EP4182550A1 - Unterbrechungsfreies stromversorgungssystem mit motorstart - Google Patents
Unterbrechungsfreies stromversorgungssystem mit motorstartInfo
- Publication number
- EP4182550A1 EP4182550A1 EP21841241.9A EP21841241A EP4182550A1 EP 4182550 A1 EP4182550 A1 EP 4182550A1 EP 21841241 A EP21841241 A EP 21841241A EP 4182550 A1 EP4182550 A1 EP 4182550A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- power supply
- power source
- generator
- electrical generator
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 claims abstract description 152
- 230000001105 regulatory effect Effects 0.000 claims abstract description 137
- 238000002485 combustion reaction Methods 0.000 claims abstract description 28
- 238000012546 transfer Methods 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims description 152
- 230000005284 excitation Effects 0.000 claims description 52
- 230000006698 induction Effects 0.000 claims description 25
- 241000555745 Sciuridae Species 0.000 claims description 23
- 239000007858 starting material Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010888 cage effect Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006854 communication Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/06—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/08—Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
- H02P9/26—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
- H02P9/30—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
- H02P9/302—Brushless excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J15/00—Systems for storing electric energy
- H02J15/007—Systems for storing electric energy involving storage in the form of mechanical energy, e.g. fly-wheels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/08—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
Definitions
- the present invention relates to power supply systems. More particularly, the present invention relates to uninterruptible power supply systems that utilize an internal combustion engine for supplying power during periods of power interruption. More particularly, the present invention relates to power supply systems using flywheel machines for causing an internal combustion engine of the power supply system to startup.
- Uninterruptible power systems are generally known within the prior art. Such uninterruptible power supplies usually comprise a generator (that feeds the critical load) and two prime movers, one of which normally drives the generator, and the other normally being stationary.
- the generator can be a power electronic inverter or an electromagnetic machine, depending on the type of uninterruptible system that is used.
- the normally stationary prime mover is brought up to speed and is connected to drive the generator, usually through a clutch or a battery system (that delivers power during transitions), thereby ensuring a continuous supply of current from the generator.
- a kinetic energy supply and device such as a flywheel or a D.C.
- dynamoelectric machine is coupled to the generator and supplies energy thereto during the transitional period when the generator load is being transferred from one prime mover to the other.
- a battery bank can supply stored energy to the generator during transitional periods.
- One prior art type of no-break power supply comprises an internal combustion engine adapted to be connected through a normally disengaged clutch to a flywheel, the flywheel being connected in turn to the rotor of an electric generator which in turn is connected to the rotor of an AC motor.
- Another prior art type of no-break power supply employs a DC dynamoelectric machine in place of the flywheel, both of these devices acting to supply kinetic energy during the aforementioned transitional period.
- U.S. Patent No. 2,688,704 describes a motor-generator-engine assemblage arranged so as to provide a constant source of electrical power. This device employs a clutch as the switching arrangement.
- U.S. Patent No. 3,221,172 is a no-break power supply employing a differential between the primary motor and the standby motor.
- U.S. Patent No. 3,305,762 discloses an improved method for maintaining the supply of electrical energy to a load during an interruption of the normal supply of electrical power. This device employs a clutch of the eddy current type.
- 3,458,710 is an emergency power system providing an uninterrupted power source having an electric generator for supplying energy to a load, a first motor adapted to be connected to a source of power external as a power system, and a second motor for driving the generator.
- This system also provides an auxiliary generator driven by a diesel engine for supplying the second motor through a relay connection.
- U.S. Patent No. 3,810,116 relates to systems for capturing the information stored in a volatile semiconductor memory during the loss of electric power.
- U.S. Patent. No. 4,460,834 issued on July 17, 1984 to Carlos F. Gottfried, describes an uninterruptible power system for providing an uninterruptible power supply to an external load.
- the power system includes a flywheel generator, a first motor, a standby generator, and a transfer controller.
- the flywheel generator is adapted to supply power to the external load.
- the first motor is drivingly connected to the flywheel generator.
- the first motor is adapted to be connected to a source of power external to the power system.
- the standby generator is electrically connected to the first motor.
- a standby motor is drivingly connected to the standby generator.
- the transfer controller is adapted to switchably interconnect the first motor to the source of power and to interconnect the standby generator to the first motor.
- the first generator is electrically isolated from the secondary external load.
- the prime mover is an internal combustion engine that supplies rotational movement to the common shaft.
- the secondary external load is the electrical utility.
- a thermal recovery system is connected to the internal combustion engine.
- This uninterruptible power system includes a motor generator for conditioning electric power, a backup generator having an internal combustion engine having an electrically-driven starter so as to provide backup electric power, an electrical switch that is electrically connected to power mains and to the electrical output of the backup generator and to the electrical input of the motor generator for selectively switching power from the power means and the backup generator to the motor generator.
- the starter switch is electrically connected to the output of the motor generator and electrically connected to the input of the starter system for switchably connecting the output of the motor generator to the starter.
- U.S. Patent No. 5,053,635 issued on October 1, 1991 to G. West, provides an uninterruptible power supply with a variable speed drive which drives a synchronous motor/generator.
- the synchronous motor/generator and the variable speed drive are connected to inductively accelerate the motor/generator to near synchronous speed.
- the motor/generator assembly reaches near synchronous speed, the motor/generator is switched to synchronous operation, while still under control of the variable speed drive.
- the variable speed drive is connected to maintain synchronicity with the motor/generator during acceleration.
- U.S. Patent No. 5,646,458, issued on July 8, 1997 to Bowyer et ak provides an uninterruptible power supply that provides conditioned AC power to a critical load.
- This uninterruptible power system includes a variable speed drive that operates in response to AC utility power or to a standby DC input by providing a motor drive signal.
- the uninterruptible power supply power conditioning unit further includes a motor-generator that operates in response to the motor drive output by providing the conditioned AC power to the critical load.
- standby DC power is provided by a standby DC power source that includes a variable speed drive and a flywheel motor-generator connected to the variable speed drive.
- Both the power conditioning unit and the standby DC power source are initially operated in response to the utility AC power.
- the flywheel motor-generator stores kinetic energy in a rotating flywheel.
- the rotating flywheel continues to operate the flywheel motor-generator of the standby DC power source so as to cause the production of AC power which is rectified and provided as standby DC power to operate the variable speed drive of the power conditioning unit until either the utility AC power outage is over or a standby emergency generator is brought on line.
- U.S. Patent No. 5,767,591 issued on June 16, 1998 to J. F. Pinkerton, discloses a method and apparatus for providing startup power to a genset-backed uninterruptible power supply.
- the flywheel energy storage device produces three-phase AC voltage and is used to provide temporary power to a critical load while a backup power supply, such as a diesel generator set, is accelerated to full speed.
- the startup power for the genset is also provided from the flywheel energy storage device through a circuit that converts the AC voltage at one level to DC voltage at a lower level.
- This power supply converts mechanical rotation generated by a local power source to electrical power in the event of commercial line power distortion or failure.
- the uninterruptible power supply uses a voltage and frequency -tolerant rectifier-inverter combination that converts the decaying output of a de-accelerating synchronous alternating current machine to a stable alternating current voltage for driving a critical load.
- This power system has a first motor adapted to be connected to a source of power, a flywheel/generator adapted to supply power to the external load, a standby generator switchably electrically connected to the flywheel/generator, and a second motor drivingly connected to the generator/motor and to the internal combustion engine.
- the second motor is electrically connected to the power supplied by the flywheel/generator.
- the first motor is drivingly connected to the flywheel/generator.
- the flywheel/generator is electrically isolated from the source of power.
- the standby generator has an internal combustion engine that is drivingly connected to a generator/motor.
- the generator/motor is adapted to supply power to the flywheel/generator or to the external load upon a change in power supplied by the flywheel/generator or the source of power.
- the present invention is a power supply system that has a regulated power source, an electrical generator electrically interconnected to the regulated power source, an engine having a main shaft integral with or coupled to a shaft of the electrical generator, a mains power supply, a switch connected between the electrical generator and the mains power supply and the synchronous machine of the regulated power source, and a load.
- the regulated power source has a housing, a synchronous machine, a synchronous generator, and a flywheel that shares the common shaft with rotating components of the synchronous machine and synchronous generator within the housing.
- the engine has a main shaft therein that is integral with or coupled to the shaft of the electrical generator.
- the switch is adapted to transfer power from the synchronous machine of the regulated power source to the electrical generator so as to cause the electrical generator to rotate the shaft thereof in order to rotate the main shaft of the engine or to supply power from the engine to the regulated power source.
- the synchronous generator of the regulated power source supplies uninterruptible power to the uninterruptible load independent of the power supplied by the electrical generator or the synchronous machine of the regulated power source.
- the synchronous generator of the regulated power source supplies uninterruptible power to the uninterruptible load.
- the synchronous generator in particular, is an independent electrical circuit from any other electrical circuits and supplies power to the uninterruptible load free from switching and free from interruptions which may occur on the electrical circuit of the mains power supply.
- the synchronous machine drives the common shaft of the regulated power source.
- the synchronous machine of the regulated power source has a power line that is connected to the switch.
- the synchronous machine of the present invention includes an excitation stator winding, an excitation rotor winding cooperative with the excitation stator winding, a main stator winding, a main rotor winding cooperative with the main stator winding, and a squirrel cage winding cooperative with the main stator winding and with the main rotor winding.
- the excitation rotor winding, the main rotor winding, and the squirrel cage winding all rotate with a rotation of the common shaft of the regulated power source.
- a voltage controller is electrically connected to the excitation stator winding so as to cause a voltage to develop in the main rotor winding and main stator winding so that power flows out of the regulated power source as the common shaft and the flywheel rotate.
- a rotating rectifier is affixed to the shaft of the regulated power source. This rotating rectifier is cooperative with the excitation rotor winding and with the main rotor winding.
- the synchronous machine of the regulated power source is switchable and electrically connected to the mains power supply so as to supply power from the mains power supply to the regulated power source.
- the switch electrically connects the synchronous machine of the regulated power source to the mains power supply or electrically connects the electrical generator to the synchronous machine of the regulated power source so as to supply power from the regulated power source to the electrical generator during engine startup or from the electrical generator to the regulated power source after engine startup.
- the electrical generator comprises a main stator winding, a main rotor winding mounted to the shaft of the electrical generator, a squirrel cage winding cooperative with the main stator winding and the main rotor winding, an excitation stator winding, and an excitation rotor winding cooperative with the shaft of the electrical generator and cooperative with the excitation stator winding.
- the electrical generator further comprises a rotating rectifier affixed to the shaft and electrically connected to the excitation rotor winding and to the main rotor winding.
- the electrical generator further comprises an automatic voltage regulator electrically connected to the excitation stator winding so as to monitor and control voltage of the main stator of the electrical generator.
- the switch has an incoming power switch and an outgoing power switch with an interlock that prevents both of the incoming and outgoing power switches from being in a closed position at the same time.
- the incoming power switch is in a closed position so as to supply power from the mains power supply to the synchronous machine of the regulated power source.
- the incoming power switch is in an open position so as to disconnect the mains power supply from the regulated power source and allows the outgoing power switch to be in a closed position.
- the outgoing power switch is in a closed position so as to supply power from the synchronous machine of the regulated power source to the electrical generator or from the electrical generator to the synchronous machine of the regulated power source.
- the outgoing power switch is in an open position so that the electrical generator is disconnected from the regulated power source and allows the incoming power switch to be in the closed position so that the mains power supply supplies power to synchronous machine of the regulated power source.
- the incoming power switch is in the closed position and the outgoing power switch is in the open position so as to supply power from the mains power supply to the regulated power source.
- the incoming power switch is in the open position and the outgoing power switch is in the closed position so that power flows from the regulated power source to the electrical generator or from the electrical generator to the regulated power source.
- the engine is an internal combustion engine.
- the mains power supply is a three-phase alternating-current (AC) power supply.
- the electrical generator acts as an induction motor when the switch causes power to flow from the regulated power source to the electrical generator.
- the induction motor is cooperative with the main shaft of the engine so as to cause the main shaft of the engine to rotate during engine startup.
- the present invention is also a system for starting an engine.
- the system includes a regulated power source, an electrical generator electrically connected or interconnected to the regulated power source, a mains power supply, and a switch connected between the electrical generator and the regulated power source.
- the regulated power source has a housing, a synchronous machine, a flywheel mounted on a common shaft, and a synchronous generator.
- the synchronous machine and the synchronous generator share the common shaft with the flywheel.
- the synchronous machine, the flywheel and the synchronous generator are located within the housing.
- the electrical generator is electrically connected or interconnected to the synchronous machine of the regulated power source.
- the electrical generator has a shaft therein. The shaft of the electrical generator is adapted to be coupled to or integral with the main shaft of the engine.
- the switch is connected between electrical generator and the mains power supply and the synchronous machine of the regulated power source.
- the switch causes power to flow from the synchronous machine of the regulated power source to the electrical generator when startup of the engine is required so as to cause the electrical generator to act as an induction motor.
- the induction motor rotates the shaft of the electrical generator so as to start a rotation of the main shaft of the engine.
- the induction motor acts as a load that receives power from the synchronous machine of the regulated power source during engine startup.
- An uninterruptible load receives uninterruptible power from the synchronous generator of the regulated power source in an independent electrical circuit.
- the electrical generator stops acting as an induction motor and acts as an electrical generator that may then supply power to the synchronous machine of the regulated power source.
- a short-stop load can receive power directly from the electrical generator.
- the synchronous machine of the regulated power source will also be connected to this short-stop load in order to provide voltage and frequency stabilization and power factor correction services to this short-stop
- FIGURE 1 is a diagrammatic illustration of the power supply system of the present invention.
- FIGURE 2 is a cross-sectional view showing the electrical generator and engine of the power supply system of the present invention.
- FIGURE 3 is a cross-sectional view of the regulated power source of the present invention.
- FIGURE 4 is a plan view showing the rotating rectifier is used in the present invention.
- FIGURE 5 is electrical schematic of the rotating rectifier is used in the present invention.
- the power supply system 10 includes a regulated power source 12 having a synchronous machine 13 , a synchronous generator 31 and a flywheel 16 with a common shaft 14 in a housing 15.
- An electrical generator 18 is coupled to an engine 19 and is electrically connected to the regulated power source 12 by a switch 22.
- the switch 22 is connected between the electrical generator 18, the mains power supply 20 and the regulated power source 12.
- the switch 22 transfers power from the regulated power source 12 to the electrical generator 18 so as to cause the electrical generator 18 to rotate a shaft of the electrical generator 18 in order to correspondingly rotate the main shaft of the engine 19, during startup of the engine 19 and supplies power from the engine 19 and electrical generator 18 to the regulated power source 12 after engine startup.
- the regulated power source 12 includes a synchronous machine 13 that may act as an induction motor, a synchronous motor and a synchronous condenser, or a synchronous generator with the common shaft 14.
- the synchronous machine 13 can act as a synchronous condenser.
- the regulated power source 12 has an incoming/outgoing power line 26 connected from the synchronous machine 13 of the regulated power source 12 to the switch 22.
- the synchronous machine 13 of the regulated power source 12 includes an excitation stator winding 28, an excitation rotor winding 30, a main rotor winding 32, a squirrel cage winding 72 (as shown in FIGURE 3 and not shown in FIGURE 1 since it would overlap with the main rotor winding 32), and a main stator winding 34.
- a voltage controller 36 is electrically connected to main stator winding 34 for monitoring the voltage of main stator winding 34 and electrically connected to deliver power to the excitation stator winding 28 so as to cause a voltage to develop in the main stator winding 34 during startup of the engine 19 so that power flows out of the regulated power source 12 as the flywheel 16 rotates the common shaft 14 or to regulate reactive power generation for power factor correction when the regulated power source 12 is connected to the mains power supply 20.
- a rotating rectifier 38 (also shown in FIGURE 3) is affixed to the common shaft 14 of the regulated power source 12. The rotating rectifier 38 is cooperative with the excitation rotor winding 30, the main rotor winding 32, the voltage controller 36, and the main stator winding 34.
- the regulated power source 12 can be switchably electrically connected to the electrical generator 18 so as to supply or receive power to or from the electrical generator 18.
- the switch 22 electrically connects the synchronous machine 13 of the regulated power source 12 to the mains power supply 20 to maintain synchronous speed and act as a synchronous condenser for the mains power supply 20, or electrically connects the synchronous machine 13 of the regulated power source 12 to the electrical generator 18, (which will act as a load during startup of engine 19) when the regulated power source 12 supplies power from the regulated power source 12 to the electrical generator 18.
- the electrical generator 18 will supply power to the synchronous machine 13 of the regulated power source 12
- the electrical generator 18 includes a main stator winding 40, a main rotor winding 42, a squirrel cage winding 64, an excitation stator winding 44 and an excitation rotor winding 46.
- the main rotor winding 42, the squirrel cage winding 64, and the excitation rotor winding 46 are cooperative with the shaft 60 (as shown in FIGURE 2) so as to rotate the shaft 60 of the electrical generator 18.
- a rotating rectifier 48 is mounted on the shaft 60 of the electrical generator 18 and electrically connected to the excitation rotor winding 46 and to the main rotor winding 42.
- An automatic voltage regulator 50 (shown in FIGURE 1) is electrically connected to main stator winding 40 for monitoring the voltage of main stator winding 40, and electrically connected to deliver power to the excitation stator winding 44 so as to monitor and control voltage of the main stator winding 40 of the electrical generator 18.
- FIGURE 1 shows that the regulated power source 12 includes a synchronous generator 31 whose rotor is mounted to the common shaft 14 and whose stator is mounted on the housing 15 of the regulated power source 12.
- the flywheel 16 is mounted on the common shaft 14. As such, as the common shaft 14 rotates with the rotation of the flywheel 16, this rotation causes the synchronous generator 31 to produce electric power which can be delivered to the uninterruptible load 55 in a completely independent electrical circuit.
- Synchronous generator 31 is a complete synchronous generator including independent excitation and automatic voltage regulator 99 . As such, uninterruptible load 55 will receive electrical energy from the synchronous generator 31 of the regulated power source 12.
- the configuration of the synchronous generator 31 is similar to the configuration of the electrical generator 18 (described hereinbefore), and is designed specifically to create an isolated grid with robust voltage stability.
- Voltage controller 36 and automatic voltage regulators 50 and 99 all measure and control voltage on the output of each of their corresponding main stator winding.
- the voltage controller 36 and voltage automatic voltage regulators 50 and 99 may derive input power for their own operation from the corresponding main stator winding, or may derive power from another source (not shown) such as external direct-current source such as a rectifier fed from any and all of the AC circuits mentioned or from a permanent magnet generator (not shown) mounted within the regulated power source 12 for this purpose, or from a battery.
- the switch 22 has an incoming power switch 52 and an outgoing power switch 54. There is an interlock that allows for only one of the switches to be closed at any given moment.
- the incoming power switch 52 is in a closed position so as to supply power from the mains power supply 20 to the regulated power source 12.
- the incoming power switch 52 is in an open position so as to disconnect the mains power supply 20 from the regulated power source 12 and to allow the outgoing power switch 54 to close.
- the outgoing power switch 54 is in a closed position so as to supply or receive power between the regulated power source 12 and the electrical generator 18.
- the outgoing power switch 54 is in an open position so that the electrical generator 18 is disconnected from the regulated power source 12 and allows for the incoming power switch 52 to close.
- the incoming power switch 52 is in a closed position and the outgoing power switch 54 is in an open position so as to supply power from the mains power supply 20 to the regulated power source 12.
- the incoming power switch 52 is in the open position and the outgoing power switch 54 is in the closed position so that power flows to and from the regulated power source 12 and the electrical generator 18.
- the engine 19 is an internal combustion engine.
- the mains power supply 20 is a three-phase AC power supply.
- the electrical generator 18 is a synchronous generator enabled to act as an induction motor when the switch 22 causes power to flow from the regulated power source 12 to the electrical generator 18 during startup of the engine 19.
- this electrical generator 18 acts as an induction motor, the induction motor is cooperative with the main shaft 62 of the engine so as to cause the main shaft 62 of the engine to rotate.
- the power supply system 10 works as follows. Initially, the regulated power source 12 is accelerated by the synchronous machine 13 acting as a synchronous motor so as to remain at its full nominal speed (which is also at synchronous speed). This occurs by being connected to the switch 22 to the mains power supply 20. The uninterruptible load 55 receives power from the synchronous generator 31 of the regulated power source. [61] When it is connected to the mains power supply 20, the synchronous machine 13 of the regulated power source 12 acts as a synchronous condenser so as to provide kilo volt-amperes reactive (KVARs) in order to improve power factor. This increases the efficiency of the power supply system 10 and the mains power supply 20, and improves voltage stability on the mains power supply 20. The regulated power source 12 also acts to increase frequency stability in the mains power supply 20 because of the inertia of the flywheel (which rotates at a constant frequency).
- KVARs kilo volt-amperes reactive
- the power supply system 10 When a fault is detected on the mains power supply 20, the power supply system 10 will command the engine 19 to start. Engine 19 startup will commence by opening the incoming power switch 52. Simultaneously, the voltage controller 36 will halt excitation to the synchronous machine 13 of the regulated power source 12. Then, the outgoing power switch 54 will be closed. Because the excitation is off, this will permit for a low transient when closing the outgoing power switch 54. As a result, the power supply system 10 will not experience any electrical or mechanical power conditions that are damaging to the components. After closing the outgoing power switch 54, the synchronous machine 13 of the regulated power source 12 will connect to the electrical generator 18. Voltage controller 36 will now operate to create a voltage in the main stator winding 34 of the synchronous machine 13 of the regulated power source 12.
- the synchronous machine 13 of the regulated power source 12 is not connected to any incoming external power source, and because it is spinning, the and because it has excitation from voltage controller 36, the synchronous machine 13 of the regulated power source 12 will now act as a synchronous generator that delivers the accumulated kinetic energy in the flywheel 16 to drive the electrical generator 18 as an induction motor. It will do this by means of the voltage controller 36 so as to deliver power to the excitation stator winding 28. This causes a voltage to be developed in the leads of the main stator winding 34. Therefore, power will flow out from the synchronous machine 13 of the regulated power source 12.
- the electrical generator 18 will act as an induction motor because the electrical generator 18 is at a stand-still, and because its rotor has a squirrel cage winding 64, and because it can be fed electrical power to the leads of the main stator winding 40. As such, it develops higher torque as voltage originating in the synchronous machine 13 of the regulated power source 12 is increased.
- the leads of the main rotor winding 42 will be connected to each other in short-circuit by way of the rotating rectifier 48 (to be described hereinafter). This allows for even further torque to be developed.
- This torque will cause the shaft 60 of the electrical generator 18 to turn.
- the main shaft 62 of the engine 19 which is coupled to the shaft 60 of the electrical generator 18, will also turn.
- the main shaft 62 of the engine 19 will continue to accelerate as it turns. It will eventually meet the required turning conditions of the main shaft 62 of the engine 19 so as to allow for combustion to occur in the engine 19.
- regulated power source 12 remains engaged and assists in the acceleration of the engine 19 and thus the time to bring the engine 19 to full speed is reduced.
- the voltage controller 36 will regulate the power required at each stage of the acceleration so as to optimize this operation as well as to protect the components from power conditions that might damage any of the components.
- the synchronous machine 13 of the regulated power source 12 remains engaged during acceleration, it will supply power to the electrical generator 18 as long as the synchronous machine 13 has a higher frequency than the electrical generator 18.
- the synchronous machine 13 will return to acting as a synchronous motor and the electrical generator 18 will act as a synchronous generator, and the engine 19 will continue to supply power to reach the synchronous speed and will also provide energy to the synchronous machine 13 of the regulated power source 12 to recover the speed and kinetic energy that was lost during the startup of the engine 19.
- This can occur if either the voltage controller 36 or the automatic voltage regulator 50 is engaged. This is because of the fact that both the synchronous machine 13 of the regulated power source 12 and the electrical generator 18 have squirrel cage windings. Either can act as an induction motor as long as the other is spinning faster, and with excitation, acting as a synchronous generator. However, the simultaneous operation of both the voltage controller 36 and the automatic voltage regulator 50 is carefully coordinated to prevent damaging transient conditions.
- any over-speed of the engine 19 cannot occur by the present invention because the regulated power source 12 is spinning at synchronous speed and frequency (which are equal for both the regulated power source 12 and the electrical generator 18). It cannot supply electrical power or torque to the engine 19 if the electrical generator 18 has higher frequency than the synchronous frequency.
- the regulated power source 12 also adds inertia in case the speed governor of the engine 19 tends to overshoot. This inertia will reduce the acceleration tending to any overspeed. Therefore, the system is protected against over-speed during startup and operation.
- the engine 19 and the electrical generator 18 can also deliver power to a short-stop load 59 by way of closing external switch 23 to that short-stop load 59.
- the engine 19 and the electrical generator 18 will continue to operate normally, supplying the power for both the regulated power source 12 and the short-stop load 59.
- the synchronous machine 13 of the regulated power source 12 will act as a synchronous condenser with high inertia. This provides reactive power to correct power factor and improve voltage and frequency stability to the short-stop load 59.
- a short-stop load 59 in this power supply system 10 is a load that does not enjoy the benefit of continuous sustained power supply nor an independent dedicated power supply source, but rather it is a load that has power supply directly from the electrical generator 18 only after startup of engine 19 by means of closing external switch 23 during operation of the engine 19. It may also be fed directly from the mains power supply 20 (not shown) if external switch 23 were a two-way transfer switch (not shown). If the mains power supply 20 were to fail, then power supplied to this short-stop load 59 would be suspended for a short period of time that would be resumed after startup of the engine 19.
- a monitoring period confirms that the mains power supply 20 is stable.
- the synchronous machine 13 of the regulated power source 12 is disengaged by suspending power supplied by the voltage controller 36 and immediately disconnected by opening the outgoing power switch 54.
- the incoming power switch 52 will be closed and the voltage controller 36 will resume its operations so that the regulated power source 12 resumes operation powered by the mains power supply 20, and remains ready for any subsequent failure of the mains power supply 20 that may later arise.
- the operation of engine 19 and electrical generator 18 can now be suspended.
- Short-stop load 59 can be powered off or it can be connected to the mains power supply 20 by means of the external switch 23 (if the external switch 23 is a two-way transfer switch) or other switch (not shown).
- the synchronous generator 31 continues to supply power to the uninterruptible load 55.
- the rotating rectifier 48 in the electrical generator 18 can be specially designed to function so that the rotating rectifier 48 will connect both ends of the main rotor winding 46 in short-circuit during cranking operations in order to improve the rising torque produced by the electrical generator 18 (acting as an induction motor) during startup of engine 19.
- the method of the present invention is easy to apply since it is applicable to most traditionally commercially available gen-sets.
- the rotating rectifier 48 will mimic its functionality as in synchronous motors during starting conditions.
- the system of the present invention does not require any traditional method of engine starting, it can be used in addition to any traditional method of engine starting. It can therefore result in a redundant configuration that increases reliability of engine-startup.
- the electrical generator 18 can also be electromagnetically selected and designed for optimizing the performance of this starting method, by using the previously described rotating rectifier, adding a larger squirrel cage, among other design details that enhance behavior as an induction motor.
- FIGURE 2 is a cross-sectional view showing the configuration of the electrical generator 18 and the engine 19.
- the electrical generator 18 has a shaft 60 positioned therein.
- Shaft 60 can be coupled to the main shaft 62 of the engine 19.
- the shaft 60 of the electrical generator 18 can be integral with the main shaft 62 of the engine 19.
- the squirrel cage winding 64 and the main rotor winding 42 are mounted on the shaft 60 so as to rotate with the rotation of the shaft 60.
- the electrical generator 18 includes the main stator winding 40, the main rotor winding 42 and the squirrel cage winding 64.
- the electrical generator 18 also includes the excitation stator winding 44 and the excitation rotor winding 46.
- a rotating rectifier 48 is affixed to the shaft 60 so as to rotate with the rotation of the shaft 60.
- the excitation rotor winding 46, the mains rotor winding 42 and the squirrel cage winding 64 will also rotate with the rotation of the shaft 60.
- the engine 19 is an internal combustion engine.
- the electrical generator 18 and the engine 19 can be mounted together so that the shafts 60 and 62 thereof can be easily integrated or coupled.
- FIGURE 3 shows a cross-sectional view of the regulated power source 12 of the present invention.
- the regulated power source 12 includes the flywheel 16 and the common shaft 14.
- the flywheel 16 is mounted to the common shaft 14 that extends upwardly within the housing 15 of the regulated power source 12. All rotating components of the synchronous machine 13 and the synchronous generator 31 are mounted on the common shaft 14.
- the synchronous machine 13 of the regulated power source 12 has the main stator winding 34, the main rotor winding 32 and the squirrel cage winding 72.
- the squirrel cage winding 72 is cooperative with the main rotor winding 32, the common shaft 14, and with the main stator winding 34.
- the main rotor winding 32 and the squirrel cage winding 72 will rotate with the rotation of the common shaft 14.
- the synchronous machine 13 of the regulated power source 12 further includes the excitation stator winding 28, the excitation rotor winding 30 and rotating rectifier 38.
- the excitation rotor winding 30, rotating rectifier 38 and the main rotor winding 32 are electrically connected and will rotate with the rotation of the common shaft 14.
- the common shaft 14 and the housing 15 extend upwardly so as to accommodate the synchronous generator 31. All rotating components of the synchronous machine 13 and the synchronous generator 31 are mounted on to the common shaft 14.
- the synchronous generator 31 of the regulated power source 12 has a main stator winding 43, a main rotor winding 45 and the squirrel cage winding 47.
- the squirrel cage winding 47 is cooperative with the main rotor winding 45, the common shaft 14, and the main stator winding 43.
- the main rotor winding 45 and the squirrel cage winding 47 will rotate with the rotation of the common shaft 14.
- the synchronous generator 31 of the regulated power source 12 further includes an excitation stator winding 49, an excitation rotor winding 41 and rotating rectifier 39.
- the excitation rotor winding 41, the rotating rectifier 39 and the main rotor winding 45 are electrically connected and will rotate with the rotation of the common shaft 14.
- Squirrel cage winding 47 will also rotate the rotation of the common shaft 14.
- FIGURE 4 illustrates the rotating rectifier 48 as used in the electrical generator 18 of the present invention.
- the rotating rectifier 48 is a bridge rectifier which it is mounted on a rotor. Neither brushes nor slip rings are used. As such, the rotating rectifier 48 serves to reduce the number of wearing parts.
- the electrical generator 18 (as with most alternators) has a rotating field and a stationary armature (i.e. power generation windings).
- the automatic voltage regulator 50 varying the amount of current through the stationary exciter stator windings 44, in turn, varies the three-phase output from the excitation rotor winding 46, which is rectified to direct current in the rotating rectifier 48 to feed the main rotor winding 42.
- This rotating rectifier 48 has the additional function of placing the terminals of the main rotor winding 42 in short-circuit in order to increase the torque of the electrical generator 18 when it acts as an induction motor during startup of the engine 19.
- the rotating rectifier 48 opens the short-circuit and resumes normal rectifying functions after start-up of the engine.
- the main leads of the main rotor winding 42 usually operate at a very low voltage (for example at less than 100 volts) while the common shaft 14 is turning. However, a high-voltage can be induced into the leads of the main rotor winding 42 if a voltage is developed in the main rotor winding 40 while the shaft 60 is not rotating (while rotating at a different speed than the speed dictated by the frequency fed into the main stator winding 40).
- the rotating rectifier 48 will create the short-circuit by means of the zener diodes 92 detecting the high-voltage and signaling of the silicon-controlled rectifiers (SCRs) 110 to close, and therefore creating a short-circuit between the leads of the main rotor winding 42.
- the short-circuit allows for a large induced current to pass through the main rotor winding 42 and, therefore, creates a large induction-cage effect that develops torque on the shaft 60 (as it would in an induction motor).
- the voltage between the leads of the main rotor winding 42 will be reduced as the rotor approaches the speed corresponding to the frequency in the main state are winding 40.
- the SCRs 110 will remain closed and maintain the short-circuit until a voltage between the leads of this main rotor winding 42 reach a determined lower voltage when the rotating rectifier circuitry 48 will command the SCRs 110 to open and remove the short-circuit, and only then permitting the normal operation of the automatic voltage regulator 50, the excitation stator winding 44 and the excitation rotor winding 46 in relation to the main rotor winding 42.
- the rectifier 48 includes a direct-current (DC) bus 100 and 102 (as shown in FIGURE 5), resistors 84, anode diodes 86, and cathode diodes 88. These components are mounted on the rectifier rotor 90 which can be a fixed to the shaft 60 of the electrical generator 18. Zener diodes 92 and SCRs 110 are also provided on the rectifier rotor 90 to create a short-circuit between the opposing poles of the DC bus 100 and 102, which correspond to the two leads of the main rotor winding 42.
- DC direct-current
- FIGURE 5 illustrates the electrical schematic associated with the rotating rectifier 48 of the present invention.
- the center of line 104 is one of the exciter rotor winding 46 terminals that are connected in parallel to both the anode diode 86 on the positive DC bus 100 and the cathode diode 88 on the negative DC bus 102.
- Line 106 and line 108 connect in a similar fashion as line 104.
- Resistors 84 are placed on the line extending between the positive DC bus 100 and negative DC bus 102.
- the SCR 110 controls the flow of electricity across the DC bus between the positive DC bus 100 and the negative DC bus 102 in short-circuit during startup of engine 19. This also places the leads of the main rotor winding 42 in short-circuit.
- SCRs 110 are activated by line 144 which includes the Zener diode 92 along with resistors 112 and 116.
- the regulated power source 12 will remain connected to the electrical generator 18.
- the electrical generator 18 can work either as an induction generator or as a synchronous generator, depending on which excitation system is designated in order to operate in constant running engine conditions.
- the synchronous machine 13 of the regulated power source 12 will receive power produced by the engine 19 in order to recover velocity and return to synchronous speed of the regulated power source 12.
- the synchronous generator 31 of the regulated power source 12 will continue to supply uninterruptible power to the uninterruptible load 55 without the need for any switching to occur on the output of the synchronous generator 31.
- the regulated power source 12 includes the synchronous machine 13, the synchronous generator 31, the housing 15, the common shaft 14, and the flywheel 16.
- the synchronous generator 31 cooperates with the rotating components that cooperate with the common shaft 14 and with the flywheel 16 of the regulated power source 12.
- the synchronous machine 13 and the synchronous generator 31 each have their own independent source of excitation (and the corresponding voltage controller and the voltage regulator 50, excitation windings and rotating rectifiers).
- the synchronous generator 31 can supply uninterruptible power to the uninterruptible load 55 without the need for any switching to occur on the output of the synchronous generator 31.
- the synchronous generator 31 is electrically independent and isolated from the rest of the electrical circuits in the power supply system.
- the uninterruptible load 55 receives power from the synchronous generator 31 of the regulated power source 12 (whose common shaft 14 is powered by the synchronous machine 13), which, in turn, is powered by the mains power supply 20. If any failure occurs in the mains power supply 20, before engine 19 is started and up to full speed of engine 19, the synchronous generator 31 continues to deliver power to the uninterruptible load 55 because the common shaft 14 continues to rotate because of the inertia in the flywheel 16.
- the engine 19 delivers power to the synchronous machine 13 of the regulated power source 12, which, in turn, continues to deliver power to in an uninterruptible fashion to the uninterruptible load 55 via the synchronous generator 31 of the regulated power source 12.
- the synchronous machine 13 of the regulated power source 12 is disengaged by opening the outgoing power switch 54. Then, the incoming power switch 52 will be closed and the voltage controller 36 will resume its operations so that the regulated power source 12 resumes operation powered by the mains power supply 20, and remains ready for any subsequent failure of the mains power supply 20.
- Engine 19 and electrical generator 18 can now suspend operation.
- the regulated power source 12 continues to spin at synchronous or near-synchronous speed and the synchronous generator 31 continues to supply power to the uninterruptible load 55 without harmful switching or fast-acting electrical transients on the supply to the uninterruptible load 55.
- the mechanical energy in the common shaft 14 of the regulated power supply 12 would be maintained by the synchronous machine 13 and the flywheel 16. These are electrically isolated from the electric components of the synchronous generator 31.
- the rotating rectifier 38 of the synchronous machine 13 has the same functionality as the rotating rectifier 48 of the electrical generator 18.
- the regulated power source 12 must be accelerated from a stand-still.
- the synchronous machine is used as an induction motor thanks to its squirrel cage and the rotating rectifier 38 placing the leads of the main rotor winding 32 in short circuit to increase the torque of the synchronous machine during commissioning. Therefore, FIGURE 4 and FIGURE 5 also describe the rotating rectifier 38 of the synchronous machine 13 of the regulated power source 12.
- An additional (not shown) centrifugal switch or radio-controlled switch may be added to the rotating rectifier 38 if a reduced -voltage motor-start method is used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Control Of Eletrric Generators (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/926,912 US11788499B2 (en) | 2017-11-13 | 2020-07-13 | Uninterruptible power supply system with engine start-up |
PCT/US2021/041213 WO2022015617A1 (en) | 2020-07-13 | 2021-07-12 | Uninterruptible power supply system with engine start-up |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4182550A1 true EP4182550A1 (de) | 2023-05-24 |
EP4182550A4 EP4182550A4 (de) | 2024-08-07 |
Family
ID=79554987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21841241.9A Pending EP4182550A4 (de) | 2020-07-13 | 2021-07-12 | Unterbrechungsfreies stromversorgungssystem mit motorstart |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4182550A4 (de) |
CA (1) | CA3189412A1 (de) |
MX (1) | MX2023000675A (de) |
WO (1) | WO2022015617A1 (de) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7071581B2 (en) * | 2001-01-31 | 2006-07-04 | Satcon Technology Corp. | Uninterruptible power supply system using a slip-ring, wound-rotor-type induction machine and a method for flywheel energy storage |
US20030137196A1 (en) * | 2002-01-24 | 2003-07-24 | Abraham Liran | Power supply for providing continuous and regulated energy to the power user |
EP1516421A2 (de) * | 2002-06-06 | 2005-03-23 | Black & Decker Inc. | Startersystem für ein tragbares hilfstriebwerk das einen tragbaren universalen batteriepack einsetzt |
US9577471B2 (en) * | 2014-02-13 | 2017-02-21 | Power Group International Corporation | Power system for providing an uninterruptible power supply to an external load |
US10855141B2 (en) * | 2017-11-13 | 2020-12-01 | Potencia Industrial Llc | Power supply system for providing power to a load and for start-up of an internal combustion engine that provides power to such load |
-
2021
- 2021-07-12 CA CA3189412A patent/CA3189412A1/en active Pending
- 2021-07-12 EP EP21841241.9A patent/EP4182550A4/de active Pending
- 2021-07-12 MX MX2023000675A patent/MX2023000675A/es unknown
- 2021-07-12 WO PCT/US2021/041213 patent/WO2022015617A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2022015617A1 (en) | 2022-01-20 |
EP4182550A4 (de) | 2024-08-07 |
CA3189412A1 (en) | 2022-01-20 |
MX2023000675A (es) | 2023-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0154626B1 (de) | Unterbrechungsfreie spannungsversorgung | |
US9577471B2 (en) | Power system for providing an uninterruptible power supply to an external load | |
US10855141B2 (en) | Power supply system for providing power to a load and for start-up of an internal combustion engine that provides power to such load | |
US4686375A (en) | Uninterruptible power supply cogeneration system | |
US5811960A (en) | Battery-less uninterruptable sequel power supply | |
US4406950A (en) | Greatly prolonged period non-interruptible power supply system | |
US6128204A (en) | Line power unit for micropower generation | |
EP0069568A2 (de) | Motorgeneratorsystem, das eine verlängerte ununterbrochene Leistungslieferung an einer Last verschafft | |
US20020101119A1 (en) | Uninterruptible power supply system using a slip-ring, wound-rotor-type induction machine and a method for flywheel energy storage | |
US10075106B2 (en) | DC synchronous machine | |
US5880537A (en) | Uninterruptable power supply | |
US10784802B2 (en) | Generator starter of a turbomachine with asynchronous multi-winding electric machine | |
US5283471A (en) | DC generator and back-up engine starting apparatus | |
US11788499B2 (en) | Uninterruptible power supply system with engine start-up | |
RU2518907C1 (ru) | Система бесперебойного и гарантированного электроснабжения для наиболее ответственных потребителей электроэнергии | |
KR20030083705A (ko) | 슬립 링의 권선형 회전자 유도기기를 사용하는 무정전전력 공급원 및 플라이휠 에너지 저장을 위한 방법 | |
US20240235253A1 (en) | Uninterruptible power supply system with engine start-up | |
WO2022015617A1 (en) | Uninterruptible power supply system with engine start-up | |
EP3939142B1 (de) | Stromversorgungssystem und system zum starten von motoren für ein solches stromversorgungssystem | |
EP3698448B1 (de) | Steuervorrichung für ein energieversorgungssytem und verfahren zum betrieb desselben | |
JP2002238184A (ja) | エンジン発電機による無停電発電装置 | |
Everson | Uninterrupted Electric Power Systems Utilizing a DC Motor as Emergency Drive | |
Roesel et al. | Advancement of power technology using written-pole/sup TM/motors and generators-an overview | |
Roesel | Improved power quality with" written-pole" motor-generators and" written-pole" motors | |
Morash | Advantages of enhanced synchronous motors in heating, refrigerating, and air-conditioning applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: POTENCIA INDUSTRIAL, LLC |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20240708 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02D 41/06 20060101ALI20240702BHEP Ipc: F02D 29/06 20060101ALI20240702BHEP Ipc: H02J 9/08 20060101ALI20240702BHEP Ipc: H02P 9/30 20060101ALI20240702BHEP Ipc: H02P 9/14 20060101ALI20240702BHEP Ipc: H02P 9/08 20060101AFI20240702BHEP |