EP4198932A1 - Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome - Google Patents

Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome Download PDF

Info

Publication number
EP4198932A1
EP4198932A1 EP21216161.6A EP21216161A EP4198932A1 EP 4198932 A1 EP4198932 A1 EP 4198932A1 EP 21216161 A EP21216161 A EP 21216161A EP 4198932 A1 EP4198932 A1 EP 4198932A1
Authority
EP
European Patent Office
Prior art keywords
component
piezoelectric component
shape
piezoelectric
detecting fires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21216161.6A
Other languages
German (de)
English (en)
Inventor
Alain Hautcoeur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nimesis Technology
Original Assignee
Nimesis Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nimesis Technology filed Critical Nimesis Technology
Priority to EP21216161.6A priority Critical patent/EP4198932A1/fr
Priority to PCT/EP2022/086574 priority patent/WO2023117852A1/fr
Publication of EP4198932A1 publication Critical patent/EP4198932A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/005Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area

Definitions

  • the present invention relates to the field of devices for detecting and alerting the start of fires, or abnormal temperature overruns.
  • the present invention relates more specifically to a device for detecting fires or abnormal overtemperature, energetically, autonomous, comprising a shape memory component, in particular a shape memory alloy commonly designated by the acronym AMF, in conjunction with a piezoelectric component.
  • a shape memory component in particular a shape memory alloy commonly designated by the acronym AMF, in conjunction with a piezoelectric component.
  • the combination of the two aforementioned components allows, under certain conditions, in particular temperature, which will be specified below in the description, the generation of an electric current which is extracted in an electric circuit.
  • the resulting electrical signal is perceived by an antenna which in turn transmits in a defined frequency band allowing the sending of an alert to firefighters or fire treatment entities for intervention on the site threatened by the fire or the abnormal overtemperature.
  • the energetically autonomous detection device will find applications, for example but not limited to, in the detection of forest fires, or even in the detection of fires or abnormal temperature overruns liable to be triggered on sites sensitive industries.
  • Recent data obtained in particular by the Copernicus program on forest fires show a trend towards an increase in their number, as well as an increase in the size of the areas affected, their intensity and their persistence. Regions usually considered cold areas, and therefore less prone to fires, such as Siberia or North America, are no longer spared.
  • the French patent document published under number FR 2 614 984 describes an optical system for detecting thermal radiation, intended to detect and locate forest fires in their initial phase, when it is still easy to control the fire. More particularly, it is a device mounted at the top of a mast and whose optical part comprises mirrors, Fresnel lenses or concave mirror collimators, an electromechanical system of rotation and scanning and infrared sensors . These convert the heat radiation captured into an electrical signal which, after software electronic processing, triggers the alarm by means of radiotelegraphy.
  • This document also describes a station for detecting and locating a fire comprising a source of a small-diameter laser beam and, in the path of this emitted beam, deflecting mirror elements, a splitter device (splitter blade or a polarization splitter cube), an optical device for polarization variation and convergence, a mirror located in the diverging beam and shaped to collimate the diverging beam received into a parallel beam of relatively large diameter, and an optical assembly.
  • the system with the exception of the laser source and the mirror, rotates around an X-X axis and directs the outgoing beam to scan the area to be monitored.
  • the French patent FR 2 893 743 describes a method for detecting forest fires in which a plurality of sensors constitute a mesh of the forest zone to be monitored. Each sensor is capable of locally detecting the start of a fire, and is associated with a radio frequency transmitter connected to a control terminal, so that the detection of a fire starting near a sensor is automatically transmitted to the control terminal. control, which generates an alert signal, particularly for firefighters.
  • fire detection devices based on terrestrial sensor networks have the disadvantage of requiring a supply by chemical batteries, which are not very respectful of the environment because they are not ecological to manufacture, and which are complicated to recycle. Also note that these batteries require regular maintenance and changing.
  • Airborne surveillance devices of the drone type are also known. However, the effectiveness of these devices depends on the frequency with which vehicles pass over the areas to be monitored, which is not optimal.
  • This device comprises a shape-memory component capable of converting, into displacement and/or change of shape, in other words into mechanical energy, the heat received by a source, the temperature of which is above a threshold temperature.
  • the device also comprises a piezoelectric component capable of converting the displacement and/or the change of shape into electrical energy.
  • the piezoelectric component and the shape memory component are integral.
  • An electronic module completes the assembly to extract the electrical charges from the piezoelectric component, then to convert the electrical energy produced by this component into a radioelectric fire warning signal at a control station.
  • a plurality of round shape-memory component wires are integral with a piezoelectric composite, comprising a plurality of piezoelectric cells interconnected by electrical conductors.
  • the piezoelectric cells are assembled and fixed between two layers of electrically insulating polymers, which may be of identical or different natures.
  • the AMF component can also be presented, instead of round wires, in the form of a plurality of flat strips.
  • the AMF components round wires or flat strips, are previously conditioned at normal ambient temperature before being positioned on the piezoelectric composite made up of the cells assembled between the layers of polymer.
  • the AMF components return to their initial shape, while becoming shorter. This results in the relaxation of the prestressed piezoelectric element which tends to oscillate around its equilibrium position. This leads to a modification of the shape of the piezoelectric composite, and causes the generation of an electric current.
  • the electrical energy is exploited by the electronic module to emit a radioelectric signal.
  • Such a detector has the advantage of being energy self-sufficient, and therefore of being able to operate without requiring the use of additional energy sources, such as a cell or a battery.
  • the device described in this document comprises more particularly a body in which is arranged an electromagnetic coil comprising a coil of conductive wire connected to an electric circuit and cooperating with a core made of magnetic material.
  • the core is initially blocked, directly or indirectly, by an AMF component capable of preventing any relative movement of the core with respect to the body of the device, in a position outside the coil of conductive wire, when the temperature is below a threshold temperature.
  • the AMF component initially constrained, is capable of converting the heat emitted by a rise in temperature above the threshold temperature, into a displacement or a change of shape (it resumes its initial shape) capable of unlocking the core.
  • the body also incorporates at least one spring able to relax and release energy making it possible to propel said core inside the coil of conductive thread when the core is previously unlocked by moving the AMF component.
  • An electronic module completes the device. This module is capable of converting the electromotive force induced by the movement of the core in the coil into a radioelectric signal warning of the presence of a fire.
  • detectors can still be improved. They are indeed complex and expensive to manufacture, requiring the presence of numerous elements to be assembled, such as a plurality of wires or strips of AMF components to be manufactured, which should be glued to a piezoelectric composite, itself requiring assembly. complex of piezoelectric cells connected to each other by electrical conductors and sandwiched between layers of insulating polymers.
  • these transducers can generate electrical energy only if they are very strongly stressed, that is to say if the force applied is high enough and extends over a long period of time.
  • piezoelectric-magnetostrictive composites have been developed.
  • the large deformation generated by the magnetostrictive material (under the effect of a magnetic field) generates a strong electric charge at low and high rates of application of mechanical energy thanks to the piezoelectrics.
  • the present invention claims to be able to remedy, at least in part, the drawbacks of the devices known in the state of the art.
  • the subject of the present invention is a device for detecting fires, or abnormal overtemperature, energetically autonomous, in the form of a box inside which is arranged, at least, a memory component of shape capable of converting into mechanical energy, namely into displacement and/or change of shape, the heat received by a source whose temperature is greater than a threshold temperature, at least one piezoelectric component capable of converting the mechanical energy of said shape-memory component into electrical energy, and an electronic module capable of converting the electrical energy produced by said piezoelectric component into a radioelectric fire warning signal.
  • Said device is more particularly characterized in that said shape-memory component constitutes, during its movement and/or change of shape, a means for severing a support means to which said at least one piezoelectric component is secured, the severing of said support means allowing said at least one piezoelectric component to pass from a first so-called “powered” position to a second so-called “free” position in which said piezoelectric component is activated and capable of entering into resonance and producing the electrical energy picked up by said electronic module.
  • the detection device using shape memory alloys (SMA), has the particular advantage of allowing rapid detection of the start of fires or of critical increases in temperature. This rapid detection is made possible thanks to the memory effect of these intelligent materials which are capable of changing shape with temperature.
  • SMA shape memory alloys
  • the present invention relates to a device 1 for detecting fires or abnormal overtemperature, which consists of a box 2.
  • the device 1 of the invention has, in particular, the characteristic of being energetically autonomous.
  • said detection device 1 in accordance with the invention is based on the principle of energy conversion.
  • the heat released for example, by the outbreak of a fire I, in a place where a detection device 1 according to the invention is located, causes an increase in the temperature to which said device 1 is subjected, up to that it exceeds a threshold temperature.
  • Exceeding this threshold temperature causes the actuation of a shape memory component 3, hereinafter referred to in the description as "MFA component", which comprises said detector 1, said AMF component 3 transforming the thermal energy received during of the increase in temperature, in mechanical energy.
  • MFA component shape memory component
  • This AMF component 3 is connected to a system for converting mechanical energy into electrical energy, consisting of a piezoelectric system 4, so that this electrical energy can then be converted, by an electronic module 5, into a radio frequency signal sent to a system terrestrial or satellite detection to give the fire start alert.
  • threshold temperature allowing activation of the AMF component 4 is understood to mean a temperature between 0° C. and +250° C., chosen according to the conditions of use and geographical criteria.
  • the threshold temperature within the meaning of the present invention is, advantageously, perfectly adaptable since the AMF component 3 that comprises the detector device 1 according to the invention can have activation temperatures which can go up to +250 °C.
  • the threshold temperature considered can, consequently, be adapted according to the use which will be made of the device 1; indeed, this threshold temperature will not be the same depending on whether said detection device 1 of the invention is intended to detect a fire or whether it is intended to be installed at sensitive industrial sites inside which a temperature relatively high can be considered not to be a sign of a risk of fire starting.
  • the AMF component can advantageously consist of a shape memory alloy, in particular based on copper (CuAIBe, CuAINi, CuAIMn, CuZnAI), based on nickel-titanium (NiTi, NiTiFe, NiTiCu, NiTiCr, NiTiHf etc.), and the iron-based alloys (FeMnSi, FeMnCr, FeMnCrSi).
  • shape-memory alloys can be monocrystalline, that is to say made up of a single grain, or of several grains separated by low-disorientation grain boundaries.
  • the AMF alloy that can be used in the manufacture of the fire detector device 1 according to the invention is chosen from CuAIBe, CuAINi, NiTi, NiTiCu, NiTiHf.
  • NiTi alloy which is used for the manufacture of the AMF component 3 which the detector device 1 according to the invention comprises.
  • said AMF component 3 mentioned above whose activation temperature is adaptable, is in the form of a cutting means 31 of a support means 6.
  • said sectioning means 31 that comprises the device 1 of the invention is in the form of a cylindrical sleeve engaged on the support means 6 which itself consists of a shaft 6.
  • said sectioning means 31 preferably in the form of a cylindrical sleeve 31, is subjected to a rise in temperature, beyond the threshold temperature, it will lengthen and decrease in diameter, resulting in the breakage of the support shaft 6.
  • the change in shape of the AMF component, and the cutting of the cylindrical sleeve 31 which results therefrom, are able to cause the passage of the piezoelectric component 4 from a first position called “under tension” or “prestress” 71, illustrated on the figure 2 And 4 , in which said piezoelectric component 4 is deactivated, to a second so-called “free” position 72, visible on the figure 3 And 5 , wherein said piezoelectric component 4 is activated.
  • the mechanical energy which is supplied by the movement of the AMF component 3, resulting in the breakage of the support arm 6, applies a stress on the piezoelectric component 4, which passes from one position to another, thus generating an electrical energy of the part of said piezoelectric component 4, in the form of an electric current (or signal).
  • piezoelectric materials are materials which can be qualified as “intelligent”, insofar as, under the effect of a stress which is applied to them, they are capable of producing an electrical signal.
  • the piezoelectric materials that can be used in the context of the present invention to form said piezoelectric component 4 can be of different types, in particular quartz, or a synthetic ceramic such as PZT (Lead Titanium-Zirconate).
  • lead titanium-zirconate will most preferably be chosen.
  • the movement of the AMF component 3 applies a stress on the piezoelectric component 4, a current is generated, and extracted in an electrical module 5.
  • the latter is advantageously in the form of a printed circuit PCB (Printed Circuit Board).
  • the electronic module therefore makes it possible to convert the electrical energy produced by the piezoelectric component 4 of the device 1, when it enters into resonance, into a radioelectric signal serving to warn and give a fire start alert, before the device 1 is destroyed by flames.
  • This signal advantageously includes at least the geographical coordinates and/or an identification number of the detector 1 making it possible to instantly locate the latter and, consequently, to determine the location of the start of the fire.
  • said shaft 6 on which is mounted the AMF component in the form of a cylindrical sleeve 31, is secured internally to the housing 2.
  • said shaft 6 also supports the piezoelectric component 4 which here consists of an elastic blade 41 covered, at least in part, with a layer 42 of piezoelectric material.
  • said support shaft 6 is in one piece. Furthermore, said elastic blade 41 covered with piezoelectric component 42, is supported, by one of its ends 41a, by this shaft 6, preferably via a ring threaded onto said shaft 6. At the level of the second end 41b of the elastic blade 41 opposite to said first end 41a, said blade 41 is secured to a frame 8 which advantageously comprises the housing 2.
  • the elastic blade 41 which constitutes the piezoelectric component 4 of the device 1 is bent into a first prestressed position 71, so that said piezoelectric component 4, in the form of a layer 42 covering said blade 41, is inactivated.
  • Such a variant embodiment has the advantage of easier integration of the blade into the box. In addition, the costs to achieve it are reduced
  • said shaft 6 on which is mounted the AMF component in the form of a cylindrical sleeve 31, supports, just as in the first variant, the piezoelectric component 4 which now consists of two elastic blades 41', 41" .
  • each of these blades 41', 41" is covered, at least in part, with a layer 42', 42" of piezoelectric material.
  • the tensioning of the elastic strips 41′ 41′′ does not require that the support shaft 6 be secured internally to the housing 2 of the device 1, unlike the first variant embodiment comprising only a single strip 41.
  • the two elastic blades 41', 41" covered with piezoelectric 42', 42" are each supported by one of their ends 41a', 41a", via a ring threaded at the level of the support shaft 6. More particularly, said two elastic blades 41', 41" are positioned on either side of the cylindrical sleeve 31 as an AMF component. At the level of the second end 41b', 41b" of the elastic blades 41', 41", opposite to said first end 41a', 41a", respectively, said blades 41', 41" are secured to a frame 8 which advantageously comprises the box 2.
  • said support shaft 6 is in one piece and the elastic blades 41', 41" which constitute the piezoelectric component 4 of the device 1, are curved in a first prestressed position 71, so that the said piezoelectric component 4, in the form of a layer 42', 42" covering each of said blades 41', 41", respectively, is inactivated.
  • Such a variant embodiment has the advantage of greater stability at the start, less force to be generated, and reduced weight.
  • the latter comprises an antenna 9, visible on the figure 6 , connected to the printed circuit 5, and which perceives the electrical signal sent by said circuit 5.
  • said antenna 9 of the detection device 1 of the invention then emits a signal 10 in a defined frequency band.
  • This signal 10 is picked up by a satellite detection system 11 and/or by a terrestrial detection system 12, such as a relay antenna on the ground, before being transmitted to a unit 13 of a fire processing entity, for example the fire brigade or a checkpoint, for intervention by this entity as soon as possible.
  • a fire processing entity for example the fire brigade or a checkpoint
  • the range of the emitted signal 10 may be from several hundred meters to several hundred kilometers, which also makes it possible to configure an entire network of detectors 1, whatever the configuration of the terrain.
  • the device 1 for detecting fires or abnormal overtemperature according to the present invention has several particularly interesting aspects.
  • the present device 1 can, in fact, be simply positioned and secured at the level of a tree, or a stake, for example, through fastening means 14 which are visible on the figure 6 .
  • the device 1 has a particularly long life, estimated at more than 40 years, without requiring maintenance once it is installed, because it is energetically autonomous and reliable.
  • the response time is fast, estimated between 5 and 30 seconds following the start of a fire, the activation of the AMF component that said device 1 comprises being almost instantaneous.
  • Such devices according to the invention are therefore particularly effective, without requiring the application of too great a force and/or one extending over time.
  • the detection temperature is adaptable, the detection device 1 being based on AMF components whose activation temperature can be between 45°C and 200°C.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Abstract

Dispositif de détection d'incendies ou de dépassement anormal de température énergétiquement autonome.L'invention concerne un dispositif de détection d'incendies ou de dépassement anormal de température, comportant un composant à mémoire de forme (3) apte à convertir, en énergie mécanique (déplacement et/ou changement de forme), la chaleur reçue par une source, un composant piézoélectrique (4) apte à convertir l'énergie mécanique en énergie électrique, et un module électronique (5) apte à convertir l'énergie électrique en un signal radioélectrique.Ledit composant AMF constitue, lors de son déplacement et/ou changement de forme, un moyen de sectionnement (31) d'un support (6) auquel est solidarisé ledit composant piézoélectrique, le sectionnement dudit support permettant le passage dudit composant piézoélectrique depuis une première position (71) « sous tension » vers deuxième position (72) « libre » dans laquelle ledit composant piézoélectrique (4) est apte à entrer en résonance et produire l'énergie électrique.

Description

  • La présente invention concerne le domaine des dispositifs de détection et d'alerte de début de feux, ou de dépassement anormal de température.
  • La présente invention concerne plus spécifiquement un dispositif de détection d'incendies ou de dépassement anormal de température, énergétiquement, autonome, comprenant un composant à mémoire de forme, notamment un alliage à mémoire de forme désigné communément sous le sigle AMF, en liaison avec un composant piézoélectrique.
  • L'association des deux composants susmentionnés permet, sous certaines conditions, notamment de température, qui seront précisées ci-après dans la description, la génération d'un courant électrique qui est extrait dans un circuit électrique. Le signal électrique résultant est perçu par une antenne qui émet à son tour dans une bande de fréquence définie permettant l'envoi d'une alerte aux pompiers ou entités de traitement de l'incendie pour intervention sur le site menacé par l'incendie ou le dépassement anormal de température.
  • Le dispositif de détection énergétiquement autonome selon la présente invention trouvera des applications, par exemple mais non limitativement, dans la détection de feux de forêt, ou bien encore dans la détection d'incendies ou de dépassement anormal de température susceptibles de se déclencher sur des sites industriels sensibles.
  • En effet, avec le nombre grandissant de feux de forêts et d'incendies se déclenchant en Europe, et dans le monde entier, mais également en raison des risques d'explosion sur des sites industriels sensibles, il est important d'agir en amont afin de prévenir et de contenir au maximum ces feux, et d'éviter leur propagation ou bien les explosions de matières dangereuses.
  • Les incendies qui se produisent sur l'ensemble du globe sont à l'origine de pertes de milliers d'hectares de nature chaque année. En outre, ces incendies s'accompagnent d'émissions importantes de CO2 et ont un impact négatif sur la qualité de l'air des régions touchées. Certains incendies, de taille et d'intensité particulièrement impressionnantes, peuvent projeter des panaches ou nuages de fumées s'étendant sur des centaines, voire des milliers, de kilomètres.
  • Les données récentes obtenues notamment par le programme Copernicus sur les feux de forêt montrent une tendance à leur augmentation en nombre, de même qu'un accroissement de la taille des zones touchées, de leur intensité et de leur persistance. Les régions considérées habituellement comme des zones froides, et donc moins propices aux incendies, comme la Sibérie ou l'Amérique du Nord, ne sont plus épargnées.
  • Or, une fois déclenchés, certains incendies prennent de telles proportions, qu'il est particulièrement long et compliqué de les maîtriser et d'en venir à bout.
  • Il devient, par conséquent, nécessaire de disposer d'un arsenal préventif efficace, permettant de détecter le plus tôt possible, dès l'origine, le déclenchement de feux dans des zones boisées, parfois reculées et difficilement accessibles, afin de les maîtriser rapidement et, en tout état de cause, avant qu'ils deviennent incontrôlables.
  • Dans l'état de la technique existant, il existe déjà de nombreux systèmes de détection d'incendies.
  • Le document de brevet français publié sous le numéro FR 2 614 984 décrit un système optique pour détecter un rayonnement thermique, destiné à détecter et localiser des feux de forêt dans leur phase initiale, lorsqu'il est encore facile de maîtriser l'incendie. Plus particulièrement, il s'agit d'un dispositif monté au sommet d'un mât et dont la partie optique comporte des miroirs, des lentilles de Fresnel ou des collimateurs à miroir concave, un système électromécanique de rotation et de balayage et des capteurs infrarouges. Ces derniers convertissent le rayonnement thermique capté en un signal électrique, qui, après le traitement électronique logiciel, déclenche l'alarme par des moyens de radiotélégraphie.
  • On connait également le brevet français FR 2 637 977 qui décrit un procédé de détection d'une source de chaleur, notamment applicable à la détection d'incendies, dans lequel on place un dispositif détecteur sur un support surélevé par rapport à la zone à surveiller, en sorte qu'il effectue un balayage horizontal de celle-ci.
  • Ce document décrit également une station pour la détection et la localisation d'un feu comprenant une source d'un faisceau laser de faible diamètre et, dans le trajet de ce faisceau émis, des organes miroirs de renvoi, un dispositif séparateur (lame séparatrice ou un cube séparateur à polarisation), un dispositif optique de variation de polarisation et de convergence, un miroir situé dans le faisceau divergent et conformé pour collimater le faisceau divergent reçu en un faisceau parallèle d'un relativement grand diamètre, et un ensemble optique. Le système, à l'exception de la source laser et du miroir, tourne autour d'un axe X-X et dirige le faisceau sortant pour que celui-ci balaye la zone à surveiller.
  • Le brevet français FR 2 893 743 décrit un procédé de détection d'incendies de forêts dans lequel une pluralité de capteurs constitue un maillage de la zone de forêt à surveiller. Chaque capteur est apte à détecter localement un départ de feu, et est associé à un émetteur radiofréquence relié à une borne de contrôle, de sorte que la détection d'un départ de feu à proximité d'un capteur est transmise automatiquement à la borne de contrôle, qui génère un signal d'alerte, notamment à destination des pompiers.
  • Toutefois, les conditions climatiques, les surfaces très importantes à surveiller, ainsi que la topographie des lieux rendent très compliqué le paramétrage de ces dispositifs.
  • A noter également que les dispositifs présentés dans ces documents sont basés sur une surveillance terrestre par caméras ou dispositifs optiques et infra rouges qui nécessitent des installations couteuses et un traitement des informations recueillies par des algorithmes très complexes.
  • En outre, les dispositifs de détection d'incendies basés sur des réseaux de capteurs terrestres, comme celui décrit dans le document FR 2 893 743 , présentent l'inconvénient de nécessiter une alimentation par des batteries chimiques, qui sont peu respectueuses de l'environnement car non écologiques à fabriquer, et compliquées à recycler. A noter également que ces batteries nécessitent un entretien et un changement réguliers.
  • On connait également des dispositifs de surveillance aéroportés de type drones. Cependant, l'efficacité de ces dispositifs dépend de la fréquence de passage des engins au-dessus des zones à surveiller, ce qui n'est pas optimal.
  • Afin de remédier aux problèmes susmentionnés, et notamment à ceux posés par les dispositifs de détection d'incendies comportant des batteries, on a développé, dans l'état de la technique, des dispositifs de détection d'incendies de forêt, énergétiquement autonomes.
  • En particulier, la demande internationale de brevet publiée sous le numéro WO 2016/151250 décrit un dispositif de ce type.
  • Ce dispositif comporte un composant à mémoire de forme apte à convertir, en déplacement et/ou en changement de forme, autrement dit en énergie mécanique, la chaleur reçue par une source, dont la température est supérieure à une température seuil.
  • Outre ce composant à mémoire de forme, le dispositif comporte également un composant piézoélectrique apte à convertir le déplacement et/ou le changement de forme en énergie électrique.
  • Le composant piézoélectrique et le composant à mémoire de forme sont solidaires.
  • Un module électronique complète l'ensemble pour extraire les charges électriques du composant piézoélectrique, puis pour convertir l'énergie électrique produite par ce composant en un signal radioélectrique d'alerte de départ d'incendie à un poste de contrôle.
  • Plus particulièrement, dans ce détecteur, une pluralité de fils ronds en composant à mémoire de forme, généralement désigné par l'acronyme AMF, sont solidaires d'un composite piézoélectrique, comprenant une pluralité de cellules piézoélectriques reliées entre elles par des conducteurs électriques. Les cellules piézoélectriques sont assemblées et fixées entre deux couches de polymères, électriquement isolants, qui peuvent être de natures identiques ou différentes.
  • Le composant AMF peut également se présenter, en lieu et place de fils ronds, sous la forme d'une pluralité de bandes plates.
  • Les composants AMF, fils ronds ou bandes plates, sont préalablement conditionnés à température ambiante normale avant d'être positionnés sur le composite piézoélectrique constitué des cellules assemblées entre les couches de polymère. Lors d'un départ d'incendie engendrant une augmentation sensible de la température à laquelle est soumis le détecteur, les composants AMF reprennent leur forme initiale, en se raccourcissant. Il en résulte le relâchement de l'élément piézoélectrique précontraint qui tend à osciller autour de sa position d'équilibre. Cela entraine une modification de la forme du composite piézoélectrique, et provoque la génération d'un courant électrique.
  • L'énergie électrique est exploitée par le module électronique pour émettre un signal radioélectrique.
  • Un tel détecteur présente l'avantage d'être énergétiquement autonome, et donc de pouvoir fonctionner sans nécessiter l'utilisation de sources d'énergie complémentaires, comme une pile, ou une batterie.
  • On connait également le brevet français publié sous le numéro FR 3 044 802 , qui décrit également un dispositif de détection d'incendies de forêts énergétiquement autonome, du type comprenant un composant AMF, cette fois-ci associé à une bobine électromagnétique pour produire de l'énergie électrique exploitable par un module électronique, là encore pour émettre un signal radioélectrique.
  • Le dispositif décrit dans ce document comporte plus particulièrement un corps dans lequel est disposé une bobine électromagnétique comprenant une bobine de fil conducteur reliée à un circuit électrique et coopérant avec un noyau en matériau magnétique. Le noyau est initialement bloqué, directement ou indirectement, par un composant AMF apte à empêcher tout mouvement relatif du noyau par rapport au corps du dispositif, dans une position extérieure à la bobine de fil conducteur, lorsque la température est inférieure à une température seuil.
  • Le composant AMF, initialement contraint, est apte à convertir la chaleur émise par une élévation de température au dessus de la température seuil, en un déplacement ou un changement de forme (il reprend sa forme initiale) apte à débloquer le noyau.
  • Le corps incorpore également au moins un ressort apte à se détendre et libérer de l'énergie permettant de propulser ledit noyau à l'intérieur de la bobine de fil conducteur lorsque le noyau est préalablement débloqué par le déplacement du composant AMF.
  • Un module électronique complète le dispositif. Ce module est apte à convertir la force électromotrice induite par le mouvement du noyau dans la bobine en un signal radioélectrique avertissant de la présence d'un incendie.
  • Cela étant, de tels détecteurs peuvent encore être améliorés. Ils sont en effet complexes et couteux à fabriquer, nécessitant la présence de nombreux éléments à assembler, comme une pluralité de fils ou de bande de composants AMF à fabriquer, qu'il convient de coller sur un composite piézoélectrique, lui-même nécessitant un assemblage complexe de cellules piézoélectriques reliées les unes aux autres par des conducteurs électriques et prises en sandwich entre des couches de polymères isolants.
  • En outre, en ce qui concerne les matériaux magnétostrictifs, qui se déforment sous l'action d'un champ magnétique variant, et dans une utilisation en tant que convertisseurs mécanique-électrique, une contrainte variant en fonction du temps leur est appliquée, afin d'obtenir un champ magnétique variant avec le temps. Celui-ci est ensuite utilisé pour produire un courant dans une bobine.
  • Cela étant, ces transducteurs peuvent générer une énergie électrique seulement s'ils sont très fortement sollicités, c'est-à-dire si la force appliquée est assez élevée et s'étend sur une longue durée.
  • Leur efficacité est par conséquent limitée, puisqu'ils génèrent peu d'énergie en comparaison de leurs dimensions.
  • Cependant, ces matériaux permettent de générer de fortes déformations en comparaison des piézoélectriques. C'est pourquoi ont été développés des composites piézoélectriques-magnétostrictifs. Dans ces dispositifs, la déformation importante générée par le matériau magnétostrictif (sous l'effet d'un champ magnétique) génère une forte charge électrique à faibles et forts taux d'application de l'énergie mécanique grâce aux piézoélectriques.
  • Cependant, cette solution nécessite l'application d'un champ magnétique externe, ce qui n'est pas souhaitable pour un détecteur incendie
  • La présente invention se veut à même de remédier, au moins en partie, aux inconvénients des dispositifs connus dans l'état de la technique.
  • Ainsi, la présente invention a pour objet un dispositif de détection d'incendies, ou de dépassement anormal de température, énergétiquement autonome, se présentant sous la forme d'un boitier à l'intérieur duquel est disposé, au moins, un composant à mémoire de forme apte à convertir en énergie mécanique, à savoir en déplacement et/ou en changement de forme, la chaleur reçue par une source dont la température est supérieure à une température seuil, au moins un composant piézoélectrique apte à convertir l'énergie mécanique dudit composant à mémoire de forme en énergie électrique, et un module électronique apte à convertir l'énergie électrique produite par ledit composant piézoélectrique en un signal radioélectrique d'alerte de départ d'incendie.
  • Ledit dispositif est plus particulièrement caractérisé en ce que ledit composant à mémoire de forme constitue, lors de son déplacement et/ou changement de forme, un moyen de sectionnement d'un moyen support auquel est solidarisé ledit au moins un composant piézoélectrique, le sectionnement dudit moyen support permettant le passage dudit au moins un composant piézoélectrique depuis une première position dite « sous tension » vers deuxième position dite « libre » dans laquelle ledit composant piézoélectrique est activé et apte à entrer en résonance et à produire l'énergie électrique captée par ledit module électronique.
  • Selon des modes particuliers de réalisation :
    • ledit composant à mémoire de forme se présente sous la forme d'un manchon cylindrique engagé sur ledit moyen support, ce dernier consistant en un arbre relié audit boitier à l'intérieur de celui-ci, et sur lequel arbre est également solidarisée une lame élastique recouverte au moins en partie d'une couche d'un composant piézoélectrique ;
    • ledit composant à mémoire de forme se présente sous la forme d'un manchon cylindrique engagé sur ledit moyen support, ce dernier consistant en un arbre sur lequel sont également solidarisées, de part et d'autre dudit manchon cylindrique, deux lames élastiques recouvertes au moins en partie d'une couche d'un composant piézoélectrique ;
    • ledit composant à mémoire de forme est choisi parmi les alliages à base de cuivre CuAIBe, CuAINi et les alliages à base de nickel-titane NiTi, NiTiCu et NitiHf ;
    • ledit composant piézoélectrique consiste en du titano-zirconate de plomb ;
    • ledit module électronique, apte à convertir l'énergie électrique produite par ledit composant piézoélectrique en un signal radioélectrique d'alerte de départ d'incendie, consiste en un circuit imprimé PCB (Printed Circuit Board) ;
    • ledit circuit imprimé est relié à une antenne émettrice du signal radioélectrique.
  • Le dispositif de détection selon la présente invention, faisant appel aux alliages à mémoire de forme (AMF), présente notamment l'avantage de permettre une détection rapide des départs de feux ou d'augmentation critiques de température. Cette détection rapide est permise grâce à l'effet mémoire de ces matériaux intelligents qui sont aptes à changer de forme avec la température.
  • Les caractéristiques du présent dispositif impliquent également que ce dernier soit totalement autonome et en adéquation avec les considérations écologiques recherchées actuellement, puisque ledit dispositif ne nécessite aucune batterie ou pile pour son fonctionnement, et dépend uniquement des propriétés matériaux de ces composants AMF.
  • D'autres buts et avantages de la présente invention apparaîtront au cours de la description qui va suivre se rapportant à des modes de réalisation qui ne sont donnés qu'à titre d'exemples indicatifs et non limitatifs.
  • La compréhension de cette description sera facilitée en se référant aux dessins joints en annexe et dans lesquels :
    • [Fig.1] représente, de manière schématique, le principe général de fonctionnement du dispositif de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, conforme à l'invention, à savoir une conversion de l'énergie provenant de la chaleur des flammes d'un incendie par ledit dispositif, conduisant finalement à la génération d'un signal radioélectrique.
    • [Fig.2] représente, de manière schématique, une vue en coupe transversale d'une première variante de réalisation du dispositif de détection énergétiquement autonome de l'invention, celui-ci comprenant une lame piézoélectrique liée à un arbre support sur lequel est également emmanché un composant AMF, ladite lame piézoélectrique étant dans une position précontrainte dans laquelle elle est désactivée, lorsque le dispositif, et en particulier le composant AMF, n'est pas soumis à une élévation de température due à un déclenchement d'incendie.
    • [Fig.3] est une vue similaire à la figure 2, la lame piézoélectrique se présentant toutefois ici dans une position libérée, dans laquelle elle est activée, après sectionnement de l'arbre dû à un allongement et une diminution de diamètre du composant AMF, cette modification de forme résultant d'une élévation de la température au-delà d'une température seuil ;
    • [Fig.4] représente, de manière schématique, une vue en coupe transversale d'une deuxième variante de réalisation du dispositif de détection de l'invention celui-ci comprenant deux lames piézoélectriques dans leur position précontrainte dans laquelle elles sont désactivées.
    • [Fig.5] est une vue similaire à la figure 4, lesdites lames piézoélectriques étant cette fois dans leur position libérée dans laquelle elles sont activées.
    • [Fig.6] illustre schématiquement une vue en perspective du boîtier du dispositif de détection de l'invention, équipé extérieurement d'une antenne et de moyens permettant la fixation dudit dispositif à un élément extérieur quelconque, tel qu'un arbre ou un poteau.
    • [Fig.7] est une représentation schématique du fonctionnement du dispositif de détection de l'invention, depuis la détection d'un départ d'incendie dans une forêt, jusqu'à l'alerte, en passant par le traitement du signal émis par ledit dispositif.
  • En référence aux figures des dessins ci-joints, la présente invention est relative à un dispositif 1 de détection d'incendies ou de dépassement anormal de température, qui consiste en un boîtier 2. Le dispositif 1 de l'invention présente, notamment, la caractéristique d'être énergétiquement autonome.
  • En effet, de manière essentielle et particulièrement avantageuse, ledit dispositif de détection 1 conforme à l'invention repose sur le principe de la conversion d'énergies.
  • Plus particulièrement, en référence à la figure 1, la chaleur dégagée, par exemple, par le déclenchement d'un incendie I, dans un endroit où est localisé un dispositif de détection 1 selon l'invention, entraîne une augmentation de la température à laquelle est soumis ledit dispositif 1, jusqu'à ce que celle-ci dépasse une température seuil. Le dépassement de cette température seuil entraine l'actionnement d'un composant à mémoire de forme 3, désigné ci-après dans la description par « composant AMF », que comporte ledit détecteur 1, ledit composant AMF 3 transformant l'énergie thermique reçue lors de l'augmentation de température, en énergie mécanique.
  • Ce composant AMF 3 est relié à un système de conversion d'énergie mécanique en énergie électrique, consistant en un système piézoélectrique 4, pour que cette énergie électrique puisse ensuite être convertie, par un module électronique 5, en un signal radiofréquence envoyé à un système de détection terrestre ou satellitaire pour donner l'alerte de départ d'incendie.
  • A noter que, dans la présente demande, on entend, par température seuil permettant une activation du composant AMF 4, une température comprise entre 0°C et +250°C, choisie en fonction des conditions d'utilisations et des critères géographiques.
  • A noter également que la température seuil au sens de la présente invention est, de manière avantageuse, parfaitement adaptable puisque le composant AMF 3 que comporte le dispositif détecteur 1 selon l'invention peut présenter des températures d'activation pouvant aller jusqu'à +250°C.
  • La température seuil considérée peut, par conséquent, être adaptée selon l'utilisation qui sera faite du dispositif 1 ; en effet, cette température seuil ne sera pas la même selon si ledit dispositif de détection 1 de l'invention est destiné à détecter un incendie ou s'il est destiné à être installé au niveau de sites industriels sensibles à l'intérieur desquels une température relativement élevée peut être considérée comme n'étant pas le signe d'un risque de départ d'incendie.
  • Le composant AMF peut être avantageusement constitué d'un alliage à mémoire de forme notamment à base de cuivre (CuAIBe, CuAINi, CuAIMn, CuZnAI), à base de nickel-titane (NiTi, NiTiFe, NiTiCu, NiTiCr, NiTiHf etc.), et les alliages à base de fer (FeMnSi, FeMnCr, FeMnCrSi). Certains de ces alliages à mémoire de forme peuvent être monocristallins, c'est-à-dire constitués d'un seul grain, ou de plusieurs grains séparés par des joints de grain à faible désorientation.
  • Préférentiellement, l'alliage AMF utilisable dans la fabrication du dispositif détecteur 1 d'incendies selon l'invention est choisi parmi CuAIBe, CuAINi, NiTi, NiTiCu, NiTiHf.
  • Plus préférentiellement encore, il s'agit de l'alliage NiTi qui est utilisé pour la fabrication du composant AMF 3 que comporte le dispositif détecteur 1 selon l'invention.
  • Selon une particularité propre au dispositif de détection 1 de l'invention, et comme illustré sur les figures 2 à 5 ci-jointes, ledit composant AMF 3 susmentionné, dont la température d'activation est adaptable, se présente sous la forme d'un moyen de sectionnement 31 d'un moyen support 6.
  • Plus particulièrement, comme visible sur les figures, ledit moyen de sectionnement 31 que comporte le dispositif 1 de l'invention se présente sous la forme d'un manchon cylindrique engagé sur le moyen support 6 qui consiste quant à lui en un arbre 6.
  • Lorsque, du fait d'un départ d'incendie ou d'une élévation anormale de la température, ledit moyen de sectionnement 31, préférentiellement sous la forme d'un manchon cylindrique 31, est soumis à une élévation de température, au-delà de la température seuil, celui-ci va s'allonger et diminuer de diamètre, entraînant la rupture de l'arbre support 6.
  • Sur cet arbre support 6 est solidarisé au moins un composant piézoélectrique 4. Le changement de forme du composant AMF, et le sectionnement du manchon cylindrique 31 qui en découle, sont aptes à entrainer le passage du composant piézoélectrique 4 depuis une première position dite « sous tension » ou « précontrainte » 71, illustrée sur les figures 2 et 4, dans laquelle ledit composant piézoélectrique 4 est désactivé, vers une deuxième position 72 dite « libre », visible sur les figures 3 et 5, dans laquelle ledit composant piézoélectrique 4 est activé.
  • Plus particulièrement, le passage dudit au moins un composant piézoélectrique 4 depuis ladite première position 71 (piézoélectrique inactif) vers ladite seconde position 72 (piézoélectrique actif), lorsque la température à laquelle est soumis le détecteur 1 franchit la température seuil, permet audit composant piézoélectrique 4 d'entrer en résonnance.
  • Ainsi, l'énergie mécanique qui est fournie par le mouvement du composant AMF 3, entraînant la cassure du bras support 6, applique une contrainte sur le composant piézoélectrique 4, qui passe d'une position à une autre, générant ainsi une énergie électrique de la part dudit composant piézoélectrique 4, sous la forme d'un courant (ou signal) électrique.
  • En effet, les matériaux piézoélectriques sont des matériaux qui peuvent être qualifiés d' « intelligents », dans la mesure où, sous l'effet d'une contrainte qui leur est appliquée, ils sont capables de produire un signal électrique.
  • Les matériaux piézoélectriques utilisables dans le cadre de la présente invention pour constituer ledit composant piézoélectrique 4 peuvent être de différentes natures, notamment du quartz, ou une céramique synthétique comme le PZT (Titano-Zirconate de Plomb).
  • Pour la réalisation du composant piézoélectrique 4 qui équipe le dispositif 1 de l'invention, on choisira tout préférentiellement le titano-zirconate de plomb.
  • Ainsi, dans la présente invention, lorsque le mouvement du composant AMF 3 applique une contrainte sur le composant piézoélectrique 4, un courant est généré, et extrait dans un module électrique 5. Ce dernier se présente avantageusement, sous la forme d'un circuit imprimé PCB (Printed Circuit Board).
  • Le module électronique permet donc de convertir l'énergie électrique produite par le composant piézoélectrique 4 du dispositif 1, lorsqu'il entre en résonance, en un signal radioélectrique servant à avertir et donner une alerte de départ de feu, avant destruction du dispositif 1 par les flammes.
  • Ce signal comporte avantageusement, au moins, les coordonnées géographiques et/ou un numéro d'identification du détecteur 1 permettant de localiser instantanément celui-ci et, par conséquent, de déterminer l'endroit du départ de feu.
  • Dans une première variante de réalisation du dispositif 1 de détection d'incendies ou de dépassement anormal de température selon l'invention, décrite à présent en référence aux figures 2 et 3, ledit arbre 6, sur lequel est monté le composant AMF se présentant sous la forme d'un manchon cylindrique 31, est solidarisé intérieurement au boîtier 2.
  • Dans cette variante, ledit arbre 6 supporte également le composant piézoélectrique 4 qui consiste ici en une lame élastique 41 recouverte, au moins en partie, d'une couche 42 de matériau piézoélectrique.
  • Dans la configuration d'origine du dispositif 1 de détection d'incendies, illustré sur la figure 2, ledit arbre support 6 est d'un seul tenant. En outre, ladite lame élastique 41 recouverte de composant piézoélectrique 42, est supportée, par l'une de ses extrémités 41a, par cet arbre 6, de préférence par l'intermédiaire d'un anneau enfilé sur ledit arbre 6. Au niveau de la deuxième extrémité 41b de la lame élastique 41 opposée à ladite première extrémité 41a, ladite lame 41 est solidarisée à un bâti 8 que comporte avantageusement le boîtier 2.
  • De cette manière, la lame élastique 41 qui constitue le composant piézoélectrique 4 du dispositif 1 est courbée dans une première position précontrainte 71, en sorte que ledit composant piézoélectrique 4, sous la forme d'une couche 42 recouvrant ladite lame 41, est inactivé.
  • L'élévation de température due, par exemple mais non limitativement, à un départ d'incendie, et le passage de la température à laquelle est soumis le dispositif 1 au-delà de la température seuil d'activation du composant AMF 3, entraine l'allongement et la diminution de diamètre du manchon cylindrique 31, desquels résulte le sectionnement en deux parties 6a et 6b de l'arbre support 6 et le passage de la lame élastique 41 recouverte de la couche piézoélectrique 42 dans une deuxième position « libre » 72, visible sur la figure 3 dans laquelle le composant piézoélectrique qui constitue la couche 42 est activé et entre en résonance produisant le signal électrique récupéré par le circuit imprimé PCB 5.
  • Une telle variante de réalisation présente l'avantage d'une intégration de la lame au boitier plus aisée. En outre, les couts pour la réaliser sont réduits
  • Dans une deuxième variante de réalisation du dispositif 1 de détection d'incendies ou de détection de dépassement anormal de température, décrite à présent en référence aux figures 4 et 5, ledit arbre 6, sur lequel est monté le composant AMF se présentant sous la forme d'un manchon cylindrique 31, supporte, tout comme dans la première variante, le composant piézoélectrique 4 qui consiste à présent en deux lames élastiques 41', 41".
  • Ici encore, chacune de ces lames 41', 41" est recouverte, au moins en partie, d'une couche 42', 42" de matériau piézoélectrique.
  • Dans cette variante, la mise sous tension des lames élastiques 41' 41" ne nécessite pas que l'arbre support 6 soit solidarisé intérieurement au boîtier 2 du dispositif 1, contrairement à la première variante de réalisation ne comportant qu'une seule lame 41.
  • Comme illustré sur les figures, les deux lames élastiques 41', 41" recouvertes de piézoélectrique 42', 42" sont supportées chacune par l'une de leurs extrémités 41a', 41a", par l'intermédiaire d'un anneau enfilé au niveau de l'arbre support 6. Plus particulièrement, lesdites deux lames élastiques 41', 41" sont positionnées de part et d'autre du manchon cylindrique 31 en composant AMF. Au niveau de la deuxième extrémité 41b', 41b" des lames élastiques 41', 41", opposée à ladite première extrémité 41a', 41a", respectivement, lesdites lames 41', 41" sont solidarisées à un bâti 8 que comporte avantageusement le boîtier 2.
  • Dans la configuration d'origine du dispositif 1 de détection selon l'invention, illustré sur la figure 4, ledit arbre support 6 est d'un seul tenant et les lames élastiques 41', 41" qui constituent le composant piézoélectrique 4 du dispositif 1, sont courbées dans une première position précontrainte 71, en sorte que ledit composant piézoélectrique 4, sous la forme d'une couche 42', 42" recouvrant chacune desdites lames 41', 41", respectivement, est inactivé.
  • Là encore, le passage de la température à laquelle est soumis le dispositif 1 au-delà de la température seuil d'activation du composant AMF 3, suite à un départ d'incendie, ou suite à une élévation anormale de la température, entraine l'allongement et la diminution de diamètre du manchon cylindrique 31. Il en résulte le sectionnement en deux parties 6a et 6b de l'arbre support 6, comme visible sur la figure 5. Les deux lames élastiques 41', 41" recouvertes de la couche piézoélectrique 42', 42"passent alors dans une deuxième position « libre » 72. Dans cette position 72, le composant piézoélectrique, qui constitue les couches 42' et 42" est alors activé, et entre en résonance, produisant le signal électrique récupéré par le circuit imprimé PCB 5.
  • Une telle variante de réalisation présente l'avantage d'une plus grande stabilité au départ, moins d'efforts à générer, et un poids réduit.
  • De manière particulièrement préférentielle, quel que soit le mode de réalisation choisi pour la conception du dispositif de détection 1 d'incendies ou de dépassement anormal de température selon l'invention, ce dernier comporte une antenne 9, visible sur la figure 6, reliée au circuit imprimé 5, et qui perçoit le signal électrique envoyé par ledit circuit 5.
  • En référence, à présent, à la figure 7 des dessins ci-joints, ladite antenne 9 du dispositif de détection 1 de l'invention émet alors un signal 10 dans une bande de fréquences définie. Ce signal 10 est capté par un système de détection satellitaire 11 et/ou par un système de détection terrestre 12, comme une antenne relais au sol, avant d'être transmis à une unité 13 d'une entité de traitement de l'incendie, par exemple les pompiers ou un poste de contrôle, pour intervention de cette entité dans les meilleurs délais.
  • La portée du signal 10 émis peut-être de plusieurs centaines de mètres à plusieurs centaines de kilomètres, ce qui permet en outre de configurer tout un réseau de détecteurs 1, quelle que soit la configuration du terrain.
  • Le dispositif de détection 1 d'incendies ou de dépassement anormal de température selon la présente invention présente plusieurs aspects particulièrement intéressants.
  • D'une part, il est peu couteux en comparaison avec l'investissement que nécessitent la fabrication et l'installation de détecteurs actuels basé sur des systèmes optiques, ou en comparaison avec la mise en place d'une surveillance aérienne. Le présent dispositif 1 peut, en effet, être simplement positionné et solidarisé au niveau d'un arbre, ou d'un piquet, par exemple, au travers de moyens de fixation 14 qui sont visibles sur la figure 6.
  • En outre, le dispositif 1 a une durée de vie particulièrement importante, estimée à plus de 40 ans, sans nécessiter de maintenance une fois celui-ci installé, car il est énergétiquement autonome et fiable.
  • Il découle également de cet aspect « autonomie », sans batterie chimique, un aspect positif d'un point de vue environnemental.
  • A noter également que le temps de réponse est rapide, estimé entre 5 et 30 secondes suivant le début d'un incendie, l'activation du composant AMF que comporte ledit dispositif 1 étant quasiment instantanée. De tels dispositifs selon l'invention sont donc particulièrement efficaces, sans nécessiter l'application d'une force trop importante et/ou s'étendant dans le temps.
  • La température de détection est adaptable, le dispositif de détection 1 étant basé sur des composants AMF dont la température d'activation peut être comprise entre 45°C et 200°C.
  • Finalement, en comparaison avec des dispositifs de détection d'incendie existant basés sur l'utilisation des propriétés de composants AMF, il est de conception plus simple, et présente une fiabilité plus grande.

Claims (7)

  1. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, se présentant sous la forme d'un boitier (2) à l'intérieur duquel est disposé, au moins, un composant à mémoire de forme (3) apte à convertir en énergie mécanique, à savoir en déplacement et/ou en changement de forme, la chaleur reçue par une source dont la température est supérieure à une température seuil, au moins un composant piézoélectrique (4) apte à convertir l'énergie mécanique dudit composant à mémoire de forme (3) en énergie électrique, et un module électronique (5) apte à convertir l'énergie électrique produite par ledit composant piézoélectrique (4) en un signal radioélectrique d'alerte de départ d'incendie, ledit dispositif (1) étant caractérisé en ce que ledit composant à mémoire de forme (3) constitue, lors de son déplacement et/ou changement de forme, un moyen de sectionnement (31) d'un moyen support (6) auquel est solidarisé ledit au moins un composant piézoélectrique (4), le sectionnement dudit moyen support (6) permettant le passage dudit au moins un composant piézoélectrique (4) depuis une première position (71) dite « sous tension » vers deuxième position (72) dite « libre » dans laquelle ledit composant piézoélectrique (4) est activé et apte à entrer en résonance et à produire l'énergie électrique captée par ledit module électronique (5).
  2. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, selon la revendication 1, caractérisé en ce que ledit composant à mémoire de forme (3) se présente sous la forme d'un manchon cylindrique (31) engagé sur ledit moyen support, ce dernier consistant en un arbre (6) relié audit boitier (2) à l'intérieur de celui-ci, et sur lequel arbre (6) est également solidarisée une lame élastique (41) recouverte au moins en partie d'une couche d'un composant piézoélectrique (42).
  3. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, selon la revendication 1, caractérisé en ce que ledit composant à mémoire de forme (3) se présente sous la forme d'un manchon cylindrique (31) engagé sur ledit moyen support, ce dernier consistant en un arbre (6) sur lequel sont également solidarisées, de part et d'autre dudit manchon cylindrique (31), deux lames élastiques (41',41") recouvertes au moins en partie d'une couche d'un composant piézoélectrique (42', 42").
  4. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, selon l'une quelconque des revendications 1 à 3 caractérisé en ce que ledit composant à mémoire de forme (3) est choisi parmi les alliages à base de cuivre CuAIBe, CuAINi et les alliages à base de nickel-titane NiTi, NiTiCu et NitiHf.
  5. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, selon l'une quelconque des revendications 1 à 4 caractérisé en ce que ledit composant piézoélectrique (4) consiste en du titano-zirconate de plomb.
  6. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, selon l'une quelconque des revendications 1 à 5 caractérisé en ce que ledit module électronique (5), apte à convertir l'énergie électrique produite par ledit composant piézoélectrique (4) en un signal radioélectrique d'alerte de départ d'incendie, consiste en un circuit imprimé PCB (Printed Circuit Board).
  7. Dispositif (1) de détection d'incendies ou de dépassement anormal de température, énergétiquement autonome, selon l'une quelconque des revendications 1 à 6 caractérisé en ce que ledit circuit imprimé (5) est relié à une antenne émettrice (9) du signal radioélectrique.
EP21216161.6A 2021-12-20 2021-12-20 Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome Pending EP4198932A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21216161.6A EP4198932A1 (fr) 2021-12-20 2021-12-20 Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome
PCT/EP2022/086574 WO2023117852A1 (fr) 2021-12-20 2022-12-19 Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21216161.6A EP4198932A1 (fr) 2021-12-20 2021-12-20 Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome

Publications (1)

Publication Number Publication Date
EP4198932A1 true EP4198932A1 (fr) 2023-06-21

Family

ID=79021780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21216161.6A Pending EP4198932A1 (fr) 2021-12-20 2021-12-20 Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome

Country Status (2)

Country Link
EP (1) EP4198932A1 (fr)
WO (1) WO2023117852A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614984A1 (fr) 1987-05-05 1988-11-10 Argamakoff Aleksy Detecteur automatique d'incendies de foret
FR2637977A1 (fr) 1988-10-13 1990-04-20 Brown De Colstoun Francois Procede et systeme pour la detection notamment de feu de forets
JP2006268546A (ja) * 2005-03-24 2006-10-05 Nohmi Bosai Ltd 火災感知器
FR2893743A1 (fr) 2005-11-10 2007-05-25 Smart Packaging Solutions Sps Procede et dispositif de detection d'incendie en foret
WO2016151250A1 (fr) 2015-03-24 2016-09-29 Nimesis Technology Dispositif de détection d'incendies de foret énergétiquement autonome et procédé de détection d'incendies de foret mettant en œuvre un tel dispositif
FR3044802A1 (fr) 2015-12-04 2017-06-09 Nimesis Tech Dispositif de detection d'incendies de foret energetiquement autonome et procede de detection d'incendies de foret mettant en œuvre un tel dispositif
RU2689633C1 (ru) * 2018-08-15 2019-05-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Энергетически автономное устройство для обнаружения возгораний

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614984A1 (fr) 1987-05-05 1988-11-10 Argamakoff Aleksy Detecteur automatique d'incendies de foret
FR2637977A1 (fr) 1988-10-13 1990-04-20 Brown De Colstoun Francois Procede et systeme pour la detection notamment de feu de forets
JP2006268546A (ja) * 2005-03-24 2006-10-05 Nohmi Bosai Ltd 火災感知器
FR2893743A1 (fr) 2005-11-10 2007-05-25 Smart Packaging Solutions Sps Procede et dispositif de detection d'incendie en foret
WO2016151250A1 (fr) 2015-03-24 2016-09-29 Nimesis Technology Dispositif de détection d'incendies de foret énergétiquement autonome et procédé de détection d'incendies de foret mettant en œuvre un tel dispositif
FR3044802A1 (fr) 2015-12-04 2017-06-09 Nimesis Tech Dispositif de detection d'incendies de foret energetiquement autonome et procede de detection d'incendies de foret mettant en œuvre un tel dispositif
RU2689633C1 (ru) * 2018-08-15 2019-05-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Энергетически автономное устройство для обнаружения возгораний

Also Published As

Publication number Publication date
WO2023117852A1 (fr) 2023-06-29

Similar Documents

Publication Publication Date Title
EP1952368B1 (fr) Procede et dispositif de detection d'incendie de foret
FR2479991A1 (fr) Dispositif passif a infrarouges de detection d'intrusion
EP0490722B1 (fr) Installation de télédétection aérienne et/ou terrestre, notamment pour la détection des feux de forêts
EP2993130B1 (fr) Feu lumineux et procédé de fabrication d'un tel feu
WO2013110684A1 (fr) Système de détection de tentative d'intrusion à l'intérieur d'un périmètre délimité par une cloture
EP4198932A1 (fr) Dispositif de detection d'incendies ou de depassement anormal de temperature, energetiquement autonome
WO2016151250A1 (fr) Dispositif de détection d'incendies de foret énergétiquement autonome et procédé de détection d'incendies de foret mettant en œuvre un tel dispositif
FR2466058A1 (fr) Installation d'alarme auto-surveillante
EP0627066A1 (fr) Dispositif d'initiation pour un systeme pyrotechnique
EP2040234B1 (fr) Système de détection de tentative d'intrusion comprenant des moyens de détection de chocs et/ou de vibrations intégrés aux poteaux d'une clôture, et dispositif à monter sur des poteaux de clôture
EP1952366B1 (fr) Dispositif et procédé de surveillance d'un objet sensible tel qu'un aeronef
FR3044802A1 (fr) Dispositif de detection d'incendies de foret energetiquement autonome et procede de detection d'incendies de foret mettant en œuvre un tel dispositif
FR2614984A1 (fr) Detecteur automatique d'incendies de foret
EP3086079B1 (fr) Dispositif de détection d'impact, en particulier pour missile
EP3716239A1 (fr) Dispositif de détection d'intrusion par vision infrarouge et procédé de sécurisation
FR2987676A1 (fr) Capteur infrarouge et capteur d'acceleration ainsi qu'un procede de gestion d'un tel capteur
WO2023165790A1 (fr) Système de détection de départs d'incendies comprenant une pluralité de dispositifs de détection formant un maillage
EP1978376B1 (fr) Tête de veille active d'un environnement avec balayage en site, système de veille comportant la tête précitée, et procédé de mise en oeuvre de la tête et du système
FR2970940A1 (fr) Dispositif de declenchement de la descente d'un ballon stratospherique et de recuperation de sa charge utile et ballon stratospherique equipe d'un tel dispositif
FR3075756A1 (fr) Dispositif de protection aquatique
EP1882204B1 (fr) Tete optique pour detecteur de depart de missiles ou autre equipement de veille
EP4390565A1 (fr) Dispositif de transmission d'un message d'une montre
FR2848351A1 (fr) Paratonnerre a amorcage equipe de moyens de maintenance distants
FR3003383A1 (fr) Systeme de detection d'accident de la route, a l'aide d'au moins un mat urbain pourvu de moyens de detection de chocs
EP4248067A1 (fr) Pièce composite, notamment pour une turbomachine d'aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 17/00 20060101ALN20240130BHEP

Ipc: G08B 17/06 20060101AFI20240130BHEP

INTG Intention to grant announced

Effective date: 20240222