EP4185466A1 - Procede de densification d'une piece metallique a forme complexe par compression isostatique - Google Patents

Procede de densification d'une piece metallique a forme complexe par compression isostatique

Info

Publication number
EP4185466A1
EP4185466A1 EP21739354.5A EP21739354A EP4185466A1 EP 4185466 A1 EP4185466 A1 EP 4185466A1 EP 21739354 A EP21739354 A EP 21739354A EP 4185466 A1 EP4185466 A1 EP 4185466A1
Authority
EP
European Patent Office
Prior art keywords
metal part
metal
coating
isostatic
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21739354.5A
Other languages
German (de)
English (en)
Inventor
Charles BERNAGE
Christophe Verdy
Sébastien LEMONNIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite De Technologie De Belfort-Montbeliard
Institut Franco Allemand de Recherches de Saint Louis ISL
Original Assignee
Universite De Technologie De Belfort-Montbeliard
Institut Franco Allemand de Recherches de Saint Louis ISL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Technologie De Belfort-Montbeliard, Institut Franco Allemand de Recherches de Saint Louis ISL filed Critical Universite De Technologie De Belfort-Montbeliard
Publication of EP4185466A1 publication Critical patent/EP4185466A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1266Container manufacturing by coating or sealing the surface of the preformed article, e.g. by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • TITLE Process for densifying a metal part with a complex shape by isostatic compression.
  • the present invention relates to a process for densifying a porous metal part.
  • One of the solutions consists in combining two processes, the first allowing to obtain the complex part and the second allowing to reduce the final porosity by compression.
  • One of the problems for compressing complex parts produced by additive manufacturing at very high pressure lies in the presence of hollow parts, internal channels with thin walls, etc.
  • the conventional method which consists of putting an outer envelope around the part and then compressing it to several thousand bars is therefore no longer suitable because it leads to deformation of the parts.
  • the object of the present invention is to remedy the aforementioned drawbacks by proposing a new method of densification without deformation of the metal part.
  • Another object of the invention is a new densification process making it possible to achieve porosity levels of less than 1%.
  • At least one of the objectives of the invention is achieved with a process for densifying a porous metal part comprising the following steps: - coating of the metal part with a waterproof material,
  • the metal part used for implementing the method according to the invention as described above can be obtained by additive manufacturing by means, for example, of a selective laser melting machine.
  • the method according to the invention makes it possible to design a metal part having a porosity rate of less than 1% knowing that a selective laser melting machine generates metal parts having a porosity rate of the order of 10%.
  • Porosity is a parameter related to the pores present in a solid material. Sealing is linked to the porosity of the material and plays a predominant role in whether or not the metal part is sealed.
  • the present invention makes it possible to seal metal parts for applications where sealing is required.
  • Compaction makes it possible to apply the process according to the invention to all types of metals, such as copper, aluminium, steel or zinc, with a good result in terms of conductivity.
  • the final annealing makes it possible in particular to greatly improve the conductivity of the metal part.
  • the present invention can particularly be implemented in the design of a metal part within an inductor intended to generate a magnetic field. Indeed for such an application, the conductivity is of great importance. When using hardened copper with a 0.1% silver mixture, this mixture has a lower conductivity than copper alone. the process according to the invention allows such an alloy to regain the conductivity of copper.
  • the coating makes it possible in particular to protect the metal part against the penetration of the fluid during the compaction step. To do this, several coating solutions exist.
  • the coating step can include placing the metal part in a sealed vacuum bag.
  • This bag can be a waterproof polymer.
  • the coating step can comprise the coating of the metallic part by means of a sealed metallic material.
  • the coating step may comprise the coating of the metal part by means of a resin.
  • a resin With the waterproof metal material and the resin, it is possible to give the assembly a predetermined shape which will facilitate the subsequent compaction step.
  • the coating makes it possible to protect the metal part and prevent the entry of fluid.
  • the method according to the invention comprises:
  • step removing the filling metal this step being carried out after the removal of the coating but before the final annealing.
  • hollow part we mean any empty space (filled with air, without material) which would lead to deformation of the part under isostatic compression.
  • space between the vertical bar and the horizontal bar of the “L” constitutes a hollow part which can be filled before applying the compaction.
  • a hollow part is different from a porosity hole.
  • a method according to the invention makes it possible to carry out the compaction without geometric deformation on hollow parts, non-hollow parts, with a fine structure, of complex geometric shape.
  • the expression “without geometric deformation” means maintaining the initial general shape of the metal part after the isostatic compression step. That is to say that the metal part retains its initial overall shape but its dimensions are reduced after compression. For example, it can be estimated that a maximum compression allowing the porosity of a metal part to be reduced by 20% will lead to a variation in its volume of the same order of magnitude.
  • the process according to the invention can advantageously achieve the compaction without deformation of the recesses of a hollow part, in particular if a filler metal is used whose elastic limit is both greater than that of the metal of the treated part and greater than that of the isostatic pressure applied. In this case, no deformation, neither geometric nor dimensional, is observed at the level of the filled recesses.
  • the filling can be obtained by using a pump to inject the filling metal in liquid form into the hollow parts or else by immersing the complete metal part in a bath of this filling metal in liquid form.
  • the filling can also consist in giving a predetermined shape to the assembly comprising the metal part and the filling metal so as to improve the efficiency during the coating.
  • the filler metal may have a melting point lower than the melting point of the metal part. In this way, the shrinkage can be done by making the filling metal liquid by heating without modifying the metal part.
  • the filler metal may have a melting point below 100 degrees.
  • the metal part is made of copper and the filling metal is a tin-based alloy.
  • This alloy can advantageously be an alloy comprising tin, indium and bismuth. It may in particular be Field's metal, which is an alloy which becomes liquid at approximately 62° C. and comprises 32.5% bismuth (Bi), 51% indium (In) and 16.5% tin. (Sn).
  • Field's metal which is an alloy which becomes liquid at approximately 62° C. and comprises 32.5% bismuth (Bi), 51% indium (In) and 16.5% tin. (Sn).
  • Such an alloy has the advantage of not adhering too much to the wall of the metal part, in particular based on copper, and of not penetrating the pores, of solidifying at ambient temperature and of withstanding compaction under high pressure.
  • the compaction can comprise pressurizing to an isostatic pressure which is at least 30% higher than the elastic limit of the metal part, preferably higher than 50%.
  • the isostatic pressure is between 2000 and 10000 bars.
  • the method according to the invention may comprise a preliminary annealing step carried out before the coating step.
  • This preliminary annealing step makes it possible to erase grains, dislocations, etc. which would be present on the surface of the metal part for better efficiency of the following steps.
  • the isostatic pressurizing fluid can be oil, for example in a bath, or a gas.
  • the final and/or preliminary annealing can comprise: - a temperature rise phase, - a holding phase at a solution temperature of the metal part, and
  • the annealing can be carried out in a vacuum furnace or in a neutral atmosphere at 950° for example for copper. This temperature corresponds to a temperature 15-20% lower than the melting temperature of copper. This is its solution temperature.
  • the final annealing step can be followed by a step for cleaning the metal part using hydrochloric acid.
  • FIG. 1 is a diagram illustrating remarkable steps of the method according to the invention.
  • Figure 2 is a schematic view of the design and densification processes of a metal part
  • FIG. 3 is a diagram illustrating a whole set of steps of the method according to the invention.
  • Figure 4 is a simplified schematic view illustrating a metal part in different phases of densification.
  • FIG. 1 An optional preliminary annealing step can be distinguished which may or may not be implemented.
  • the metal part according to the invention mainly undergoes steps B3, B4, B5 and C as illustrated in FIG. 1. These steps are described in more detail below. They allow at least to have a perfectly densified metal part. They can be implemented for solid or hollow metal parts.
  • Figure 2 is illustrated a sequence of processes comprising the design of a metal part by means of a selective laser melting machine "SLM".
  • SLM selective laser melting machine
  • the densification is implemented by performing:
  • the present invention provides additional steps to maintain the geometric shape of the metal part.
  • Figure 3 describes a set of steps according to the invention. All or some of the steps in the figure contribute to the densification of a metal part while maintaining the geometric shape.
  • Step Al relates to annealing which can be carried out in a vacuum furnace or in a neutral or inert atmosphere.
  • the metal part has a complex shape based on copper with 0.1% silver (CuO.lAg).
  • the furnace is used for annealing at a solution temperature of approximately 950° C., which corresponds to a temperature 15 to 20% lower than the melting temperature of copper.
  • the metal part is placed in the oven for a period of approximately one hour.
  • step A2 the metal part is cooled gradually for about 8 to 15 hours before reaching the initial temperature.
  • Figure 4 is shown such a metal part 1 with high porosity. This part is shown in section. It has a rectangular shape with a hollow part 2 made from the upper surface.
  • step B1 the hollow part 2 is filled with a filling metal in its liquid form.
  • a filling metal in its liquid form.
  • This is Field's metal, a tin alloy with a very low melting point and low wettability.
  • FIG. 4 it can be seen that the filler metal 3 perfectly occupies the entire hollow part so that the assembly consisting of the metal part and the filler metal has a regular shape. The filler metal 3 is flush with the upper surface of the metal part.
  • step B2 the filler metal is solidified by leaving for example to return to room temperature, condition at which it is in a solid form.
  • step B3 a step is provided for encapsulating the metal part by placing it in a resistant polymer casing, then creating a vacuum in the casing so that the casing completely hugs the metal part.
  • other methods of coating are provided, such as for example the fact of arranging a resin or a metal in the form of a sarcophagus all around the metal part 1.
  • a sarcophagus can be made, in particular in resin, for example when the metal part has such a complex geometric shape that bagging would lead to the creation of air pockets during the creation of the vacuum or when the metal part has protruding edges which could puncture the bag.
  • step B31 we distinguish the mode of coating by bagging, that is to say the metal part 1 is placed in an envelope 4 or a polymer bag.
  • a vacuum is created in the casing 4.
  • the compaction is carried out by placing the casing 4 containing the metal part 1 in an oil bath 5, then by compressing so isostatic under very high pressure at approximately 4000 bars for several minutes, for example one to 2 minutes.
  • the metal part 1 is then densified and the porosity is reduced until it reaches a value of less than 1%, for example down to 0.35%.
  • the compaction is carried out homogeneously in all directions to compress the metal part isostatically.
  • the pressure applied is a function of the physical characteristics of the material constituting the metal part. For example, for copper or other metals, its elasticity is taken into account. For copper, the limit value of its elasticity is 200 MPa, it is planned to apply a pressure of 500 MPa.
  • step B5 the metal part is taken out of the bath and the coating envelope 4 is removed.
  • step B6 the filler metal 3 is removed by heating the assembly to a temperature above the melting point of the filler metal but below the melting point of the copper.
  • Step B7 consists in cleaning the metal part thus densified. To do this, hydrochloric acid is used.
  • steps C1 and C2 a final annealing is carried out in a manner similar to the preliminary annealing.
  • the purpose of this final annealing is to improve the conductivity of the metal part thus densified.
  • C2 shows the final metal part 1 after compaction. Its size is reduced although its geometric shape remains the same.
  • the dotted lines represent its initial size in phase A2 for example.
  • the porosity is advantageously reduced by 20 percent, for example.
  • the metal part has a tightness and a conductivity comparable to those of the base material.
  • the present invention combines an additive manufacturing step with an isostatic compression step.
  • the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Abstract

L'invention concerne un procédé de densification d'une pièce métallique poreuse comprenant les étapes suivantes : - enrobage de la pièce métallique par un matériau étanche, - compaction de la pièce métallique enrobée sous une pression isostatique d'un fluide, - retrait de l'enrobage de la pièce métallique, et - recuit final de la pièce métallique.

Description

DESCRIPTION
TITRE : Procédé de densification d'une pièce métallique à forme complexe par compression isostatique. La présente invention se rapporte à un procédé de densification d'une pièce métallique poreuse.
Elle trouve une application particulièrement intéressante dans le domaine métallurgique de conception de pièce métallique par fabrication additive. D'une façon générale, des procédés comme la fabrication additive produisent des pièces qui sont parfois très poreuses (avec des porosités ouvertes et des porosités fermées). C'est le cas pour certains alliages d'aluminium, le bronze, l'or et surtout pour le cuivre dont le taux de porosité se situe entre 7 et 20% en sortie par exemple d'une machine de fusion sélective par laser (SLM pour « Sélective Laser Melting » en anglais) en raison notamment de sa forte réflectivité. Cette porosité peut affecter les propriétés finales de la pièce voire la rendre inadaptée pour l'application visée (propriétés électriques, thermiques, etc.). Il convient donc de trouver une solution permettant de réduire la porosité de la pièce tout en conservant sa forme, qui, dans le cas de pièces obtenues par fabrication additive, est généralement complexe.
L'une des solutions consiste à combiner deux processus, le premier permettant d'obtenir la pièce complexe et le deuxième permettant de réduire la porosité finale par compression. L'une des problématiques pour compresser à très haute pression des pièces complexes réalisées par fabrication additive réside dans la présence de parties creuses, de canaux internes avec des parois minces etc...
La méthode conventionnelle qui consiste à mettre une enveloppe externe autour de la pièce puis à comprimer à plusieurs milliers de bars ne convient donc plus car elle conduit à une déformation des pièces.
La présente invention a pour but de remédier aux inconvénients précités en proposant un nouveau procédé de densification sans déformation de la pièce métallique. Un autre but de l'invention est un nouveau procédé de densification permettant d'atteindre des niveaux de porosités inférieurs à 1%. On atteint au moins l'un des objectifs de l'invention avec un procédé de densification d'une pièce métallique poreuse comprenant les étapes suivantes : - enrobage de la pièce métallique par un matériau étanche,
- compaction de la pièce métallique enrobée sous une pression isostatique d'un fluide,
- retrait de l'enrobage de la pièce métallique, et
- recuit final de la pièce métallique.
La pièce métallique utilisée pour la mise en œuvre du procédé selon l'invention tel que décrit ci-dessus peut être obtenue par fabrication additive au moyen par exemple d'une machine de fusion sélective par laser.
Le procédé selon l'invention permet de concevoir une pièce métallique présentant un taux de porosité inférieur à 1% sachant qu'une machine de fusion sélective par laser génère des pièces métalliques ayant un taux de porosité de l'ordre de 10%. La porosité est un paramètre lié aux pores présents dans un matériau solide. L'étanchéité est liée à la porosité du matériau et joue un rôle prédominant dans le caractère étanche ou non de la pièce métallique.
Moins un matériau est poreux, meilleure est son étanchéité. Cette porosité peut être mesurée par analyse d'images, par mise en application de la poussée d'Archimède ou par mesure géométrique en déterminant les dimensions et la masse de la pièce. La présente invention permet d'étanchéifier des pièces métalliques pour des applications où l'étanchéité est requise.
La compaction permet d'appliquer le procédé selon l'invention à tous types de métaux, comme le cuivre, l'aluminium, l'acier ou le zinc, avec un bon résultat en terme de conductivité. Le recuit final permet notamment d'améliorer grandement la conductivité de la pièce métallique. A titre d'exemple, la présente invention peut particulièrement être mise en œuvre dans la conception de pièce métallique au sein d'un inducteur destiné à générer un champ magnétique. En effet pour une telle application, la conductivité a une grande importance. Lorsqu'on utilise du cuivre durci avec un mélange à 0.1% d'argent, ce mélange présente une conductivité inférieure à celle du cuivre seul. Le procédé selon l'invention permet à un tel alliage de retrouver la conductivité du cuivre.
L'enrobage permet notamment de protéger la pièce métallique contre la pénétration du fluide lors de l'étape de compaction. Pour ce faire plusieurs solutions d'enrobage existent.
Selon une caractéristique avantageuse de l'invention, l'étape d'enrobage peut comprendre la mise en place de la pièce métallique dans un sachet étanche sous vide. Ce sachet peut être un polymère étanche.
Selon l'invention, l'étape d'enrobage peut comprendre l'enrobage de la pièce métallique au moyen d'un matériau métallique étanche.
Selon encore l'invention, l'étape d'enrobage peut comprendre l'enrobage de la pièce métallique au moyen d'une résine. Avec le matériau métallique étanche et la résine, il est possible de donner à l'ensemble une forme prédéterminée qui facilitera l'étape de compaction ultérieure.
L'enrobage permet de protéger la pièce métallique et empêcher l'entrée de fluide.
Selon un mode de mise en œuvre avantageux de l'invention, lorsque la pièce métallique comprend au moins une partie creuse, le procédé selon l'invention comprend :
- une étape préliminaire, avant enrobage, de remplissage de ladite au moins une partie creuse par un métal de remplissage que l'on introduit sous forme liquide, puis solidification de ce métal de remplissage, et
- une étape de retrait du métal de remplissage, cette étape étant réalisée après le retrait de l'enrobage mais avant le recuit final.
Pour retirer le métal de remplissage solidifié, on le chauffe à une température supérieure à son point de fusion mais inférieure au point de fusion de la pièce métallique.
Par partie creuse, on entend tout espace vide (rempli d'air, sans matériau) qui conduirait à une déformation de la pièce sous compression isostatique. Par exemple, dans une pièce métallique en forme de « L », on peut considérer que l'espace entre la barre verticale et la barre horizontale du « L » constitue une partie creuse qui peut être remplie avant d'appliquer la compaction.
Une partie creuse est différente d'un trou de porosité.
Un procédé selon l'invention permet de réaliser la compaction sans déformation géométrique sur des pièces creuses, non creuses, à structure fine, de forme géométrique complexe. L'expression « sans déformation géométrique » s'entend par le maintien de la forme générale initiale de la pièce métallique après l'étape de compression isostatique. C'est-à-dire que la pièce métallique conserve sa forme globale initiale mais ses dimensions sont réduites après compression. Par exemple, on peut estimer qu'une compression maximale permettant de réduire de 20% la porosité d'une pièce métallique conduira à une variation de son volume du même ordre de grandeur.
Dans le cas de pièce creuse, le procéder selon l'invention peut avantageusement réaliser la compaction sans déformation des évidements d'une pièce creuse, notamment si l'on utilise un métal de remplissage dont la limite élastique est à la fois supérieure à celle du métal de la pièce traitée et supérieure à celle de la pression isostatique appliquée. Dans ce cas aucune déformation, ni géométrique, ni en dimensions, n'est observée au niveau des évidements remplis.
Le remplissage peut être obtenu en utilisant une pompe pour injecter le métal de remplissage sous forme liquide dans les parties creuses ou bien en plongeant la pièce métallique complète dans un bain de ce métal de remplissage sous forme liquide. Le remplissage peut également consister à donner une forme prédéterminée à l'ensemble comprenant la pièce métallique et le métal de remplissage de façon à améliorer l'efficacité lors de l'enrobage.
Par exemple on peut prévoir, quelle que soit la forme initiale de la pièce métallique, d'ajouter le métal de remplissage de façon à obtenir une forme finale ronde ou autre permettant par exemple une insertion efficace dans un sachet avant compaction.
Selon un mode de réalisation de l'invention, le métal de remplissage peut présenter un point de fusion inférieur au point de fusion de la pièce métallique. De cette façon, le retrait peut se faire en rendant le métal de remplissage liquide par chauffage sans modifier la pièce métallique. Avantageusement, le métal de remplissage peut présenter un point de fusion inférieur à 100 degrés. Selon un mode de mise en œuvre avantageux de l'invention, la pièce métallique est en cuivre et le métal de remplissage est un alliage à base d'étain.
Cet alliage peut avantageusement être un alliage comprenant de l'étain, de l'indium et du bismuth. Il peut notamment s'agir du métal de Field qui est un alliage qui devient liquide à environ 62° C et comprend 32,5% de bismuth (Bi), 51% d'indium (In) et 16,5% d'étain (Sn).
Un tel alliage a pour avantage de ne pas trop adhérer à la paroi de la pièce métallique, notamment à base de cuivre, et de ne pas pénétrer les pores, de se solidifier à température ambiante et de supporter la compaction sous haute pression.
Selon une caractéristique avantageuse de l'invention, la compaction peut comprendre la mise sous pression à une pression isostatique qui est au moins 30% supérieure à la limite d'élasticité de la pièce métallique, préférentiellement supérieure à 50%.
De préférence, la pression isostatique est comprise entre 2000 et 10000 bars.
Selon un mode de réalisation, le procédé selon l'invention peut comprendre une étape de recuit préliminaire réalisée avant l'étape d'enrobage.
Cette étape de recuit préliminaire permet d'effacer des grains, des dislocations, ... qui seraient présents sur la surface de la pièce métallique pour une meilleure efficacité des étapes suivantes.
Selon l'invention, le fluide de mise sous pression isostatique peut être de l'huile, par exemple dans un bain, ou un gaz.
Selon une caractéristique avantageuse de l'invention, le recuit final et/ou préliminaire peut comprendre : - une phase de montée en température, - une phase de maintien à une température de mise en solution de la pièce métallique, et
- une phase de refroidissement progressif sur une durée supérieure à la durée de la phase de montée en température.
Le recuit peut être réalisé dans un four sous vide ou sous atmosphère neutre à 950° par exemple pour le cuivre. Cette température correspond à une température inférieure de 15-20% à la température de fusion du cuivre. Il s'agit de sa température de mise en solution.
Avantageusement, l'étape de recuit final peut être suivie d'une étape de nettoyage de la pièce métallique en utilisant de l'acide chlorhydrique.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés, sur lesquels :
[Fig. 1] : La figure 1 est un schéma illustrant des étapes remarquables du procédé selon l'invention ;
[Fig. 2] : La figure 2 est une vue schématique des processus de conception et densification d'une pièce métallique ;
[Fig. 3] : La figure 3 est un schéma illustrant tout un ensemble d'étapes du procédé selon l'invention ;
[Fig. 4] : La figure 4 est une vue schématique simplifiée illustrant une pièce métallique dans différentes phases de densification.
Les modes de réalisation qui seront décrits dans la suite ne sont nullement limitatifs ; on pourra notamment mettre en œuvre des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieur. Cette sélection comprend au moins une caractéristique de préférence fonctionnelle sans détails structurels, ou avec seulement une partie des détails structurels si cette partie uniquement est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieur. En particulier toutes les variantes et tous les modes de réalisation décrits sont prévus pour être combinés entre eux dans toutes les combinaisons où rien ne s'y oppose sur le plan technique. Bien que l'invention n'y soit pas limitée, on va maintenant décrire un mode de mise en œuvre du procédé pour la densification d'une pièce métallique à base de cuivre et d'argent à 0.1%. L'invention peut être mise en œuvre pour d'autres types de métaux avec ou sans alliage. Sur la figure 1, on distingue une étape optionnelle de recuit préliminaire qui peut être mise en œuvre ou pas. La pièce métallique selon l'invention subit principalement les étapes B3, B4, B5 et C telles qu'illustrées sur la figure 1. Ces étapes sont décrites plus en détail dans la suite. Elles permettent au minimum d'avoir une pièce métallique parfaitement densifiée. Elles peuvent être mise en œuvre pour des pièces métalliques pleines ou creuses.
Sur la figure 2 est illustré un enchaînement de processus comprenant la conception d'une pièce métallique au moyen d'une machine de fusion sélective par laser « SLM ». La pièce métallique ainsi obtenue présente une porosité d'une dizaine de pourcent.
Selon l'invention, on met en œuvre la densification en réalisant :
- un traitement thermique préliminaire pour préparer la pièce métallique pour le traitement suivant,
- une compaction pour réduire la porosité, - puis un traitement thermique final pour améliorer la conductivité de la pièce métallique.
Pour tenir compte de manière plus spécifique des parties creuses qui seraient présentes dans une pièce métallique, la présente invention prévoit des étapes supplémentaires pour maintenir la forme géométrique de la pièce métallique.
La figure 3 décrit un ensemble d'étapes selon l'invention. Tout ou partie des étapes de la figure contribuent à la densification d'une pièce métallique avec maintien de la forme géométrique.
L'étape Al concerne un recuit qui peut être réalisé dans un four sous vide ou dans une atmosphère neutre ou inerte. Par exemple, la pièce métallique présente une forme complexe à base de cuivre avec 0.1% d'argent (CuO.lAg).
On utilise le four pour le recuit à une température de mise en solution d'environ 950°C, ce qui correspond à une température 15 à 20% inférieure à la température de fusion du cuivre. La pièce métallique est placée dans le four pendant une durée d'environ une heure.
A l'étape A2, on refroidit la pièce métallique de façon progressive pendant environ 8 à 15 heures avant d'atteindre la température initiale. Sur la figure 4 est représentée une telle pièce métallique 1 avec une porosité élevée. Cette pièce est représentée en coupe. Elle a une forme rectangulaire avec une partie creuse 2 réalisée depuis la surface supérieure.
A l'étape Bl, on remplit la partie creuse 2 avec un métal de remplissage sous sa forme liquide. Il s'agit du métal de Field, un alliage d'étain ayant un très bas point de fusion et une faible mouillabilité. Sur la figure 4, on constate que le métal de remplissage 3 occupe parfaitement toute la partie creuse de sorte que l'ensemble constitué de la pièce métallique et du métal de remplissage présente une forme régulière. Le métal de remplissage 3 affleure la surface supérieure de la pièce métallique.
A l'étape B2, on solidifie le métal de remplissage en laissant par exemple revenir à la température ambiante, condition à laquelle il se présente sous une forme solide.
A l'étape B3, on prévoit une étape d'enrobage de la pièce métallique en la plaçant dans une enveloppe en polymère résistant, puis en réalisant le vide dans l'enveloppe de façon à ce que l'enveloppe épouse complètement la pièce métallique. Selon l'invention, d'autres modes d'enrobage sont prévus comme par exemple le fait de disposer une résine ou un métal sous forme de sarcophage tout autour de la pièce métallique 1. En particulier, on peut avoir une préférence à utiliser l'ensachage lorsque la forme géométrique de la pièce métallique permet à l'enveloppe en polymère ou sachet de se plaquer sur toute la surface externe de la pièce métallique lors de la réalisation du vide. On peut réaliser un sarcophage, notamment en résine, par exemple lorsque la pièce métallique présente une forme géométrique si complexe que l'ensachage entraînerait la création de poches d'airs lors de la réalisation du vide ou lorsque la pièce métallique comporte des arêtes saillantes qui pourraient percer le sachet. - y -
Sur la figure 4, sous étape B31, on distingue le mode d'enrobage par ensachage, c'est-à-dire la pièce métallique 1 est placée dans une enveloppe 4 ou un sachet en polymère. A la sous étape B32, on réalise le vide dans l'enveloppe 4. A l'étape B4, on réalise la compaction en plaçant l'enveloppe 4 contenant la pièce métallique 1 dans un bain d'huile 5, puis en comprimant de façon isostatique sous très haute pression à environ 4000 bars pendant plusieurs minutes, par exemple une à 2 minutes. La pièce métallique 1 est alors densifiée et la porosité est réduite jusqu'à atteindre une valeur inférieure à 1%, par exemple jusqu'à 0.35%. La compaction est réalisée de façon homogène dans toutes les directions pour comprimer la pièce métallique de façon isostatique. La pression appliquée est fonction des caractéristiques physiques du matériau constitutif de la pièce métallique. Par exemple, pour le cuivre ou pour d'autres métaux, on tient compte de son élasticité. Pour le cuivre, la valeur limite de son élasticité est de 200 MPa, il est prévu d'appliquer une pression de 500 MPa.
A l'étape B5, on sort la pièce métallique du bain et on retire l'enveloppe 4 d'enrobage.
A l'étape B6, on retire le métal de remplissage 3 en chauffant l'ensemble à une température au-dessus du point de fusion du métal de remplissage mais en-dessous du point de fusion du cuivre.
L'étape B7 consiste à nettoyer la pièce métallique ainsi densifiée. Pour ce faire, on utilise l'acide chlorhydrique.
Aux étapes Cl et C2, on effectue un recuit final de manière similaire au recuit préliminaire. Ce recuit final a pour objectif d'améliorer la conductivité de la pièce métallique ainsi densifiée. Sur la figure 4, on distingue en C2 la pièce métallique 1 finale après compaction. Sa taille est réduite bien que sa forme géométrique reste la même. Les traits en pointillés représentent sa taille initiale en phase A2 par exemple. La porosité est avantageusement réduite de 20 pourcents par exemple.
Avec le procédé selon l'invention, la pièce métallique présente une étanchéité et une conductivité comparables à celles du matériau de base. La présente invention combine une étape de fabrication additive avec une étape de compression isostatique. Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de densification d'une pièce métallique poreuse comprenant au moins une partie creuse, le procédé comprenant les étapes suivantes : - une étape préliminaire de remplissage de ladite au moins une partie creuse par un métal de remplissage que l'on introduit sous forme liquide, puis solidification de ce métal de remplissage, le métal de remplissage présentant un point de fusion inférieur au point de fusion de la pièce métallique,
- enrobage de la pièce métallique par un matériau étanche, - compaction de la pièce métallique enrobée sous une pression isostatique d'un fluide,
- retrait de l'enrobage de la pièce métallique,
- retrait du métal de remplissage, et
- recuit final de la pièce métallique.
2. Procédé selon la revendication 1, caractérisé en ce que l'étape d'enrobage comprend la mise en place de la pièce métallique dans un sachet étanche sous vide.
3. Procédé selon la revendication 1, caractérisé en ce que l'étape d'enrobage comprend l'enrobage de la pièce métallique au moyen d'un matériau métallique étanche.
4. Procédé selon la revendication 1, caractérisé en ce que l'étape d'enrobage comprend l'enrobage de la pièce métallique au moyen d'une résine.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le métal de remplissage présente un point de fusion inférieur à 100 degrés.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la pièce métallique est en cuivre et le métal de remplissage est un alliage à base d'étain.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la compaction comprend la mise sous pression à une pression isostatique qui est au moins 30% supérieure à la pression limite d'élasticité de la pièce métallique.
8. Procédé selon la revendication 7, caractérisé en ce que la pression isostatique est comprise entre 2000 et 10000 bars.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une étape de recuit préliminaire réalisée avant l'étape d'enrobage.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide de mise sous pression isostatique est de l'huile.
11. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le fluide de mise sous pression isostatique est un gaz.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le recuit final et/ou préliminaire comprend une phase de montée en température, une phase de maintien à une température de mise en solution de la pièce métallique, et une phase de refroidissement progressif sur une durée supérieure à la durée de la phase de montée en température.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de recuit final est suivie d'une étape de nettoyage en utilisant de l'acide chlorhydrique.
EP21739354.5A 2020-07-21 2021-07-01 Procede de densification d'une piece metallique a forme complexe par compression isostatique Pending EP4185466A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007670A FR3112707B1 (fr) 2020-07-21 2020-07-21 Procédé de densification d’une pièce métallique à forme complexe par compression isostatique.
PCT/EP2021/068276 WO2022017760A1 (fr) 2020-07-21 2021-07-01 Procede de densification d'une piece metallique a forme complexe par compression isostatique

Publications (1)

Publication Number Publication Date
EP4185466A1 true EP4185466A1 (fr) 2023-05-31

Family

ID=73698950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21739354.5A Pending EP4185466A1 (fr) 2020-07-21 2021-07-01 Procede de densification d'une piece metallique a forme complexe par compression isostatique

Country Status (4)

Country Link
US (1) US20230278098A1 (fr)
EP (1) EP4185466A1 (fr)
FR (1) FR3112707B1 (fr)
WO (1) WO2022017760A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194905A (ja) * 1996-01-16 1997-07-29 Mitsubishi Heavy Ind Ltd 切削工具等の製造方法
GB2519190B (en) * 2012-02-24 2016-07-27 Malcolm Ward-Close Charles Processing of metal or alloy objects
FR3065178B1 (fr) * 2017-04-14 2022-04-29 C Tec Constellium Tech Center Procede de fabrication d'une piece en alliage d'aluminium
US11123796B2 (en) * 2017-04-28 2021-09-21 General Electric Company Method of making a pre-sintered preform
US10889872B2 (en) * 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
US20190255609A1 (en) * 2018-02-21 2019-08-22 Honeywell International Inc. Methods for additively manufacturing turbine engine components via binder jet printing with gamma prime precipitation hardened nickel-based superalloys
WO2020122992A1 (fr) * 2018-12-12 2020-06-18 Arconic Inc. Procédés de production de pièces métalliques
CN111390180A (zh) * 2020-04-27 2020-07-10 南京国重新金属材料研究院有限公司 一种提高由激光选区熔化技术制造的gh3536合金的持久性能的方法

Also Published As

Publication number Publication date
FR3112707B1 (fr) 2023-01-06
US20230278098A1 (en) 2023-09-07
FR3112707A1 (fr) 2022-01-28
WO2022017760A1 (fr) 2022-01-27

Similar Documents

Publication Publication Date Title
EP2544892B1 (fr) Procédé de fabrication d'un assemblage métallique
EP2066598B1 (fr) Procede d'assemblage de pieces en ceramique refractaire par frittage a chaud avec champ electrique pulse (" sps ")
CA2600274C (fr) Procede ameliore de preparation de composites a matrice metallique et dispositif de mise en oeuvre d'un tel procede
EP3365131B1 (fr) Procede de fabrication par fusion et compression isostatique a chaud
WO2015007966A1 (fr) Procede de fabrication par frittage d'une piece multicouche
FR2486601A1 (fr) Materiaux pour paliers et leurs procedes de fabrication
FR2921281A1 (fr) Preforme et procede pour la fabrication d'une mousse de metal ou d'alliage.
EP0024984B1 (fr) Procédé de fabrication de pièces en alliage à base de titane par métallurgie des poudres
CH627390A5 (fr) Procede d'assemblage par pressage a chaud de pieces a base d'aluminium et de pieces a base de fer.
WO1998037958A1 (fr) Agencement et procede pour ameliorer le vide dans un systeme a vide tres pousse
FR2863186A1 (fr) Element coule composite, substance poreuse a base de fer pour elements coules composites et carter sous pression procedes de fabrication de ce carter sous pression element constitutif de compresseurs
EP4185466A1 (fr) Procede de densification d'une piece metallique a forme complexe par compression isostatique
WO2014187916A1 (fr) Procede de fabrication par metallurgie des poudres d'une piece en acier, et piece en acier ainsi obtenue
EP3170589A1 (fr) Procédé de fabrication d'une pièce en trois dimensions sur un support par une méthode de fabrication additive suivi d'une étape de détachement du substrat
FR2974703A1 (fr) Materiau de blindage magnetique pour aimant supraconducteur
FR2974659A1 (fr) Conducteur thermique a faible temperature
EP0119939B1 (fr) Procédé de frittage sous pression de poudres d'alliages d'aluminium
CA2886926A1 (fr) Procede de fabrication d'une piece couverte d'un revetement abradable
FR2558086A1 (fr) Methode pour produire des particules de fer ou d'alliage de fer aciculaires ou equiaxiales par dissolution d'une bande metallique contenant de telles particules
Michon et al. High temperature evolution of the microstructure of a cast cobalt base superalloy-Consequences on its thermomechanical properties
FR3113774A1 (fr) Procédé d’interconnexion de composants d’un système électronique par frittage
FR3123235A1 (fr) Procédé de fabrication d'une pièce en alliage d'aluminium mettant en œuvre une technique de fabrication additive avec préchauffage.
FR2974658A1 (fr) Materiau de cablage pour aimant supraconducteur
FR2702496A1 (fr) Procédé d'élimination de la porosité d'une couche projetée.
Canale et al. Sintering study of the materials used in the manufacturing of diamond grinding wheels

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)