EP4189162A1 - Method for manufacturing paper and cardboard - Google Patents

Method for manufacturing paper and cardboard

Info

Publication number
EP4189162A1
EP4189162A1 EP21743222.8A EP21743222A EP4189162A1 EP 4189162 A1 EP4189162 A1 EP 4189162A1 EP 21743222 A EP21743222 A EP 21743222A EP 4189162 A1 EP4189162 A1 EP 4189162A1
Authority
EP
European Patent Office
Prior art keywords
polymer
weight
oily suspension
water
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21743222.8A
Other languages
German (de)
French (fr)
Inventor
Gatien Faucher
Damien FOUGEROUSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNF Group
Original Assignee
SNF Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNF Group filed Critical SNF Group
Publication of EP4189162A1 publication Critical patent/EP4189162A1/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/42Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
    • D21H17/43Carboxyl groups or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/66Salts, e.g. alums
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/74Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic and inorganic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition

Definitions

  • the present invention relates to a process for the manufacture of paper and cardboard having improved total retention, filler retention and drainage properties, and/or superior mechanical characteristics of paper/cardboard. More specifically, the subject of the invention is a manufacturing process involving the prior preparation of a stock solution of at least one water-soluble polymer with specific dissolution properties before its addition to the fibrous suspension.
  • the present invention also relates to the papers and cardboards obtained by this process.
  • retention properties we mean the ability to retain the materials in suspension of the paper pulp (fibers, fillers (calcium carbonate, titanium oxide, etc.), etc. on the forming fabric, therefore in the fibrous mat which will constitute the final sheet.
  • the mode of action of retention agents is based on the flocculation of these materials in suspension in water. Indeed, the flocs formed are more easily retained on the forming fabric.
  • the retention of charges consists in specifically retaining the charges (mineral species of small size presenting little affinity with cellulose).
  • the significant improvement in filler retention leads to a clarification of white water by retaining the fillers in the sheet of paper as well as increasing its weight. This also gives the possibility of substituting part of the fibers (the most expensive component in the composition of the paper) by fillers (lower costs) to reduce the costs of manufacturing the paper.
  • the drainage (or drainage) properties this is the capacity of the fibrous mat to evacuate or drain the maximum amount of water so that the sheet dries as quickly as possible, in particular during its manufacture.
  • All the retention and drainage systems known in the prior art are characterized by the fact that their main retention agent is water-soluble polymers of high molecular weight, greater than 1 million g/mol, generally greater than 3 million g/mol, called flocculants. They are generally cationic and have the particularity, due to their high molecular weight, of being able to take the form of an emulsion (inverse), an oily suspension (distilled inverse emulsion), a microemulsion or a powder. These polymers are generally introduced at a level of 50 to 800 g/t of dry polymer relative to the dry paper.
  • WO 2006/071175 describes a composition and its use in the manufacture of paper. This composition comprises a polymer and a hydrocarbon compound (oil, fat or wax). During papermaking, it can be added to a fiber suspension directly or after being emulsified. It is not used to form an aqueous solution before its addition to a fiber suspension. It can also be applied to the sheet of paper.
  • papermaking processes may also involve sheet strength agents, both dry and/or wet.
  • Some dry strength agents are water-soluble polymers with an average molecular weight of at least 750,000 Daltons, and may be in powder or inverse emulsion form. As a result, these products have the same drawbacks with regard to their preparation time. This is all the more true as the dosages of additives introduced into the paper pulp are of the order of 500 to 5000 g/t of dry matter (generally cellulosic fibers + fillers). The rapid dissolution of these polymers is therefore a key factor in reducing the footprint of preparation units.
  • a papermaking process using an aqueous solution A containing at least one water-soluble polymer P at a concentration by weight C of between 0.1 and 0.5% by weight makes it possible to achieve improved drainage performance, fiber and fines retention, filler retention, or mechanical characteristics of paper/cardboard compared to other product forms after two minutes or less of preparation at 25°C , which implies that the dissolution time of the polymer P is reduced.
  • the residence time of the polymer P in the unit for preparing the aqueous solution A is shorter, with a lower volume of maturation preparation tank and therefore a reduced footprint within the paper mill.
  • aqueous solution A to the fibrous suspension, at one or more injection points, form a sheet of paper or cardboard.
  • the viscometer equipped with a helical geometry works on the basis of an air bearing motor driving a geometry allowing controlled shear or controlled shear stress tests.
  • the dry matter corresponds to the dry extract obtained after evaporation of the water from the fibrous suspension used in a process for manufacturing a sheet of paper or cardboard.
  • the dry matter is generally based on cellulosic fibers and fillers, advantageously consisting of cellulosic fibers and fillers.
  • the term "cellulosic fibers” encompasses any cellulosic entity, including fibers, fines, microfibrils or nanofibrils.
  • polymer denotes both homopolymers and copolymers.
  • water-soluble polymer denotes a polymer which yields an aqueous solution without insoluble particles when dissolved with stirring for 4 hours at 25° C. and with a concentration of 20 gL 1 in water.
  • the "weight average molecular weight" of the water-soluble polymer is determined by measuring the intrinsic viscosity.
  • the intrinsic viscosity can be measured by methods known to those skilled in the art and can in particular be calculated from the reduced viscosity values for different concentrations by a graphical method consisting in plotting the reduced viscosity values (on the ordinate axis) by as a function of the concentrations (on the abscissa axis) and by extrapolating the curve to a zero concentration.
  • the intrinsic viscosity value is read on Y-axis or using the least squares method. Then the weight average molecular weight can be determined by the famous Mark-Houwink equation:
  • M represents the molecular weight of the polymer
  • a represents the Mark-Houwink coefficient
  • K depending on the particular polymer-solvent system
  • fibrous suspension we mean thick stock or thin stock which is water-based and contains cellulosic fibers and fillers.
  • the thick paste (Thick Stock), having a concentration by weight of dry matter greater than 1%, or even greater than 3%, is upstream of the mixing pump (“fan-pump”).
  • the diluted paste (“thin stock”), having a concentration by weight of dry matter generally less than 1%, is located downstream of the mixing pump.
  • the aqueous solution A of polymer P can also be referred to as stock solution of polymer P. Before its addition to the fibrous suspension, this solution A, filtered at 300 LHTI, shows no trace of undissolved polymer P.
  • the viscosity of solution A over time is determined, in water at 25° C., using a viscometer, preferably of the Thermo Scientific HAAKE iQ Air type equipped with a helical geometry.
  • the polymer P is obtained from at least one water-soluble monoethylenically unsaturated monomer, most often nonionic and/or anionic and/or cationic and/or zwiterrionic, preferably chosen from: at least one nonionic monomer chosen from the group comprising acrylamide, methacrylamide, N-alkylacrylamides, N-alkylmethacrylamides, N,N-dialkylacrylamides, N,N-dialkylmethacrylamides, alkoxylated esters of acrylic acid, alkoxylated esters of methacrylic acid, N-vinylpyridine, N-vinylpyrrolidone, hydroxyalkylacrylates, and hydroxyalkyl methacrylates, preferably Acrylamide, at least one anionic monomer chosen from the group comprising monomers having a carboxylic function and their salts including acrylic acid, methacrylic, itaconic acid, maleic acid; monomers having a sulphonic acid function and their salt
  • YY and/or ZZ is meant according to the invention either YY, or ZZ or YY and ZZ.
  • the water-soluble polymer P can be linear or structured.
  • structured means that the polymer can be in the form of a branched (branched) polymer, for example in the form of a comb (“comb”) or in the form of a star (“star”).
  • the water-soluble polymer P can also be structured by at least one structural agent, which can be chosen from the group comprising polyethylenically unsaturated monomers (that is to say having at least two unsaturated functions), such as for example the functions vinyl, allyl, acrylic and epoxy. Mention may be made, for example, of methylene bis acrylamide (MBA), triallyamine, tetraallylammonium chloride and 1,2-dihydroxyethylene bis-(N-acrylamide).
  • MBA methylene bis acrylamide
  • triallyamine tetraallylammonium chloride
  • 1,2-dihydroxyethylene bis-(N-acrylamide) 1,2-dihydroxyethylene bis-(N-acrylamide
  • the water-soluble polymer P can be obtained by radical polymerization according to the following polymerization techniques which are well known to those skilled in the art: gel polymerization, precipitation polymerization, inverse emulsion polymerization (optionally followed by distillation).
  • the polymerization is generally a free radical polymerization.
  • free radical polymerization we include free radical polymerization using UV, azo, redox or thermal initiators as well as controlled radical polymerization (CRP) techniques or matrix polymerization techniques.
  • CRP controlled radical polymerization
  • the polymer P Prior to the formation of the aqueous solution A, the polymer P is in the form of anhydrous oily suspension, generally obtained by suspending particles of polymer P in an oil. The absence of addition of water to the suspension guarantees the anhydrous character.
  • the polymer P is, prior to the formation of the aqueous solution A, in the form of anhydrous oily suspension containing between 20 and 60% by weight of polymer P under form of particles with an average diameter strictly less than 300 ⁇ m, advantageously between 0.1 and less than 300 ⁇ m, and even more advantageously between 1 and less than 300 ⁇ m.
  • the average diameter refers to the number average diameter of the polymer particles.
  • the oil of the anhydrous oily suspension of polymer P is chosen from mineral oils (containing saturated hydrocarbons such as paraffins, isoparaffins or cycloparaffins) and/or synthetic oils.
  • the oil can advantageously represent 40 to 80% by weight of the anhydrous oily suspension, for example 45 to 70%.
  • the anhydrous oily suspension of polymer P advantageously comprises between 20 and 60%, more advantageously between 30 and 55%, by weight of water-soluble polymer P, which is advantageously in the form of particles with a lower average diameter of between 0.1 and less than 300 pm.
  • the particles of water-soluble polymer P in the anhydrous oily suspension have an average diameter advantageously less than 300 ⁇ m, preferentially from 0.1 to less than 300 ⁇ m and more preferentially from 1 to less than 300 ⁇ m.
  • the average diameter of the particles can be determined by any method known to those skilled in the art, such as for example by binocular microscopy.
  • the anhydrous oily suspension of polymer P may contain a rheology modifying agent and/or an emulsifying agent and/or an inverting agent.
  • the percentage by weight of oil (advantageously 40 to 80%) is adjusted to reach, or not exceed, 100.
  • the anhydrous oily suspension of polymer P may consist of polymer P, oil and at least one additive chosen from a rheology modifier, an emulsifier, an inverting agent and mixtures thereof.
  • the rheology modifier is chosen from hydroxyethylcellulose, attapulgite, laponite, hectorite, montmorillonite, bentonite, fumed silicas and mixtures thereof.
  • the anhydrous oily suspension of polymer P advantageously contains between 0.05 and 5.00% by weight of rheology modifier, more advantageously between 0.05 and 1.5%, even more advantageously between 0.1 and 1.0 % by weight (relative to the weight of the anhydrous oily suspension).
  • the emulsifying agent is advantageously chosen from sorbitan esters, polyethoxylated sorbitan esters, diethoxylated oleocetyl alcohol, polyesters having an average molecular weight of between 1000 and 3000 Dalton resulting from the condensation between a poly(isobutenyl) succinic acid or its anhydride and a polyethylene glycol, block copolymers with an average molecular weight of between 2500 and 3500 Dalton resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, derivatives of di-alkanol amides, copolymers stearyl methacrylate, and mixtures thereof.
  • the anhydrous oily suspension of polymer P advantageously contains between 0.5 and 5.0% by weight of emulsifying agent, more advantageously between 1.0 and 2.0% by weight (based on the weight of the anhydrous oily suspension).
  • the reversing agent is advantageously chosen from ethoxylated nonylphenols, preferably having 4 to 10 ethoxylations; ethoxy and propoxylated alcohols preferably having an ethoxy/propoxylation comprising between 12 and 25 carbon atoms; ethoxylated tridecyl alcohols; ethoxy/propoxylated fatty alcohols; ethoxylated sorbitan esters (advantageously 20 molar equivalents of ethylene oxide); polyethoxylated sorbitan laurate (advantageously 20 molar equivalents of ethylene oxide); polyethoxylated castor oil (advantageously 40 molar equivalents of ethylene oxide); decaethoxylated oleodecyl alcohol; heptaoxyethyl lauryl alcohol; polyethoxylated sorbitan monostearate (advantageously 20 molar equivalents of ethylene oxide); polyethoxylated alkyl phenols (
  • the anhydrous oily suspension of polymer P advantageously contains between 0.1 and 4.0% by weight of inverting agent, advantageously between 0.2 and 2.0% by weight (relative to the weight of the anhydrous oily suspension).
  • the anhydrous oily suspension of polymer P may contain between 0.05 and 5.0% by weight of rheology modifier, between 0.5 and 5.0% by weight of emulsifying agent and between 0.1 and 4.0% by weight reversing agent.
  • the oil and any additional compounds of the anhydrous oily suspension have no effect on the development of the viscosity of the aqueous polymer solution. These compounds therefore have no effect on the factor F( C >). Their possible presence is therefore not detrimental (and not necessary) when measuring the factor F(c>).
  • the polymer P is introduced into the fibrous suspension at the rate of 100 to 5000 gt 1 of dry matter (cellulosic fibers+fillers).
  • the fibrous suspension encompasses the possible use of different fibres: virgin fibres, recycled fibres, chemical pulp, mechanical pulp, micro or nano fibrillated cellulose, with all types of fillers such as T1O2, CaCCL (crushed or precipitated), kaolin , organic fillers and mixtures thereof.
  • the water-soluble polymer P can be used within the papermaking process in combination with other products such as inorganic or organic coagulants, dry strength agents, wet strength agents, natural polymers such as starches or carboxymethylcellulose (CMC), inorganic microparticles such as bentonite microparticles and colloidal silica microparticles, organic polymers of any ionic nature (cationic, anionic, or amphoteric) and which can be (without being limiting) linear, branched, crosslinked, hydrophobic, or associative.
  • CMC carboxymethylcellulose
  • organic polymers of any ionic nature cationic, anionic, or amphoteric
  • Figure 1 shows curves of viscosity as a function of time of polymers P of different factors F( C) .
  • Figure 2 represents a curve of viscosity as a function of time of a polymer P for which the factor F( C >) is calculated.
  • Wet paste is obtained by disintegrating dry paste to obtain a final aqueous concentration of 1% by weight. It is a neutral pH pulp composed, by weight, of 90% bleached virgin long fibres, 10% bleached virgin short fibres, and 30% additional GCC (ground calcium carbonate) (Hydrocal® 55 from Omya) in relation to the weight of the fibres.
  • GCC ground calcium carbonate
  • Pulp recycled fibers are Pulp recycled fibers:
  • wet paste is obtained by disintegrating dry paste to obtain a final aqueous concentration of 1% by weight. It is a pH-neutral pulp made from 100% recycled cardboard fibres. b) Assessment of total retention and charge retention
  • the first pass retention in percentage (%LPR for "Lirst Pass Retention"), corresponding to the total retention is calculated according to the following formula:
  • the first pass ash retention percentage (%FPAR for "First Pass Ash Retention") is calculated according to the following formula:
  • %FPAR (AHB-AWW)/AHB* 100 with:
  • the paste is treated, subjected to a stirring speed of 1000 revolutions per minute.
  • T 30 s: Stop stirring and add the quantity of water necessary to obtain 1 litre.
  • This liter of paste is transferred to the “Canadian Standard Freeness Tester” and the TAPPI T227om-99 procedure is applied.
  • the DDA (“Dynamic Drainage Analyzer”) makes it possible to automatically determine the time (in seconds) required to drain a fibrous suspension under vacuum.
  • the polymers are added to the wet paste (0.6 liters of paste at 1.0% by weight) in the cylinder of the DDA with stirring at 1000 revolutions per minute:
  • the necessary quantity of paste is removed so as to obtain in the end a sheet having a basis weight of 90 gm 2 .
  • the wet paste is introduced into the vat of the dynamic molder and is kept under agitation.
  • the different components of the system are injected into this paste according to the predefined sequence.
  • a contact time of 30 to 45 seconds is generally respected between each addition of polymer.
  • Formettes of paper are produced with an automatic dynamic former: a blotter and the forming fabric are placed in the bowl of the dynamic former before starting the rotation of the bowl at 1000 rpm and building the water wall.
  • the treated pulp is spread over the water wall to form the fibrous mat on the forming fabric.
  • the fibrous mat is recovered, pressed under a press delivering 4 bar, then dried at 117°C.
  • the sheet obtained is conditioned overnight in a room with controlled humidity and temperature (50% relative humidity and 23° C.). The dry strength properties of all the sheets obtained by this procedure are then measured.
  • the burst is measured with a Messmer Buchel M 405 burst tester according to the TAPPI T403 om-02 standard. The result is expressed in kPa.
  • the bursting index expressed in kPa.m 2 /g, is determined by dividing this value by the basis weight of the sheet tested. Dry breaking length is measured in the machine direction with a Testometric AX tensile device according to TAPPI T494 om-01. The result is expressed in km. f) Viscosity measurement over time with HAAKE IQ Air
  • the Haake Viscometer IQ Air is a viscometer operating on the basis of an air bearing motor driving a geometry allowing controlled shear or controlled shear stress tests. This device makes it possible, with a propeller-type module, to measure the viscosity deployed by the polymer during its dissolution over time.
  • the polymer solution is prepared directly in the sample holder.
  • type A products are anionic and type C products are cationic.
  • Type X products are high charge density products which can each be used, for example, as a coagulant.
  • Product Xi is inorganic in nature, while product X2 is organic.
  • Polymer Ai Water-soluble polymer composed of 30 mol% of sodium acrylate and 70 mol% of acrylamide in the form of an inverse emulsion, this emulsion comprising 29% of Ai, 30% of water, and 30% by weight of oil.
  • Ai has an average molecular weight of 20 million Dalton (Brookfield viscosity of 8.16 cps (applicable for all the polymers below: UL modulus, 0.1%, NaCl IM, 60 rpm 1 , 23° C.)).
  • Polymer A2 Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in oily suspension form (distilled inverse emulsion). This suspension contains 50% by weight of A2, 40% by weight of oil, 5% of water. A2 has an average molecular weight of 18 million Daltons (Brookfield viscosity of 7.76 cps).
  • Polymer A3 Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in powder form. A3 has an average molecular weight of 18 million Daltons (Brookfield viscosity 7.71 cps).
  • Polymer A4 Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in powder form. A4 has an average molecular weight of 5 million Daltons (Brookfield viscosity 2.21 cps).
  • the oily suspension contains 55.5% by weight of As polymer, 37.5% by weight of oil, 4.5% by weight of bentonite, 2% by weight of sorbitan monooleate, and 0.5% by weight of The ethoxylated C13 oxo alcohol, As has an average molecular weight of 18 million Daltons (Brookfield viscosity 7.71 cps).
  • Polymer Ab Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in the form of anhydrous oily suspension. The average size of the polymer particles is between 1 and less than 300 ⁇ m.
  • the oily suspension contains 52.5% by weight of polymer Ab, 40.5% by weight of oil, 4.5% by weight of bentonite, 2% by weight of sorbitan monooleate, and 0.5% by weight of C13 oxo ethoxylated alcohol, Ab has an average molecular weight of 5 million Daltons (Brookfield viscosity 2.21 cps).
  • Ci Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in the form of an inverse emulsion, this emulsion containing 35% of Ci, 30% of water, and 30% in oil weight.
  • Ci has an average molecular weight of 8 million Daltons (Brookfield viscosity of 4.86 cps).
  • Polymer C2 Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in oily suspension form (distilled inverse emulsion). This suspension contains 50% by weight of C2, 40% by weight of oil, and 5% of water. C2 has an average molecular weight of 8 million Daltons (Brookfield viscosity of 4.96 cps).
  • Polymer C3 Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in powder form. C3 has an average molecular weight of 9 million Daltons (Brookfield viscosity 4.96 cps).
  • C4 polymer Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in the form of anhydrous oily suspension.
  • the average size of the polymer particles is between 1 and less than 300 mhi.
  • the oily suspension contains 52.5% by weight of C4 polymer, 40.5% by weight of oil, 4.5% by weight of bentonite, 2% by weight of sorbitan monooleate, and 0.5% by weight C13 oxo ethoxylated alcohol.
  • C4 has an average molecular weight of 8 million Daltons (Brookfield viscosity 4.96 cps).
  • Product Xi Polyaluminium chloride containing 18% by weight of alumina (Al2O3).
  • Product X2 Cationic product exhibiting a cationic charge density of 5.5 meq/g, resulting from the Hofmann reaction on a polyacrylamide.
  • Figure 1 represents the curves of viscosity as a function of time for the polymers Ai, A2 and A3 and As for a polymer concentration of 0.3% by weight in water.
  • Figure 2 represents the curve of viscosity as a function of time for the polymer As and details the method of calculating the factor F( C >).
  • polymer solutions are prepared at the desired concentration (0.1%, 0.3%, or 0.5% by weight). After 2 minutes of preparation, the polymer solutions are filtered through a filter calibrated at 300 mhi. If the filter is covered with polymer particles, the application test is not carried out (NA: Not Applicable). The filtrates are used directly for the application tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for manufacturing a sheet of paper or cardboard, which comprises adding a water-soluble polymer P with a weight-average molecular weight greater than 750,000 daltons to a fibrous suspension. This method comprises the following successive steps: - preparing an aqueous solution A containing at least one water-soluble polymer P at a concentration C of 0.1 to 0.5% by weight, said polymer P having a factor F(C) strictly greater than 4, with F(C) = Δ600/C, Δ600 being the slope to reach 90% of the viscosity developed by the aqueous solution A at 600 seconds at 25°C, obtained from the viscosity curve of the aqueous solution A as a function of time, at the given concentration C, at 25°C, - adding the aqueous solution A to the fibrous suspension, at one or more injection points, - forming a sheet of paper or cardboard.

Description

PROCEDE DE FABRICATION DE PAPIER ET DE CARTON Domaine de l’invention PAPER AND CARDBOARD MANUFACTURING METHOD Field of the invention
La présente invention concerne un procédé pour la fabrication de papier et de carton présentant des propriétés de rétention totale, de rétention de charges et d’égouttage améliorées, et/ou des caractéristiques mécaniques supérieures du papier/carton. Plus précisément, l’invention a pour objet un procédé de fabrication impliquant la préparation préalable d’une solution mère d’au moins un polymère hydrosoluble aux propriétés de dissolution spécifique avant son ajout à la suspension fibreuse. The present invention relates to a process for the manufacture of paper and cardboard having improved total retention, filler retention and drainage properties, and/or superior mechanical characteristics of paper/cardboard. More specifically, the subject of the invention is a manufacturing process involving the prior preparation of a stock solution of at least one water-soluble polymer with specific dissolution properties before its addition to the fibrous suspension.
La présente invention a également pour objet les papiers et cartons obtenus par ce procédé. The present invention also relates to the papers and cardboards obtained by this process.
Etat antérieur de la technique Prior state of the art
La mise en œuvre de systèmes de rétention et d’égouttage est bien connue dans les procédés de fabrication de papier. The implementation of retention and dewatering systems is well known in papermaking processes.
Par propriétés de rétention, on entend la capacité à retenir les matières en suspension de la pâte à papier (fibres, charges (carbonate de calcium, oxyde de titane...), ...) sur la toile de formation, donc dans le matelas fibreux qui constituera la feuille finale. Le mode d’action des agents de rétention est basé sur la floculation de ces matières en suspension dans l’eau. En effet, les flocs formés sont plus facilement retenus sur la toile de formation. By retention properties, we mean the ability to retain the materials in suspension of the paper pulp (fibers, fillers (calcium carbonate, titanium oxide, etc.), etc. on the forming fabric, therefore in the fibrous mat which will constitute the final sheet. The mode of action of retention agents is based on the flocculation of these materials in suspension in water. Indeed, the flocs formed are more easily retained on the forming fabric.
La rétention de charges consiste à retenir spécifiquement les charges (espèces minérales de faible taille présentant peu d’affinités avec la cellulose). L’amélioration significative de la rétention des charges engendre une clarification des eaux blanches en retenant les charges dans la feuille de papier ainsi qu’en augmentant son grammage. Cela donne également la possibilité de substituer une partie des fibres (composant le plus onéreux dans la composition du papier) par des charges (coûts moins élevés) pour réduire les coûts de fabrication du papier. En ce qui concerne les propriétés d’égouttage (ou drainage), il s’agit de la capacité du matelas fibreux à évacuer ou drainer le maximum d’eau afin que la feuille sèche le plus rapidement possible, notamment lors de sa fabrication. The retention of charges consists in specifically retaining the charges (mineral species of small size presenting little affinity with cellulose). The significant improvement in filler retention leads to a clarification of white water by retaining the fillers in the sheet of paper as well as increasing its weight. This also gives the possibility of substituting part of the fibers (the most expensive component in the composition of the paper) by fillers (lower costs) to reduce the costs of manufacturing the paper. With regard to the drainage (or drainage) properties, this is the capacity of the fibrous mat to evacuate or drain the maximum amount of water so that the sheet dries as quickly as possible, in particular during its manufacture.
Ces deux propriétés (rétention et drainage) sont intimement liées, l’une dépendant de l’autre. Il s’agit alors de trouver le meilleur compromis entre la rétention et l’égouttage. De manière générale, l’homme du métier fait référence à un agent de rétention et d’égouttage car ce sont les mêmes types de produits qui permettent de moduler ces deux propriétés. These two properties (retention and drainage) are intimately linked, one depending on the other. It is then a question of finding the best compromise between retention and drainage. In general, those skilled in the art refer to a retention and drainage agent because these are the same types of products which make it possible to modulate these two properties.
Tous les systèmes de rétention et d’égouttage connus dans l’art antérieur sont caractérisés par le fait qu’ils ont pour agent principal de rétention des polymères hydrosolubles de haut poids moléculaire, supérieur à 1 million g/mol, généralement supérieur à 3 millions g/mol, appelés floculants. Ils sont généralement cationiques et ont la particularité, en raison de leur haut poids moléculaire, de pouvoir se présenter sous forme d’émulsion (inverse), de suspension huileuse (émulsion inverse distillée), de microémulsion ou de poudre. Ces polymères sont généralement introduits à hauteur de 50 à 800 g/t de polymère sec par rapport au papier sec. All the retention and drainage systems known in the prior art are characterized by the fact that their main retention agent is water-soluble polymers of high molecular weight, greater than 1 million g/mol, generally greater than 3 million g/mol, called flocculants. They are generally cationic and have the particularity, due to their high molecular weight, of being able to take the form of an emulsion (inverse), an oily suspension (distilled inverse emulsion), a microemulsion or a powder. These polymers are generally introduced at a level of 50 to 800 g/t of dry polymer relative to the dry paper.
Les points d’introduction de ces agents dans le procédé papetier sont généralement situés dans le circuit court, c’est-à-dire après la pompe de mélange (ou « fan pump »), et donc en pâte diluée (ou « thin stock ») dont la concentration est le plus souvent inférieure à 1 %, plus généralement comprise entre 0,5 et 1,2 %, en poids de matière sèche. The points of introduction of these agents into the papermaking process are generally located in the short circuit, i.e. after the mixing pump (or “fan pump”), and therefore in diluted paste (or “thin stock ”) whose concentration is most often less than 1%, more generally between 0.5 and 1.2%, by weight of dry matter.
Quelle que soit la forme physique du polymère hydrosoluble (poudre, émulsion, suspension huileuse), il est nécessaire de préparer au préalable une solution mère (aqueuse) de polymère hydrosoluble pour son injection dans le procédé papetier. Cependant, la viscosité maximale de cette solution mère ne peut être atteinte qu’après plusieurs minutes, voire dizaines de minutes, ce qui implique un temps de résidence prolongé du polymère hydrosoluble dans l’unité de préparation de la solution mère, avec un volume de cuve de préparation de maturation élevé et donc une emprise au sol importante au sein de la papeterie. WO 2006/071175 décrit une composition et son utilisation dans la fabrication du papier. Cette composition comprend un polymère et un composé hydrocarboné (huile, graisse ou cire). Lors de la fabrication du papier, elle peut être ajoutée dans une suspension de fibres directement ou après avoir été émulsifiée. Elle n’est pas utilisée pour former une solution aqueuse avant son addition dans une suspension de fibres. Elle peut aussi être appliquée sur la feuille de papier. Whatever the physical form of the water-soluble polymer (powder, emulsion, oily suspension), it is necessary to prepare beforehand a stock solution (aqueous) of water-soluble polymer for its injection into the papermaking process. However, the maximum viscosity of this stock solution can only be reached after several minutes, even tens of minutes, which implies a prolonged residence time of the water-soluble polymer in the stock solution preparation unit, with a volume of high maturation preparation tank and therefore a large footprint within the paper mill. WO 2006/071175 describes a composition and its use in the manufacture of paper. This composition comprises a polymer and a hydrocarbon compound (oil, fat or wax). During papermaking, it can be added to a fiber suspension directly or after being emulsified. It is not used to form an aqueous solution before its addition to a fiber suspension. It can also be applied to the sheet of paper.
Outre les agents de rétention et d’égouttage, les procédés papetiers peuvent également impliquer des agents de résistance de la feuille, à l’état sec et/ou à l’état humide. In addition to retention and drainage agents, papermaking processes may also involve sheet strength agents, both dry and/or wet.
Certains agents de résistance à sec sont des polymères hydrosolubles de poids moléculaire moyen d’au moins 750000 Dalton, et peuvent se présenter sous forme de poudre ou d’émulsion inverse. De ce fait, ces produits présentent les mêmes inconvénients au regard de leur temps de préparation. Ceci est d’autant plus vrai que les dosages d’additifs introduits dans la pâte à papier sont de l’ordre de 500 à 5000 g/t de matière sèche (en général fibres cellulosiques + charges). La rapidité de dissolution de ces polymères est donc un facteur primordial pour réduire l’emprise au sol des unités de préparation. Some dry strength agents are water-soluble polymers with an average molecular weight of at least 750,000 Daltons, and may be in powder or inverse emulsion form. As a result, these products have the same drawbacks with regard to their preparation time. This is all the more true as the dosages of additives introduced into the paper pulp are of the order of 500 to 5000 g/t of dry matter (generally cellulosic fibers + fillers). The rapid dissolution of these polymers is therefore a key factor in reducing the footprint of preparation units.
Exposé de l’invention Disclosure of Invention
De manière inattendue, la Demanderesse a découvert qu’un procédé papetier mettant en œuvre une solution aqueuse A contenant au moins un polymère hydrosoluble P à une concentration en poids C comprise entre 0,1 et 0,5 % en poids, permet d’atteindre des performances d’égouttage, de rétention de fibres et de fines, de rétention de charge, ou de caractéristiques mécaniques du papier/carton améliorées par rapport aux autres formes de produits au terme de deux minutes, ou moins, de préparation à 25°C, ce qui implique que le temps de dissolution du polymère P est réduit. Le polymère P a un facteur F(c> > 4, avec F(c> = Aeoo/C, Aeoo étant la pente pour atteindre 90 % de la viscosité développée à 600 secondes, obtenue à partir de la courbe de viscosité de la solution aqueuse A en fonction du temps, à la concentration donnée C. Unexpectedly, the Applicant has discovered that a papermaking process using an aqueous solution A containing at least one water-soluble polymer P at a concentration by weight C of between 0.1 and 0.5% by weight, makes it possible to achieve improved drainage performance, fiber and fines retention, filler retention, or mechanical characteristics of paper/cardboard compared to other product forms after two minutes or less of preparation at 25°C , which implies that the dissolution time of the polymer P is reduced. The polymer P has a factor F(c> > 4, with F(c> = Aeoo/C, Aeoo being the slope to reach 90% of the viscosity developed at 600 seconds, obtained from the viscosity curve of the solution aqueous A as a function of time, at the given concentration C.
Ainsi, le temps de résidence du polymère P dans l’unité de préparation de la solution aqueuse A est plus court, avec un volume de cuve de préparation de maturation plus faible et donc une emprise au sol réduite au sein de la papeterie. Plus précisément, la présente invention concerne un procédé de fabrication d’une feuille de papier ou de carton, comprenant l’ajout d’un polymère hydrosoluble P, de poids moléculaire moyen en poids supérieur à 750000 Dalton, à une suspension fibreuse, caractérisé en ce qu’il comprend les étapes successives suivantes : - Préparer une solution aqueuse A contenant au moins un polymère hydrosoluble P à une concentration en poids C comprise entre 0,1 et 0,5 % en poids, ledit polymère P ayant un facteur F(c> > 4 (strictement supérieur à 4), avec F(c> = Aeoo/C, Aeoo étant la pente pour atteindre 90 % de la viscosité développée par la solution aqueuse A à 600 secondes à 25°C, obtenue à partir de la courbe de viscosité de la solution aqueuse A en fonction du temps, à la concentration donnée C, à 25°C, le polymère P étant, préalablement à la formation de la solution aqueuse A, sous forme d’une suspension huileuse anhydre contenant entre 20 et 60 % en poids de polymère P sous forme de particules de diamètre moyen strictement inférieur à 300 pm, la viscosité de la solution A au cours du temps étant déterminée à 25°C à l’aide d’un viscosimètre équipé d’une géométrie hélicoïdale, Thus, the residence time of the polymer P in the unit for preparing the aqueous solution A is shorter, with a lower volume of maturation preparation tank and therefore a reduced footprint within the paper mill. More specifically, the present invention relates to a process for manufacturing a sheet of paper or cardboard, comprising the addition of a water-soluble polymer P, with a weight-average molecular weight greater than 750,000 Dalton, to a fibrous suspension, characterized in that it comprises the following successive steps: - preparing an aqueous solution A containing at least one water-soluble polymer P at a concentration by weight C of between 0.1 and 0.5% by weight, said polymer P having a factor F( c>> 4 (strictly greater than 4), with F(c> = Aeoo/C, Aeoo being the slope to reach 90% of the viscosity developed by the aqueous solution A at 600 seconds at 25°C, obtained from the viscosity curve of the aqueous solution A as a function of time, at the given concentration C, at 25° C., the polymer P being, prior to the formation of the aqueous solution A, in the form of an anhydrous oily suspension containing between 20 and 60% by weight of polymer P in the form of particles of mean diameter strictly less than 300 μm, the viscosity of solution A over time being determined at 25°C using a viscometer equipped with a helical geometry,
Ajouter la solution aqueuse A à la suspension fibreuse, en un ou plusieurs points d’injection, former une feuille de papier ou de carton. Add aqueous solution A to the fibrous suspension, at one or more injection points, form a sheet of paper or cardboard.
De manière générale, le viscosimètre équipé d’une géométrie hélicoïdale fonctionne sur la base d’un moteur à pallier à air entraînant une géométrie permettant des tests à cisaillement contrôlé ou à contrainte de cisaillement contrôlée. Generally speaking, the viscometer equipped with a helical geometry works on the basis of an air bearing motor driving a geometry allowing controlled shear or controlled shear stress tests.
Dans la suite de la description et dans les revendications, tous les dosages de polymère exprimés en g.f 1 ou kg.f 1 sont donnés en poids de polymère actif par tonne de matière sèche. La matière sèche correspond à l’extrait sec obtenu après évaporation de l’eau de la suspension fibreuse utilisée dans un procédé de fabrication d’une feuille de papier ou de carton. La matière sèche est généralement à base de fibres cellulosiques et de charges, avantageusement constituée de fibres cellulosiques et de charges. Le terme « fibres cellulosiques » englobe toute entité cellulosique, incluant les fibres, les fines, les microfibrilles ou les nanofibrilles. Le terme « polymère », désigne aussi bien les homopolymères que les copolymères. Tel qu’utilisé ici, le terme "polymère hydrosoluble" désigne un polymère qui donne une solution aqueuse sans particule insoluble lorsqu’il est dissous sous agitation pendant 4 heures à 25°C et avec une concentration de 20 g.L 1 dans l’eau. In the remainder of the description and in the claims, all the polymer dosages expressed in gf 1 or kg.f 1 are given by weight of active polymer per tonne of dry matter. The dry matter corresponds to the dry extract obtained after evaporation of the water from the fibrous suspension used in a process for manufacturing a sheet of paper or cardboard. The dry matter is generally based on cellulosic fibers and fillers, advantageously consisting of cellulosic fibers and fillers. The term "cellulosic fibers" encompasses any cellulosic entity, including fibers, fines, microfibrils or nanofibrils. The term “polymer” denotes both homopolymers and copolymers. As used herein, the term "water-soluble polymer" denotes a polymer which yields an aqueous solution without insoluble particles when dissolved with stirring for 4 hours at 25° C. and with a concentration of 20 gL 1 in water.
Selon la présente invention, le "poids moléculaire moyen en poids " du polymère hydrosoluble est déterminé par mesure de la viscosité intrinsèque. La viscosité intrinsèque peut être mesurée par des méthodes connues de l’homme du métier et peut notamment être calculée à partir des valeurs de viscosité réduite pour différentes concentrations par une méthode graphique consistant à tracer les valeurs de viscosité réduite (sur Taxe des ordonnées) en fonction des concentrations (sur Taxe des abscisses) et en extrapolant la courbe à une concentration nulle. La valeur de viscosité intrinsèque est lue sur Taxe des ordonnées ou à l’aide de la méthode des moindres carrés. Ensuite, le poids moléculaire moyen en poids peut être déterminé par la célèbre équation de Mark-Houwink : According to the present invention, the "weight average molecular weight" of the water-soluble polymer is determined by measuring the intrinsic viscosity. The intrinsic viscosity can be measured by methods known to those skilled in the art and can in particular be calculated from the reduced viscosity values for different concentrations by a graphical method consisting in plotting the reduced viscosity values (on the ordinate axis) by as a function of the concentrations (on the abscissa axis) and by extrapolating the curve to a zero concentration. The intrinsic viscosity value is read on Y-axis or using the least squares method. Then the weight average molecular weight can be determined by the famous Mark-Houwink equation:
[h] = KM“ où [h] représente la viscosité intrinsèque du polymère déterminée par la méthode de mesure de la viscosité en solution, [h] = KM“ where [h] represents the intrinsic viscosity of the polymer determined by the solution viscosity measurement method,
K représente une constante empirique, K represents an empirical constant,
M représente le poids moléculaire du polymère, a représente le coefficient de Mark-Houwink, a et K dépendant du système particulier polymère-solvant M represents the molecular weight of the polymer, a represents the Mark-Houwink coefficient, a and K depending on the particular polymer-solvent system
Par "suspension fibreuse", on entend la pâte épaisse ou la pâte diluée qui sont à base d’eau et de fibres cellulosiques et de charges. La pâte épaisse (Thick Stock), ayant une concentration en poids en matière sèche supérieure à 1 %, voire supérieure à 3 %, est en amont de la pompe de mélange (« fan-pump »). La pâte diluée (« thin stock »), ayant une concentration en poids en matière sèche généralement inférieure à 1 %, est située en aval de la pompe de mélange. By "fibrous suspension" we mean thick stock or thin stock which is water-based and contains cellulosic fibers and fillers. The thick paste (Thick Stock), having a concentration by weight of dry matter greater than 1%, or even greater than 3%, is upstream of the mixing pump (“fan-pump”). The diluted paste (“thin stock”), having a concentration by weight of dry matter generally less than 1%, is located downstream of the mixing pump.
La solution aqueuse A de polymère P peut aussi être dénommée solution mère de polymère P. Avant son ajout à la suspension fibreuse, cette solution A, filtrée à 300 LHTI, ne présente aucune trace de polymère P non dissous. La viscosité de la solution A au cours du temps est déterminée, dans l’eau à 25°C, à l’aide d’un viscosimètre, préférentiellement de type Thermo Scientifïc HAAKE iQ Air équipé d’une géométrie hélicoïdale. The aqueous solution A of polymer P can also be referred to as stock solution of polymer P. Before its addition to the fibrous suspension, this solution A, filtered at 300 LHTI, shows no trace of undissolved polymer P. The viscosity of solution A over time is determined, in water at 25° C., using a viscometer, preferably of the Thermo Scientific HAAKE iQ Air type equipped with a helical geometry.
Préférentiellement, le polymère P est obtenu à partir d’au moins un monomère monoéthyléniquement insaturé hydrosoluble, le plus souvent non ionique et/ou anionique et/ou cationique et/ou zwiterrionique de préférence choisi parmi : au moins un monomère non ionique choisi dans le groupe comprenant Tacrylamide, le méthacrylamide, les N-alkylacrylamides, les N-alkylméthacrylamides, les N,N-dialkyl acrylamides, les N,N-dialkylméthacrylamides, les esters alkoxylés de l’acide acrylique, les esters alkoxylés de l’acide méthacrylique, la N-vinylpyridine, la N-vinylpyrrolidone, les hydroxyalkylacrylates, et les hydroxyalkyl méthacrylates, de préférence Tacrylamide, au moins un monomère anionique choisi dans le groupe comprenant les monomères possédant une fonction carboxylique et leurs sels dont l’acide acrylique, l’acide méthacrylique, l’acide itaconique, l’acide maléique ; les monomères possédant une fonction acide sulfonique et leurs sels; dont l’acide acrylamido tertio butyl sulfonique (ATBS), l’acide allyl sulfonique et l’acide méthallyl sulfonique, et leurs sels alcalins ou alcalino-terreux, et les monomères ayant une fonction acide phosphonique et leurs sels, - au moins un monomère cationique choisi dans le groupe comprenant Tacrylate de diméthylaminoéthyle (AD AME) quatemisé ou salifié, le méthacrylate de diméthylaminoéthyle (MADAME) quatemisé ou salifié, le chlorure de diallyldiméthylammonium (DADMAC), le chlorure d’acrylamidopropyltriméthylammonium (APTAC), et le chlorure de méthacrylamidopropyltriméthylammonium (MAPTAC), au moins un monomère zwitterionique choisi dans le groupe comprenant les monomères sulfobétaïnes comme le sulfopropyl diméthylammonium éthyl méthacrylate, le sulfopropyl diméthylammonium propylméthacrylamide, et le sulfopropyl 2-vinylpyridinium ; les monomères phosphobétaïnes, comme le phosphato éthyl triméthylammonium éthyl méthacrylate ; et les monomères carboxybétaïnes. Pour les monomères non ioniques, un groupe alkyl désigne un groupe hydrocarboné CnH2n+i, n étant avantageusement compris entre 1 et 5, plus avantageusement entre 1 et 3. Preferably, the polymer P is obtained from at least one water-soluble monoethylenically unsaturated monomer, most often nonionic and/or anionic and/or cationic and/or zwiterrionic, preferably chosen from: at least one nonionic monomer chosen from the group comprising acrylamide, methacrylamide, N-alkylacrylamides, N-alkylmethacrylamides, N,N-dialkylacrylamides, N,N-dialkylmethacrylamides, alkoxylated esters of acrylic acid, alkoxylated esters of methacrylic acid, N-vinylpyridine, N-vinylpyrrolidone, hydroxyalkylacrylates, and hydroxyalkyl methacrylates, preferably Acrylamide, at least one anionic monomer chosen from the group comprising monomers having a carboxylic function and their salts including acrylic acid, methacrylic, itaconic acid, maleic acid; monomers having a sulphonic acid function and their salts; including acrylamido tertio butyl sulfonic acid (ATBS), allyl sulfonic acid and methallyl sulfonic acid, and their alkaline or alkaline-earth salts, and monomers having a phosphonic acid function and their salts, - at least one monomer cationic acid selected from the group comprising quaternized or salified dimethylaminoethyl acrylate (AD AME), quaternized or salified dimethylaminoethyl methacrylate (MADAME), diallyldimethylammonium chloride (DADMAC), acrylamidopropyltrimethylammonium chloride (APTAC), and methacrylamidopropyltrimethylammonium chloride (MAPTAC), at least one zwitterionic monomer selected from the group comprising sulfobetaine monomers such as sulfopropyl dimethylammonium ethyl methacrylate, sulfopropyl dimethylammonium propylmethacrylamide, and sulfopropyl 2-vinylpyridinium; phosphobetaine monomers, such as phosphato ethyl trimethylammonium ethyl methacrylate; and carboxybetaine monomers. For the nonionic monomers, an alkyl group denotes a C n H 2 n + i hydrocarbon group, n being advantageously between 1 and 5, more advantageously between 1 and 3.
Par l’expression « YY et/ou ZZ » on entend selon l’invention soit YY, soit ZZ soit YY et ZZ. By the expression “YY and/or ZZ” is meant according to the invention either YY, or ZZ or YY and ZZ.
Le polymère hydrosoluble P peut être linéaire ou structuré. Le terme « structuré » signifie que le polymère peut être sous forme de polymère branché (ramifié), par exemple sous forme de peigne (« comb ») ou sous forme d’étoile (« star »). The water-soluble polymer P can be linear or structured. The term “structured” means that the polymer can be in the form of a branched (branched) polymer, for example in the form of a comb (“comb”) or in the form of a star (“star”).
Le polymère hydrosoluble P peut en outre être structuré par au moins un agent de structure, pouvant être choisi dans le groupe comprenant des monomères à insaturation polyéthylénique (c’est-à-dire ayant au minimum deux fonctions insaturées), comme par exemple les fonctions vinyliques, allyliques, acryliques et époxy. On peut citer par exemple le méthylène bis acrylamide (MBA), la triallyamine, le chlorure de tétraallylammonium et le 1,2 dihydroxyéthylène bis-(N-acrylamide). The water-soluble polymer P can also be structured by at least one structural agent, which can be chosen from the group comprising polyethylenically unsaturated monomers (that is to say having at least two unsaturated functions), such as for example the functions vinyl, allyl, acrylic and epoxy. Mention may be made, for example, of methylene bis acrylamide (MBA), triallyamine, tetraallylammonium chloride and 1,2-dihydroxyethylene bis-(N-acrylamide).
Le polymère hydrosoluble P peut être obtenu par polymérisation radicalaire selon les techniques de polymérisation suivantes qui sont bien connues par l’homme de métier : polymérisation en gel, polymérisation par précipitation, polymérisation en émulsion inverse (optionnellement suivie d’une distillation). The water-soluble polymer P can be obtained by radical polymerization according to the following polymerization techniques which are well known to those skilled in the art: gel polymerization, precipitation polymerization, inverse emulsion polymerization (optionally followed by distillation).
La polymérisation est généralement une polymérisation à radicaux libres. Par « polymérisation à radicaux libres », nous incluons la polymérisation par radicaux libres au moyen d’initiateurs UV, azoïques, redox ou thermiques ainsi que les techniques de polymérisation radicalaire contrôlée (CRP) ou les techniques de polymérisation sur matrice. The polymerization is generally a free radical polymerization. By “free radical polymerization” we include free radical polymerization using UV, azo, redox or thermal initiators as well as controlled radical polymerization (CRP) techniques or matrix polymerization techniques.
Préalablement à la formation de la solution aqueuse A, le polymère P est sous forme de suspension huileuse anhydre, généralement obtenue par mise en suspension de particules de polymère P dans une huile. L’absence d’ajout d’eau à la suspension garantit le caractère anhydre. Prior to the formation of the aqueous solution A, the polymer P is in the form of anhydrous oily suspension, generally obtained by suspending particles of polymer P in an oil. The absence of addition of water to the suspension guarantees the anhydrous character.
Le polymère P est, préalablement à la formation de la solution aqueuse A, sous forme de suspension huileuse anhydre contenant entre 20 et 60 % en poids de polymère P sous forme de particules de diamètre moyen strictement inférieur à 300 pm, avantageusement entre 0,1 et moins de 300 pm, et encore plus avantageusement entre 1 et moins de 300 pm. Le diamètre moyen désigne le diamètre moyen en nombre des particules de polymère. L’huile de la suspension huileuse anhydre de polymère P est choisie parmi les huiles minérales (contenant des hydrocarbures saturés tels que les paraffines, les isoparaffines ou les cycloparaffines) et/ou les huiles synthétiques. L’huile peut avantageusement représenter 40 à 80 % en poids de la suspension huileuse anhydre, par exemple 45 à 70 %. La suspension huileuse anhydre de polymère P comprend avantageusement entre 20 et 60 %, plus avantageusement entre 30 et 55 %, en poids de polymère hydrosoluble P, qui est avantageusement sous forme de particules de diamètre moyen inférieur compris entre 0,1 et moins de 300 pm. The polymer P is, prior to the formation of the aqueous solution A, in the form of anhydrous oily suspension containing between 20 and 60% by weight of polymer P under form of particles with an average diameter strictly less than 300 μm, advantageously between 0.1 and less than 300 μm, and even more advantageously between 1 and less than 300 μm. The average diameter refers to the number average diameter of the polymer particles. The oil of the anhydrous oily suspension of polymer P is chosen from mineral oils (containing saturated hydrocarbons such as paraffins, isoparaffins or cycloparaffins) and/or synthetic oils. The oil can advantageously represent 40 to 80% by weight of the anhydrous oily suspension, for example 45 to 70%. The anhydrous oily suspension of polymer P advantageously comprises between 20 and 60%, more advantageously between 30 and 55%, by weight of water-soluble polymer P, which is advantageously in the form of particles with a lower average diameter of between 0.1 and less than 300 pm.
Les particules de polymère hydrosoluble P dans la suspension huileuse anhydre ont un diamètre moyen avantageusement inférieur à 300 pm, préférentiellement de 0,1 à moins de 300 pm et plus préférentiellement de 1 à moins de 300 pm. Le diamètre moyen des particules peut être déterminé par toute méthode connue de l’homme du métier, comme par exemple par microscopie binoculaire. The particles of water-soluble polymer P in the anhydrous oily suspension have an average diameter advantageously less than 300 μm, preferentially from 0.1 to less than 300 μm and more preferentially from 1 to less than 300 μm. The average diameter of the particles can be determined by any method known to those skilled in the art, such as for example by binocular microscopy.
Encore plus préférentiellement, la suspension huileuse anhydre de polymère P peut contenir un agent modificateur de rhéologie et/ou un agent émulsifiant et/ou un agent inverseur. Dans ce cas, le pourcentage en poids d’huile (avantageusement 40 à 80 %) est ajusté pour atteindre, ou ne pas dépasser, 100. Even more preferentially, the anhydrous oily suspension of polymer P may contain a rheology modifying agent and/or an emulsifying agent and/or an inverting agent. In this case, the percentage by weight of oil (advantageously 40 to 80%) is adjusted to reach, or not exceed, 100.
Ainsi, la suspension huileuse anhydre de polymère P peut être constituée du polymère P, d’huile et d’au moins un additif choisi parmi un agent modificateur de rhéologie, un agent émulsifiant, un agent inverseur et leurs mélanges. Thus, the anhydrous oily suspension of polymer P may consist of polymer P, oil and at least one additive chosen from a rheology modifier, an emulsifier, an inverting agent and mixtures thereof.
De préférence, l’agent modificateur de rhéologie est choisi parmi l’hydroxyéthylcellulose, l’attapulgite, la laponite, l’hectorite, la montmorillonite, la bentonite, les silices pyrogénées et leurs mélanges. La suspension huileuse anhydre de polymère P contient avantageusement entre 0,05 et 5,00 % en poids d’agent modificateur de rhéologie, plus avantageusement entre 0,05 et 1,5 %, encore plus avantageusement entre 0,1 et 1,0 % en poids (par rapport au poids de la suspension huileuse anhydre). Preferably, the rheology modifier is chosen from hydroxyethylcellulose, attapulgite, laponite, hectorite, montmorillonite, bentonite, fumed silicas and mixtures thereof. The anhydrous oily suspension of polymer P advantageously contains between 0.05 and 5.00% by weight of rheology modifier, more advantageously between 0.05 and 1.5%, even more advantageously between 0.1 and 1.0 % by weight (relative to the weight of the anhydrous oily suspension).
L’agent émulsifiant est avantageusement choisi parmi les esters de sorbitan, les esters de sorbitan polyéthoxylés, l’alcool oléocétylique diéthoxylé, les polyesters ayant un poids moléculaire moyen compris entre 1000 et 3000 Dalton résultants de la condensation entre un acide poly(isobutényl) succinique ou son anhydride et un polyéthylène glycol, les copolymères blocs de poids moléculaire moyen compris entre 2500 et 3500 Dalton résultant de la condensation entre l’acide hydroxystéarique et un polyéthylène glycol, les amines grasses éthoxylées, les dérivés des di-alcanol amides, les copolymères du méthacrylate de stearyle, et leurs mélanges. The emulsifying agent is advantageously chosen from sorbitan esters, polyethoxylated sorbitan esters, diethoxylated oleocetyl alcohol, polyesters having an average molecular weight of between 1000 and 3000 Dalton resulting from the condensation between a poly(isobutenyl) succinic acid or its anhydride and a polyethylene glycol, block copolymers with an average molecular weight of between 2500 and 3500 Dalton resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, derivatives of di-alkanol amides, copolymers stearyl methacrylate, and mixtures thereof.
La suspension huileuse anhydre de polymère P contient avantageusement entre 0,5 et 5,0 % en poids d’agent émulsifiant, plus avantageusement entre 1,0 et 2,0 % en poids (par rapport au poids de la suspension huileuse anhydre). The anhydrous oily suspension of polymer P advantageously contains between 0.5 and 5.0% by weight of emulsifying agent, more advantageously between 1.0 and 2.0% by weight (based on the weight of the anhydrous oily suspension).
L’agent inverseur est avantageusement choisi parmi les nonylphénol éthoxylés, ayant de préférence 4 à 10 éthoxylations ; les alcools éthoxy et propoxylés ayant de préférence une éthoxy/propoxylation comprenant entre 12 et 25 atomes de carbone ; les alcools tridécyliques éthoxylés ; les alcool gras éthoxy/propoxylés ; les esters de sorbitan éthoxylés (avantageusement 20 équivalents molaire d’oxyde d’éthylène) ; le laurate de sorbitan polyéthoxylé (avantageusement 20 équivalents molaire d’oxyde d’éthylène) ; l’huile de castor polyéthoxylée (avantageusement 40 équivalents molaire d’oxyde d’éthylène) ; l’alcool oléodécylique décaéthoxylé ; l’alcool laurique heptaoxyéthylé ; le monostéarate de sorbitan polyéthoxylé (avantageusement 20 équivalents molaire d’oxyde d’éthylène) ; les alkyls phénol polyéthoxylés (avantageusement 10 équivalents molaire d’oxyde d’éthylène) cétyl éther ; les polyoxyde d’éthylène alkyl aryl éther ; le N-cétyl-N-éthyl morpholinium éthosulfate ; le lauryl sulfate de sodium ; les produits de condensation d’alcools gras avec l’oxyde d’éthylène (avantageusement 10 équivalents molaire d’oxyde d’éthylène) ; les produits de condensation des alkylphenols et de l’oxyde d’éthylène (avantageusement 12 équivalents molaire d’éthylène oxide) ; les produits de condensation d’amines grasses avec 5 équivalent molaire ou plus d’oxyde d’éthylène ; les tristyryl phénol éthoxylés ; les condensats de l’oxyde d’éthylène avec les alcools polyhydriques partiellement estérifïés avec des chaînes grasses ainsi que leur formes anhydres ; les oxydes d’amine ; les alkyl polyglucosides ; le glucamide ; les esters de phosphate ; les acides alkylbenzene sulfonique et leurs sels ; les polymères hydrosolubles surfactant et leurs mélanges. The reversing agent is advantageously chosen from ethoxylated nonylphenols, preferably having 4 to 10 ethoxylations; ethoxy and propoxylated alcohols preferably having an ethoxy/propoxylation comprising between 12 and 25 carbon atoms; ethoxylated tridecyl alcohols; ethoxy/propoxylated fatty alcohols; ethoxylated sorbitan esters (advantageously 20 molar equivalents of ethylene oxide); polyethoxylated sorbitan laurate (advantageously 20 molar equivalents of ethylene oxide); polyethoxylated castor oil (advantageously 40 molar equivalents of ethylene oxide); decaethoxylated oleodecyl alcohol; heptaoxyethyl lauryl alcohol; polyethoxylated sorbitan monostearate (advantageously 20 molar equivalents of ethylene oxide); polyethoxylated alkyl phenols (advantageously 10 molar equivalents of ethylene oxide) cetyl ether; polyethylene oxide alkyl aryl ether; N-cetyl-N-ethyl morpholinium ethosulfate; sodium lauryl sulphate; the products of condensation of fatty alcohols with ethylene oxide (advantageously 10 molar equivalents of ethylene oxide); the condensation products of alkylphenols and ethylene oxide (advantageously 12 molar equivalents of ethylene oxide); condensation products of fatty amines with 5 or more molar equivalents of oxide ethylene; ethoxylated tristyryl phenols; condensates of ethylene oxide with partially esterified polyhydric alcohols with fatty chains as well as their anhydrous forms; amine oxides; alkyl polyglucosides; glucamide; phosphate esters; alkylbenzene sulfonic acids and their salts; surfactant water-soluble polymers and mixtures thereof.
La suspension huileuse anhydre de polymère P contient avantageusement entre 0,1 et 4,0 % en poids d’agent inverseur, avantageusement entre 0,2 et 2,0 % en poids (par rapport au poids de la suspension huileuse anhydre). The anhydrous oily suspension of polymer P advantageously contains between 0.1 and 4.0% by weight of inverting agent, advantageously between 0.2 and 2.0% by weight (relative to the weight of the anhydrous oily suspension).
Ainsi, la suspension huileuse anhydre de polymère P peut contenir entre 0,05 et 5,0 % en poids d’agent modificateur de rhéologie, entre 0,5 et 5,0 % en poids d’agent émulsifiant et entre 0,1 et 4,0 % en poids d’agent inverseur. Thus, the anhydrous oily suspension of polymer P may contain between 0.05 and 5.0% by weight of rheology modifier, between 0.5 and 5.0% by weight of emulsifying agent and between 0.1 and 4.0% by weight reversing agent.
L’huile et les éventuels composés additionnels de la suspension huileuse anhydre (agent modificateur de rhéologie, agent émulsifiant et agent inverseur) n’ont pas d’effet sur le développement de la viscosité de la solution aqueuse de polymère. Ces composés n’ont donc pas d’effet sur le facteur F(C>. Leur éventuelle présence n’est donc pas néfaste (et pas nécessaire) lors de la mesure du facteur F(c>. The oil and any additional compounds of the anhydrous oily suspension (rheology modifying agent, emulsifying agent and reversing agent) have no effect on the development of the viscosity of the aqueous polymer solution. These compounds therefore have no effect on the factor F( C >). Their possible presence is therefore not detrimental (and not necessary) when measuring the factor F(c>).
Préférentiellement, le polymère P est introduit dans la suspension fibreuse à raison de 100 à 5000 g.t 1 de matière sèche (fibres cellulosiques + charges). Preferably, the polymer P is introduced into the fibrous suspension at the rate of 100 to 5000 gt 1 of dry matter (cellulosic fibers+fillers).
La suspension fibreuse englobe l’utilisation possible de différentes fibres : fibres vierges, fibres recyclées, pâte chimique, pâte mécanique, cellulose micro ou nano fibrillée, avec tous types de charges tel que le T1O2, le CaCCL (broyée ou précipitée), le kaolin, les charges organiques et leurs mélanges. The fibrous suspension encompasses the possible use of different fibres: virgin fibres, recycled fibres, chemical pulp, mechanical pulp, micro or nano fibrillated cellulose, with all types of fillers such as T1O2, CaCCL (crushed or precipitated), kaolin , organic fillers and mixtures thereof.
Le polymère hydrosoluble P peut être utilisé au sein du procédé papetier en combinaison avec d’autres produits tels que les coagulants minéraux ou organiques, les agents de résistance à sec, les agents de résistance humide, les polymères naturels tels que les amidons ou la carboxyméthylcellulose (CMC), les microparticules inorganiques telles que les microparticules de bentonite et les microparticules de silice colloïdale, les polymère organiques de toute nature ionique (cationique, anionique, ou amphotère) et qui peuvent être (sans être limitatif) linéaires, branchés, réticulés, hydrophobes, ou associatifs. Les figures et les exemples suivants illustrent l’invention sans toutefois en limiter la portée. The water-soluble polymer P can be used within the papermaking process in combination with other products such as inorganic or organic coagulants, dry strength agents, wet strength agents, natural polymers such as starches or carboxymethylcellulose (CMC), inorganic microparticles such as bentonite microparticles and colloidal silica microparticles, organic polymers of any ionic nature (cationic, anionic, or amphoteric) and which can be (without being limiting) linear, branched, crosslinked, hydrophobic, or associative. The following figures and examples illustrate the invention without however limiting its scope.
Description des figures Description of figures
[Figure 1] La Figure 1 représente des courbes de viscosité en fonction du temps de polymères P de différents facteurs F(C). [Figure 1] Figure 1 shows curves of viscosity as a function of time of polymers P of different factors F( C) .
[Figure 2] La Figure 2 représente une courbe de viscosité en fonction du temps d’un polymère P pour lequel le facteur F(C> est calculé. [Figure 2] Figure 2 represents a curve of viscosity as a function of time of a polymer P for which the factor F( C >) is calculated.
Exemples de réalisation de l’invention Examples of embodiments of the invention
Procédures utilisées dans les exemples : a) Types de pâtes utilisées Pâte fibres vierges : Procedures used in the examples: a) Types of pulp used Virgin fiber pulp:
La pâte humide est obtenue par désintégration de pâte sèche afin d’obtenir une concentration aqueuse finale de 1 % en poids. Il s’agit d’une pâte à pH neutre composée, en poids, à 90 % de fibres longues vierges blanchies, 10 % de fibres courtes vierges blanchies, et de 30 % de GCC (carbonate de calcium broyé) additionnels (Hydrocal® 55 de chez Omya) par rapport au poids des fibres. Wet paste is obtained by disintegrating dry paste to obtain a final aqueous concentration of 1% by weight. It is a neutral pH pulp composed, by weight, of 90% bleached virgin long fibres, 10% bleached virgin short fibres, and 30% additional GCC (ground calcium carbonate) (Hydrocal® 55 from Omya) in relation to the weight of the fibres.
Pâte fibres recyclées : Pulp recycled fibers:
La pâte humide est obtenue par désintégration de pâte sèche afin d’obtenir une concentration aqueuse finale de 1 % en poids. Il s’agit d’une pâte à pH neutre composée à 100 % de fibres de cartons recyclées. b) Evaluation de la rétention totale et de la rétention de charges Wet paste is obtained by disintegrating dry paste to obtain a final aqueous concentration of 1% by weight. It is a pH-neutral pulp made from 100% recycled cardboard fibres. b) Assessment of total retention and charge retention
Les différents résultats sont obtenus grâce à l’utilisation d’un récipient de type « Britt Jar », avec une vitesse d’agitation de 1000 tours par minute. The different results are obtained by using a “Britt Jar” type container, with a stirring speed of 1000 revolutions per minute.
La séquence d’ajout des différents agents de rétention est la suivante : - T=0 s : Mise en agitation de 500 mL de pâte à 0,5 % en poids The sequence for adding the different retention agents is as follows: - T=0 s: Stirring 500 mL of paste at 0.5% by weight
T=10 s : Ajout optionnel de l’agent X T=20 s : Ajout de l’agent de rétention T=30 s : Elimination des 20 premiers mL correspondant au volume mort sous la toile, puis récupération de 100 mL d’eaux blanches T=10 s: Optional addition of agent XT=20 s: Addition of retention agent T=30 s: Elimination of the first 20 mL corresponding to the dead volume under the canvas, then recovery of 100 mL of white water
La rétention première passe en pourcentage (%LPR pour « Lirst Pass Rétention »), correspondant à la rétention totale est calculée selon la formule suivante : The first pass retention in percentage (%LPR for "Lirst Pass Retention"), corresponding to the total retention is calculated according to the following formula:
%FPR = (CHB-CWW)/ CHB * 100 %FPR = (CHB-CWW)/CHB * 100
La rétention première passe des cendres en pourcentage (%FPAR pour « First Pass Ash Rétention ») est calculée selon la formule suivante : The first pass ash retention percentage (%FPAR for "First Pass Ash Retention") is calculated according to the following formula:
%FPAR = (AHB-AWW)/AHB* 100 avec : %FPAR = (AHB-AWW)/AHB* 100 with:
CHB : Consistance de la caisse de tête CHB: Consistency of the headbox
Cww : Consistance des eaux blanches Cww: White water consistency
AHB : Consistance des cendres de la caisse de tête AHB: Headbox Ash Consistency
Aww : Consistance des cendres des eaux blanches c) Evaluation des performances d’égouttage gravitaire grâce au « Canadian Standard Freeness » (CSF) Aww: Consistency of white water ash c) Evaluation of gravity drainage performance using the “Canadian Standard Freeness” (CSF)
Dans un bêcher, on traite la pâte, soumise à une vitesse d’agitation de 1000 tours par minute. In a beaker, the paste is treated, subjected to a stirring speed of 1000 revolutions per minute.
La séquence d’ajout des différents agents de rétention est la suivante : The sequence for adding the different retention agents is as follows:
T=0 s : Mise en agitation de 500 mL de pâte à 0,6 % en poids T=10 s : Ajout optionnel de l’agent X T=20 s : Ajout de l’agent de rétention T=0 s: Stirring of 500 mL of paste at 0.6% by weight T=10 s: Optional addition of agent X T=20 s: Addition of retention agent
T=30 s : Arrêt de l’agitation et ajout de la quantité d’eau nécessaire pour obtenir 1 litre. T=30 s: Stop stirring and add the quantity of water necessary to obtain 1 litre.
On transfère ce litre de pâte dans le « Canadian Standard Freeness Tester » et on applique la procédure TAPPI T227om-99. This liter of paste is transferred to the “Canadian Standard Freeness Tester” and the TAPPI T227om-99 procedure is applied.
Le volume, exprimé en mL, récupéré par la tubulure latérale donne une mesure d’égouttage gravitaire. Plus cette valeur est élevée, meilleur est l’égouttage gravitaire. On peut également exprimer cette performance en calculant le pourcentage d’amélioration par rapport au blanc (% CSF). d) Evaluation des performances d’égouttage (PDA) The volume, expressed in mL, collected by the side pipe gives a measure of gravity dripping. The higher this value, the better the gravity drainage. This performance can also be expressed by calculating the percent improvement over blank (%CSF). d) Evaluation of drainage performance (PDA)
Le DDA (« Dynamic Drainage Analyzer ») permet de déterminer, de manière automatique, le temps (en secondes) nécessaire pour égoutter sous vide une suspension fibreuse. Les polymères sont ajoutés à la pâte humide (0,6 litre de pâte à 1,0 % en poids) dans le cylindre du DDA sous agitation à 1000 tours par minute : The DDA (“Dynamic Drainage Analyzer”) makes it possible to automatically determine the time (in seconds) required to drain a fibrous suspension under vacuum. The polymers are added to the wet paste (0.6 liters of paste at 1.0% by weight) in the cylinder of the DDA with stirring at 1000 revolutions per minute:
T=0 s : mise en agitation de la pâte T=10 s : ajout optionnel de l’agent X T=20 s : Ajout de l’agent de rétention T=0 s: stirring the paste T=10 s: optional addition of agent X T=20 s: addition of retention agent
T=30 s : arrêt de l’agitation et égouttage sous vide à 200 mbar (1 bar = 105 Pa) pendant 70 s. T=30 s: stirring stopped and draining under vacuum at 200 mbar (1 bar=10 5 Pa) for 70 s.
La pression sous la toile est enregistrée en fonction du temps. Lorsque toute l’eau est évacuée du matelas fibreux, l’air passe à travers celui-ci faisant apparaître une rupture de pente sur la courbe représentant la pression sous toile en fonction du temps. Le temps, exprimé en secondes, relevé à cette rupture de pente correspond au temps d’égouttage. Plus le temps est faible, meilleur est donc l’égouttage sous vide. c) Performances en application DSR (résistance à sec), grammage à 90 g.m 2 The pressure under the canvas is recorded as a function of time. When all the water is evacuated from the fibrous mattress, the air passes through the latter causing a break in slope to appear on the curve representing the pressure under the canvas as a function of time. The time, expressed in seconds, recorded at this break in slope corresponds to the dripping time. The shorter the time, the better the vacuum drainage. c) Performance in DSR application (dry strength), grammage at 90 gm 2
La quantité nécessaire de pâte est prélevée de manière à obtenir au final une feuille présentant un grammage de 90 g.m2. The necessary quantity of paste is removed so as to obtain in the end a sheet having a basis weight of 90 gm 2 .
La pâte humide est introduite dans le cuvier de la formette dynamique et est maintenue sous agitation. On injecte à cette pâte les différents composants du système selon la séquence prédéfinie. On respecte généralement un temps de contact de 30 à 45 secondes entre chaque ajout de polymère. The wet paste is introduced into the vat of the dynamic molder and is kept under agitation. The different components of the system are injected into this paste according to the predefined sequence. A contact time of 30 to 45 seconds is generally respected between each addition of polymer.
Des formettes de papier sont réalisées avec une formette dynamique automatique : un buvard et la toile de formation sont placés dans le bol de la formette dynamique avant de démarrer la rotation du bol à 1000 tr.min 1 et de construire le mur d’eau. La pâte traitée est répartie sur le mur d’eau pour former le matelas fibreux sur la toile de formation. Une fois que l’eau est drainée, le matelas fibreux est récupéré, pressé sous une presse délivrant 4 bar, puis séché à 117°C. La feuille obtenue est conditionnée pendant une nuit dans une pièce à humidité et température contrôlées (50 % d’humidité relative et 23°C). Les propriétés de résistance à sec de toutes les feuilles obtenues par cette procédure sont alors mesurées. Formettes of paper are produced with an automatic dynamic former: a blotter and the forming fabric are placed in the bowl of the dynamic former before starting the rotation of the bowl at 1000 rpm and building the water wall. The treated pulp is spread over the water wall to form the fibrous mat on the forming fabric. Once the water is drained, the fibrous mat is recovered, pressed under a press delivering 4 bar, then dried at 117°C. The sheet obtained is conditioned overnight in a room with controlled humidity and temperature (50% relative humidity and 23° C.). The dry strength properties of all the sheets obtained by this procedure are then measured.
L’éclatement est mesuré avec un éclatomètre Messmer Buchel M 405 selon la norme TAPPI T403 om-02. Le résultat est exprimé en kPa. On détermine l’indice d’éclatement, exprimé en kPa.m2/g, en divisant cette valeur par le grammage de la feuille testée. La longueur de rupture à l’état sec est mesurée dans le sens machine avec un appareil de traction Testometric AX selon la norme TAPPI T494 om-01. Le résultat est exprimé en km. f) Mesure viscosité au cours du temps avec HAAKE IQ Air The burst is measured with a Messmer Buchel M 405 burst tester according to the TAPPI T403 om-02 standard. The result is expressed in kPa. The bursting index, expressed in kPa.m 2 /g, is determined by dividing this value by the basis weight of the sheet tested. Dry breaking length is measured in the machine direction with a Testometric AX tensile device according to TAPPI T494 om-01. The result is expressed in km. f) Viscosity measurement over time with HAAKE IQ Air
Le Haake Viscosimètre IQ Air est un viscosimètre fonctionnant sur la base d’un moteur à pallier à air entraînant une géométrie permettant des tests à cisaillement contrôlé ou à contrainte de cisaillement contrôlée. Cet appareil permet avec un module de type hélice de mesurer la viscosité déployée par le polymère lors de sa mise en solution dans le temps. Pour la mesure, la solution de polymère est directement préparée dans le porte- échantillon. A la fin de la mesure, les données sont sauvegardées et mises en forme via un graphique de viscosité = f (temps). The Haake Viscometer IQ Air is a viscometer operating on the basis of an air bearing motor driving a geometry allowing controlled shear or controlled shear stress tests. This device makes it possible, with a propeller-type module, to measure the viscosity deployed by the polymer during its dissolution over time. For the measurement, the polymer solution is prepared directly in the sample holder. At the end of the measurement, the data is saved and formatted via a graph of viscosity = f (time).
Produits testés dans les exemples : Products tested in the examples:
Dans la liste suivante, les produits de type A sont anioniques et les produits de type C sont cationiques. Les produits de type X sont des produits de haute densité de charges qui peuvent chacun être utilisés, par exemple, comme coagulant. Le produit Xi est de nature inorganique, alors que le produit X2 est organique. In the following list, type A products are anionic and type C products are cationic. Type X products are high charge density products which can each be used, for example, as a coagulant. Product Xi is inorganic in nature, while product X2 is organic.
Polymère Ai : Polymère hydrosoluble composé de 30 mol% d’acrylate de sodium et de 70 mol% d’acrylamide sous forme d’une émulsion inverse, cette émulsion comprenant 29 % de Ai, 30 % d’eau, et 30 % en poids d’huile. Ai a un poids moléculaire moyen de 20 millions de Dalton (viscosité Brookfield de 8,16 cps (applicable pour tous les polymères ci-dessous : module UL, 0,1 %, NaCl IM, 60 tr.min 1, 23°C)). Polymer Ai: Water-soluble polymer composed of 30 mol% of sodium acrylate and 70 mol% of acrylamide in the form of an inverse emulsion, this emulsion comprising 29% of Ai, 30% of water, and 30% by weight of oil. Ai has an average molecular weight of 20 million Dalton (Brookfield viscosity of 8.16 cps (applicable for all the polymers below: UL modulus, 0.1%, NaCl IM, 60 rpm 1 , 23° C.)).
Polymère A2 : Polymère hydrosoluble composé de 30 mol% d’acrylate de sodium et de 70 mol% d’acrylamide sous forme suspension huileuse (émulsion inverse distillée). Cette suspension contient 50 % en poids de A2, 40 % en poids d’huile, 5 % d’eau. A2 a un poids moléculaire moyen de 18 millions de Dalton (viscosité Brookfield de 7,76 cps). Polymer A2: Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in oily suspension form (distilled inverse emulsion). This suspension contains 50% by weight of A2, 40% by weight of oil, 5% of water. A2 has an average molecular weight of 18 million Daltons (Brookfield viscosity of 7.76 cps).
Polymère A3 : Polymère hydrosoluble composé de 30 mol% d’acrylate de sodium et de 70 mol% d’acrylamide sous forme de poudre. A3 a un poids moléculaire moyen de 18 millions de Dalton (viscosité Brookfield 7,71 cps). Polymer A3: Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in powder form. A3 has an average molecular weight of 18 million Daltons (Brookfield viscosity 7.71 cps).
Polymère A4 : Polymère hydrosoluble composé de 30 mol% d’acrylate de sodium et de 70 mol% d’acrylamide sous forme de poudre. A4 a un poids moléculaire moyen de 5 millions de Dalton (viscosité Brookfield 2,21 cps). Polymer A4: Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in powder form. A4 has an average molecular weight of 5 million Daltons (Brookfield viscosity 2.21 cps).
Polymère As (invention) : Polymère hydrosoluble composé de 30 mol% d’acrylate de sodium et de 70 mol% d’acrylamide sous forme de suspension huileuse anhydre. Les taille moyenne des particules de polymère est comprise entre 1 et moins de 300 pm. La suspension huileuse contient 55,5 % en poids de polymère As, 37,5 % en poids d’huile, 4,5 % en poids de bentonite, 2 % en poids de monooléate de sorbitan, et 0,5 % en poids d’alcool C13 oxo éthoxylé, As a un poids moléculaire moyen de 18 millions de Dalton (viscosité Brookfield 7,71 cps). As polymer (invention): Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in the form of anhydrous oily suspension. The average size of the polymer particles is between 1 and less than 300 μm. The oily suspension contains 55.5% by weight of As polymer, 37.5% by weight of oil, 4.5% by weight of bentonite, 2% by weight of sorbitan monooleate, and 0.5% by weight of The ethoxylated C13 oxo alcohol, As has an average molecular weight of 18 million Daltons (Brookfield viscosity 7.71 cps).
Polymère Ab (invention) : Polymère hydrosoluble composé de 30 mol% d’acrylate de sodium et de 70 mol% d’acrylamide sous forme de suspension huileuse anhydre. Les taille moyenne des particules de polymère est comprise entre 1 et moins de 300 pm. La suspension huileuse contient 52,5 % en poids de polymère Ab, 40,5 % en poids d’huile, 4,5 % en poids de bentonite, 2 % en poids de monooléate de sorbitan, et 0,5 % en poids d’alcool C13 oxo éthoxylé, Ab a un poids moléculaire moyen de 5 millions de Dalton (viscosité Brookfield 2,21 cps). Polymer Ab (invention): Water-soluble polymer composed of 30 mol% sodium acrylate and 70 mol% acrylamide in the form of anhydrous oily suspension. The average size of the polymer particles is between 1 and less than 300 μm. The oily suspension contains 52.5% by weight of polymer Ab, 40.5% by weight of oil, 4.5% by weight of bentonite, 2% by weight of sorbitan monooleate, and 0.5% by weight of C13 oxo ethoxylated alcohol, Ab has an average molecular weight of 5 million Daltons (Brookfield viscosity 2.21 cps).
Polymère Ci : Polymère hydrosoluble composé de 15 mol% d'acrylate de diméthylaminoéthyle (AD AME) chlorométhylé et de 85 mol% d’acrylamide sous forme d’une émulsion inverse, cette émulsion contenant 35 % de Ci, 30 % d’eau, et 30 % en poids d’huile. Ci a un poids moléculaire moyen de 8 millions de Dalton (viscosité Brookfîeld de 4,86 cps). Polymer Ci: Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in the form of an inverse emulsion, this emulsion containing 35% of Ci, 30% of water, and 30% in oil weight. Ci has an average molecular weight of 8 million Daltons (Brookfield viscosity of 4.86 cps).
Polymère C2 : Polymère hydrosoluble composé de 15 mol% d'acrylate de diméthylaminoéthyle (AD AME) chlorométhylé et de 85 mol% d’acrylamide sous forme suspension huileuse (émulsion inverse distillée). Cette suspension contient 50 % en poids de C2, 40 % en poids d’huile, et 5 % d’eau. C2 a un poids moléculaire moyen de 8 millions de Dalton (viscosité Brookfîeld de 4,96 cps). Polymer C2: Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in oily suspension form (distilled inverse emulsion). This suspension contains 50% by weight of C2, 40% by weight of oil, and 5% of water. C2 has an average molecular weight of 8 million Daltons (Brookfield viscosity of 4.96 cps).
Polymère C3 : Polymère hydrosoluble composé de 15 mol% d'acrylate de diméthylaminoéthyle (AD AME) chlorométhylé et de 85 mol% d’acrylamide sous forme de poudre. C3 a un poids moléculaire moyen de 9 millions de Dalton (viscosité Brookfîeld 4,96 cps). Polymer C3: Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in powder form. C3 has an average molecular weight of 9 million Daltons (Brookfield viscosity 4.96 cps).
Polymère C4 (invention) : Polymère hydrosoluble composé de 15 mol% d'acrylate de diméthylaminoéthyle (AD AME) chlorométhylé et de 85 mol% d’acrylamide sous forme de suspension huileuse anhydre. La taille moyenne des particules de polymère est comprise entre 1 et moins de 300 mhi. La suspension huileuse contient 52,5 % en poids de polymère C4, 40,5 % en poids d’huile, 4,5 % en poids de bentonite, 2 % en poids de mono oléate de sorbitan, et 0,5 % en poids d’alcool C13 oxo éthoxylé. C4 a un poids moléculaire moyen de 8 millions de Dalton (viscosité Brookfîeld 4,96 cps). C4 polymer (invention): Water-soluble polymer composed of 15 mol% of chloromethylated dimethylaminoethyl acrylate (AD AME) and 85 mol% of acrylamide in the form of anhydrous oily suspension. The average size of the polymer particles is between 1 and less than 300 mhi. The oily suspension contains 52.5% by weight of C4 polymer, 40.5% by weight of oil, 4.5% by weight of bentonite, 2% by weight of sorbitan monooleate, and 0.5% by weight C13 oxo ethoxylated alcohol. C4 has an average molecular weight of 8 million Daltons (Brookfield viscosity 4.96 cps).
Produit Xi : Polychlorure d’aluminium contenant 18 % en poids d’alumine (AI2O3). Produit X2 : Produit cationique présentant une densité de charge cationique de 5,5 meq/g, issu de la réaction de Hofmann sur un polyacrylamide. Product Xi: Polyaluminium chloride containing 18% by weight of alumina (Al2O3). Product X2: Cationic product exhibiting a cationic charge density of 5.5 meq/g, resulting from the Hofmann reaction on a polyacrylamide.
Facteurs F(C> des polymères An et Cnà différences concentrations C (en % en poids) Factors F( C > of the polymers A n and Cn at different concentrations C (in % by weight)
Tableau 1 : Polymères An Tableau 2 : Polymères Cn Table 1: Polymers A n Table 2: C n polymers
La Figure 1 représente les courbes de viscosité en fonction du temps pour les polymères Ai, A2 et A3 et As pour une concentration en polymère de 0,3 % en poids dans l’eau. La Figure 2 représente la courbe de viscosité en fonction du temps pour le polymère As et détaille la méthode de calcul du facteur F(C>. Figure 1 represents the curves of viscosity as a function of time for the polymers Ai, A2 and A3 and As for a polymer concentration of 0.3% by weight in water. Figure 2 represents the curve of viscosity as a function of time for the polymer As and details the method of calculating the factor F( C >).
Seuls les polymères As, Ab et C4 ont des facteurs F(C> supérieurs à 4. Ce sont les seuls à avoir atteint une viscosité maximale au terme de 600 s. Essais applicatifs Only polymers As, Ab and C4 have factors F( C > greater than 4. They are the only ones to have reached a maximum viscosity after 600 s. Application tests
Pour tous les essais suivants, les solutions de polymères sont préparées à la concentration souhaitée (0,1 %, 0,3 %, ou 0,5 % en poids). Au terme de 2 minutes de préparation, les solutions de polymères sont filtrées à travers un filtre calibré à 300 mhi. Si le filtre est recouvert de particules de polymère, le test applicatif n’est pas réalisé (NA : Non Applicable). Les filtrats sont directement utilisés pour les essais applicatifs. For all subsequent runs, polymer solutions are prepared at the desired concentration (0.1%, 0.3%, or 0.5% by weight). After 2 minutes of preparation, the polymer solutions are filtered through a filter calibrated at 300 mhi. If the filter is covered with polymer particles, the application test is not carried out (NA: Not Applicable). The filtrates are used directly for the application tests.
Performances CSF, rétention et rétention de charges CSF performance, retention and charge retention
Tableau 3 : CSF, rétention et rétention de charges Table 3: CSF, retention and charge retention
Performances PDA et résistances mécaniques PDA performance and mechanical resistance
Tableau 4 : DD A et résistances mécaniques Table 4: DD A and mechanical strengths
Pour tous les essais applicatifs, les meilleures performances sont obtenues avec les polymères As, Ab et C4 qui ont des facteurs F(C) supérieurs à 4. Ils montrent l’importance de la forme du polymère (suspension huileuse anhydre) préalablement à sa mise en solution et du facteur F(C) afin d’améliorer les propriétés d’égouttage, de rétention et les propriétés mécaniques de la feuille de papier ou de carton. For all the application tests, the best performances are obtained with the polymers As, Ab and C4 which have factors F( C) greater than 4. They show the importance of the shape of the polymer (anhydrous oily suspension) before setting it. in solution and the F( C) factor in order to improve the drainage, retention and mechanical properties of the sheet of paper or cardboard.

Claims

Revendications Claims
1. Procédé de fabrication d’une feuille de papier ou de carton, comprenant l’ajout d’un polymère hydrosoluble P de poids moléculaire moyen en poids supérieur à 750000 Dalton à une suspension fibreuse, caractérisé en ce qu’il comprend les étapes successives suivantes : 1. Process for manufacturing a sheet of paper or cardboard, comprising the addition of a water-soluble polymer P with a weight-average molecular weight greater than 750,000 Dalton to a fibrous suspension, characterized in that it comprises the successive steps following:
- Préparer une solution aqueuse A contenant au moins un polymère hydrosoluble P à une concentration C comprise entre 0,1 et 0,5 % en poids, ledit polymère P ayant un facteur F(c> strictement supérieur à 4, avec F(c> = Aeoo/C, Aeoo étant la pente pour atteindre 90 % de la viscosité développée par la solution aqueuse A à 600 secondes à 25°C, obtenue à partir de la courbe de viscosité de la solution aqueuse A en fonction du temps, à la concentration donnée C, à 25°C, le polymère P étant, préalablement à la formation de la solution aqueuse A, sous forme d’une suspension huileuse anhydre contenant entre 20 et 60 % en poids de polymère P sous forme de particules de diamètre moyen strictement inférieur à 300 pm, la viscosité de la solution A au cours du temps étant déterminée à 25°C à l’aide d’un viscosimètre équipé d’une géométrie hélicoïdale, - Prepare an aqueous solution A containing at least one water-soluble polymer P at a concentration C of between 0.1 and 0.5% by weight, said polymer P having a factor F(c> strictly greater than 4, with F(c> = Aeoo/C, Aeoo being the slope to reach 90% of the viscosity developed by aqueous solution A at 600 seconds at 25°C, obtained from the curve of viscosity of aqueous solution A as a function of time, at the given concentration C, at 25°C, the polymer P being, prior to the formation of the aqueous solution A, in the form of an anhydrous oily suspension containing between 20 and 60% by weight of polymer P in the form of particles of average diameter strictly less than 300 μm, the viscosity of solution A over time being determined at 25°C using a viscometer equipped with a helical geometry,
- Ajouter la solution aqueuse A à la suspension fibreuse, en un ou plusieurs points d’injection, - Add the aqueous solution A to the fibrous suspension, at one or more injection points,
- Former une feuille de papier ou de carton. - Form a sheet of paper or cardboard.
2. Procédé selon la revendication 1 , caractérisé en ce que le polymère P est un polymère d’au moins un monomère monoéthyléniquement insaturé hydrosoluble choisi parmi : 2. Method according to claim 1, characterized in that the polymer P is a polymer of at least one water-soluble monoethylenically unsaturated monomer chosen from:
- au moins un monomère non ionique choisi dans le groupe comprenant l’acrylamide, le méthacrylamide, les N-alkylacrylamides, les N-alkylméthacrylamides, les N,N-dialkyl acrylamides, les N,N-dialkylméthacrylamides, les esters alkoxylés de l’acide acrylique, les esters alkoxylés de l’acide méthacrylique, la N-vinylpyridine, la N-vinylpyrrolidone, les hydroxyalkylacrylates et les hydroxyalkyl méthacrylates, de préférence l’acrylamide,- at least one nonionic monomer chosen from the group comprising acrylamide, methacrylamide, N-alkylacrylamides, N-alkylmethacrylamides, N,N-dialkylacrylamides, N,N-dialkylmethacrylamides, alkoxylated esters of acrylic acid, alkoxylated esters of methacrylic acid, N-vinylpyridine, N-vinylpyrrolidone, hydroxyalkylacrylates and hydroxyalkyl methacrylates, preferably acrylamide,
- au moins un monomère anionique choisi dans le groupe comprenant les monomères possédant une fonction carboxylique et leurs sels dont l’acide acrylique, l’acide méthacrylique, l’acide itaconique, l’acide maléique ; les monomères possédant une fonction acide sulfonique et leurs sels, dont l’acide acrylamido tertio butyl sulfonique (ATBS), l’acide allyl sulfonique et l’acide méthallyl sulfonique, et leurs sels alcalins ou alcalino-terreux, et les monomères ayant une fonction acide phosphonique et leurs sels,- at least one anionic monomer chosen from the group comprising monomers having a carboxylic function and their salts including acrylic acid, methacrylic acid, itaconic acid, maleic acid; monomers having a sulphonic acid function and their salts, including acrylamido tertio butyl sulphonic acid (ATBS), allyl sulphonic acid and methallyl sulphonic acid, and their alkaline salts or alkaline-earth metals, and monomers having a phosphonic acid function and their salts,
- au moins un monomère cationique choisi dans le groupe comprenant l’acrylate de diméthylaminoéthyle (AD AME) quatemisé ou salifié ; le méthacrylate de diméthylaminoéthyle (MADAME) quatemisé ou salifié, le chlorure de diallyldiméthylammonium (DADMAC), le chlorure d’acrylamidopropyltriméthylammonium (APTAC), et le chlorure de méthacrylamidopropyltriméthylammonium (M APT AC) , - at least one cationic monomer chosen from the group comprising quaternized or salified dimethylaminoethyl acrylate (AD AME); quaternized or salified dimethylaminoethyl methacrylate (MADAME), diallyldimethylammonium chloride (DADMAC), acrylamidopropyltrimethylammonium chloride (APTAC), and methacrylamidopropyltrimethylammonium chloride (M APT AC),
- au moins un monomère zwitterionique choisi dans le groupe comprenant les monomères sulfobétaïnes comme le sulfopropyl diméthylammonium éthyl méthacrylate, le sulfopropyl diméthylammonium propylméthacrylamide, et le sulfopropyl 2-vinylpyridinium ; les monomères phosphobétaïnes, comme le phosphato éthyl triméthylammonium éthyl méthacrylate, et les monomères carboxybétaïnes. - at least one zwitterionic monomer chosen from the group comprising sulfobetaine monomers such as sulfopropyl dimethylammonium ethyl methacrylate, sulfopropyl dimethylammonium propylmethacrylamide, and sulfopropyl 2-vinylpyridinium; phosphobetaine monomers, such as phosphato ethyl trimethylammonium ethyl methacrylate, and carboxybetaine monomers.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la suspension huileuse anhydre de polymère P comprend entre 30 et 55 % en poids de polymère hydrosoluble P. 3. Method according to claim 1 or 2, characterized in that the anhydrous oily suspension of polymer P comprises between 30 and 55% by weight of water-soluble polymer P.
4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que la suspension huileuse anhydre de polymère P contient entre 0,05 et 5,0 % en poids d’un agent modificateur de rhéologie. 4. Method according to one of claims 1 to 3, characterized in that the anhydrous oily suspension of polymer P contains between 0.05 and 5.0% by weight of a rheology modifier.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que la suspension huileuse anhydre de polymère P contient entre 0,05 et 5,0 % en poids d’un agent modificateur de rhéologie choisi parmi l’hydroxyéthylcellulose, l’attapulgite, la laponite, l’hectorite, la montmorillonite, la bentonite, les silices pyrogénées et leurs mélanges. 5. Method according to one of claims 1 to 4, characterized in that the anhydrous oily suspension of polymer P contains between 0.05 and 5.0% by weight of a rheology modifying agent chosen from hydroxyethylcellulose, l attapulgite, laponite, hectorite, montmorillonite, bentonite, fumed silicas and mixtures thereof.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que la suspension huileuse anhydre de polymère P contient entre 0,5 et 5,0 % en poids d’un agent émulsifiant. 6. Method according to one of claims 1 to 5, characterized in that the anhydrous oily suspension of polymer P contains between 0.5 and 5.0% by weight of an emulsifying agent.
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que la suspension huileuse anhydre de polymère P contient entre 0,5 et 5,0 % en poids d’un agent émulsifiant choisi parmi les esters de sorbitan, les esters de sorbitan polyéthoxylés, l’alcool oléocétylique diéthoxylé, les polyesters ayant un poids moléculaire moyen compris entre 1000 et 3000 Dalton résultants de la condensation entre un acide poly(isobutényl) succinique ou son anhydride et un polyéthylène glycol, les copolymères blocs de poids moléculaire moyen compris entre 2500 et 3500 Dalton résultant de la condensation entre l’acide hydroxystéarique et un polyéthylène glycol, les amines grasses éthoxylées, les dérivés des di-alcanol amides, les copolymères du méthacrylate de stearyle, et leurs mélanges. 7. Method according to one of claims 1 to 6, characterized in that the anhydrous oily suspension of polymer P contains between 0.5 and 5.0% by weight of an emulsifying agent chosen from sorbitan esters, esters polyethoxylated sorbitans, diethoxylated oleocetyl alcohol, polyesters having an average molecular weight between 1000 and 3000 Dalton resulting from the condensation between a poly(isobutenyl) succinic acid or its anhydride and a polyethylene glycol, the block copolymers with an average molecular weight between 2500 and 3500 Dalton resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, di-alkanol amide derivatives, stearyl methacrylate copolymers, and mixtures thereof.
8. Procédé selon l’une des revendications 1 à 7, caractérisé en ce que la suspension huileuse anhydre de polymère P contient entre 0,1 et 4,0 % en poids d’un agent inverseur. 8. Method according to one of claims 1 to 7, characterized in that the anhydrous oily suspension of polymer P contains between 0.1 and 4.0% by weight of an inverting agent.
9. Procédé selon l’une des revendications 1 à 8, caractérisé en ce que la suspension huileuse anhydre de polymère P contient entre 0,1 et 4,0 % en poids d’un agent inverseur choisi parmi les nonylphénol éthoxylés ; les alcools éthoxy et propoxylés ; les alcools tridécyliques éthoxylés ; les alcool gras éthoxy/propoxylés ; les esters de sorbitan éthoxylés ; le laurate de sorbitan polyéthoxylé ; l’huile de castor polyéthoxylée ; l’alcool oléodécylique décaéthoxylé ; l’alcool laurique heptaoxyéthylé ; le monostéarate de sorbitan polyéthoxylé ; les alkyls phénol polyéthoxylés cétyl éther ; les polyoxyde d’éthylène alkyl aryl éther ; le N-cétyl-N-éthyl morpholinium éthosulfate ; le lauryl sulfate de sodium ; les produits de condensation d’alcools gras avec l’oxyde d’éthylène ; les produits de condensation des alkylphenols et de l’oxyde d’éthylène ; les produits de condensation d’amines grasses avec 5 équivalent molaire ou plus d’oxyde d’éthylène ; les tristyryl phénol éthoxylés ; les condensais de l’oxyde d’éthylène avec les alcools polyhydriques partiellement estérifïés avec des chaînes grasses ainsi que leur formes anhydres ; les oxydes d’amine ; les alkyl polyglucosides ; le glucamide ; les esters de phosphate ; les acides alkylbenzene sulfonique et leurs sels ; les polymères hydrosolubles surfactant et leurs mélanges. 9. Method according to one of claims 1 to 8, characterized in that the anhydrous oily suspension of polymer P contains between 0.1 and 4.0% by weight of an inverting agent chosen from ethoxylated nonylphenols; ethoxy and propoxylated alcohols; ethoxylated tridecyl alcohols; ethoxy/propoxylated fatty alcohols; ethoxylated sorbitan esters; polyethoxylated sorbitan laurate; polyethoxylated castor oil; decaethoxylated oleodecyl alcohol; heptaoxyethylated lauryl alcohol; polyethoxylated sorbitan monostearate; polyethoxylated alkyl phenol cetyl ether; polyethylene oxide alkyl aryl ether; N-cetyl-N-ethyl morpholinium ethosulfate; sodium lauryl sulphate; fatty alcohol condensation products with ethylene oxide; condensation products of alkylphenols and ethylene oxide; condensation products of fatty amines with 5 or more molar equivalents of ethylene oxide; ethoxylated tristyryl phenols; condensates of ethylene oxide with partially esterified polyhydric alcohols with fatty chains as well as their anhydrous forms; amine oxides; alkyl polyglucosides; glucamide; phosphate esters; alkylbenzene sulfonic acids and their salts; surfactant water-soluble polymers and mixtures thereof.
10. Procédé selon l’une des revendications 1 à 9, caractérisé en ce que le polymère P est introduit dans la suspension fibreuse à raison de 100 à 5000 g.t 1 de matière sèche. 10. Method according to one of claims 1 to 9, characterized in that the polymer P is introduced into the fibrous suspension at a rate of 100 to 5000 gt 1 of dry matter.
11. Procédé selon l’une des revendications 1 à 10, caractérisé en ce que le polymère P est linéaire ou structuré. 11. Method according to one of claims 1 to 10, characterized in that the polymer P is linear or structured.
12. Procédé selon l’une des revendications 1 à 11, caractérisé en ce que le polymère P de la suspension huileuse anhydre est sous forme de particules de diamètre moyen compris entre 0,1 pm et moins de 300 pm. 12. Method according to one of claims 1 to 11, characterized in that the polymer P of the anhydrous oily suspension is in the form of particles with an average diameter of between 0.1 μm and less than 300 μm.
13. Procédé selon l’une des revendications 1 à 12, caractérisé en ce que le polymère P de la suspension huileuse anhydre est sous forme de particules de diamètre moyen compris entre 1 pm et moins de 300 pm. 13. Method according to one of claims 1 to 12, characterized in that the polymer P of the anhydrous oily suspension is in the form of particles with an average diameter of between 1 μm and less than 300 μm.
14. Procédé selon l’une des revendications 1 à 13, caractérisé en ce que l’huile de la suspension huileuse anhydre de polymère P est choisie parmi les huiles minérales et/ou les huiles synthétiques. 14. Method according to one of claims 1 to 13, characterized in that the oil of the anhydrous oily suspension of polymer P is chosen from mineral oils and/or synthetic oils.
15. Procédé selon l’une des revendications 1 à 14, caractérisé en ce que l’huile représente 40 à 80 % en poids de la suspension huileuse anhydre de polymère P. 15. Method according to one of claims 1 to 14, characterized in that the oil represents 40 to 80% by weight of the anhydrous oily suspension of polymer P.
EP21743222.8A 2020-07-30 2021-06-24 Method for manufacturing paper and cardboard Pending EP4189162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008078A FR3113069B1 (en) 2020-07-30 2020-07-30 PAPER AND CARDBOARD MANUFACTURING PROCESS
PCT/FR2021/051158 WO2022023631A1 (en) 2020-07-30 2021-06-24 Method for manufacturing paper and cardboard

Publications (1)

Publication Number Publication Date
EP4189162A1 true EP4189162A1 (en) 2023-06-07

Family

ID=73038174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21743222.8A Pending EP4189162A1 (en) 2020-07-30 2021-06-24 Method for manufacturing paper and cardboard

Country Status (6)

Country Link
US (1) US20230295877A1 (en)
EP (1) EP4189162A1 (en)
BR (1) BR112023001079A2 (en)
CA (1) CA3187065A1 (en)
FR (1) FR3113069B1 (en)
WO (1) WO2022023631A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2347030C1 (en) * 2004-12-30 2009-02-20 Акцо Нобель Н.В. Composition
FR2963364B1 (en) * 2010-08-02 2014-12-26 Snf Sas METHOD FOR MANUFACTURING PAPER AND CARDBOARD HAVING IMPROVED RETENTION AND DRIPPING PROPERTIES

Also Published As

Publication number Publication date
CN116096963A (en) 2023-05-09
FR3113069B1 (en) 2022-10-14
WO2022023631A1 (en) 2022-02-03
FR3113069A1 (en) 2022-02-04
CA3187065A1 (en) 2022-02-03
US20230295877A1 (en) 2023-09-21
BR112023001079A2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
US8480853B2 (en) Papermaking and products made thereby with ionic crosslinked polymeric microparticle
EP1086276B1 (en) Method for manufacturing paper and cardboard
WO2012017172A1 (en) Process for manufacturing paper and board having improved retention and drainage properties
WO2009136024A2 (en) Process for manufacturing paper and board
EP3423630B1 (en) Process for manufacturing paper and board
EP0800597A1 (en) Method for enhancing retention in a paper making process, and retention agent therefor
EP1090185B1 (en) Flocculation method for making a paper sheet
EP4189162A1 (en) Method for manufacturing paper and cardboard
CN114072436B (en) Polymeric structure and use thereof
EP3990700B1 (en) Manufacturing process of paper or paperboard
JP3614609B2 (en) Papermaking chemicals, papermaking methods and methods for producing papermaking chemicals
CN116096963B (en) Method for producing paper and board
WO2022219086A1 (en) Method for manufacturing paper and cardboard
WO2022219085A1 (en) Method for manufacturing paper and cardboard
FR3127507A1 (en) PAPER AND CARDBOARD MANUFACTURING PROCESS
EP4267794A1 (en) Process for manufacturing paper or cardboard
WO2021186132A1 (en) Novel water-soluble polymer complexes in the form of an inverse emulsion and uses thereof
CN117940630A (en) Method for reducing the starch content of an aqueous phase removed from the preparation of a fibrous material
FR3094980A1 (en) NEW ADDITIVE BASED ON WATER-SOLUBLE POLYMERS AND ITS USES

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230609

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240304