EP4179588A1 - Method for producing and treating a framed proton-conductive membrane - Google Patents

Method for producing and treating a framed proton-conductive membrane

Info

Publication number
EP4179588A1
EP4179588A1 EP21801043.7A EP21801043A EP4179588A1 EP 4179588 A1 EP4179588 A1 EP 4179588A1 EP 21801043 A EP21801043 A EP 21801043A EP 4179588 A1 EP4179588 A1 EP 4179588A1
Authority
EP
European Patent Office
Prior art keywords
frame
proton
area
region
conductive membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21801043.7A
Other languages
German (de)
French (fr)
Inventor
Berthold Reeb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP4179588A1 publication Critical patent/EP4179588A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing and treating a framed proton conductive membrane for a fuel cell.
  • Fuel cells are used for the chemical conversion of fuel with oxygen into water in order to generate electrical energy.
  • fuel cells contain a proton-conductive (electrolyte) membrane as a core component. Electrodes can be assigned to this, so that the proton-conductive membrane forms a common membrane electrode assembly (MEA for “membrane electrode assembly”) with the electrodes. Alternatively, the electrodes can also be assigned to the gas diffusion layers arranged adjacent to the proton-conductive membrane.
  • MEA membrane electrode assembly
  • the fuel in particular hydrogen (H2) or a gas mixture containing hydrogen
  • H2 hydrogen
  • a gas mixture containing hydrogen is supplied to the anode.
  • H2 hydrogen
  • a gas mixture containing hydrogen this is first reformed and hydrogen is thus made available.
  • An electrochemical oxidation of H2 to H + takes place at the anode with the release of electrons.
  • the electrons provided at the anode are fed to the cathode via an electrical line.
  • Oxygen or an oxygen-containing gas mixture is fed to the cathode, so that a reduction of O2 to O2' takes place , with the electrons being absorbed.
  • the proton-conductive membrane with the components To add fuel cell in discrete, ie individual steps to form a composite, wherein the component-joining element is preferably formed from an adhesive in the form of a liquid adhesive.
  • the adhesive can migrate into the active surface of the proton-conducting membrane before curing and partially deactivate it.
  • US 2011 281 195 A1 describes a method for producing a membrane electrode arrangement for a fuel cell, in which an adhesive is used which, due to its high adhesive force, does not migrate beyond an edge region of an active surface of the fuel cell.
  • a first area with an increased adhesive force is created enables the proton-conductive membrane to adhere securely to an adjacent layer, for example to an electrode or to a gas-diffusion layer.
  • a second area is created that has a lower adhesive force than that of the first area. This prevents or makes it difficult for an adhesive to adhere within the second region and thus prevents the adhesive from migrating into the proton conductive membrane. Degradation mechanisms such as ionic deactivation of proton conductivity or wetting of the noble metal catalysts on a proton-conductive membrane coated with a catalyst can thus be reduced.
  • the at least two media ports serve to supply the reactants, ie oxygen and fuel.
  • a third media port can also be provided for the supply of cooling water.
  • further media ports can also be designed to remove the reactants and the cooling water.
  • the second area is delimited by a closed line running between the media ports and the recess of the frame. This enables a comparatively large first area with increased adhesive force, so that good and secure adhesion of the proton-conductive membrane to an adjacent layer is possible.
  • the second area extends to the recess.
  • a comparatively large second area with a lower adhesion force is made available. This serves as a barrier for the proton conductive membrane to prevent penetration of the adhesive into it.
  • the area of the second area is smaller than the area of the first area in order to ensure that the proton-conductive membrane adheres securely to an adjacent layer.
  • the at least one surface of the frame is treated by means of plasma irradiation and is thus activated.
  • the at least one surface of the frame is irradiated with UV light or with IR radiation. This proves to be advantageous, among other things, when using UV-curable adhesives or hot-melt adhesives.
  • the second area In order to generate a second area with a lower adhesive force, it is preferable to cover the second area with a mask before the at least one surface of the frame is treated. This prevents the second area from being treated at the same time during an adhesion-increasing treatment, such as plasma irradiation or irradiation with electromagnetic radiation. The second area is shielded from the radiation and thus excluded. An adhesion-increasing effect on the second area is thus prevented by the mask.
  • an adhesion-increasing treatment such as plasma irradiation or irradiation with electromagnetic radiation.
  • the at least one surface of the frame is irradiated by means of an irradiation source which has a slit system or a mask, so that the second region is left out or shielded from the irradiation by the irradiation source.
  • the radiation source can be a plasma source or a light source, on which a slit system is formed, or in front of which a mask is arranged.
  • the slit system can have one or more slits that are coupled into the beam path of the radiation source.
  • a dewetting agent is applied at least in regions to the surface of the second region.
  • This dewetting agent causes the wetting angle on the surface of the second area treated in this way to become greater than 90°, so that the adhesive force of the second area is actively reduced.
  • the dewetting agent is based on a silicone, for example a silicone oil.
  • the at least one surface of the frame is treated by heating.
  • increased adhesive force can be achieved by heating the adhesive
  • FIG. 1 shows a schematic plan view of a framed proton-conducting membrane or of a CCM.
  • FIG. 1 shows a proton-conductive membrane 1 for a fuel cell inserted into a recess 6 of a frame 2 .
  • a semi-permeable electrolyte membrane this can be covered on a first side with an anode and on a second side with a cathode and can be connected to these in a materially bonded manner.
  • the electrodes and the membrane 1 then form a composite of what is known as a membrane electrode unit (MEA for short).
  • the first electrode and the second electrode comprise carrier particles on which catalyst particles made of noble metals or mixtures comprising noble metals such as platinum, palladium, ruthenium or the like are arranged or supported. These catalyst particles serve as a reaction accelerator in the electrochemical reaction of the fuel cell.
  • the carrier particles can be carbonaceous. However, carrier particles formed from a metal oxide or carbon with a corresponding coating also come into consideration.
  • the electrodes are preferably formed with a plurality of catalyst particles, which can be formed as nanoparticles, for example as core-shell nanoparticles (“core-shell-nanoparticles”). They have the advantage of a large surface area, with the precious metal or precious metal alloy only being arranged on the surface, while a smaller Valuable metal, such as nickel or copper, form the core of the nanoparticle.
  • PEM fuel cell polymer electrolyte membrane fuel cell
  • fuel or fuel molecules, in particular hydrogen are split into protons and electrons at the first electrode (anode).
  • the proton-conducting membrane 1 lets the protons (eg H + ) through, but is impermeable to the electrons (e _ ).
  • the proton-conducting membrane 1 is formed from an ionomer, preferably a sulfonated tetrafluoroethylene polymer (PTFE) or a polymer of perfluorinated sulfonic acid (PFSA).
  • PTFE sulfonated tetrafluoroethylene polymer
  • PFSA perfluorinated sulfonic acid
  • a cathode gas in particular oxygen or air containing oxygen, is provided at the cathode, so that the following reaction takes place here: O2 +
  • the frame 2 has a plurality of media ports 3, 4, 5, 11, 12, 13 for the supply and removal of the reactants, ie fuel and oxygen, and for the supply and removal of coolant.
  • the method for producing and treating the proton-conductive membrane 1 comprises the following steps: First, the proton-conductive membrane 1 is provided and inserted into the recess 6 of the at least two media ports 3, 4, 5, 11, 12, 13 having frame 2. In order to join or connect the proton-conductive membrane 1 to an adjacent layer, for example an electrode or a gas diffusion layer, a surface 7 of the frame 2 is treated so that there is a first area 8 with an increased adhesive force and a second area 9 with an adhesion force that is reduced compared to the increased adhesion force of the first area 8 .
  • first area 8 with increased adhesive force enables an improved adhesive effect between two objects to be glued together Layers.
  • second region 9 which has the lower adhesive force, prevents the adhesive from migrating into the active region of the proton-conductive membrane 1 and thus from damaging it by the adhesive.
  • the second area 9 is preferably a line running between the media ports 3, 4, 5, 11, 12, 13 and the recess 6 of the frame 2, which line is shown in FIG. 1 as a dashed line. In order to increase the barrier effect, however, it is also possible for the second area 9 to extend from the line running between the media ports 3 , 4 , 5 , 11 , 12 , 13 and the recess 6 to the recess 6 .
  • the adhesion-increasing treatment can preferably be carried out by plasma irradiation of the at least one surface 7.
  • the at least one surface 7 can also be treated with electromagnetic radiation, such as UV radiation or IR radiation, or by heating the at least one surface 7 .
  • the former can be achieved by covering the second region 9 with a mask before the at least one surface 7 of the frame 2 is treated, ie before the plasma treatment or before the irradiation.
  • the mask consequently shields the second area 9 from the treatment or irradiation, so that an adhesion-increasing effect on the second area 9 is prevented. Only the unshielded first area 8 is thus exposed to the adhesion-increasing treatment.
  • this effect can also be achieved by giving to the treatment or irradiation has a slit system or a mask such that the second region 9 is spared from the irradiation or treatment by the irradiation source.
  • one or more columns or a mask are coupled into the beam path of the radiation source.
  • the adhesion-reducing treatment can be achieved by at least partially applying a dewetting agent to the surface 10 of the second region 9 .
  • a dewetting agent can, for example, be a substance containing silicone, such as a silicone oil. This means that the wetting angle on the surface 10 of the second area 9 is greater than 90° and the adhesive force is thus actively reduced.
  • the treatment of the at least one surface 7 of the frame can include both an adhesion-reducing treatment on the surface 10 of the second area and an adhesion-increasing treatment on the surface 7 of the first area 9 .
  • the treatment can also only be an adhesion-increasing treatment while leaving out the second area 9, or only an adhesion-reducing treatment of the second area 9 while leaving out the first area 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a method for producing and treating a framed proton-conductive membrane (1) for a fuel cell, comprising the steps of: - providing the proton-conductive membrane (1) and a frame (2) comprising at least two media ports (3, 4, 5), - inserting the membrane (1) into a cut-out (6) in the frame, - treating at least one surface (7) of the frame (2) such that there is a first region (8) with an increased adhesive force for joining by adhesive bonding, and that there is at least one second region (9) with an adhesive force lower than the increased adhesive force.

Description

Verfahren zur Herstellung und Behandlung einer gerahmten protonenleitfähigen Membran Method of making and treating a framed proton conductive membrane
BESCHREIBUNG: DESCRIPTION:
Die Erfindung betrifft ein Verfahren zur Herstellung und Behandlung einer gerahmten protonenleitfähigen Membran für eine Brennstoffzelle. The invention relates to a method for producing and treating a framed proton conductive membrane for a fuel cell.
Brennstoffzellen werden für die chemische Umsetzung eines Brennstoffs mit Sauerstoff zu Wasser genutzt, um elektrische Energie zu erzeugen. Hierfür enthalten Brennstoffzellen als Kernkomponente eine protonenleitfähige (Elekt- rolyt-)Membran. Dieser können Elektroden zugeordnet sein, so dass die protonenleitfähige Membran mit den Elektroden eine gemeinsame Membranelektrodeneinheit (MEA für „membrane electrode assembly“) bildet. Alternativ können die Elektroden auch den zur protonenleitfähigen Membran benachbart angeordneten Gasdiffusionslagen zugeordnet sein. Fuel cells are used for the chemical conversion of fuel with oxygen into water in order to generate electrical energy. For this purpose, fuel cells contain a proton-conductive (electrolyte) membrane as a core component. Electrodes can be assigned to this, so that the proton-conductive membrane forms a common membrane electrode assembly (MEA for “membrane electrode assembly”) with the electrodes. Alternatively, the electrodes can also be assigned to the gas diffusion layers arranged adjacent to the proton-conductive membrane.
Im Betrieb einer Brennstoffzellenvorrichtung mit einer Mehrzahl zu einem Brennstoffzellenstapel zusammengefassten Brennstoffzellen wird der Brennstoff, insbesondere Wasserstoff (H2) oder ein wasserstoffhaltiges Gasgemisch der Anode zugeführt. In Falle eines wasserstoffhaltigen Gemisches wird dieses zunächst reformiert und so Wasserstoff bereit gestellt. An der Anode findet eine elektrochemische Oxidation von H2 zu H+ unter Abgabe von Elektronen statt. Die an der Anode bereitgestellten Elektronen werden über eine elektrische Leitung der Kathode zugeleitet. Der Kathode wird Sauerstoff oder ein sauerstoffhaltiges Gasgemisch zugeführt, so dass eine Reduktion von O2 zu O2' unter Aufnahme der Elektronen stattfindet. During operation of a fuel cell device with a plurality of fuel cells combined to form a fuel cell stack, the fuel, in particular hydrogen (H2) or a gas mixture containing hydrogen, is supplied to the anode. In the case of a hydrogen-containing mixture, this is first reformed and hydrogen is thus made available. An electrochemical oxidation of H2 to H + takes place at the anode with the release of electrons. The electrons provided at the anode are fed to the cathode via an electrical line. Oxygen or an oxygen-containing gas mixture is fed to the cathode, so that a reduction of O2 to O2' takes place , with the electrons being absorbed.
Es ist bekannt, die protonenleitfähige Membran mit den Komponenten der Brennstoffzelle in diskreten, d.h. einzelnen Schritten zu einem Verbund zu fügen, wobei das die Komponenten fügende Element aus einem Klebstoff bevorzugt in Form eines Flüssigklebstoffs gebildet ist. Problematisch hierbei ist, dass der Klebstoff vor dem Aushärten in die aktive Fläche der protonenleitfähigen Membran migrieren und diese partiell deaktivieren kann. It is known that the proton-conductive membrane with the components To add fuel cell in discrete, ie individual steps to form a composite, wherein the component-joining element is preferably formed from an adhesive in the form of a liquid adhesive. The problem here is that the adhesive can migrate into the active surface of the proton-conducting membrane before curing and partially deactivate it.
In der US 2011 281 195 A1 ist ein Verfahren zur Herstellung einer Membranelektrodenanordnung für eine Brennstoffzelle beschrieben, bei der ein Klebstoff verwendet wird, welcher aufgrund seiner hohen Adhäsionskraft nicht über einen Randbereich einer aktiven Fläche der Brennstoffzelle hinaus migriert. US 2011 281 195 A1 describes a method for producing a membrane electrode arrangement for a fuel cell, in which an adhesive is used which, due to its high adhesive force, does not migrate beyond an edge region of an active surface of the fuel cell.
Es ist die Aufgabe der vorliegenden Erfindung, ein alternatives Verfahren zur Herstellung und Behandlung einer protonenleitfähigen Membran bereit zu stellen, bei dem ein Migrieren des Klebstoffes in die protonenleitfähige Membran verhindert oder reduziert wird. It is the object of the present invention to provide an alternative method for the production and treatment of a proton-conductive membrane, in which migration of the adhesive into the proton-conductive membrane is prevented or reduced.
Diese Aufgabe wird gelöst mit einem Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben. This object is achieved with a method having the features of claim 1. Advantageous configurations with expedient developments of the invention are specified in the dependent claims.
Das Verfahren zur Herstellung und Behandlung einer gerahmten protonenleitfähigen Membran für eine Brennstoffzelle zeichnet sich dabei durch die folgenden Schritte aus: The process for manufacturing and treating a framed proton-conducting membrane for a fuel cell is characterized by the following steps:
- Bereitstellen der protonenleitfähigen Membran und eines wenigstens zwei Medienports umfassenden Rahmens, - providing the proton-conductive membrane and a frame comprising at least two media ports,
- Einsetzen der Membran in eine Ausnehmung des Rahmens, und- inserting the membrane into a recess of the frame, and
- Behandeln wenigstens einer Oberfläche des Rahmens derart, dass ein erster Bereich mit einer gesteigerten Adhäsionskraft für ein Fügen durch Kleben vorliegt, und dass wenigstens ein zweiter Bereich mit einer gegenüber der gesteigerten Adhäsionskraft geringeren Adhäsionskraft vorliegt. - Treating at least one surface of the frame in such a way that there is a first area with an increased adhesive force for joining by gluing, and that at least a second area is present with an adhesive force that is lower than the increased adhesive force.
Durch die Behandlung der wenigstens einen Oberfläche des Rahmens wird ein erster Bereich mit einer gesteigerten Adhäsionskraft geschaffen, der ein sicheres Haften der protonenleitfähigen Membran an eine benachbarte Schicht, beispielsweise an eine Elektrode oder an eine Gasdiffusionslage ermöglicht. Gleichzeitig wird ein zweiter Bereich geschaffen, der eine geringere Adhäsionskraft aufweist, als die des ersten Bereichs. Dies verhindert oder erschwert das Haften eines Klebstoffs innerhalb des zweiten Bereichs und verhindert so die Migration des Klebstoffs in die protonenleitfähige Membran. Degradationsmechanismen wie eine ionische Deaktivierung der Protonenleitfähigkeit oder eine Benetzung der Edelmetallkatalysatoren auf einer mit einem Katalysator beschichteten protonenleitfähigen Membran können somit verringert werden. Die mindestens zwei Medienports dienen dabei der Zuführung der Reaktanden, also von Sauerstoff und Brennstoff. Zusätzlich kann auch ein dritter Medienport zur Zufuhr von Kühlwasser vorgesehen sein. Weiterhin können auch weitere Medienports zur Abfuhr der Reaktanden und des Kühlwassers ausgebildet sein. By treating the at least one surface of the frame, a first area with an increased adhesive force is created enables the proton-conductive membrane to adhere securely to an adjacent layer, for example to an electrode or to a gas-diffusion layer. At the same time, a second area is created that has a lower adhesive force than that of the first area. This prevents or makes it difficult for an adhesive to adhere within the second region and thus prevents the adhesive from migrating into the proton conductive membrane. Degradation mechanisms such as ionic deactivation of proton conductivity or wetting of the noble metal catalysts on a proton-conductive membrane coated with a catalyst can thus be reduced. The at least two media ports serve to supply the reactants, ie oxygen and fuel. In addition, a third media port can also be provided for the supply of cooling water. Furthermore, further media ports can also be designed to remove the reactants and the cooling water.
Weiterhin ist es vorteilhaft, wenn der zweite Bereich durch eine zwischen den Medienports und der Ausnehmung des Rahmens verlaufende geschlossene Linie begrenzt wird. Dies ermöglicht einen vergleichsweise großen ersten Bereich mit gesteigerter Adhäsionskraft, so dass ein gutes und sicheres Haften der protonenleitfähigen Membran an eine benachbarte Schicht möglich ist. Furthermore, it is advantageous if the second area is delimited by a closed line running between the media ports and the recess of the frame. This enables a comparatively large first area with increased adhesive force, so that good and secure adhesion of the proton-conductive membrane to an adjacent layer is possible.
Darüber hinaus ist es von Vorteil, wenn sich der zweite Bereich bis zur Ausnehmung erstreckt. Dadurch wird ein vergleichsweise großer zweiter Bereich mit geringerer Adhäsionskraft zur Verfügung gestellt. Dieser dient als eine Barriere für die protonenleitfähige Membran, um ein Eindringen des Klebstoffs in diese zu verhindern. In diesem Zusammenhang ist es sinnvoll, dass die Fläche des zweiten Bereichs kleiner ist als die Fläche des ersten Bereichs, um ein sicheres Haften der protonenleitfähigen Membran an eine benachbarte Schicht zu gewährleisten. In addition, it is advantageous if the second area extends to the recess. As a result, a comparatively large second area with a lower adhesion force is made available. This serves as a barrier for the proton conductive membrane to prevent penetration of the adhesive into it. In this context, it makes sense that the area of the second area is smaller than the area of the first area in order to ensure that the proton-conductive membrane adheres securely to an adjacent layer.
Um die Adhäsionskraft des ersten Bereichs zu steigern ist es vorteilhaft, wenn die wenigstens eine Oberfläche des Rahmens mittels einer Plasmabestrahlung behandelt und so aktiviert wird. Alternativ oder zusätzlich ist es möglich, die wenigstens eine Oberfläche des Rahmens mit einer elektromagnetischen Strahlung insbesondere mit Licht zu bestrahlen. Dabei ist es von Vorteil, wenn die wenigstens eine Oberfläche des Rahmens mit UV-Licht oder mit IR-Strahlung bestrahlt wird. Dies erweist sich unter anderem bei Verwendung von UV-härtbaren Klebstoffen oder Schmelzklebstoffen als vorteilhaft. In order to increase the adhesive force of the first area, it is advantageous if the at least one surface of the frame is treated by means of plasma irradiation and is thus activated. Alternatively or additionally, it is possible to irradiate the at least one surface of the frame with electromagnetic radiation, in particular with light. It is advantageous here if the at least one surface of the frame is irradiated with UV light or with IR radiation. This proves to be advantageous, among other things, when using UV-curable adhesives or hot-melt adhesives.
Um einen zweiten Bereich mit einer geringeren Adhäsionskraft zu generieren, ist es bevorzugt, den zweiten Bereich mittels einer Maske abzudecken, bevor die Behandlung der wenigstens einen Oberfläche des Rahmens erfolgt. Dies verhindert, dass der zweite Bereich bei einer adhäsionssteigernden Behandlung, wie beispielsweise einer Plasmabestrahlung oder der Bestrahlung mit elektromagnetischer Strahlung, mitbehandelt wird. Der zweite Bereich wird von der Bestrahlung abgeschirmt und damit ausgenommen. Eine adhäsionssteigernde Wirkung auf den zweiten Bereich wird somit durch die Maske verhindert. In order to generate a second area with a lower adhesive force, it is preferable to cover the second area with a mask before the at least one surface of the frame is treated. This prevents the second area from being treated at the same time during an adhesion-increasing treatment, such as plasma irradiation or irradiation with electromagnetic radiation. The second area is shielded from the radiation and thus excluded. An adhesion-increasing effect on the second area is thus prevented by the mask.
Alternativ oder zusätzlich ist es vorteilhaft, wenn die Bestrahlung der wenigstens einen Oberfläche des Rahmens mittels einer Bestrahlungsquelle erfolgt, die ein Spaltsystem oder eine Maske aufweist, so dass der zweite Bereich von der Bestrahlung durch die Bestrahlungsquelle ausgespart oder abgeschirmt wird. Die Bestrahlungsquelle kann dabei eine Plasmaquelle oder eine Lichtquelle sein, an der ein Spaltsystem ausgebildet ist, oder vor die eine Maske angeordnet ist. In anderen Worten kann das Spaltsystem einen oder mehrere Spalte aufweisen, die in den Strahlengang der Bestrahlungsquelle eingekoppelt sind. Alternatively or additionally, it is advantageous if the at least one surface of the frame is irradiated by means of an irradiation source which has a slit system or a mask, so that the second region is left out or shielded from the irradiation by the irradiation source. The radiation source can be a plasma source or a light source, on which a slit system is formed, or in front of which a mask is arranged. In other words, the slit system can have one or more slits that are coupled into the beam path of the radiation source.
Alternativ oder zusätzlich ist es auch möglich, dass vor oder beim Behandeln der wenigstens einen Oberfläche des Rahmens, auf die Oberfläche des zweiten Bereichs zumindest bereichsweise ein Mittel zur Entnetzung aufgetragen wird. Dieses Mittel zur Entnetzung führt dazu, dass der Benetzungswinkel auf der so behandelten Oberfläche des zweiten Bereichs größer als 90° wird, so dass die Adhäsionskraft des zweiten Bereichs aktiv verringert wird. Insbesondere ist es vorteilhaft, wenn das Mittel zur Entnetzung auf einem Silikon basiert, beispielsweise ein Silikonöl. Alternatively or additionally, it is also possible that before or during the treatment of the at least one surface of the frame, a dewetting agent is applied at least in regions to the surface of the second region. This dewetting agent causes the wetting angle on the surface of the second area treated in this way to become greater than 90°, so that the adhesive force of the second area is actively reduced. In particular, it is advantageous if the dewetting agent is based on a silicone, for example a silicone oil.
Alternativ oder zusätzlich ist es auch vorteilhaft, wenn die Behandlung der wenigstens eine Oberfläche des Rahmens durch Erwärmen erfolgt. So kann nach dem Aufträgen eines Klebstoffs zum Kleben der protonenleitfähigen Membran an eine benachbarte Schicht durch Erwärmen des Klebstoffs eine gesteigerte Adhäsionskraft erzielt werden Alternatively or additionally, it is also advantageous if the at least one surface of the frame is treated by heating. Thus, after applying an adhesive to bond the proton conductive membrane to an adjacent layer, increased adhesive force can be achieved by heating the adhesive
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Ansprüchen, der nachfolgenden Beschreibung bevorzugter Ausführungsformen sowie anhand der Zeichnungen. Dabei zeigt: Further advantages, features and details of the invention result from the claims, the following description of preferred embodiments and with reference to the drawings. It shows:
Fig. 1 eine schematische Draufsicht auf eines gerahmte protonenleitfähige Membran oder auf eine CCM. 1 shows a schematic plan view of a framed proton-conducting membrane or of a CCM.
In Figur 1 ist eine in eine Aussparung 6 eines Rahmen 2 eingesetzte protonenleitfähige Membran 1 für eine Brennstoffzelle dargestellt. Diese kann als eine semipermeable Elektrolytmembran auf einer ersten Seite mit einer Anode und auf einer zweiten Seite mit einer Kathode bedeckt und stoffschlüssig mit diesen verbunden sein. Die Elektroden und die Membran 1 bilden dann einen Verbund einer sogenannten Membranelektrodeneinheit (kurz MEA). Die erste Elektrode und die zweite Elektrode umfassen Trägerpartikel, auf denen Katalysatorpartikel aus Edelmetallen oder Gemischen umfassend Edelmetalle wie Platin, Palladium, Ruthenium oder dergleichen, angeordnet oder geträgert sind. Diese Katalysatorpartikel dienen als Reaktionsbeschleuniger bei der elektrochemischen Reaktion der Brennstoffzelle. Die Trägerpartikel können kohlenstoffhaltig sein. Es kommen aber auch Trägerpartikel in Betracht, die aus einem Metalloxid gebildet sind oder Kohlenstoff mit einer entsprechenden Beschichtung. Die Elektroden sind vorzugsweise mit einer Mehrzahl an Katalysatorpartikeln gebildet, die als Nanopartikel, zum Beispiel als Kern-Hülle-Na- nopartikel („core-shell-nanoparticles“) gebildet sein können. Sie weisen den Vorteil einer großen Oberfläche auf, wobei das Edelmetall oder die Edelmetalllegierung lediglich an der Oberfläche angeordnet ist, während ein geringer- wertiges Metall, beispielsweise Nickel oder Kupfer, den Kern des Nanopartikels bilden. In einer derartigen Polymerelektrolytmembran-Brennstoffzelle (PEM-Brennstoffzelle) werden an der ersten Elektrode (Anode) Brennstoff oder Brennstoffmoleküle, insbesondere Wasserstoff, in Protonen und Elektronen aufgespaltet. Die protonenleitfähige Membran 1 lässt die Protonen (z.B. H+) hindurch, ist aber undurchlässig für die Elektronen (e_). Die protonenleitfähige Membran 1 ist bei diesem Ausführungsbeispiel aus einem Ionomer, vorzugsweise einem sulfonierten Tetrafluorethylen-Polymer (PTFE) oder einem Polymer der perfluorierten Sulfonsäure (PFSA) gebildet. An der Anode erfolgt dabei die folgende Reaktion: 4H+ + 4e_ (Oxidation/Elektronenabgabe).FIG. 1 shows a proton-conductive membrane 1 for a fuel cell inserted into a recess 6 of a frame 2 . As a semi-permeable electrolyte membrane, this can be covered on a first side with an anode and on a second side with a cathode and can be connected to these in a materially bonded manner. The electrodes and the membrane 1 then form a composite of what is known as a membrane electrode unit (MEA for short). The first electrode and the second electrode comprise carrier particles on which catalyst particles made of noble metals or mixtures comprising noble metals such as platinum, palladium, ruthenium or the like are arranged or supported. These catalyst particles serve as a reaction accelerator in the electrochemical reaction of the fuel cell. The carrier particles can be carbonaceous. However, carrier particles formed from a metal oxide or carbon with a corresponding coating also come into consideration. The electrodes are preferably formed with a plurality of catalyst particles, which can be formed as nanoparticles, for example as core-shell nanoparticles (“core-shell-nanoparticles”). They have the advantage of a large surface area, with the precious metal or precious metal alloy only being arranged on the surface, while a smaller Valuable metal, such as nickel or copper, form the core of the nanoparticle. In such a polymer electrolyte membrane fuel cell (PEM fuel cell), fuel or fuel molecules, in particular hydrogen, are split into protons and electrons at the first electrode (anode). The proton-conducting membrane 1 lets the protons (eg H + ) through, but is impermeable to the electrons (e _ ). In this exemplary embodiment, the proton-conducting membrane 1 is formed from an ionomer, preferably a sulfonated tetrafluoroethylene polymer (PTFE) or a polymer of perfluorinated sulfonic acid (PFSA). The following reaction takes place at the anode: 4H + + 4e _ (oxidation/electron donation).
Während die Protonen durch die protonenleitfähige Membran 1 zur zweiten Elektrode (Kathode) hindurchtreten, werden die Elektronen über einen externen Stromkreis an die Kathode oder an einen Energiespeicher geleitet. An der Kathode ist ein Kathodengas, insbesondere Sauerstoff oder Sauerstoff enthaltende Luft, bereitgestellt, so dass hier die folgende Reaktion stattfindet: O2 + While the protons pass through the proton-conductive membrane 1 to the second electrode (cathode), the electrons are conducted to the cathode or to an energy store via an external circuit. A cathode gas, in particular oxygen or air containing oxygen, is provided at the cathode, so that the following reaction takes place here: O2 +
Vorliegend weist der Rahmen 2 mehrere Medienports 3, 4, 5, 11 , 12, 13 zur Zufuhr und Abfuhr der Reaktanten, also von Brennstoff und Sauerstoff, und zur Zufuhr und Abfuhr von Kühlmittel auf. In the present case, the frame 2 has a plurality of media ports 3, 4, 5, 11, 12, 13 for the supply and removal of the reactants, ie fuel and oxygen, and for the supply and removal of coolant.
Das Verfahren zur Herstellung und Behandlung der protonenleitfähigen Membran 1 umfasst dabei die folgenden Schritte: Zunächst wird die protonenleitfähige Membran 1 bereitgestellt und in die Aussparung 6 des wenigstens zwei Medienports 3, 4, 5, 11 , 12, 13 aufweisenden Rahmens 2 eingesetzt. Um die protonenleitfähige Membran 1 mit einer benachbarten Schicht, also beispielsweise einer Elektrode oder eine Gasdiffusionslage zu mittels kleben zu fügen bzw. zu verbinden, wird eine Oberfläche 7 des Rahmens 2 behandelt, damit ein erster Bereich 8 mit einer gesteigerten Adhäsionskraft vorliegt und ein zweiter Bereich 9 mit einer gegenüber der gesteigerten Adhäsionskraft des ersten Bereichs 8 verringerten Adhäsionskraft. The method for producing and treating the proton-conductive membrane 1 comprises the following steps: First, the proton-conductive membrane 1 is provided and inserted into the recess 6 of the at least two media ports 3, 4, 5, 11, 12, 13 having frame 2. In order to join or connect the proton-conductive membrane 1 to an adjacent layer, for example an electrode or a gas diffusion layer, a surface 7 of the frame 2 is treated so that there is a first area 8 with an increased adhesive force and a second area 9 with an adhesion force that is reduced compared to the increased adhesion force of the first area 8 .
Das Vorliegen eines ersten Bereichs 8 mit gesteigerter Adhäsionskraft ermöglicht eine verbesserte Haftwirkung zwischen zwei miteinander zu verklebende Schichten. Gleichzeitig verhindert der die geringere Adhäsionskraft aufweisende zweite Bereich 9, ein Migrieren des Klebstoffs in den aktiven Bereich der protonenleitfähigen Membran 1 und so eine Schädigung dieser durch den Klebstoff. The presence of a first area 8 with increased adhesive force enables an improved adhesive effect between two objects to be glued together Layers. At the same time, the second region 9, which has the lower adhesive force, prevents the adhesive from migrating into the active region of the proton-conductive membrane 1 and thus from damaging it by the adhesive.
Der zweite Bereich 9 ist dabei bevorzugt eine zwischen den Medienports 3, 4, 5, 11 , 12, 13 und der Ausnehmung 6 des Rahmens 2 verlaufende Linie, welche in Figur 1 als eine gestrichelte Linie dargestellt ist. Zur Vergrößerung der Barrierewirkung ist es aber auch möglich, dass der zweite Bereich 9 sich von der zwischen den Medienports 3, 4, 5, 11 , 12 ,13 und der Ausnehmung 6 verlaufenden Linie zu der Ausnehmung 6 erstreckt. The second area 9 is preferably a line running between the media ports 3, 4, 5, 11, 12, 13 and the recess 6 of the frame 2, which line is shown in FIG. 1 as a dashed line. In order to increase the barrier effect, however, it is also possible for the second area 9 to extend from the line running between the media ports 3 , 4 , 5 , 11 , 12 , 13 and the recess 6 to the recess 6 .
Die adhäsionssteigernde Behandlung kann bevorzugt durch eine Plasmabestrahlung der wenigstens einen Oberfläche 7 erfolgen. Alternativ oder zusätzlich kann die wenigstens eine Oberfläche 7 auch mit einer elektromagnetischen Strahlung, wie beispielsweise einer UV-Strahlung oder IR-Strahlung oder durch Erwärmen der wenigstens einen Oberfläche7 behandelt werden. The adhesion-increasing treatment can preferably be carried out by plasma irradiation of the at least one surface 7. Alternatively or additionally, the at least one surface 7 can also be treated with electromagnetic radiation, such as UV radiation or IR radiation, or by heating the at least one surface 7 .
Um trotz der adhäsionssteigernden Behandlung einen zweiten Bereich 9 auszubilden, bei dem die Adhäsionskraft geringer ist als im ersten Bereich 8, ist es zum einen möglich, den zweiten Bereich 9 bei der Bestrahlung auszusparen, oder andererseits den zweiten Bereich 9 einer adhäsionsmindernden Behandlung zu unterziehen. Hierdurch wird eine Migration des Klebstoffs in die protonenleitfähige Membran 1 elektrostatisch verhindert. In order to form a second area 9 in which the adhesive force is lower than in the first area 8 despite the adhesion-increasing treatment, it is possible to omit the second area 9 during the irradiation or to subject the second area 9 to an adhesion-reducing treatment. This electrostatically prevents migration of the adhesive into the proton-conductive membrane 1 .
Ersteres kann erreicht werden, indem der zweite Bereich 9 mittels einer Maske abgedeckt wird, bevor die Behandlung der wenigstens einen Oberfläche 7 des Rahmens 2 erfolgt, also vor der Plasmabehandlung oder vor der Bestrahlung. Die Maske schirmt folglich den zweiten Bereich 9 vor der Behandlung oder Bestrahlung ab, so dass eine adhäsionssteigernde Wirkung auf den zweiten Bereich 9 verhindert wird. Nur der nicht abgeschirmte erste Bereich 8 ist somit der adhäsionssteigernden Behandlung ausgesetzt. The former can be achieved by covering the second region 9 with a mask before the at least one surface 7 of the frame 2 is treated, ie before the plasma treatment or before the irradiation. The mask consequently shields the second area 9 from the treatment or irradiation, so that an adhesion-increasing effect on the second area 9 is prevented. Only the unshielded first area 8 is thus exposed to the adhesion-increasing treatment.
Alternativ kann dieser Effekt auch erzielt werden, indem die zur Behandlung oder Bestrahlung verwendete Bestrahlungsquelle ein Spaltsystem oder eine Maske aufweist, dergestalt, dass der zweite Bereich 9 von der Bestrahlung oder Behandlung durch die Bestrahlungsquelle ausgespart wird. In den Strahlengang der Bestrahlungsquelle werden in anderen Worten ein oder mehrere Spalte oder eine Maske eingekoppelt. Alternatively, this effect can also be achieved by giving to the treatment or irradiation has a slit system or a mask such that the second region 9 is spared from the irradiation or treatment by the irradiation source. In other words, one or more columns or a mask are coupled into the beam path of the radiation source.
Die adhäsionsmindernde Behandlung kann dagegen erzielt werden, indem auf die Oberfläche 10 des zweiten Bereichs 9 zumindest teilweise ein Mittel zur Entnetzung aufgetragen wird. Dies kann beispielsweise ein silikonhaltiger Stoff sein wie ein Silikonöl. Dies führt dazu, dass der Benetzungswinkel auf der Oberfläche 10 des zweiten Bereichs 9 größer als 90° wird und somit die Adhäsionskraft aktiv reduziert wird. The adhesion-reducing treatment, on the other hand, can be achieved by at least partially applying a dewetting agent to the surface 10 of the second region 9 . This can, for example, be a substance containing silicone, such as a silicone oil. This means that the wetting angle on the surface 10 of the second area 9 is greater than 90° and the adhesive force is thus actively reduced.
Die Behandlung der wenigstens einen Oberfläche 7 des Rahmens kann in einer Ausführungsform sowohl eine adhäsionsmindernde Behandlung auf der Oberfläche 10 des zweiten Bereichs und eine adhäsionssteigernde Behandlung der Oberfläche 7 des ersten Bereichs 9 umfassen. Alternativ kann die Behandlung auch nur eine adhäsionssteigernde Behandlung unter Aussparung des zweiten Bereichs 9 sein, oder auch nur ein adhäsionsmindernde Behandlung des zweiten Bereichs 9 unter Aussparung des ersten Bereichs 8 sein. In one embodiment, the treatment of the at least one surface 7 of the frame can include both an adhesion-reducing treatment on the surface 10 of the second area and an adhesion-increasing treatment on the surface 7 of the first area 9 . Alternatively, the treatment can also only be an adhesion-increasing treatment while leaving out the second area 9, or only an adhesion-reducing treatment of the second area 9 while leaving out the first area 8.
BEZUGSZEICHENLISTE: REFERENCE LIST:
1 protonenleitfähige Membran 1 proton conductive membrane
2 Rahmen 3 erster Medienport 2 frames 3 first media port
4 zweiter Medienport 4 second media port
5 dritter Medienport 5 third media port
6 Ausnehmung 6 recess
7 Oberfläche des Rahmens 8 erster Bereich 7 surface of the frame 8 first area
9 zweiter Bereich 9 second area
10 Oberfläche des zweiten Bereichs 10 surface of the second area
11 vierter Medienport 11 fourth media port
12 fünfter Medienport 13 sechster Medienport 12 fifth media port 13 sixth media port

Claims

ANSPRÜCHE: EXPECTATIONS:
1. Verfahren zur Herstellung und Behandlung einer gerahmten protonenleitfähigen Membran (1 ) für eine Brennstoffzelle, umfassend die Schritte:1. A method for producing and treating a framed proton-conductive membrane (1) for a fuel cell, comprising the steps:
- Bereitstellen der protonenleitfähigen Membran (1 ) und eines wenigstens zwei Medienports (3, 4, 5,11 ,12,13) umfassenden Rahmens (2),- Providing the proton-conductive membrane (1) and a frame (2) comprising at least two media ports (3, 4, 5,11, 12,13),
- Einsetzen der Membran (1 ) in eine Ausnehmung (6) des Rahmens,- Insertion of the membrane (1) in a recess (6) of the frame,
- Behandeln wenigstens einer Oberfläche (7) des Rahmens (2) derart, dass ein erster Bereich (8) mit einer gesteigerten Adhäsionskraft für ein Fügen durch Kleben vorliegt, und dass wenigstens ein zweiter Bereich (9) mit einer gegenüber der gesteigerten Adhäsionskraft geringeren Adhäsionskraft vorliegt. - Treating at least one surface (7) of the frame (2) in such a way that there is a first area (8) with an increased adhesive force for joining by gluing, and that at least a second area (9) with an adhesive force that is lower than the increased adhesive force present.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der zweite Bereich (9) durch eine zwischen den Medienports (3,4,5,11 ,12,13) und der Ausnehmung (6) des Rahmens verlaufende geschlossene Linie begrenzt wird. 2. The method according to claim 1, characterized in that the second region (9) is delimited by a closed line running between the media ports (3,4,5,11,12,13) and the recess (6) of the frame.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass sich der zweite Bereich (9) bis zur Ausnehmung (6) erstreckt. 3. The method according to claim 2, characterized in that the second region (9) extends to the recess (6).
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die wenigstens eine Oberfläche (7) des Rahmens (2) mittels einer Plasmabestrahlung behandelt wird. 4. The method according to any one of claims 1 to 3, characterized in that the at least one surface (7) of the frame (2) is treated by means of plasma irradiation.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die wenigstens eine Oberfläche (7) des Rahmens (2) mit einer elektromagnetischen Strahlung behandelt wird. 5. The method according to any one of claims 1 to 4, characterized in that the at least one surface (7) of the frame (2) is treated with electromagnetic radiation.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der zweite Bereich (9) mittels einer Maske abgedeckt wird, bevor die Behandlung der wenigstens einen Oberfläche (7) des Rahmens (2) erfolgt. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Bestrahlung der wenigstens einen Oberfläche (7) des Rahmens (2) mittels einer Bestrahlungsquelle erfolgt, die ein Spaltsystem oder eine Maske aufweist, und dass der zweite Bereich (9) von der Bestrahlung durch die Bestrahlungsquelle ausgespart wird. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass vor oder beim Behandeln der wenigstens einen Oberfläche (7) des Rahmens (2) auf die Oberfläche (10) des zweiten Bereichs (9) zumindest bereichsweise ein Mittel zur Entnetzung aufgetragen wird, so dass der Benetzungswinkel auf der Oberfläche (10) des zweiten Bereichs (9) größer als 90° wird. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Mittel zur Entnetzung auf einem Silikon basiert. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Behandlung der wenigstens eine Oberfläche (7) des Rahmens (2) durch Erwärmen erfolgt. 6. The method according to any one of claims 1 to 5, characterized in that the second region (9) is covered by a mask before the treatment of the at least one surface (7) of the frame (2) takes place. Method according to one of Claims 4 to 6, characterized in that the at least one surface (7) of the frame (2) is irradiated by means of an irradiation source which has a slit system or a mask, and that the second region (9) is Irradiation by the radiation source is omitted. Method according to one of Claims 1 to 7, characterized in that before or during the treatment of the at least one surface (7) of the frame (2) a dewetting agent is applied to the surface (10) of the second region (9) at least in regions, so that the wetting angle on the surface (10) of the second region (9) becomes greater than 90°. Process according to Claim 8, characterized in that the dewetting agent is based on a silicone. Method according to one of Claims 1 to 9, characterized in that the treatment of the at least one surface (7) of the frame (2) takes place by heating.
EP21801043.7A 2020-10-26 2021-10-22 Method for producing and treating a framed proton-conductive membrane Pending EP4179588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020128105.6A DE102020128105A1 (en) 2020-10-26 2020-10-26 Method of making and treating a framed proton conductive membrane
PCT/EP2021/079333 WO2022090077A1 (en) 2020-10-26 2021-10-22 Method for producing and treating a framed proton-conductive membrane

Publications (1)

Publication Number Publication Date
EP4179588A1 true EP4179588A1 (en) 2023-05-17

Family

ID=78463455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21801043.7A Pending EP4179588A1 (en) 2020-10-26 2021-10-22 Method for producing and treating a framed proton-conductive membrane

Country Status (5)

Country Link
US (1) US20230253597A1 (en)
EP (1) EP4179588A1 (en)
CN (1) CN115803918A (en)
DE (1) DE102020128105A1 (en)
WO (1) WO2022090077A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281195A1 (en) 2010-05-12 2011-11-17 Gm Global Technology Operations, Inc Fuel cell adhesive and process of making the same
JP6222143B2 (en) 2014-03-18 2017-11-01 トヨタ自動車株式会社 Fuel cell and fuel cell manufacturing method
DE102015010440B4 (en) * 2015-08-11 2023-10-26 Cellcentric Gmbh & Co. Kg Method and device for producing a membrane-electrode arrangement for a fuel cell
JP6493185B2 (en) 2015-12-07 2019-04-03 トヨタ自動車株式会社 Fuel cell
JP2020135945A (en) 2019-02-13 2020-08-31 トヨタ自動車株式会社 Fuel cell manufacturing method
CN110400944A (en) * 2019-06-28 2019-11-01 上海电气集团股份有限公司 A kind of encapsulating method and sealing structure of fuel cell membrane electrode and frame

Also Published As

Publication number Publication date
CN115803918A (en) 2023-03-14
DE102020128105A1 (en) 2022-04-28
WO2022090077A1 (en) 2022-05-05
US20230253597A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
DE60315360T2 (en) Anode for polymer electrolyte fuel cells
EP0934606B1 (en) Fuel cell electrode-electrolyte unit
DE60303856T2 (en) Membrane electrode unit for polymer electrolyte fuel cells
DE10001170A1 (en) Gas diffusion electrode comprises a gas diffusion layer and a catalyst layer a porous electrolyte and microporous catalyst-electrolyte aggregate
DE112010004577B4 (en) Fuel cell
DE102016209742A1 (en) Roll-to-roll manufacturing of a high performance fuel cell electrode with core-shell catalyst using seeded electrodes
DE112006000323T5 (en) fuel cell
DE102007039467B4 (en) Fuel cell with electrically conductive webs adhered to a gas diffusion medium and method for the production thereof
EP4179588A1 (en) Method for producing and treating a framed proton-conductive membrane
DE102008060638B4 (en) Process for treating nanoparticles using a proton exchange membrane and liquid electrolyte cell
EP1833112B1 (en) Electrode membrane unit and fuel cell
WO2022058259A1 (en) Method for producing a catalyst-coated membrane
WO2020109435A1 (en) Method for producing a membrane electrode assembly
DE102022118477B3 (en) Method for producing a membrane electrode assembly provided with a seal
EP4150692B1 (en) Method for the manufacture of a membrane electrode assembly laminate containing at least 2 layers
DE102018204816A1 (en) The fuel cell assembly
EP3915162B1 (en) Method for manufacturing an electrode and electrode for a fuel cell
DE102020102709A1 (en) Method for producing a membrane electrode assembly, membrane electrode assembly and fuel cell
DE19838814A1 (en) Fuel cell with gas stream path for addition of water
DE102022213475A1 (en) Membrane electrode assembly and method for producing a membrane electrode assembly
DE102023120432A1 (en) SYSTEM AND METHOD FOR A FUEL CELL SUBSEAL WITH ACTIVE SURFACE EDGE AND THROUGH-PLANE PROTON CONDUCTIVITY
DE102020106082A1 (en) Method for producing a fuel cell, device for producing a membrane electrode arrangement for a fuel cell, fuel cell and fuel cell stack
DE102013009555B4 (en) Method for operating a low-temperature fuel cell and apparatus for carrying out the method
DE102022132294A1 (en) WATER ELECTROLYTIC CELL AND PROCESS OF PRODUCTION
WO2022129533A1 (en) Assembly of electrochemical cells, vehicle comprising said assembly, and process for manufacturing the assembly

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)