EP4211777A1 - Device for forming poles of a rotor - Google Patents

Device for forming poles of a rotor

Info

Publication number
EP4211777A1
EP4211777A1 EP21782777.3A EP21782777A EP4211777A1 EP 4211777 A1 EP4211777 A1 EP 4211777A1 EP 21782777 A EP21782777 A EP 21782777A EP 4211777 A1 EP4211777 A1 EP 4211777A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
injection
rotor
cavities
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21782777.3A
Other languages
German (de)
French (fr)
Inventor
Olivier TOSONI
Tian Zhou
Daniel Oeschger
Raphael TEUFEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brusa Elektronik AG
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Brusa Elektronik AG
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brusa Elektronik AG, Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Brusa Elektronik AG
Publication of EP4211777A1 publication Critical patent/EP4211777A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the invention relates to the field of magnetism and relates in particular to a device making it possible to manufacture magnetic sections by injection.
  • the invention relates to a device for forming the poles of a rotor by injecting a magnetic composite mixture into the cavities of a rotor body.
  • the application of a magnetic field during the injection makes it possible to polarize the magnetic composite mixture which, when it cools, freezes, and retains a permanent magnetization.
  • the methods include in particular a hot injection of a liquid composite mixture, made of plastic material and coercive magnetic powder, into the cavities of the body of the rotor which play the role of mould. During a cooling step, the composite mixture freezes and then adopts the shape imposed on it by the cavities in order to form the magnetic sections.
  • the injection makes it possible to envisage arrangements without vacuum, and of a lower density than that of sintered magnets.
  • These aspects make it possible to improve the general balance of the rotor, and to make the latter less sensitive to the centrifugal forces to which it is subjected when it is rotated. It is thus possible to impose higher speeds of rotation on such rotors.
  • these magnets manufactured by injection according to the method described in the document DE102019107394, are likely to have a higher resistivity of more than two orders of magnitude than that of magnets formed according to a sintering process.
  • the injection methods are, as they stand, not satisfactory.
  • the composite mixture in order to form a magnetized section, must be subjected to a relatively high magnetic field, and in particular of the order of 1 tesla.
  • a magnetic ring formed of a plurality of magnets (as described in documents JP 2014-192980 and WO2013103118), and at the center of which the rotor is arranged during the injection of the composite mixture.
  • the magnets forming the ring are generally regularly distributed angularly, and each in correspondence with one or more cavities in the or which will be formed a magnetic pole.
  • the composite mixture injected into a given cavity is subject to the magnetic field, in terms of intensity and orientation, of the magnet with which said cavity is in correspondence.
  • the composite mixture retains the polarization imposed by the magnet, and forms a magnetized section.
  • the magnetic field of the magnets forming the magnetic ring which is permanent, is likely to interact with any magnetic part placed in its immediate environment and poses, due to its intensity, obvious safety problems.
  • the viscosity of the composite mixture makes it necessary to inject the latter at relatively high pressures, in particular between 500 and 1000 bars which are liable to damage the rotor, for example by deforming it.
  • the magnetic field likely to be imposed by a coil at the level of the cavity or cavities with which said coil is in correspondence is not uniform within the same cavity and from one cavity to another. This effect directly affects the magnetization of the magnetized sections and adversely affects the performance of the rotor.
  • An object of the present invention is therefore to propose a device for forming magnetized sections of a rotor which makes it possible to limit damage to the rotor during the injection of the composite mixture.
  • Another object of the present invention is to propose a device for forming magnetic sections of a rotor, which is capable of implementing a system for injecting the composite mixture at high pressure while preserving the integrity of the rotor.
  • Another object of the present invention is also to propose a device for forming magnetized sections of a rotor, which makes it possible to guarantee a better distribution of the magnetic field imposed at the level of the cavities of the rotor.
  • the aims are, at least in part, achieved by a device for forming the poles of a rotor, each pole comprising one or more magnetized sections formed in a series of injection cavities, called the pole series, of the rotor, by injection of a composite material in said cavities, the device comprises:
  • a rotor arranged in a cylindrical cavity, said rotor being delimited by an upper face and a lower face which are flat and parallel to each other, and connected by a lateral section of cylindrical shape, the polar series have a regular angular distribution around a axis of revolution of said rotor, and the injection cavities emerge at the level of the lower face and the upper face;
  • each polarization module comprising, along a main axis, a magnetic section intended to impose a magnetic polarization field on the composite material capable of being injected into the injection cavities, and a magnetic pole, the magnetic poles comprising a surface, called the lateral holding surface, all of the lateral holding surfaces defining a lateral surface of the cylindrical cavity;
  • - locking means arranged so as to maintain the lateral support surfaces pressing against the lateral section of the rotor, so that the lateral support surfaces compensate for the stresses imposed on the rotor during the injection of the composite material at the pressure p.
  • each polarization module is arranged in correspondence with a different polar series so as to be able to impose the magnetic field on the magnetic composite material capable of being injected into the injection cavities of said polar series.
  • said device comprises an upper holding member and a lower holding member held in abutment by second locking means against, respectively, the upper face and the lower face, and so as to compensate for stresses likely to be imposed on the rotor during the injection of the composite material at the pressure P.
  • the injection means is arranged to inject magnetic composite material at the level of the upper face of the rotor.
  • the injection means cooperates with the upper holding member for the injection of the magnetic composite material into the injection cavities.
  • the upper holding member comprises a plurality of distribution channels arranged for the collective injection of the magnetic composite material into each of the injection cavities.
  • the injection cavities of a polar series are symmetrical with respect to a plane formed by the axis of revolution and by the main axis of the polarization module in correspondence with the polar series concerned, and are arranged one behind the other along said main axis.
  • the device comprises magnetic field distributor means intended to distribute the magnetic field imposed by each polarization module to the injection cavities of the polar series with which said module.
  • the distributor means comprise inserts, each insert forming a magnetic bridge between a polarization module and injection cavities of the polar series with which said module is in correspondence.
  • the magnetic bridge is produced between the polarization module and the injection cavities of the series of polars capable of being screened by other injection cavities of this same polar series.
  • the inserts are inserted into cavities of the upper and lower holding members, and advantageously comprise a ferromagnetic material.
  • the magnetic section comprises a coil carrier around which is formed a coil which, when passed through by an electric current, generates the magnetic field necessary for the magnetization of the magnetic composite mixture capable of being injected into the injection cavities.
  • FIG. 1 is a schematic representation of a device for forming poles of a rotor according to the present invention, the cylindrical cavity being empty;
  • FIG. 2 is a schematic representation of a rotor body implemented within the scope of the present invention.
  • FIG. 3 is a schematic representation in perspective of a polarization module capable of being implemented within the scope of the present invention.
  • FIG. 4a is a schematic representation in perspective of a polarization module capable of being implemented within the scope of the present invention.
  • FIG. 4b are schematic representations of a lower holding member, respectively, with magnetic inserts positioned in housings of the holding member, and with the same magnetic inserts arranged around said member;
  • FIG. 4c is a representation of an upper holding member with magnetic inserts positioned in housings of the holding member
  • FIG. 5 is a schematic representation of a rotor after injection of the magnetic composite mixture, in particular this schematic representation shows an imprint of the distribution channel network of the injection means;
  • FIG. 6 is a schematic representation of the device 10 according to the present invention.
  • FIG. 7 is a graphical representation of a simulation and measurement of the magnetic field (along the horizontal axis in mT) as a function of the angular position (horizontal axis in degrees) at the side section of a fabricated rotor with the device according to the present invention.
  • the present invention relates to a device intended to form, by an injection process of a magnetic composite mixture, the poles of a rotor.
  • FIG. 1 is a schematic representation of the device 10 according to the present invention, said device resting in particular on a flat support 60, also called the mold carcass plate.
  • the device 10 comprises in particular a cylindrical cavity 20 intended to house the body of a rotor 30 (FIG. 2) during the implementation of the present device 10 for the formation of the poles of said rotor.
  • Each pole comprises in this respect one or more magnetized sections formed in a series of injection cavities 34a, called pole series 34, of the rotor, by injecting a composite material into said cavities.
  • the rotor body 30, generally of cylindrical shape, is delimited by an upper face 31 and a lower face which are flat and parallel to each other, as well as a lateral section 33 connecting the upper face 31 and the lower face.
  • the polar series have a regular angular distribution around an axis of revolution of said rotor, and the injection cavities 34a open out at the level of the lower face 31 and of the upper face.
  • the body of the rotor 30 can advantageously comprise a stack, along the axis of revolution, of magnetic sheets glued together.
  • the magnetic sheets can comprise at least one of the materials chosen from: steel, stainless steel, FeSi, FeCo.
  • the device 10 comprises means for injecting magnetic composite material into the injection cavities at a pressure P lower than a predetermined pressure.
  • the magnetic composite material is in particular injected in the liquid state at high temperature, for example at a temperature between 150° C. and 320° C.
  • the magnetic composite material is also suitable for congealing (solidifying) and adopting the shape imposed on it by the injection cavity into which it is injected during a cooling phase.
  • the magnetic composite material may in particular comprise plastic material mixed with a coercive magnetic powder.
  • the plastic material and the coercive powder can represent, respectively, 40% and 60% of the volume of the composite material.
  • the choice of plastic material and coercive powder may depend on the intended application and the magnetic efficiency of the rotor.
  • the plastic material may comprise a polyamide of the PA12 type. Such a polyamide makes it possible to achieve a high charge rate and therefore better magnetic performance.
  • the plastic material may comprise poly(phenylene sulphide), PPS, which is a resistant polymer, is capable of being used at a temperature which may reach 150° C., or even 180° C.
  • the magnetic powder may comprise NdFeB having undergone the HDDR process (“Hydrogenation Disproportionation Desorption Recombination” according to the terminology Anglo-Saxon) which gives a high coercivity to the powder, or even hard ferrites (strontium ferrite for example) or SmCo.
  • the predetermined pressure is for example less than 1000 bars.
  • the device 10 also comprises polarization modules 40 (FIGS. 1 and 3) regularly distributed, in the form of a crown, called magnetic crown, around the axis of revolution of the cylindrical cavity 20 (FIG. 1).
  • the cylindrical cavity 20 is at the center of the magnetic crown.
  • the magnetic crown is formed of 6 polarization modules.
  • the invention is not limited to this single configuration.
  • Each polarization module can advantageously be arranged in correspondence with a different polar series so as to be able to impose the magnetic field on the magnetic composite material capable of being injected into the injection cavities of said polar series.
  • Each polarization module 40 comprises, along a main axis XX', a magnetic section 42 and a magnetic pole 43.
  • Each polarization module 40 can also comprise a loopback member 41.
  • Each polarization module can in particular reveal in the order and along the main axis XX', the looping member 41, the magnetic section 42 and the magnetic pole 43.
  • the magnetic section 42 of each of the polarization modules 40 is intended to impose a magnetic polarization field on the composite material injected in the liquid state into the injection cavities 34a. Maintaining this polarization field until the magnetic composite material freezes by cooling thus makes it possible to form the magnetized sections of the poles of the rotor.
  • the mapping can advantageously be carried out by means of guides. These guides may in particular comprise holes formed from the upper face towards the lower face of the rotor and pins projecting relative to the flat support 60 and intended to impose the orientation of the rotor on the flat support 60.
  • Magnetic section 42 may include a permanent magnet.
  • the magnetic section 42 may comprise a coil holder around which is formed a coil which, when it is crossed by an electric current, generates the magnetic field necessary for the magnetization of the magnetic composite mixture.
  • the winding can in this respect comprise copper wire, while the coil holder can comprise a magnetic core (for example martensitic steel, FeNi, FeCo or any other soft magnetic alloy).
  • Magnetic section 42 advantageously has, with loopback member 41, a shape allowing effective loopback of the magnetic flux on the magnetic section itself or with the flux of an immediately adjacent magnetic section (FIG. 6).
  • each polarization module generates a magnetic field opposite to that generated by the modules which are directly adjacent to it.
  • the magnetomotive force of each of the windings can be 10 kA. towers, requiring for each of said windings a total power of about 4 kW in direct current. In operation, such a power is likely to cause significant heating.
  • a cooling system for example a system for circulating a heat transfer fluid directly in the coil carrier. The implementation of a cooling system makes it possible in this respect to increase the current likely to pass through each of the windings, and consequently to impose a larger bias field, without having to increase the size of the magnetic crown. .
  • this magnetic field generation system is controllable so that the magnetic field that it generates can be switched off at any time, and in particular when the magnetic composite material is completely solidified. The mold can thus be opened under improved safety conditions.
  • the magnetic pole 43 of each given polarization module 40 has the shape of a truncated pyramid whose height is parallel to the main direction of the polarization module considered (FIG. 3).
  • the small base of the truncated pyramid forms a lateral support surface 43a curved so as to match the shape of the lateral section of the rotor.
  • all of the lateral holding surfaces 43a, 46a and 46b define a lateral surface 43s of the cylindrical cavity 20 (FIG. 1).
  • the magnetic pole 43 may include a central section 45 as well as a first side section 46a and a second side section 46b.
  • the central section 45 can be inserted between the first lateral section 46a and the second lateral section 46b (FIG. 3). More particularly, within a polarization module 40, the central section 45 made of a magnetic material makes it possible to guide the magnetic field produced at the level of the magnetic section towards the center of a polar series of the rotor, while the first side section 46a and second side section 46b made of a non-magnetic material limit the magnetic leakage between adjacent central sections 45.
  • the first lateral section 46a and the second lateral section 46b have a magnetic permeability much lower than that of the central section 45, advantageously equal to that of air.
  • the device 10 according to the present invention can also comprise locking means which make it possible in particular to maintain the lateral holding surfaces 43a, 46a and 46b bearing against the lateral section of the rotor.
  • This support of the lateral support surfaces 43a, 46a and 46b is in particular suitable for compensating for the mechanical stresses likely to be imposed on the rotor during the injection of the composite material at the pressure P.
  • the means blocking are arranged so that the side surface 43s of the cylindrical cavity 20 opposes the lateral deformation of the rotor during the injection at the pressure P of the magnetic composite mixture.
  • This aspect is particularly advantageous in particular when the rotor has zones sensitive to deformation under the effect of an internal pressure undergone during the injection of the magnetic composite material. These sensitive areas include induced by the proximity of the injection cavities and the lateral section of the rotor. The only maintenance by the lateral surface, possibly in compression, makes it possible to preserve the mechanical integrity of the rotor during the injection at the pressure P of the magnetic composite mixture.
  • the blocking means can advantageously comprise jacks which each exert a force concentrically along the main axis of each polarization module 40.
  • the blocking means may comprise a plurality of inclined rails, for example at an angle of less than 10°, relative to the axis of revolution of the cylindrical cavity 20, and along which the polarization modules are likely to slide.
  • each polarization module can be associated with one or two rails 50 mechanically linked to the flat support 60 and relative to which said rails project. According to this configuration, each of the polarization modules can slide between two positions called, respectively, high position and low position. The low position being in particular a position for which said modules rest on the flat support.
  • the inclination of the rails is adapted so that when the polarization modules 40 slide from the high position to the low position, the lateral support surfaces 43a approach each other in order to come into contact with the lateral section of the rotor pre-positioned on the flat support.
  • the device 10 can also comprise a lower holding member 70 (FIGS. 4a and 4b) and an upper holding member 71 (FIG. 4c) held in abutment (under pressure) by second blocking means against, respectively, the upper face 31 of the rotor and the underside of the rotor.
  • This holding by the upper holding member 71 and by the lower holding member 70 is adapted to compensate for (oppose the) stresses liable to be imposed on the rotor during the injection of the composite material at the pressure p.
  • the lower and upper holding members can each take the form of a holding plate.
  • the simple implementation of the holding member upper 71 and the lower holding member 70 makes it possible to keep the sheets contiguous with each other, and to limit any infiltration of the magnetic composite material during the injection step.
  • the injection means can be arranged to inject magnetic composite material at the level of the upper face 31 of the rotor 30.
  • the injection means can cooperate with the upper holding member 71 for the injection of the magnetic composite material into the injection cavities 34.
  • the upper holding member 71 may comprise a plurality of distribution channels arranged for the collective injection of the magnetic composite material into each of the magnetic cavities 34, while ensuring axial holding of the rotor by means of surfaces parallel to the upper and lower faces of the rotor. This arrangement makes it possible to inject, at the same time, the same quantity of magnetic composite material into each of the injection cavities so as to balance the stresses undergone by the rotor throughout its volume.
  • FIG. 5 represents an imprint E of the distribution channels, made of the fixed magnetic composite mixture.
  • the injection cavities of a polar series are symmetrical with respect to a plane formed by the axis of revolution and by the main axis of the polarization module in correspondence with the polar series concerned, and are arranged in several rows one behind the other along said main axis ( Figure 2).
  • the injection cavities of a polar series are arranged one behind the other in a radial direction.
  • the section of an injection cavity along a section plane perpendicular to the axis of revolution and along a radial direction (from the center towards the lateral section) has a concave shape (for example a full arc shape).
  • all the injection cavities of a polar series are not exposed in an equivalent manner to the magnetic field imposed by the polarization module.
  • the cavities closest to the center of the rotor are screened by the cavities located closer to the lateral section of the rotor.
  • the device may comprise magnetic field distributor means intended to distribute the magnetic field imposed by each polarization module to the injection cavities of the polar series with which said module.
  • these distributor means may comprise inserts 55 intended to form a magnetic bridge between the polarization module and at least one of the cavities or rows of injection cavities of the polar series in correspondence with said polarization module.
  • these inserts 55 in particular make contact at the level of the magnetic pole and the upper face of the rotor close to an injection cavity, and more particularly between two cavities or rows of injection cavities of a polar series.
  • These inserts 55 can in particular cooperate with one and the other of the upper holding member 71 and the lower holding member 70.
  • a holding member can comprise orifices 56, opening at the level of a first face, and in which the inserts 55 are positioned. The first face is in particular opposite a second face of the holding member considered intended to be in contact with a face of the rotor 30 (FIGS. 4a and 4b).
  • Orifices 56 advantageously have a shape complementary to inserts 55.
  • the insert 55 further comprises a protuberance 55a passing through, via a passage 70a, the lower retaining member 70 and emerging at the level of the second face of said member to come into contact with the lower face of the rotor 30.
  • the other end 55b of the inserts comes into contact with the corresponding polarization module so as to produce a magnetic bridge with the rotor.
  • the inserts advantageously have a higher magnetic permittivity than that of the lower holding member, so that said inserts 55 form a privileged circulation path for the magnetic field imposed by the polarization module.
  • the same arrangement of the inserts 55 is provided in relation to the upper holding member 71 (FIG. 4c).
  • the inserts 55 can thus comprise a soft ferromagnetic alloy (for example martensitic steel, FeCo, FeNi or any other alloy having a high relative permeability - preferably greater than 500 - and a high saturation induction - preferably greater than 1.5T).
  • a soft ferromagnetic alloy for example martensitic steel, FeCo, FeNi or any other alloy having a high relative permeability - preferably greater than 500 - and a high saturation induction - preferably greater than 1.5T.
  • the upper retaining member 71 may comprise a perfectly non-magnetic metallic material (for example annealed 316L stainless steel after machining, Inconel, copper and/or aluminum alloys, brass, etc.).
  • Figure 6 is a schematic representation of the device 10 according to the present invention.
  • this figure represents the distribution of the magnetic field lines (in the form of arrows) created by the windings B.
  • Figure 7 is a graphic representation of a simulation and a measurement of the magnetic field (along the horizontal axis in "mT") as a function of the angular position (horizontal axis in degrees) at the level of the lateral section of the rotor manufactured with the device according to the present invention.
  • the two curves representative of the magnetic field overlap perfectly, indicating in particular the good understanding and the performance of the pole-forming device according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The invention relates to a device for forming, by means of a process of injecting a magnetic composite mixture, the poles of a rotor. The invention relates in particular to a device allowing the poles of the rotor to be formed without damaging the latter.

Description

Description Description
Titre : DISPOSITIF POUR LA FORMATION DE POLES D'UN ROTOR Title: DEVICE FOR THE FORMATION OF POLES OF A ROTOR
DOMAINE TECHNIQUE TECHNICAL AREA
L'invention se rapporte au domaine du magnétisme et concerne en particulier un dispositif permettant de fabriquer par injection des sections magnétiques. Notamment, l'invention concerne un dispositif de formation des pôles d'un rotor par injection d'un mélange composite magnétique dans des cavités d'un corps de rotor. L'application d'un champ magnétique lors de l'injection permet de polariser le mélange composite magnétique qui, lorsqu'il se refroidit, se fige, et conserve une aimantation permanente. The invention relates to the field of magnetism and relates in particular to a device making it possible to manufacture magnetic sections by injection. In particular, the invention relates to a device for forming the poles of a rotor by injecting a magnetic composite mixture into the cavities of a rotor body. The application of a magnetic field during the injection makes it possible to polarize the magnetic composite mixture which, when it cools, freezes, and retains a permanent magnetization.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE PRIOR ART
Il est aujourd'hui envisagé de mettre en œuvre des procédés d'injection pour la réalisation des pôles magnétiques d'un rotor. Ces derniers sont, à cet égard, formés d'une ou plusieurs sections aimantées logées dans des cavités dudit rotor. Tel que précisé dans le document DE 10 2016 224 249, les procédés comprennent notamment une injection, à chaud, d'un mélange composite liquide, fait de matière plastique et de poudre magnétique coercitive, dans les cavités du corps du rotor qui jouent le rôle de moule. Lors d'une étape de refroidissement, le mélange composite se fige et adopte alors la forme qui lui est imposée par les cavités afin de former les sections aimantées. It is now envisaged to implement injection processes for producing the magnetic poles of a rotor. The latter are, in this regard, formed of one or more magnetized sections housed in cavities of said rotor. As specified in document DE 10 2016 224 249, the methods include in particular a hot injection of a liquid composite mixture, made of plastic material and coercive magnetic powder, into the cavities of the body of the rotor which play the role of mould. During a cooling step, the composite mixture freezes and then adopts the shape imposed on it by the cavities in order to form the magnetic sections.
Ces procédés d'injection, tels qu'envisagés, ne sont pas limités à la seule réalisation de sections aimantées parallélépipédiques, et donnent accès à tout type de forme permettant ainsi de conférer aux pôles magnétiques une meilleure efficacité magnétique. Les sections aimantées sont, par ailleurs, obtenues en une seule étape, sans autre manipulation ou étape de collage. These injection methods, as envisaged, are not limited to the sole production of parallelepipedal magnetized sections, and give access to any type of shape thus making it possible to confer on the magnetic poles a better magnetic efficiency. The magnetized sections are, moreover, obtained in a single step, without further handling or gluing step.
Outre, le choix de formes de sections aimantées susceptibles d'être obtenues, l'injection permet d'envisager des agencements sans vide, et d'une densité inférieure à celle d'aimants frittés. Ces aspects permettent d'améliorer l'équilibre général du rotor, et de rendre ce dernier moins sensible aux forces centrifuges auxquelles il est soumis lorsqu'il est mis en rotation. Il est ainsi possible d'imposer à de tels rotors des vitesses de rotation plus importantes. Enfin ces aimants, fabriqués par injection selon la méthode décrite dans le document DE102019107394, sont susceptibles de présenter une résistivité supérieure de plus de deux ordres de grandeur à celle d'aimants formés selon un procédé de frittage. Néanmoins, en dépit de ces avantages, les procédés d'injection ne sont, en l'état, pas satisfaisants. Besides, the choice of shapes of magnetized sections likely to be obtained, the injection makes it possible to envisage arrangements without vacuum, and of a lower density than that of sintered magnets. These aspects make it possible to improve the general balance of the rotor, and to make the latter less sensitive to the centrifugal forces to which it is subjected when it is rotated. It is thus possible to impose higher speeds of rotation on such rotors. Finally, these magnets, manufactured by injection according to the method described in the document DE102019107394, are likely to have a higher resistivity of more than two orders of magnitude than that of magnets formed according to a sintering process. However, despite these advantages, the injection methods are, as they stand, not satisfactory.
En effet, le mélange composite, afin de former une section aimantée, doit être soumis à un champ magnétique relativement élevé, et notamment de l'ordre de 1 tesla. A cet égard, il est généralement proposé de mettre en œuvre une bague magnétique, formée d'une pluralité d'aimants (tel que décrit dans les documents JP 2014-192980 et W02013103118), et au centre de laquelle le rotor est disposé lors de l'injection du mélange composite. Les aimants formant la bague sont en général régulièrement répartis de manière angulaire, et chacun en correspondance avec une ou plusieurs cavités dans la ou lesquelles sera formé un pôle magnétique. Ainsi, le mélange composite injecté dans une cavité donnée se voit imposer le champ magnétique, en termes d'intensité et d'orientation, de l'aimant avec lequel ladite cavité est en correspondance. Ainsi, lorsqu'il refroidit pour se figer, le mélange composite conserve la polarisation imposée par l'aimant, et forme une section aimantée. Indeed, the composite mixture, in order to form a magnetized section, must be subjected to a relatively high magnetic field, and in particular of the order of 1 tesla. In this respect, it is generally proposed to implement a magnetic ring, formed of a plurality of magnets (as described in documents JP 2014-192980 and WO2013103118), and at the center of which the rotor is arranged during the injection of the composite mixture. The magnets forming the ring are generally regularly distributed angularly, and each in correspondence with one or more cavities in the or which will be formed a magnetic pole. Thus, the composite mixture injected into a given cavity is subject to the magnetic field, in terms of intensity and orientation, of the magnet with which said cavity is in correspondence. Thus, when it cools to solidify, the composite mixture retains the polarization imposed by the magnet, and forms a magnetized section.
Toutefois, afin de pouvoir imposer une aimantation suffisante au mélange composite lors de son refroidissement, il est généralement requis de mettre en œuvre une bague magnétique qui présente un diamètre 2 à 3 fois supérieur au rotor. En d'autres termes, la considération d'un rotor de grande dimension, et notamment d'un diamètre supérieur à 10 cm, impose de mettre en œuvre des masses d'aimants très importantes. However, in order to be able to impose sufficient magnetization on the composite mixture during its cooling, it is generally required to implement a magnetic ring which has a diameter 2 to 3 times greater than the rotor. In other words, the consideration of a large rotor, and in particular of a diameter greater than 10 cm, imposes the implementation of very large masses of magnets.
Ce dernier aspect, du fait des interactions magnétiques entre aimants, rend l'assemblage desdits aimants relativement compliqué. This last aspect, due to the magnetic interactions between magnets, makes the assembly of said magnets relatively complicated.
Par ailleurs, le champ magnétique des aimants formant la bague magnétique, qui est permanent, est susceptible d'interagir avec toute pièce magnétique disposée dans son proche environnement et pose, du fait de son intensité, des problèmes de sécurité évidents. Par ailleurs, la viscosité du mélange composite impose d'injecter ce dernier à des pressions relativement importantes, notamment comprises entre 500 et 1000 bars qui sont susceptibles d'endommager le rotor par exemple en le déformant. Furthermore, the magnetic field of the magnets forming the magnetic ring, which is permanent, is likely to interact with any magnetic part placed in its immediate environment and poses, due to its intensity, obvious safety problems. Furthermore, the viscosity of the composite mixture makes it necessary to inject the latter at relatively high pressures, in particular between 500 and 1000 bars which are liable to damage the rotor, for example by deforming it.
Aussi afin de pallier, au moins partiellement, les problèmes relatifs à la sécurité et à la complexité de l'assemblage des aimants formant la bague, il peut être proposer de remplacer ces derniers par des bobines d'induction. Also in order to alleviate, at least partially, the problems relating to the safety and to the complexity of the assembly of the magnets forming the ring, it may be proposed to replace the latter with induction coils.
Toutefois, le champ magnétique susceptible d'être imposé par une bobine au niveau de la ou des cavités avec lesquelles ladite bobine est en correspondance n'est pas uniforme au sein d'une même cavité et d'une cavité à l'autre. Cet effet affecte directement l'aimantation des sections aimantées et nuit aux performances du rotor. However, the magnetic field likely to be imposed by a coil at the level of the cavity or cavities with which said coil is in correspondence is not uniform within the same cavity and from one cavity to another. This effect directly affects the magnetization of the magnetized sections and adversely affects the performance of the rotor.
Un but de la présente invention est donc de proposer un dispositif pour la formation de sections aimantées d'un rotor qui permet le limiter l'endommagement du rotor lors de l'injection du mélange composite. An object of the present invention is therefore to propose a device for forming magnetized sections of a rotor which makes it possible to limit damage to the rotor during the injection of the composite mixture.
Un autre but de la présente invention est de proposer un dispositif pour la formation de sections aimantées d'un rotor, qui est susceptible de mettre en œuvre un système d'injection du mélange composite à haute pression tout en préservant l'intégrité du rotor. Un autre but de la présente invention est également de proposer un dispositif pour la formation de sections aimantées d'un rotor, qui permet de garantir une meilleure répartition du champ magnétique imposé au niveau des cavités du rotor. Another object of the present invention is to propose a device for forming magnetic sections of a rotor, which is capable of implementing a system for injecting the composite mixture at high pressure while preserving the integrity of the rotor. Another object of the present invention is also to propose a device for forming magnetized sections of a rotor, which makes it possible to guarantee a better distribution of the magnetic field imposed at the level of the cavities of the rotor.
EXPOSÉ DE L'INVENTION DISCLOSURE OF THE INVENTION
Les buts sont, au moins en partie, atteints par un dispositif pour la formation de pôles d'un rotor, chaque pôle comprenant une ou plusieurs sections aimantées formées dans une série de cavités d'injection, dite série polaire, du rotor, par injection d'une matière composite dans lesdites cavités, le dispositif comprend : The aims are, at least in part, achieved by a device for forming the poles of a rotor, each pole comprising one or more magnetized sections formed in a series of injection cavities, called the pole series, of the rotor, by injection of a composite material in said cavities, the device comprises:
- un rotor, disposé dans une cavité cylindrique, ledit rotor étant délimité par une face supérieure et une face inférieure planes et parallèles entre elles, et reliées par une section latérale de forme cylindrique, les séries polaires présentent une répartition angulaire régulière autour d'un axe de révolution dudit rotor, et les cavités d'injection sont débouchantes au niveau de la face inférieure et de la face supérieure ; - a rotor, arranged in a cylindrical cavity, said rotor being delimited by an upper face and a lower face which are flat and parallel to each other, and connected by a lateral section of cylindrical shape, the polar series have a regular angular distribution around a axis of revolution of said rotor, and the injection cavities emerge at the level of the lower face and the upper face;
- un moyen d'injection de matière composite magnétique, à l'état liquide, dans les cavités d'injection à une pression P inférieure à une pression prédéterminée ; - a means of injecting magnetic composite material, in the liquid state, into the cavities injection at a pressure P lower than a predetermined pressure;
- des modules de polarisation répartis régulièrement autour de l'axe de révolution de la cavité cylindrique, chaque module de polarisation comprenant selon un axe principal, une section magnétique destinée à imposer un champ de polarisation magnétique à la matière composite susceptible d'être injectée dans les cavités d'injection, et un pôle magnétique, les pôles magnétiques comprenant une surface, dite surface de maintien latéral, l'ensemble des surfaces de maintien latéral définissant une surface latérale de la cavité cylindrique ; - polarization modules regularly distributed around the axis of revolution of the cylindrical cavity, each polarization module comprising, along a main axis, a magnetic section intended to impose a magnetic polarization field on the composite material capable of being injected into the injection cavities, and a magnetic pole, the magnetic poles comprising a surface, called the lateral holding surface, all of the lateral holding surfaces defining a lateral surface of the cylindrical cavity;
- des moyens de blocage agencés de manière à maintenir les surfaces de maintien latéral en appui contre la section latérale du rotor, de sorte que les surfaces de maintien latéral compensent des contraintes imposées au rotor lors de l'injection de la matière composite à la pression P. - locking means arranged so as to maintain the lateral support surfaces pressing against the lateral section of the rotor, so that the lateral support surfaces compensate for the stresses imposed on the rotor during the injection of the composite material at the pressure p.
Selon un mode de mise en œuvre, chaque module de polarisation est disposé en correspondance une série polaire différente de manière à pouvoir imposer le champ magnétique à la matière composite magnétique susceptible d'être injectée dans les cavités d'injection de ladite série polaire. According to one mode of implementation, each polarization module is arranged in correspondence with a different polar series so as to be able to impose the magnetic field on the magnetic composite material capable of being injected into the injection cavities of said polar series.
Selon un mode de mise en œuvre, ledit dispositif comprend un organe de maintien supérieur et un organe de maintien inférieur maintenus en appui par des deuxièmes moyens de blocage contre, respectivement, la face supérieure et la face inférieure, et de manière à compenser des contraintes susceptibles d'être imposées au rotor lors de l'injection de la matière composite à la pression P. According to one mode of implementation, said device comprises an upper holding member and a lower holding member held in abutment by second locking means against, respectively, the upper face and the lower face, and so as to compensate for stresses likely to be imposed on the rotor during the injection of the composite material at the pressure P.
Selon un mode de mise en œuvre, le moyen d'injection est agencé pour injecter de la matière composite magnétique au niveau de la face supérieure du rotor. According to one mode of implementation, the injection means is arranged to inject magnetic composite material at the level of the upper face of the rotor.
Selon un mode de mise en œuvre, le moyen d'injection coopère avec l'organe de maintien supérieur pour l'injection de la matière composite magnétique dans les cavités d'injection. According to one mode of implementation, the injection means cooperates with the upper holding member for the injection of the magnetic composite material into the injection cavities.
Selon un mode de mise en œuvre, l'organe de maintien supérieur comprend une pluralité de canaux de distribution agencés pour l'injection collective de la matière composite magnétique dans chacune des cavités d'injection. Selon un mode de mise en œuvre, les cavités d'injection d'une série polaire sont symétriques par rapport à un plan formé par l'axe de révolution et par l'axe principal du module de polarisation en correspondance avec la série polaire concernée, et sont disposées les unes derrières les autres le long dudit axe principal. According to one embodiment, the upper holding member comprises a plurality of distribution channels arranged for the collective injection of the magnetic composite material into each of the injection cavities. According to one mode of implementation, the injection cavities of a polar series are symmetrical with respect to a plane formed by the axis of revolution and by the main axis of the polarization module in correspondence with the polar series concerned, and are arranged one behind the other along said main axis.
Selon un mode de mise en œuvre, le dispositif comprend des moyens répartiteurs de champ magnétique destinés à répartir le champ magnétique imposé par chaque module de polarisation aux cavités d'injection de la série polaire avec laquelle ledit module.According to one mode of implementation, the device comprises magnetic field distributor means intended to distribute the magnetic field imposed by each polarization module to the injection cavities of the polar series with which said module.
Selon un mode de mise en œuvre, les moyens répartiteurs comprennent des inserts, chaque insert formant un pont magnétique entre un module de polarisation et des cavités d'injection de la série polaire avec laquelle ledit module est en correspondance. Selon un mode de mise en œuvre, le pont magnétique est réalisé entre le module de polarisation et des cavités d'injection de la série de polaire susceptibles d'être écrantés par d'autres cavités d'injection de cette même série polaire. According to one mode of implementation, the distributor means comprise inserts, each insert forming a magnetic bridge between a polarization module and injection cavities of the polar series with which said module is in correspondence. According to one mode of implementation, the magnetic bridge is produced between the polarization module and the injection cavities of the series of polars capable of being screened by other injection cavities of this same polar series.
Selon un mode de mise en œuvre, les inserts sont insérés dans des cavités des organes de maintien supérieur et inférieur, et comprennent avantageusement un matériau ferromagnétique. According to one mode of implementation, the inserts are inserted into cavities of the upper and lower holding members, and advantageously comprise a ferromagnetic material.
Selon un mode de mise en œuvre, la section magnétique comprend un porte-bobine autour duquel est formé un bobinage qui lorsqu'il est traversé par un courant électrique génère le champ magnétique nécessaire à la magnétisation du mélange composite magnétique susceptible d'être injecté dans les cavités d'injection. According to one mode of implementation, the magnetic section comprises a coil carrier around which is formed a coil which, when passed through by an electric current, generates the magnetic field necessary for the magnetization of the magnetic composite mixture capable of being injected into the injection cavities.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF DRAWINGS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre d'un dispositif pour la formation de pôles d'un rotor selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels : Other characteristics and advantages will appear in the following description of a device for forming poles of a rotor according to the invention, given by way of non-limiting examples, with reference to the appended drawings in which:
[Fig. 1] est une représentation schématique d'un dispositif pour la formation de pôles d'un rotor selon la présente invention, la cavité cylindrique étant vide ; [Fig. 1] is a schematic representation of a device for forming poles of a rotor according to the present invention, the cylindrical cavity being empty;
[Fig. 2] est une représentation schématique d'un corps de rotor mis en œuvre dans la cadre de la présente invention ; [Fig. 2] is a schematic representation of a rotor body implemented within the scope of the present invention;
[Fig. 3] est une représentation schématique en perspective d'un module de polarisation susceptible d'être mis en œuvre dans le cadre de la présente invention ; [Fig. 4a] [Fig. 3] is a schematic representation in perspective of a polarization module capable of being implemented within the scope of the present invention; [Fig. 4a]
[Fig. 4b] sont des représentations schématiques d'un organe de maintien inférieur, respectivement, avec des inserts magnétiques positionnés dans des logements de l'organe de maintien, et avec les mêmes inserts magnétiques disposés autour dudit organe ; [Fig. 4b] are schematic representations of a lower holding member, respectively, with magnetic inserts positioned in housings of the holding member, and with the same magnetic inserts arranged around said member;
[Fig. 4c] est une représentation d'un organe de maintien supérieur avec des inserts magnétiques positionnés dans des logements de l'organe de maintien ; [Fig. 4c] is a representation of an upper holding member with magnetic inserts positioned in housings of the holding member;
[Fig. 5] est une représentation schématique e d'un rotor après injection du mélange composite magnétique, en particulier cette représentation schématique montre une empreinte du réseau de canaux de distribution des moyens d'injection ; [Fig. 5] is a schematic representation of a rotor after injection of the magnetic composite mixture, in particular this schematic representation shows an imprint of the distribution channel network of the injection means;
[Fig. 6] est une représentation schématique du dispositif 10 selon la présente invention ; [Fig. 6] is a schematic representation of the device 10 according to the present invention;
[Fig. 7] est une représentation graphique d'une simulation et d'une mesure du champ magnétique (selon l'axe horizontal en mT) en fonction de la position angulaire (axe horizontal en degrés) au niveau de la section latérale d'un rotor fabriqué avec le dispositif selon la présente invention. [Fig. 7] is a graphical representation of a simulation and measurement of the magnetic field (along the horizontal axis in mT) as a function of the angular position (horizontal axis in degrees) at the side section of a fabricated rotor with the device according to the present invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED DISCUSSION OF PARTICULAR EMBODIMENTS
La présente invention concerne un dispositif destiné à former, par un procédé d'injection d'un mélange composite magnétique, les pôles d'un rotor. The present invention relates to a device intended to form, by an injection process of a magnetic composite mixture, the poles of a rotor.
A cet égard, la figure 1 est une représentation schématique du dispositif 10 selon la présente invention, ledit dispositif reposant notamment sur un support plan 60, également nommée plaque de carcasse de moule. In this respect, FIG. 1 is a schematic representation of the device 10 according to the present invention, said device resting in particular on a flat support 60, also called the mold carcass plate.
Le dispositif 10 comprend en particulier une cavité cylindrique 20 destinée à loger le corps d'un rotor 30 (figure 2) lors de la mise en œuvre du présent dispositif 10 pour la formation des pôles dudit rotor. The device 10 comprises in particular a cylindrical cavity 20 intended to house the body of a rotor 30 (FIG. 2) during the implementation of the present device 10 for the formation of the poles of said rotor.
Chaque pôle comprend à cet égard une ou plusieurs sections aimantées formées dans une série de cavités d'injection 34a, dite série polaire 34, du rotor, par injection d'une matière composite dans lesdites cavités. Le corps de rotor 30, généralement de forme cylindrique, est délimité par une face supérieure 31 et une face inférieure planes et parallèles entre elles, ainsi qu'une section latérale 33 reliant la face supérieure 31 et la face inférieure. Each pole comprises in this respect one or more magnetized sections formed in a series of injection cavities 34a, called pole series 34, of the rotor, by injecting a composite material into said cavities. The rotor body 30, generally of cylindrical shape, is delimited by an upper face 31 and a lower face which are flat and parallel to each other, as well as a lateral section 33 connecting the upper face 31 and the lower face.
Les séries polaires présentent une répartition angulaire régulière autour d'un axe de révolution dudit rotor, et les cavités d'injection 34a sont débouchantes au niveau de la face inférieure 31 et de la face supérieure. The polar series have a regular angular distribution around an axis of revolution of said rotor, and the injection cavities 34a open out at the level of the lower face 31 and of the upper face.
Le corps du rotor 30 peut avantageusement comprendre un empilement, selon l'axe de révolution, de tôles magnétiques collées entre elles. The body of the rotor 30 can advantageously comprise a stack, along the axis of revolution, of magnetic sheets glued together.
Par exemple, les tôles magnétiques peuvent comprendre au moins un des matériaux choisis parmi : acier, acier inoxydable, FeSi, FeCo. For example, the magnetic sheets can comprise at least one of the materials chosen from: steel, stainless steel, FeSi, FeCo.
Le dispositif 10 comprend un moyen d'injection de matière composite magnétique dans les cavités d'injection à une pression P inférieure à une pression prédéterminée. La matière composite magnétique est notamment injectée à l'état liquide à haute température, par exemple à une température comprise entre 150°C et 320 °C. La matière composite magnétique est également adaptée pour figer (se solidifier) et adopter la forme qui lui est imposée par la cavité d'injection dans laquelle elle est injectée lors d'une phase de refroidissement. The device 10 comprises means for injecting magnetic composite material into the injection cavities at a pressure P lower than a predetermined pressure. The magnetic composite material is in particular injected in the liquid state at high temperature, for example at a temperature between 150° C. and 320° C. The magnetic composite material is also suitable for congealing (solidifying) and adopting the shape imposed on it by the injection cavity into which it is injected during a cooling phase.
La matière composite magnétique peut notamment comprendre de la matière plastique mélangée avec une poudre magnétique coercitive. Par exemple, la matière plastique et la poudre coercitive peuvent représenter, respectivement, 40% et 60 % du volume de la matière composite. The magnetic composite material may in particular comprise plastic material mixed with a coercive magnetic powder. For example, the plastic material and the coercive powder can represent, respectively, 40% and 60% of the volume of the composite material.
Le choix de la matière plastique et de la poudre coercitive peut dépendre de l'application visée et de l'efficacité magnétique du rotor. A titre d'exemple, la matière plastique peut comprendre un polyamide de type PA12. Un tel polyamide permet d'atteindre un taux de charge élevé et donc une meilleure performance magnétique. De manière alternative ou complémentaire, la matière plastique peut comprendre du poly(sulfure de phénylène), PPS, qui est un polymère résistant, est susceptible d'être utilisé à une température pouvant attendre 150°C, voire 180°C. The choice of plastic material and coercive powder may depend on the intended application and the magnetic efficiency of the rotor. By way of example, the plastic material may comprise a polyamide of the PA12 type. Such a polyamide makes it possible to achieve a high charge rate and therefore better magnetic performance. Alternatively or additionally, the plastic material may comprise poly(phenylene sulphide), PPS, which is a resistant polymer, is capable of being used at a temperature which may reach 150° C., or even 180° C.
La poudre magnétique peut comprendre du NdFeB ayant subi le procédé HDDR (« Hydrogenation Disproportionation Desorption Recombination » selon la terminologie Anglo-Saxonne) qui permet de conférer une coercitivité élevée à la poudre, ou encore des ferrites durs (ferrite de strontium par exemple) ou du SmCo. The magnetic powder may comprise NdFeB having undergone the HDDR process (“Hydrogenation Disproportionation Desorption Recombination” according to the terminology Anglo-Saxon) which gives a high coercivity to the powder, or even hard ferrites (strontium ferrite for example) or SmCo.
La pression prédéterminée est par exemple inférieure à 1000 bars. The predetermined pressure is for example less than 1000 bars.
Le dispositif 10 comprend également des modules de polarisation 40 (figures 1 et 3) régulièrement répartis, sous forme d'une couronne, dite couronne magnétique, autour de l'axe de révolution de la cavité cylindrique 20 (figure 1). En d'autres termes la cavité cylindrique 20 se trouve au centre de la couronne magnétique. Dans l'exemple représenté à la figure 1, la couronne magnétique est formée de 6 modules de polarisation. L'invention n'est cependant pas limitée à cette seule configuration. The device 10 also comprises polarization modules 40 (FIGS. 1 and 3) regularly distributed, in the form of a crown, called magnetic crown, around the axis of revolution of the cylindrical cavity 20 (FIG. 1). In other words the cylindrical cavity 20 is at the center of the magnetic crown. In the example represented in FIG. 1, the magnetic crown is formed of 6 polarization modules. However, the invention is not limited to this single configuration.
Chaque module de polarisation peut avantageusement être disposé en correspondance une série polaire différente de manière à pouvoir imposer le champ magnétique à la matière composite magnétique susceptible d'être injectée dans les cavités d'injection de ladite série polaire. Each polarization module can advantageously be arranged in correspondence with a different polar series so as to be able to impose the magnetic field on the magnetic composite material capable of being injected into the injection cavities of said polar series.
Chaque module de polarisation 40 comprend, selon un axe principal XX', une section magnétique 42 et un pôle magnétique 43. Chaque module de polarisation 40 peut également comprendre un organe de rebouclage 41. Chaque module de polarisation peut en particulier faire apparaître dans l'ordre et selon l'axe principal XX', l'organe de rebouclage 41, la section magnétique 42 et le pôle magnétique 43. Each polarization module 40 comprises, along a main axis XX', a magnetic section 42 and a magnetic pole 43. Each polarization module 40 can also comprise a loopback member 41. Each polarization module can in particular reveal in the order and along the main axis XX', the looping member 41, the magnetic section 42 and the magnetic pole 43.
En particulier, la section magnétique 42 de chacun des modules de polarisation 40 est destinée à imposer un champ de polarisation magnétique à la matière composite injectée à l'état liquide dans les cavités d'injection 34a. Le maintien de ce champ de polarisation jusqu'à ce que la matière composite magnétique se fige par refroidissement permet ainsi de former les sections aimantées des pôles du rotor. La mise en correspondance peut avantageusement être exécutée au moyen de guides. Ces guides peuvent notamment comprendre des trous formés de la face supérieure vers la face inférieure du rotor et des pions en projection par rapport au support plan 60 et destinés à imposer l'orientation du rotor sur le support plan 60. In particular, the magnetic section 42 of each of the polarization modules 40 is intended to impose a magnetic polarization field on the composite material injected in the liquid state into the injection cavities 34a. Maintaining this polarization field until the magnetic composite material freezes by cooling thus makes it possible to form the magnetized sections of the poles of the rotor. The mapping can advantageously be carried out by means of guides. These guides may in particular comprise holes formed from the upper face towards the lower face of the rotor and pins projecting relative to the flat support 60 and intended to impose the orientation of the rotor on the flat support 60.
La section magnétique 42 peut comprendre un aimant permanent. Toutefois, selon un mode de réalisation préféré de la présente invention, la section magnétique 42 peut comprendre un porte-bobine autour duquel est formé un bobinage qui, lorsqu'il est traversé par un courant électrique, génère le champ magnétique nécessaire à la magnétisation du mélange composite magnétique. Le bobinage peut à cet égard comprendre du fil de cuivre, tandis que le porte-bobine peut comprendre un noyau magnétique (par exemple de l'acier martensitique, du FeNi, du FeCo ou tout autre alliage magnétique doux). La section magnétique 42 possède avantageusement, avec l'organe de rebouclage 41, une forme permettant un rebouclage efficace du flux magnétique sur la section magnétique elle-même ou avec le flux d'une section magnétique immédiatement adjacente (figure 6). Magnetic section 42 may include a permanent magnet. However, according to a preferred embodiment of the present invention, the magnetic section 42 may comprise a coil holder around which is formed a coil which, when it is crossed by an electric current, generates the magnetic field necessary for the magnetization of the magnetic composite mixture. The winding can in this respect comprise copper wire, while the coil holder can comprise a magnetic core (for example martensitic steel, FeNi, FeCo or any other soft magnetic alloy). Magnetic section 42 advantageously has, with loopback member 41, a shape allowing effective loopback of the magnetic flux on the magnetic section itself or with the flux of an immediately adjacent magnetic section (FIG. 6).
Dans l'exemple représenté à la figure 1, l'alimentation en courant des bobinages est adaptée pour que chaque module de polarisation génère un champ magnétique opposé à celui généré par les modules qui lui sont directement adjacents. Cet agencement permet ainsi de réaliser une alternance des pôles en termes de polarisation. Par ailleurs, toujours dans cet exemple, la force magnétomotrice de chacun des bobinages peut être de lOkA. tours, requérant pour chacun desdits bobinages une puissance totale d'environ 4 kW en courant continu. En fonctionnement, une telle puissance est susceptible d'engendrer un échauffement important. Ainsi, afin de pouvoir limiter ce dernier, il est possible de mettre en œuvre un système de refroidissement, par exemple un système de circulation d'un fluide caloporteur directement dans le porte-bobine. La mise en œuvre d'un système de refroidissement permet à cet égard d'augmenter le courant susceptible de traverser chacun des bobinages, et par voie de conséquence imposer un champ de polarisation plus important, sans pour autant devoir augmenter la taille de la couronne magnétique. In the example represented in FIG. 1, the current supply to the coils is adapted so that each polarization module generates a magnetic field opposite to that generated by the modules which are directly adjacent to it. This arrangement thus makes it possible to achieve an alternation of the poles in terms of polarization. Moreover, still in this example, the magnetomotive force of each of the windings can be 10 kA. towers, requiring for each of said windings a total power of about 4 kW in direct current. In operation, such a power is likely to cause significant heating. Thus, in order to be able to limit the latter, it is possible to implement a cooling system, for example a system for circulating a heat transfer fluid directly in the coil carrier. The implementation of a cooling system makes it possible in this respect to increase the current likely to pass through each of the windings, and consequently to impose a larger bias field, without having to increase the size of the magnetic crown. .
La considération du couple porte-bobine refroidi/bobinage permet de former une couronne magnétique relativement compacte. Par ailleurs, ce système de génération de champ magnétique est pilotable de sorte que le champ magnétique qu'il génère peut être coupé à chaque instant, et notamment lorsque la matière composite magnétique est complètement solidifiée. Le moule peut ainsi être ouvert dans des conditions de sécurité améliorées. Consideration of the cooled coil holder/coiling couple makes it possible to form a relatively compact magnetic ring. Moreover, this magnetic field generation system is controllable so that the magnetic field that it generates can be switched off at any time, and in particular when the magnetic composite material is completely solidified. The mold can thus be opened under improved safety conditions.
Il est ainsi possible d'opérer ce dispositif dans des conditions de sécurité améliorées au regard de dispositifs mettant en œuvre des aimants magnétiques permanents. Le pôle magnétique 43 de chaque module de polarisation 40 donné, présente une forme de pyramide tronquée dont la hauteur est parallèle à la direction principale du module de polarisation considéré (figure 3). En particulier, la petite base de la pyramide tronquée forme une surface de maintien latéral 43a incurvée de manière à épouser la forme de la section latérale du rotor. Plus particulièrement, l'ensemble des surfaces de maintien latéral 43a, 46a et 46b définissent une surface latérale 43s de la cavité cylindrique 20 (figure 1). It is thus possible to operate this device under improved safety conditions with respect to devices implementing permanent magnetic magnets. The magnetic pole 43 of each given polarization module 40 has the shape of a truncated pyramid whose height is parallel to the main direction of the polarization module considered (FIG. 3). In particular, the small base of the truncated pyramid forms a lateral support surface 43a curved so as to match the shape of the lateral section of the rotor. More particularly, all of the lateral holding surfaces 43a, 46a and 46b define a lateral surface 43s of the cylindrical cavity 20 (FIG. 1).
Le pôle magnétique 43 peut comprendre une section centrale 45 ainsi qu'une première section latérale 46a et une deuxième section latérale 46b. The magnetic pole 43 may include a central section 45 as well as a first side section 46a and a second side section 46b.
En particulier, la section centrale 45 peut être intercalée entre la première section latérale 46a et la deuxième section latérale 46b (figure 3). Plus particulièrement, au sein d'un module de polarisation 40, la section centrale 45 faite d'un matériau magnétique permet de guider le champ magnétique produit au niveau de la section magnétique vers le centre d'une série polaire du rotor, tandis que la première section latérale 46a et la deuxième section latérale 46b faites d'un matériau non magnétique limitent les fuites magnétiques entre les sections centrales 45 adjacentes. En particulier, la première section latérale 46a et la deuxième section latérale 46b présentent une perméabilité magnétique très inférieure à celle de la section centrale 45, de manière avantageuse égale à celle de l'air. In particular, the central section 45 can be inserted between the first lateral section 46a and the second lateral section 46b (FIG. 3). More particularly, within a polarization module 40, the central section 45 made of a magnetic material makes it possible to guide the magnetic field produced at the level of the magnetic section towards the center of a polar series of the rotor, while the first side section 46a and second side section 46b made of a non-magnetic material limit the magnetic leakage between adjacent central sections 45. In particular, the first lateral section 46a and the second lateral section 46b have a magnetic permeability much lower than that of the central section 45, advantageously equal to that of air.
Le dispositif 10 selon la présente invention peut également comprendre des moyens de blocage qui permettent notamment de maintenir les surfaces de maintien latéral 43a, 46a et 46b en appui contre la section latérale du rotor. Cet appui des surfaces de maintien latéral 43a, 46a et 46b, est notamment adapté pour compenser les contraintes mécaniques susceptibles d'être imposées au rotor lors de l'injection de la matière composite à la pression P. En d'autres termes, les moyens de blocage sont agencés pour que la surface latérale 43s de la cavité cylindrique 20 s'oppose à la déformation latérale du rotor lors de l'injection à la pression P du mélange composite magnétique. The device 10 according to the present invention can also comprise locking means which make it possible in particular to maintain the lateral holding surfaces 43a, 46a and 46b bearing against the lateral section of the rotor. This support of the lateral support surfaces 43a, 46a and 46b is in particular suitable for compensating for the mechanical stresses likely to be imposed on the rotor during the injection of the composite material at the pressure P. In other words, the means blocking are arranged so that the side surface 43s of the cylindrical cavity 20 opposes the lateral deformation of the rotor during the injection at the pressure P of the magnetic composite mixture.
Cet aspect est particulièrement avantageux notamment lorsque le rotor présente des zones sensibles à la déformation sous l'effet d'une pression interne subie lors de l'injection de la matière composite magnétique. Ces zones sensibles sont notamment induites par la proximité des cavités d'injection et de la section latérale du rotor. Le seul maintien par la surface latérale, éventuellement en compression, permet de préserver l'intégrité mécanique du rotor lors de l'injection à la pression P du mélange composite magnétique. This aspect is particularly advantageous in particular when the rotor has zones sensitive to deformation under the effect of an internal pressure undergone during the injection of the magnetic composite material. These sensitive areas include induced by the proximity of the injection cavities and the lateral section of the rotor. The only maintenance by the lateral surface, possibly in compression, makes it possible to preserve the mechanical integrity of the rotor during the injection at the pressure P of the magnetic composite mixture.
Les moyens de blocage peuvent avantageusement comprendre des vérins qui exercent chacun un effort de manière concentrique selon l'axe principal de chaque module de polarisation 40. The blocking means can advantageously comprise jacks which each exert a force concentrically along the main axis of each polarization module 40.
De manière alternative, les moyens de blocage peuvent comprendre une pluralité de rails inclinés, par exemple d'un angle inférieur à 10°, par rapport à l'axe de révolution de la cavité cylindrique 20, et le long desquels les modules de polarisation sont susceptibles de coulisser. En particulier, chaque module de polarisation peut être associé à un ou deux rails 50 mécaniquement liés au support plan 60 et par rapport auquel lesdits rails sont en projection. Selon cette configuration, chacun des modules de polarisation peut coulisser entre deux positions dites, respectivement, position haute et position basse. La position basse étant notamment une position pour laquelle lesdits modules reposent sur le support plan. En particulier, l'inclinaison des rails est adaptée pour que lors du coulissement des modules de polarisation 40 de la position haute vers la position basse, les surfaces de maintien latéral 43a se rapprochent les unes des autres afin de venir au contact de la section latérale du rotor pré-positionné sur le support plan. Alternatively, the blocking means may comprise a plurality of inclined rails, for example at an angle of less than 10°, relative to the axis of revolution of the cylindrical cavity 20, and along which the polarization modules are likely to slide. In particular, each polarization module can be associated with one or two rails 50 mechanically linked to the flat support 60 and relative to which said rails project. According to this configuration, each of the polarization modules can slide between two positions called, respectively, high position and low position. The low position being in particular a position for which said modules rest on the flat support. In particular, the inclination of the rails is adapted so that when the polarization modules 40 slide from the high position to the low position, the lateral support surfaces 43a approach each other in order to come into contact with the lateral section of the rotor pre-positioned on the flat support.
Le dispositif 10 peut également comprendre un organe de maintien inférieur 70 (figures 4a et 4b) et un organe de maintien supérieur 71 (figure 4c) maintenus en appui (en pression) par des deuxièmes moyens de blocage contre, respectivement, la face supérieure 31 du rotor et la face inférieure du rotor. Ce maintien par l'organe de maintien supérieur 71 et par l'organe de maintien inférieur 70 est adapté pour compenser les (s'opposer aux) contraintes susceptibles d'être imposées au rotor lors de l'injection de la matière composite à la pression P. The device 10 can also comprise a lower holding member 70 (FIGS. 4a and 4b) and an upper holding member 71 (FIG. 4c) held in abutment (under pressure) by second blocking means against, respectively, the upper face 31 of the rotor and the underside of the rotor. This holding by the upper holding member 71 and by the lower holding member 70 is adapted to compensate for (oppose the) stresses liable to be imposed on the rotor during the injection of the composite material at the pressure p.
Les organes de maintien inférieur et supérieur peuvent chacun prendre la forme d'un plaque de maintien. The lower and upper holding members can each take the form of a holding plate.
Ce dernier aspect est particulièrement avantageux lorsque le corps du rotor est formé d'un empilement de tôles. En effet, la simple mise en œuvre de l'organe de maintien supérieur 71 et de l'organe de maintien inférieur 70 permet de maintenir jointives les tôles entre elles, et de limiter toute infiltration de la matière composite magnétique lors de l'étape d'injection. This latter aspect is particularly advantageous when the body of the rotor is formed from a stack of laminations. Indeed, the simple implementation of the holding member upper 71 and the lower holding member 70 makes it possible to keep the sheets contiguous with each other, and to limit any infiltration of the magnetic composite material during the injection step.
Selon un autre aspect de l'invention, le moyen d'injection peut être agencé pour injecter de la matière composite magnétique au niveau de la face supérieure 31 du rotor 30.According to another aspect of the invention, the injection means can be arranged to inject magnetic composite material at the level of the upper face 31 of the rotor 30.
En particulier, le moyen d'injection peut coopérer avec l'organe de maintien supérieur 71 pour l'injection de la matière composite magnétique dans les cavités d'injection 34. A cet égard et de manière avantageuse, l'organe de maintien supérieur 71 peut comprendre une pluralité de canaux de distribution agencés pour l'injection collective de la matière composite magnétique dans chacune des cavités magnétique 34, tout en assurant un maintien axial du rotor grâce à des surfaces parallèles aux faces supérieure et inférieure du rotor. Cet agencement permet d'injecter, en même temps, la même quantité de matière composite magnétique dans chacune des cavités d'injection de manière à équilibrer les contraintes subies par le rotor dans tout son volume. A cet égard, la figure 5 représente une empreinte E des canaux de distribution, faite du mélange composite magnétique figé. In particular, the injection means can cooperate with the upper holding member 71 for the injection of the magnetic composite material into the injection cavities 34. In this respect and advantageously, the upper holding member 71 may comprise a plurality of distribution channels arranged for the collective injection of the magnetic composite material into each of the magnetic cavities 34, while ensuring axial holding of the rotor by means of surfaces parallel to the upper and lower faces of the rotor. This arrangement makes it possible to inject, at the same time, the same quantity of magnetic composite material into each of the injection cavities so as to balance the stresses undergone by the rotor throughout its volume. In this respect, FIG. 5 represents an imprint E of the distribution channels, made of the fixed magnetic composite mixture.
Selon un mode de réalisation particulier, les cavités d'injection d'une série polaire sont symétriques par rapport à un plan formé par l'axe de révolution et par l'axe principal du module de polarisation en correspondance avec la série polaire concernée, et sont disposées en plusieurs rangées les unes derrières les autres le long dudit axe principal (figure 2). According to a particular embodiment, the injection cavities of a polar series are symmetrical with respect to a plane formed by the axis of revolution and by the main axis of the polarization module in correspondence with the polar series concerned, and are arranged in several rows one behind the other along said main axis (Figure 2).
En d'autres termes, les cavités d'injection d'une série polaire sont disposées les unes derrières les autres selon une direction radiale. Par exemple, et selon un mode de réalisation particulier, la section d'une cavité d'injection selon un plan de coupe perpendiculaire à l'axe de révolution et selon une direction radiale (du centre vers la section latérale) présente une forme concave (par exemple une forme en arc plein). Selon un tel agencement, toutes les cavités d'injection d'une série polaire ne sont pas exposées de manière équivalente au champ magnétique imposé par le module de polarisation. En particulier, les cavités les plus proches du centre du rotor sont écrantées par les cavités situées plus à proximité de la section latérale du rotor. Afin de pallier ce problème, le dispositif peut comprendre des moyens répartiteurs de champ magnétique destinés à répartir le champ magnétique imposé par chaque module de polarisation aux cavités d'injection de la série polaire avec laquelle ledit module. En particulier, ces moyens répartiteurs peuvent comprendre des inserts 55 destinés à réaliser un pont magnétique entre le module de polarisation et au moins une des cavités ou des rangées de cavités d'injection de la série polaire en correspondance avec ledit module de polarisation. In other words, the injection cavities of a polar series are arranged one behind the other in a radial direction. For example, and according to a particular embodiment, the section of an injection cavity along a section plane perpendicular to the axis of revolution and along a radial direction (from the center towards the lateral section) has a concave shape ( for example a full arc shape). According to such an arrangement, all the injection cavities of a polar series are not exposed in an equivalent manner to the magnetic field imposed by the polarization module. In particular, the cavities closest to the center of the rotor are screened by the cavities located closer to the lateral section of the rotor. In order to overcome this problem, the device may comprise magnetic field distributor means intended to distribute the magnetic field imposed by each polarization module to the injection cavities of the polar series with which said module. In particular, these distributor means may comprise inserts 55 intended to form a magnetic bridge between the polarization module and at least one of the cavities or rows of injection cavities of the polar series in correspondence with said polarization module.
Plus particulièrement, ces inserts 55 réalisent notamment un contact au niveau du pôle magnétique et la face supérieure du rotor à proximité d'une cavité d'injection, et plus particulièrement entre deux cavités ou rangées de cavités d'injection d'une série polaire. Ces inserts 55 peuvent en particulier coopérer avec l'un et l'autre de l'organe de maintien supérieur 71 et de l'organe de maintien inférieur 70. Un organe de maintien peut comprendre des orifices 56, débouchant au niveau d'une première face, et dans lesquelles sont positionnés les inserts 55. La première face est en particulier opposée à une deuxième face de l'organe de maintien considéré destiné à être en contact avec une face du rotor 30 (figures 4a et 4b). Les orifices 56 ont avantageusement une forme complémentaire aux inserts 55. More particularly, these inserts 55 in particular make contact at the level of the magnetic pole and the upper face of the rotor close to an injection cavity, and more particularly between two cavities or rows of injection cavities of a polar series. These inserts 55 can in particular cooperate with one and the other of the upper holding member 71 and the lower holding member 70. A holding member can comprise orifices 56, opening at the level of a first face, and in which the inserts 55 are positioned. The first face is in particular opposite a second face of the holding member considered intended to be in contact with a face of the rotor 30 (FIGS. 4a and 4b). Orifices 56 advantageously have a shape complementary to inserts 55.
Par ailleurs, l'insert 55 comprend en outre une protubérance 55a traversant, par un passage 70a, l'organe de maintien inférieur 70 et débouchant au niveau de la deuxième face dudit organe pour venir au contact de la face inférieure du rotor 30. L'autre extrémité 55b des inserts vient en contact avec le module de polarisation correspondant de manière à réaliser un pont magnétique avec le rotor. A cet égard, les inserts présentent avantageusement une permittivité magnétique supérieure à celle de l'organe de maintien inférieur, de sorte que lesdits inserts 55 forment un chemin de circulation privilégié pour le champ magnétique imposé par le module de polarisation. Le même agencement des inserts 55 est prévu en relation avec l'organe de maintien supérieur 71 (figure 4c). Furthermore, the insert 55 further comprises a protuberance 55a passing through, via a passage 70a, the lower retaining member 70 and emerging at the level of the second face of said member to come into contact with the lower face of the rotor 30. the other end 55b of the inserts comes into contact with the corresponding polarization module so as to produce a magnetic bridge with the rotor. In this respect, the inserts advantageously have a higher magnetic permittivity than that of the lower holding member, so that said inserts 55 form a privileged circulation path for the magnetic field imposed by the polarization module. The same arrangement of the inserts 55 is provided in relation to the upper holding member 71 (FIG. 4c).
Il est ainsi possible de mieux répartir le champ magnétique et surtout de compenser au moins en partie l'écrantage exercé au niveau d'une cavité d'injection donnée par une autre cavité d'injection qui s'interpose entre le module de polarisation et ladite cavité d'injection donnée. It is thus possible to better distribute the magnetic field and above all to compensate at least in part for the screening exerted at the level of a given injection cavity by a another injection cavity which is interposed between the polarization module and said given injection cavity.
Les inserts 55 peuvent ainsi comprendre un alliage ferromagnétique doux (par exemple acier martensitique, FeCo, FeNi ou tout autre alliage présentant une perméabilité relative élevée - de préférence supérieure à 500 - et une induction à saturation élevée - de préférence supérieure à 1.5T). The inserts 55 can thus comprise a soft ferromagnetic alloy (for example martensitic steel, FeCo, FeNi or any other alloy having a high relative permeability - preferably greater than 500 - and a high saturation induction - preferably greater than 1.5T).
L'organe de maintien supérieur 71 peut comprendre un matériau métallique parfaitement amagnétique (par exemple inox 316L recuit après usinage, Inconel, alliages de cuivre et/ou d'aluminium, laiton,...). The upper retaining member 71 may comprise a perfectly non-magnetic metallic material (for example annealed 316L stainless steel after machining, Inconel, copper and/or aluminum alloys, brass, etc.).
La figure 6 est une représentation schématique du dispositif 10 selon la présente invention. Figure 6 is a schematic representation of the device 10 according to the present invention.
En particulier, cette figure représente la répartition des lignes de champ magnétique (sous forme de flèches) créées par les bobinages B. In particular, this figure represents the distribution of the magnetic field lines (in the form of arrows) created by the windings B.
La Figure 7 est une représentation graphique d'une simulation et d'une mesure du champ magnétique (selon l'axe horizontal en « mT ») en fonction de la position angulaire (axe horizontal en degrés) au niveau de la section latérale du rotor fabriqué avec le dispositif selon la présente invention. Les deux courbes représentatives du champ magnétique se superposent parfaitement, indiquant en particulier la bonne compréhension et la performance du dispositif de formation de pôles selon la présente invention. Figure 7 is a graphic representation of a simulation and a measurement of the magnetic field (along the horizontal axis in "mT") as a function of the angular position (horizontal axis in degrees) at the level of the lateral section of the rotor manufactured with the device according to the present invention. The two curves representative of the magnetic field overlap perfectly, indicating in particular the good understanding and the performance of the pole-forming device according to the present invention.

Claims

Revendications Claims
1. Dispositif (10) pour la formation de pôles d'un rotor (30), chaque pôle comprenant une ou plusieurs sections aimantées formées dans une série de cavités d'injection (34a), dite série polaire, du rotor (30), par injection d'une matière composite dans lesdites cavités, le dispositif (10) comprend : 1. Device (10) for forming poles of a rotor (30), each pole comprising one or more magnetized sections formed in a series of injection cavities (34a), called the pole series, of the rotor (30), by injecting a composite material into said cavities, the device (10) comprises:
- un rotor (30), disposé dans une cavité cylindrique (20), ledit rotor (30) étant délimité par une face supérieure (31) et une face inférieure planes et parallèles entre elles, et reliées par une section latérale (33) de forme cylindrique, les séries polaires présentent une répartition angulaire régulière autour d'un axe de révolution dudit rotor (30), et les cavités d'injection (34a) sont débouchantes au niveau de la face inférieure et de la face supérieure (31) ; - a rotor (30), arranged in a cylindrical cavity (20), said rotor (30) being delimited by an upper face (31) and a lower face which are flat and parallel to each other, and connected by a lateral section (33) of cylindrical in shape, the polar series have a regular angular distribution around an axis of revolution of said rotor (30), and the injection cavities (34a) open out at the level of the lower face and the upper face (31);
- un moyen d'injection de matière composite magnétique, à l'état liquide, dans les cavités d'injection (34a) à une pression P inférieure à une pression prédéterminée ; - a means of injecting magnetic composite material, in the liquid state, into the injection cavities (34a) at a pressure P lower than a predetermined pressure;
- des modules de polarisation répartis régulièrement autour de l'axe de révolution de la cavité cylindrique (20), chaque module de polarisation (40) comprenant, dans l'ordre et selon un axe principal, un organe de rebouclage (41), une section magnétique (42) destinée à imposer un champ de polarisation magnétique à la matière composite susceptible d'être injectée dans les cavités d'injection (34a), et un pôle magnétique (43), les pôles magnétiques comprenant une surface, dite surface de maintien latéral (43a), l'ensemble des surfaces de maintien latéral définissant une surface latérale (43s) de la cavité cylindrique (20) ; - polarization modules regularly distributed around the axis of revolution of the cylindrical cavity (20), each polarization module (40) comprising, in order and along a main axis, a feedback member (41), a magnetic section (42) intended to impose a magnetic polarization field on the composite material capable of being injected into the injection cavities (34a), and a magnetic pole (43), the magnetic poles comprising a surface, called surface of lateral support (43a), the set of lateral support surfaces defining a lateral surface (43s) of the cylindrical cavity (20);
- des moyens de blocage agencés de manière à maintenir les surfaces de maintien latéral en appui contre la section latérale (33) du rotor (30), de sorte que les surfaces de maintien latéral compensent des contraintes imposées au rotor (30) lors de l'injection de la matière composite à la pression P. - locking means arranged so as to maintain the lateral support surfaces bearing against the lateral section (33) of the rotor (30), so that the lateral support surfaces compensate for the stresses imposed on the rotor (30) during the injection of the composite material at the pressure P.
2. Dispositif (10) selon la revendication 1, dans lequel chaque module de polarisation (40) est disposé en correspondance avec une série polaire différente de manière à pouvoir imposer le champ magnétique à la matière composite magnétique susceptible d'être injectée dans les cavités d'injection (34a) de ladite série polaire. 2. Device (10) according to claim 1, wherein each polarization module (40) is arranged in correspondence with a different polar series so as to be able to impose the magnetic field on the magnetic composite material capable of being injected into the cavities. injection (34a) of said polar series.
3. Dispositif (10) selon la revendication 1 ou 2, dans lequel ledit dispositif (10) comprend un organe de maintien supérieur (71) et un organe de maintien inférieur (70) maintenus en appui par des deuxièmes moyens de blocage contre, respectivement, la face supérieure (31) et la face inférieure, et de manière à compenser des contraintes susceptibles d'être imposées au rotor (30) lors de l'injection de la matière composite à la pression P. 3. Device (10) according to claim 1 or 2, wherein said device (10) comprises an upper holding member (71) and a lower holding member (70) held in abutment by second blocking means against, respectively , the upper face (31) and the lower face, and so as to compensate for the stresses liable to be imposed on the rotor (30) during the injection of the composite material at the pressure P.
4. Dispositif (10) selon la revendication 3, dans lequel le moyen d'injection est agencé pour injecter de la matière composite magnétique au niveau de la face supérieure (31) du rotor (30). 4. Device (10) according to claim 3, wherein the injection means is arranged to inject magnetic composite material at the level of the upper face (31) of the rotor (30).
5. Dispositif (10) selon la revendication 3 ou 4, dans lequel le moyen d'injection coopère avec l'organe de maintien supérieur (71) pour l'injection de la matière composite magnétique dans les cavités d'injection (34a). 5. Device (10) according to claim 3 or 4, wherein the injection means cooperates with the upper holding member (71) for the injection of the magnetic composite material into the injection cavities (34a).
6. Dispositif (10) selon la revendication 5, dans lequel l'organe de maintien supérieure (71) comprend une pluralité de canaux de distribution agencés pour l'injection collective de la matière composite magnétique dans chacune des cavités d'injection (34a). 6. Device (10) according to claim 5, wherein the upper holding member (71) comprises a plurality of distribution channels arranged for the collective injection of the magnetic composite material into each of the injection cavities (34a) .
7. Dispositif (10) selon l'une des revendications 3 à 6, dans lequel les cavités d'injection (34a) d'une série polaire sont symétriques par rapport à un plan formé par l'axe de révolution et par l'axe principal du module de polarisation (40) en correspondance avec la série polaire concernée, et sont disposées les unes derrières les autres le long dudit axe principal, le dispositif (10) comprend des moyens répartiteurs de champ magnétique destinés à répartir le champ magnétique imposé par chaque module de polarisation (40) aux cavités d'injection (34a) de la série polaire avec laquelle ledit module (40) est en correspondance. 7. Device (10) according to one of claims 3 to 6, wherein the injection cavities (34a) of a polar series are symmetrical with respect to a plane formed by the axis of revolution and by the axis main part of the polarization module (40) in correspondence with the polar series concerned, and are arranged one behind the other along said main axis, the device (10) comprises magnetic field distributor means intended to distribute the magnetic field imposed by each polarization module (40) to the injection cavities (34a) of the polar series with which said module (40) is in correspondence.
8. Dispositif (10) selon la revendication 7, dans lequel les moyens répartiteurs comprennent des inserts 55, chaque insert formant un pont magnétique entre un module de polarisation (40) et des cavités d'injection (34a) de la série polaire avec laquelle ledit module (40) est en correspondance. 8. Device (10) according to claim 7, in which the distributor means comprise inserts 55, each insert forming a magnetic bridge between a polarization module (40) and injection cavities (34a) of the polar series with which said module (40) is in correspondence.
9. Dispositif (10) selon la revendication 8, dans lequel le pont magnétique est réalisé entre le module de polarisation (40) et des cavités d'injection de la série de polaire susceptibles d'être écrantées par d'autres cavités d'injection (34a) de cette même série polaire. 17 9. Device (10) according to claim 8, in which the magnetic bridge is produced between the polarization module (40) and injection cavities of the polar series likely to be screened by other injection cavities. (34a) of this same polar series. 17
10. Dispositif (10) selon la revendication 9, dans lequel les inserts 55 sont insérés dans des orifices 56 de l'organe de maintien supérieur (71) et de l'organe de maintien inférieur (70), et comprennent avantageusement un matériau ferromagnétique. 10. Device (10) according to claim 9, in which the inserts 55 are inserted into orifices 56 of the upper holding member (71) and of the lower holding member (70), and advantageously comprise a ferromagnetic material .
11. Dispositif (10) selon l'une des revendications 1 à 10, dans lequel la section magnétique (42) comprend un porte-bobine autour duquel est formé un bobinage qui lorsqu'il est traversé par un courant électrique génère le champ magnétique nécessaire à la magnétisation du mélange composite magnétique susceptible d'être injecté dans les cavités d'injection (34a). 11. Device (10) according to one of claims 1 to 10, in which the magnetic section (42) comprises a coil carrier around which is formed a coil which, when traversed by an electric current, generates the necessary magnetic field. to the magnetization of the magnetic composite mixture capable of being injected into the injection cavities (34a).
EP21782777.3A 2020-09-07 2021-09-07 Device for forming poles of a rotor Pending EP4211777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009038A FR3113988B1 (en) 2020-09-07 2020-09-07 DEVICE FOR THE FORMATION OF POLES OF A ROTOR
PCT/FR2021/051529 WO2022049356A1 (en) 2020-09-07 2021-09-07 Device for forming poles of a rotor

Publications (1)

Publication Number Publication Date
EP4211777A1 true EP4211777A1 (en) 2023-07-19

Family

ID=73497947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21782777.3A Pending EP4211777A1 (en) 2020-09-07 2021-09-07 Device for forming poles of a rotor

Country Status (3)

Country Link
EP (1) EP4211777A1 (en)
FR (1) FR3113988B1 (en)
WO (1) WO2022049356A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726105B2 (en) * 2001-08-03 2011-07-20 ヤマハ発動機株式会社 Orientation device
JP2013143791A (en) 2012-01-06 2013-07-22 Aichi Steel Works Ltd Magnet-inclusion type synchronous machine and rotor thereof
JP6011131B2 (en) * 2012-08-08 2016-10-19 ダイキン工業株式会社 Field element manufacturing method and injection molding apparatus
JP6107299B2 (en) 2013-03-26 2017-04-05 愛知製鋼株式会社 Method for manufacturing outer rotor of internal magnet type synchronous machine
JP2016220286A (en) * 2015-05-14 2016-12-22 株式会社ジェイテクト Device and method of manufacturing embedded magnet type rotor
DE102016224249A1 (en) 2016-12-06 2018-06-07 KSB SE & Co. KGaA A method of manufacturing a rotor for a synchronous reluctance machine and rotor for a synchronous reluctance machine
JP6939042B2 (en) * 2017-04-20 2021-09-22 株式会社ジェイテクト Bond magnet injection molding equipment and bond magnet injection molding method
DE102019107394A1 (en) 2019-03-22 2020-09-24 Brusa Elektronik Ag Rotor with cast magnetic elements with protrusions

Also Published As

Publication number Publication date
FR3113988A1 (en) 2022-03-11
WO2022049356A1 (en) 2022-03-10
FR3113988B1 (en) 2023-04-28

Similar Documents

Publication Publication Date Title
JP5690141B2 (en) Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
EP3020055B1 (en) Sintered ring magnet with radial magnetization, showing reinforced mechanical stability
FR2730874A1 (en) COMPOSITE INDUCTOR FOR ELECTRIC ROTATING MACHINES COMPRISING PERMANENT PERMANENT MAGNETS COATED IN A FERROMAGNETIC BINDER
FR2785105A1 (en) MOTOR IN WHICH PERMANENT MAGNETS ARE BUILT-IN AND METHOD FOR MANUFACTURING THE MOTOR
EP4073916A1 (en) Superconducting pellet comprising a cavity and associated electrical machine
WO2022049356A1 (en) Device for forming poles of a rotor
EP3055920A2 (en) Slotless electrical machine with concentrated winding
FR2581820A1 (en) MAGNETOSTRICTION TRANSDUCER WITH PERMANENT MAGNET POLARIZATION
WO2019095921A1 (en) Method for preparing high-orientation-degree sintered neodymium-iron-boron permanent magnet material by means of wet-press forming
EP1474952B1 (en) Moving-coil electrodynamic motor particularly for a loudspeaker, loudspeaker and corresponding pole piece
EP0327554B1 (en) Magnetic block with adjustable magnetization for producing a permanent magnetic field in a zone of interest
EP2337037B1 (en) Method of manufacturing a casted magnet
FR3045924A1 (en) INDUCTANCE CORE WITH REDUCED MAGNETIC LOSSES
WO2021099724A1 (en) Electromagnetic induction device
EP2909844A1 (en) Hybrid magnet, method for producing a hybrid magnet, and rotating electrical machine comprising such hybrid magnets
FR3069119B1 (en) ELECTROMAGNETIC ENERGY CONVERTER
FR2934920A1 (en) PERMANENT MAGNETS
EP3879050B1 (en) Interface adapter integrating a magnetic latch accommodating or formed by at least one accumulator and ensuring the magnetic fixing of the latter with electrical conduction to a busbar (b1)
EP2605253A1 (en) Manufacturing method for a permanent magnet, moulding system and permanent magnet
WO2024115315A1 (en) Method for manufacturing a part comprising at least one magnet by additive manufacturing
FR2731295A1 (en) Ignition coil for vehicle using permanent magnet in magnetic circuit
WO2023194674A1 (en) Injection moulding machine for manufacturing an injected permanent magnet and method for manufacturing an injected permanent magnet
WO2023156724A1 (en) Method for producing a flux-oriented multipole magnet
EP3921462A1 (en) Cold crucible
FR2977409A1 (en) Method for manufacturing permanent magnet of e.g. stator, in brushless electric motor, involves subjecting ferromagnetic particles powder to magnetic orientation during compression of ferromagnetic particles powder

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)