zum Herstellen einer Verbundscheibe (100) mit einer Außenscheibe (103) und einer Innenscheibe (105), die über eine Zwischenschicht (111) flächenmäßig miteinander verbunden sind, mit den Schritten: 11. Laminated pane (100) according to claim 10, wherein at least one of the layers (113) comprises dye molecules for neutralizing the color of the electrochromic functional element (107). Laminated pane (100) according to one of claims 1 to 11, wherein the at least one silver-containing layer of the infrared protective layer (109) has a thickness of 5 nm to 50 nm, preferably 8 nm to 25 nm. Laminated pane (100) according to any one of claims 1 to 12, wherein the outer pane (103) and / or the inner pane (105) contain or consist of soda-lime glass and a thickness of 0.5 mm to 15 mm, particularly preferably from Have 1 mm to 5 mm. Method for producing a composite pane (100) with an outer pane (103) and an inner pane (105), which are connected to one another over an area via an intermediate layer (111), with the steps:
Anordnen oder Aufbringung (S101) einer Infrarot-Schutzschicht (109), aufweisend zumindest eine silberhaltige Schicht, auf eine der Zwischenschicht (111) zugewandten, innenseitigen Oberfläche der Außenscheibe (103), auf eine der Zwischenschicht (111) zugewandten, innenseitigen Oberfläche der Innenscheibe (105) oder innerhalb der Zwischenschicht (111) und Arranging or applying (S101) an infrared protective layer (109), having at least one layer containing silver, on an inner surface of the outer pane (103) facing the intermediate layer (111), on an inner surface of the inner pane facing the intermediate layer (111). (105) or within the intermediate layer (111) and
Anordnen (S101) eines elektrochromen Funktionselements (107) mit elektrisch steuerbaren optischen Eigenschaften innerhalb der Zwischenschicht (111), bei dem die totale solare Energietransmission TTS im abgedunkelten Zustand höher als im hellen Zustand ist und/oder die Energietransmission TE im abgedunkelten Zustand höher als im hellen Zustand ist, wobei die Infrarotschutzschicht (109) derart mit dem elektrochromen Funktionselement (107) zusammenwirkt, dass die totale solare Energietransmission TTS durch die Verbundscheibe (100) im abgedunkelten Zustand niedriger als im hellen Zustand ist und/oder die Energietransmission TE durch die Verbundscheibe (100) im abgedunkelten Zustand niedriger als im hellen Zustand ist. Arranging (S101) an electrochromic functional element (107) with electrically controllable optical properties within the intermediate layer (111), in which the total solar energy transmission TTS is higher in the darkened state than in the bright state and/or the energy transmission TE is higher in the darkened state than in the bright state, with the infrared protective layer (109) interacting with the electrochromic functional element (107) in such a way that the total solar energy transmission TTS through the laminated pane (100) is lower in the darkened state than in the bright state and/or the energy transmission TE through the laminated pane (100) is lower in the darkened state than in the bright state.
EP21766619.7A 2020-09-28 2021-08-24 Composite pane having electrically controllable optical properties Pending EP4217197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20198615 2020-09-28
PCT/EP2021/073324 WO2022063505A1 (en) 2020-09-28 2021-08-24 Composite pane having electrically controllable optical properties

Publications (1)

Publication Number Publication Date
EP4217197A1 true EP4217197A1 (en) 2023-08-02

Family

ID=72665070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21766619.7A Pending EP4217197A1 (en) 2020-09-28 2021-08-24 Composite pane having electrically controllable optical properties

Country Status (4)

Country Link
US (1) US20230258995A1 (en)
EP (1) EP4217197A1 (en)
CN (1) CN114616099A (en)
WO (1) WO2022063505A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023100216B3 (en) 2023-01-05 2024-04-18 Webasto SE Laminated pane with solar protection coating and heat-reflecting coating and its use

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321544A (en) 1991-09-04 1994-06-14 Sun Active Glass Electrochromics, Inc. Electrochromic structures and methods
US5404244A (en) 1992-04-10 1995-04-04 Sun Active Glass Electrochromics, Inc. Electrochromic structures and methods
US7372610B2 (en) 2005-02-23 2008-05-13 Sage Electrochromics, Inc. Electrochromic devices and methods
US7593154B2 (en) 2005-10-11 2009-09-22 Sage Electrochromics, Inc. Electrochromic devices having improved ion conducting layers
US9007674B2 (en) 2011-09-30 2015-04-14 View, Inc. Defect-mitigation layers in electrochromic devices
FR2962818B1 (en) 2010-07-13 2013-03-08 Saint Gobain ELECTROCHEMICAL DEVICE HAVING ELECTRO - CONTROLLABLE OPTICAL AND / OR ENERGY TRANSMISSION PROPERTIES.
US8164818B2 (en) 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
US10895795B2 (en) 2015-12-16 2021-01-19 Saint-Gobain Glass France Electrically switchable glazing including surface electrodes with anisotropic conductivity
CN109219584B (en) 2017-05-09 2022-04-12 法国圣戈班玻璃厂 Glass pane with conductive coating and reduced fingerprint visibility
MX2020005856A (en) * 2017-12-05 2020-09-09 Saint Gobain Composite pane having sun protection coating and thermal-radiation-reflecting coating.

Also Published As

Publication number Publication date
WO2022063505A1 (en) 2022-03-31
CN114616099A (en) 2022-06-10
US20230258995A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP3720701B1 (en) Laminated glass pane with solar control coating and thermal radiation reflective coating
EP2888106B1 (en) Compound glazing with electrically switchable optical properties
EP2958871B1 (en) Pane with coating that reflects thermal radiation
DE3324221A1 (en) HEAT WAVE SHIELDING LAMINATION
DE202012102879U1 (en) Substrate equipped with a layer of thermal properties, in particular for producing heatable glazing
EP3338367B1 (en) Window pane with capacitive range and low-e coating
EP3774417B1 (en) Improved optical impression of a pdlc vehicle disc through a combination of dark inner and outer stacks
EP2803245A1 (en) Transparent pane with electrically conductive coating
EP3487720B1 (en) Window pane with capacitive range for touch-free control of a function
EP4117914B1 (en) Compound glazing with anti-sun coating and heat-reflective coating
WO2019086653A1 (en) Laminated pane with functional element with electrically controllable optical characteristics
WO2019166210A1 (en) Composite pane having an element reflecting infrared radiation
EP4217197A1 (en) Composite pane having electrically controllable optical properties
DE202021004291U1 (en) Glazing with light source
WO2022112231A1 (en) Composite pane comprising a sun shading coating
DE202021104310U1 (en) Composite pane with electrically controllable optical properties and a blue colored intermediate layer
EP4182165A1 (en) Projection arrangement for a head-up display (hud) with p-polarized radiation
DE102023100216B3 (en) Laminated pane with solar protection coating and heat-reflecting coating and its use
DE202019104357U1 (en) Improved Resistance of PDLC Films to Radiation from IR and UV Reflective Coatings on Page II of a Composite Disc
WO2023031074A1 (en) Vehicle laminated pane
WO2022253584A1 (en) Composite pane having an electrically conductive coating and at least one layer comprising selectively absorbent nanoparticles
DE202021004001U1 (en) compound pane
WO2023094294A1 (en) Vehicle laminated pane
WO2023285044A1 (en) Composite pane having opaque masking region and partially transparent reflective coating
WO2022122467A1 (en) Composite pane with locally switchable selective transmission

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)