EP4173116A1 - Electric machine and motor vehicle drive unit - Google Patents

Electric machine and motor vehicle drive unit

Info

Publication number
EP4173116A1
EP4173116A1 EP21735606.2A EP21735606A EP4173116A1 EP 4173116 A1 EP4173116 A1 EP 4173116A1 EP 21735606 A EP21735606 A EP 21735606A EP 4173116 A1 EP4173116 A1 EP 4173116A1
Authority
EP
European Patent Office
Prior art keywords
housing
electrical machine
centering
stator
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21735606.2A
Other languages
German (de)
French (fr)
Inventor
Michael Griesbach
Thorsten MÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP4173116A1 publication Critical patent/EP4173116A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to an electrical machine with a housing.
  • the invention also relates to a drive unit for a motor vehicle with such an electrical machine.
  • a yoke of the electrical machine is electrically insulated from the housing and coupled to the housing ground via an inductance. This reduces interference currents in the housing.
  • the yoke of the electrical Ma machine is fastened via radially aligned screw connections in the housing.
  • FR 2 115 648 A5 describes a structure for an electrically driven pump.
  • the electric motor of the pump has a laminated stator core which is fastened to a housing by means of screws. Electrically insulating spacers are arranged between the housing and the laminated stator core.
  • an electrical machine with a housing is proposed.
  • the electrical machine is arranged inside the housing and has a non-rotatable stator and a rotatably mounted rotor.
  • the stator is electrically isolated from the housing.
  • the stator has a laminated stator core on which at least one stator winding is arranged. Several winding phases can be arranged on the laminated stator core.
  • the laminated stator core together with the at least one winding is fastened to the housing by means of a plurality of screws aligned in the axial direction. Under .axial direction 1 is the Understood the direction of the rotor axis of rotation.
  • Electrically insulating spacers are arranged between the stator lamination package and the housing.
  • at least two centering pins are provided. The centering pins are used to center the Sta tor in the housing.
  • an electrical machine which not only has an electrically insulating, axially aligned screw connection of the stator to the housing, but also an electrically insulating centering of the stator with respect to the housing.
  • each of the centering pins is arranged at one end in a housing bore and at the other end in a centering receptacle of the laminated stator core.
  • the centering pin is metallic, with the centering receptacle in the stator laminated core forming electrical insulation between the centering pin and the stator laminated core.
  • a metallic centering pin which is made, for example, of steel, is less brittle than, for example, a centering pin made of ceramic. Such a construction is therefore particularly advantageous for difficult assembly conditions in which a high mechanical load acts on the centering pins.
  • the electrically insulating centering receptacle is preferably formed by electrically insulating sleeves, for example ceramic sleeves, which are each inserted into a recess in the laminated stator core.
  • electrically insulating sleeves for example ceramic sleeves, which are each inserted into a recess in the laminated stator core.
  • Such sleeves have a high level of strength and can easily be carried out with the accuracy required for centering.
  • the centering pins can consist of an electrically insulating material, for example ceramic.
  • An electrically insulating design of the centering mount in the laminated stator core can be omitted.
  • At least one of the spacers preferably has a through hole, at least one of the centering pins being passed through the through hole.
  • At least one of the spacers is preferably held in position by the centering pin.
  • the fit between the through hole and the centering pin is preferably so precise that a displacement of the spacer on the centering pin is only possible against a resistance. This also ensures that the spacer is held securely during assembly.
  • the spacer is clipped into the housing.
  • the spacer can have shoulders on two opposite sides, for example, which interact with a corresponding receptacle on the housing.
  • the spacer is held securely on the housing so that the housing can be pivoted during assembly.
  • the through hole should be chosen large enough so as not to cause any tension in the centering pin.
  • At least one of the centering pins is made in one piece with one of the spacers. Centering pin and spacer thus only form a single component.
  • Such a spacer together with a centering pin is made from an electrically insulating material, for example from ceramic.
  • At least one of the spacers has a mounting pin which interacts with a receiving bore in the housing.
  • a construction can simplify the assembly of the spacers on the housing.
  • At least one of the spacers is preferably glued to the laminated stator core or to the housing. This gives the spacer a particularly good protection against loss, especially if the stator lamination package or the housing is preassembled at different locations or if these components are swiveled during the installation.
  • the screws preferably do not touch the spacers. In other words, an air gap is preferably seen between the screws and the spacers. This prevents the spacers from being damaged when the laminated stator core is screwed onto the housing.
  • Each of the screws is preferably passed through a through hole in the spacer.
  • the electric machine can be part of a drive unit for a motor vehicle, the electric machine being set up to drive the vehicle.
  • the electrical machine can be part of an axis with Elektroan drive.
  • the electric machine can be part of a hybrid module which is arranged in the motor vehicle drive train between the internal combustion engine and the transmission, or between the transmission and the drive axle.
  • the electrical machine can be part of a transmission in the motor vehicle drive train.
  • FIGS. 1 a to 1d show various configurations of a motor vehicle drive train
  • 3a and 3b each show a view of a spacer according to a first exemplary embodiment
  • 4a and 4b each show a view of a spacer according to a second exemplary embodiment
  • 5a and 5b each show a view of a spacer according to a third exemplary embodiment
  • 6a and 6b each show a view of a spacer according to a fourth exemplary embodiment.
  • the drive train has an internal combustion engine VM.
  • the drive train has a transmission G to adapt the speed and torque output characteristics of the internal combustion engine VM to the driving resistances of the motor vehicle.
  • the transmission G can be an automatic transmission, an automated transmission with a single starting clutch, a dual clutch transmission, a CVT transmission or a manual transmission, for example.
  • the gear G is connected to a differential gear AG, which distributes the drive power to drive wheels DW.
  • a hybrid module HY is arranged between the internal combustion engine VM and the transmission G.
  • the hybrid module HY has an electrical cal machine EM, by means of which the motor vehicle can be driven purely electrically or hybridically together with the internal combustion engine VM.
  • the hybrid module HY can have a separating clutch, not shown in FIG. 1a, by means of which a torque transmission between the internal combustion engine VM and the electrical machine EM can be switched.
  • FIG. 1 b shows a further configuration of a motor vehicle drive train.
  • a hybrid module HY2 is provided therein, which, in contrast to the drive train according to FIG. 1a, is arranged on the output side of the transmission G.
  • the hybrid module HY2 also has an electrical machine EM, by means of which the motor vehicle can be driven purely electrically or in a hybrid manner together with the internal combustion engine VM.
  • 1c shows a further configuration of a motor vehicle drive train.
  • the electric machine EM is part of the transmission G.
  • Such a transmission G is also referred to as a hybrid transmission.
  • 1d shows a further configuration of a motor vehicle drive train which, in contrast to the drive trains according to FIGS. 1 a to 1 c, is a purely electric drive train without an internal combustion engine.
  • An electric axle drive EA has an electric machine EM, the drive power of which is distributed to drive wheels DW of the motor vehicle via the Differentialge gear AG.
  • Such a drive train could also have a transmission between the axle drive EA and the differential gear AG, for example a 2-speed transmission.
  • Such an electric axle drive EA could also be combined with a second axle driven by an internal combustion engine.
  • the hybrid modules HY, HY2, the hybrid transmission G and the axle drive EA form drive units for the motor vehicle.
  • 2a shows a schematic sectional view of such a drive unit HY, HY2, G, EA.
  • the electrical machine EM is arranged in a metallic housing GG and has a non-rotatable stator S and a rotor R.
  • the rotor R is connected to a rotor shaft RW, which is mounted on the housing GG via a bearing WL. In this way, the rotor R can rotate together with the rotor shaft RW about an axis RA.
  • the stator S has a stator lamination stack SB on which at least one stator winding SW is arranged.
  • the laminated stator core SB is fastened to the housing GG by means of several screws SS, for example three screws SS.
  • the laminated stator core SB has through openings SB1 through which the screws SS are passed in the axial direction.
  • threaded bores GG1 are arranged, which interact with an external thread of the screws SS.
  • the stator S is electrically isolated from the housing GG in order to reduce the transmission of interference currents originating from the stator S via the housing GG and via the bearing WL to the rotor shaft RW.
  • electrically insulating spacers SD are arranged between the stator lamination stack SB and the housing GG. These spacers SD consist, for example, of ceramic or a high-pressure-resistant plastic. Electrically insulating spacers SD2 are also arranged between a screw head of the screws SS and the stator lamination packet SD.
  • Fig. 2b shows a further schematic sectional view of the drive unit HY, HY2, G, EA. This shows the centering of the stator S in the housing GG.
  • Two centering pins SC are provided for centering, with only one of these two centering pins SC being shown in the illustration according to FIG. 2b.
  • One end of the centering pin SC is arranged in a hole GG2 in the housing GG, the other end of the centering pin SC is arranged in a centering receptacle SBZ in the stator lamination stack SB.
  • the centering receptacle SBZ is formed by a recess SB2.
  • the centering pins SC are made of an electrically insulating material, such as ceramic.
  • the centering pins SC are fitted into the bores GG2 and into the recesses SB2.
  • the holes GG2 and the centering mount SBZ have a low position tolerance with respect to the axis RA in order to ensure an air gap between stator S and rotor R that is as uniform as possible.
  • the centering pin SC leads through the spacer SD.
  • FIGS. 3a to 6b Various embodiments are possible for this purpose, which are described by way of example in FIGS. 3a to 6b.
  • the centering pins SC are made of a metallic material, for example steel.
  • the centering receptacle SBZ has electrically insulating sleeves SBH, which are each inserted into a recess SB3 of the stator lamination package SB. The axial From stood between stator lamination package SB and housing GG is guaranteed by the spacers SD, which are not visible in the sectional view of FIG. 2c.
  • Fig. 3a shows a plan view of a spacer SD according to a first Ausfer approximately example.
  • the spacer SD is plate-shaped and has a through hole SDA1 and a through hole SDA2. When installed, one of the screws SS leads through the through hole SDA1.
  • the through hole SDA1 is larger than the diameter of the screws SS.
  • Projections SDX are formed on two opposite edges of the spacer SD. These are used to hold the spacer SD in the housing GG so that the spacer SD remains securely in position during assembly before the stator laminated core SB is attached to the Housing GG is attached.
  • the spacer SD can be clipped into corresponding receptacles in the housing GG via the projections SDX.
  • FIG. 3b shows a sectional view through the spacer SD through a sectional plane A-A given in FIG. 3a, the centering pin SC also being shown.
  • the centering pin SC leads through the through hole SDA2, the diameter of the centering pin SC being smaller than the through hole SDA2. This is because the spacer SD is held in position by the projections SDX, so that a corresponding position compensation for the position of the centering pin SC is required.
  • FIG. 4a shows a plan view of a spacer SD according to a second exemplary embodiment.
  • FIG. 4b shows a sectional view through the spacer SD through a sectional plane B-B indicated in FIG. 4a, the centering pin SC also being shown.
  • the projections SDX are omitted.
  • the through hole SDA2 is now smaller, so that the centering pin SC is fitted into the through hole SDA2.
  • the centering pins SC can first be inserted into the holes GG2 of the housing GG during assembly.
  • the spacers SD are then pushed onto the centering pins SC and held in position by them.
  • FIG. 5a shows a plan view of a spacer SD according to a third Aussch approximately example.
  • FIG. 5b shows a sectional view through the spacer SD through a sectional plane C-C indicated in FIG. 5a.
  • the spacer SD according to the third embodiment is formed in one piece with the centering pin SC; the through hole SDA2 is accordingly omitted.
  • Such a spacer SD with a centering pin SC can be implemented, for example, by a ceramic component.
  • FIG. 6a shows a plan view of a spacer SD according to a fourth exemplary embodiment.
  • FIG. 6b shows a sectional view through the spacer SD through a sectional plane DD indicated in FIG. 6a.
  • the spacer SD now has a mounting pin SDM.
  • the mounting pin SDM is arranged on the housing-side end face of the spacer SD.
  • the assembly pin SDM is in the assembled state Introduced into a corresponding mounting hole in the housing GG to hold the spacer SD in position. This means that the SDX projections can be dispensed with.
  • An embodiment of the spacer SD with two mounting pins SDM is also conceivable in order to prevent the spacer SD from tilting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The invention relates to an electric machine (EM) comprising a housing (GG), the electric machine (EM) being arranged within the housing (GG), wherein the stator is electrically insulated from the housing (GG), wherein a stator laminated core (SB) is fixed to the housing (GG) by means of several screws (SS) which are aligned in the axial direction, wherein electrically insulating spacers (SD) are arranged between the stator laminated core (SB) and the housing (GG), and wherein at least two centering pins (SC) for centering the stator (S) in the housing (GG) are provided. The invention also relates to a motor vehicle drive unit (HY, HY2, G, EA) comprising such an electric machine (EM).

Description

Elektrische Maschine und Kraftfahrzeuq-Antriebseinheit Electric machine and motor vehicle drive unit
Die Erfindung betrifft eine elektrische Maschine mit einem Gehäuse. Die Erfindung betrifft ferner eine Antriebseinheit für ein Kraftfahrzeug mit einer solchen elektrischen Maschine. The invention relates to an electrical machine with a housing. The invention also relates to a drive unit for a motor vehicle with such an electrical machine.
Aus der DE 100 40 851 A1 ist eine elektrische Maschine mit isoliertem Maschinenge häuse bekannt. Ein Joch der elektrischen Maschine ist gegen das Gehäuse elektrisch isoliert und über eine Induktivität an die Gehäusemasse angekoppelt. Dadurch werden Störströme im Gehäuse reduziert. Das Joch der elektrischen Ma schine ist dabei über radial ausgerichtete Schraubverbindungen im Gehäuse befes tigt. From DE 100 40 851 A1 an electrical machine with an insulated Maschinenge housing is known. A yoke of the electrical machine is electrically insulated from the housing and coupled to the housing ground via an inductance. This reduces interference currents in the housing. The yoke of the electrical Ma machine is fastened via radially aligned screw connections in the housing.
Die FR 2 115 648 A5 beschreibt einen Aufbau für eine elektrisch angetriebene Pumpe. Der Elektromotor der Pumpe weist ein Statorblechpaket auf, welches über Schrauben an einem Gehäuse befestigt ist. Zwischen dem Gehäuse und dem Statorblechpaket sind elektrisch isolierende Spacer angeordnet. FR 2 115 648 A5 describes a structure for an electrically driven pump. The electric motor of the pump has a laminated stator core which is fastened to a housing by means of screws. Electrically insulating spacers are arranged between the housing and the laminated stator core.
Es ist nun Aufgabe der Erfindung, die im Stand der Technik bekannte Isolierung des Stators gegenüber dem Gehäuse weiterzuentwickeln. It is now the object of the invention to further develop the insulation of the stator with respect to the housing known in the prior art.
Die Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 1 . Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Patentansprüchen, der Beschrei bung sowie aus den Figuren. The object is achieved by the features of claim 1. Advantageous refinements emerge from the dependent claims, the description and from the figures.
Zur Lösung der Aufgabe wird eine elektrische Maschine mit einem Gehäuse vorge schlagen. Die elektrische Maschine ist innerhalb des Gehäuses angeordnet und weist einen drehfesten Stator und einen drehbar gelagerten Rotor auf. Der Stator ist gegenüber dem Gehäuse elektrisch isoliert. Der Stator weist ein Statorblechpaket auf, an der zumindest eine Statorwicklung angeordnet ist. Am Statorblechpaket kön nen mehrerer Wicklungsstränge angeordnet sein. Das Statorblechpaket mitsamt der zumindest einen Wicklung ist über mehrere, in axialer Richtung ausgerichtete Schrauben an dem Gehäuse befestigt. Unter .axialer Richtung1 wird dabei die Richtung der Rotor-Drehachse verstanden. Zwischen dem Statorblech paket und dem Gehäuse sind elektrisch isolierende Distanzhalter angeordnet. Zusätzlich sind zumin dest zwei Zentrierstifte vorgesehen. Die Zentrierstifte dienen zur Zentrierung des Sta tors im Gehäuse. To solve the problem, an electrical machine with a housing is proposed. The electrical machine is arranged inside the housing and has a non-rotatable stator and a rotatably mounted rotor. The stator is electrically isolated from the housing. The stator has a laminated stator core on which at least one stator winding is arranged. Several winding phases can be arranged on the laminated stator core. The laminated stator core together with the at least one winding is fastened to the housing by means of a plurality of screws aligned in the axial direction. Under .axial direction 1 is the Understood the direction of the rotor axis of rotation. Electrically insulating spacers are arranged between the stator lamination package and the housing. In addition, at least two centering pins are provided. The centering pins are used to center the Sta tor in the housing.
In anderen Worten wird eine elektrische Maschine vorgeschlagen, welche nicht nur eine elektrisch isolierende, axial ausgerichtete Verschraubung des Stators an das Gehäuse aufweist, sondern auch eine elektrisch isolierende Zentrierung des Stators gegenüber dem Gehäuse. Dadurch kann bei einem elektrisch gegenüber dem Ge häuse isoliertem Stator ein möglichst gleichmäßiger Luftspalt zwischen Stator und Rotor gewährleistet werden kann. In other words, an electrical machine is proposed which not only has an electrically insulating, axially aligned screw connection of the stator to the housing, but also an electrically insulating centering of the stator with respect to the housing. As a result, an air gap that is as uniform as possible between the stator and rotor can be guaranteed in the case of a stator that is electrically insulated from the housing.
Vorzugsweise ist jeder der Zentrierstifte an einem Ende in einer Gehäusebohrung, und am anderen Ende in einer Zentrieraufnahme des Statorblechpakets angeordnet. Preferably, each of the centering pins is arranged at one end in a housing bore and at the other end in a centering receptacle of the laminated stator core.
Gemäß einer ersten möglichen Ausführung ist der Zentrierstift metallisch, wobei durch die Zentrieraufnahme im Statorblechpaket eine elektrische Isolation zwischen Zentrierstift und Statorblechpaket gebildet wird. Ein metallischer Zentrierstift, welcher beispielsweise aus Stahl gefertigt ist, ist weniger spröde als beispielsweise ein Zent rierstift aus Keramik. Eine solche Konstruktion ist daher besonders für schwierige Montageverhältnisse vorteilhaft, bei der eine hohe mechanische Belastung auf die Zentrierstifte wirkt. According to a first possible embodiment, the centering pin is metallic, with the centering receptacle in the stator laminated core forming electrical insulation between the centering pin and the stator laminated core. A metallic centering pin, which is made, for example, of steel, is less brittle than, for example, a centering pin made of ceramic. Such a construction is therefore particularly advantageous for difficult assembly conditions in which a high mechanical load acts on the centering pins.
Vorzugsweise wird die elektrisch isolierende Zentrieraufnahme durch elektrisch iso lierende Hülsen gebildet, beispielsweise Keramikhülsen, welche in je eine Ausneh mung im Statorblechpaket eingesetzt sind. Derartige Hülsen weisen eine hohe Fes tigkeit auf, und können auf einfache Weise mit der zur Zentrierung erforderlichen Ge nauigkeit ausgeführt sein. The electrically insulating centering receptacle is preferably formed by electrically insulating sleeves, for example ceramic sleeves, which are each inserted into a recess in the laminated stator core. Such sleeves have a high level of strength and can easily be carried out with the accuracy required for centering.
Alternativ dazu können die Zentrierstifte aus einem elektrisch isolierenden Werkstoff bestehen, beispielsweise aus Keramik. Eine elektrisch isolierende Ausführung der Zentrieraufnahme im Statorblechpaket kann dabei entfallen. Zumindest einer der Distanzhalter weist vorzugsweise ein Durchgangloch auf, wobei zumindest einer der Zentrierstifte durch das Durchgangsloch hindurchgeführt ist. Durch eine derartige mehrteilige Konstruktion von Distanzhalter und Zentrierstift sind geringe Toleranzen zu Planheit des Distanzhalters einerseits und Durchmesser und Geradheit des Zentrierstifts andererseits einfach umzusetzen. Alternatively, the centering pins can consist of an electrically insulating material, for example ceramic. An electrically insulating design of the centering mount in the laminated stator core can be omitted. At least one of the spacers preferably has a through hole, at least one of the centering pins being passed through the through hole. Such a multi-part construction of spacer and centering pin makes it easy to implement low tolerances in terms of flatness of the spacer on the one hand and diameter and straightness of the centering pin on the other hand.
Vorzugsweise wird zumindest einer der Distanzhalter durch den Zentrierstift in Posi tion gehalten. Die Passung zwischen dem Durchgangsloch und dem Zentrierstift ist dabei vorzugsweise so genau, dass eine Verschiebung des Distanzhalters auf dem Zentrierstift nur gegen einen Widerstand möglich ist. Auch dadurch wird ein sicheres Halten des Distanzhalters während der Montage sichergestellt. At least one of the spacers is preferably held in position by the centering pin. The fit between the through hole and the centering pin is preferably so precise that a displacement of the spacer on the centering pin is only possible against a resistance. This also ensures that the spacer is held securely during assembly.
Gemäß einer alternativen Ausgestaltung ist zumindest einer der Distanzhalter in das Gehäuse eingeclipst. Dazu kann der Distanzhalter beispielsweise an zwei gegen überliegenden Seiten Absätze aufweisen, die mit einer entsprechenden Aufnahme am Gehäuse Zusammenwirken. Dadurch wird der Distanzhalter sicher am Gehäuse gehalten, sodass das Gehäuse während der Montage geschwenkt werden kann. Weist der Distanzhalter das Durchgangsloch auf, so ist das Durchgangsloch groß ge nug zu wählen, um keine Verspannung des Zentrierstifts zu verursachen. According to an alternative embodiment, at least one of the spacers is clipped into the housing. For this purpose, the spacer can have shoulders on two opposite sides, for example, which interact with a corresponding receptacle on the housing. As a result, the spacer is held securely on the housing so that the housing can be pivoted during assembly. If the spacer has the through hole, the through hole should be chosen large enough so as not to cause any tension in the centering pin.
Gemäß einer weiteren möglichen Ausgestaltung ist zumindest einer der Zentrierstifte mit einem der Distanzhalter einteilig ausgeführt. Zentrierstift und Distanzhalter bilden somit nur ein einziges Bauteil. Ein solcher Distanzhalter mitsamt Zentrierstift ist aus einem elektrisch isolierenden Werkstoff gefertigt, beispielsweise aus Keramik. Dadurch kann die Zahl an Einzelteilen der elektrischen Maschine auf einfache Weise reduziert werden, sodass der Montageaufwand verringert wird. According to a further possible embodiment, at least one of the centering pins is made in one piece with one of the spacers. Centering pin and spacer thus only form a single component. Such a spacer together with a centering pin is made from an electrically insulating material, for example from ceramic. As a result, the number of individual parts of the electrical machine can be reduced in a simple manner, so that the assembly effort is reduced.
Gemäß einer möglichen Ausgestaltung weist zumindest einer der Distanzhalter einen Montagestift auf, welche mit einer Aufnahmebohrung im Gehäuse zusammenwirkt. Durch eine derartige Konstruktion kann das Montieren der Distanzhalter am Gehäuse vereinfacht werden. Vorzugsweise ist zumindest einer der Distanzhalter an das Statorblechpaket oder an das Gehäuse geklebt. Dadurch ist eine besonders gute Verliersicherung der Distanz halter gegeben, besonders wenn das Statorblech paket oder das Gehäuse an ver schiedenen Orten vormontiert wird oder wenn diese Komponenten während der Mon tage geschwenkt werden. According to one possible embodiment, at least one of the spacers has a mounting pin which interacts with a receiving bore in the housing. Such a construction can simplify the assembly of the spacers on the housing. At least one of the spacers is preferably glued to the laminated stator core or to the housing. This gives the spacer a particularly good protection against loss, especially if the stator lamination package or the housing is preassembled at different locations or if these components are swiveled during the installation.
Die Schrauben berühren die Distanzhalter vorzugsweise nicht. In anderen Worten ist vorzugsweise ist ein Luftspalt zwischen den Schrauben und den Distanzhaltern vor gesehen. Dadurch wird eine Beschädigung der Distanzhalter beim Festschrauben des Statorblechpakets am Gehäuse vermieden. Vorzugsweise ist jeder der Schrau ben durch ein Durchgangsloch der Distanzhalter geführt. The screws preferably do not touch the spacers. In other words, an air gap is preferably seen between the screws and the spacers. This prevents the spacers from being damaged when the laminated stator core is screwed onto the housing. Each of the screws is preferably passed through a through hole in the spacer.
Die elektrische Maschine kann ein Bestandteil einer Antriebseinheit für ein Kraftfahr zeug sein, wobei die elektrische Maschine zum Fahrzeug-Antrieb eingerichtet ist. Beispielsweise kann die elektrische Maschine Bestandteil einer Achse mit Elektroan trieb sein. Alternativ dazu kann die elektrische Maschine Bestandteil eines Hybridmo duls sein, welches im Kraftfahrzeug-Antriebsstrang zwischen Verbrennungsmotor und Getriebe, oder zwischen Getriebe und Antriebsachse angeordnet ist. Gemäß ei ner weiteren Alternative kann die elektrische Maschine ein Bestandteil eines Getrie bes im Kraftfahrzeug-Antriebsstrang sein. The electric machine can be part of a drive unit for a motor vehicle, the electric machine being set up to drive the vehicle. For example, the electrical machine can be part of an axis with Elektroan drive. Alternatively, the electric machine can be part of a hybrid module which is arranged in the motor vehicle drive train between the internal combustion engine and the transmission, or between the transmission and the drive axle. According to a further alternative, the electrical machine can be part of a transmission in the motor vehicle drive train.
Ausführungsbeispiele der Erfindung sind anhand der Figuren detailliert beschrieben. Es zeigen: Exemplary embodiments of the invention are described in detail with reference to the figures. Show it:
Fig. 1a bis Fig. 1d verschiedene Konfigurationen eines Kraftfahrzeug -Antriebs strangs; FIGS. 1 a to 1d show various configurations of a motor vehicle drive train;
Fig. 2a bis Fig. 2c je eine schematische Schnittdarstellung einer Kraftfahrzeug- Antriebseinheit; 2a to 2c each show a schematic sectional illustration of a motor vehicle drive unit;
Fig. 3a und Fig. 3b je eine Ansicht eines Distanzhalters gemäß einem ersten Ausführungsbeispiel; 3a and 3b each show a view of a spacer according to a first exemplary embodiment;
Fig. 4a und Fig. 4b je eine Ansicht eines Distanzhalters gemäß einem zweiten Ausführungsbeispiel; 4a and 4b each show a view of a spacer according to a second exemplary embodiment;
Fig. 5a und Fig. 5b je eine Ansicht eines Distanzhalters gemäß einem dritten Ausführungsbeispiel; und Fig. 6a und Fig. 6b je eine Ansicht eines Distanzhalters gemäß einem vierten Ausführungsbeispiel. 5a and 5b each show a view of a spacer according to a third exemplary embodiment; and 6a and 6b each show a view of a spacer according to a fourth exemplary embodiment.
Fig. 1a zeigt einen Antriebsstrang eines Kraftfahrzeugs. Der Antriebsstrang weist ei nen Verbrennungsmotor VM auf. Zur Anpassung der Drehzahl- und Drehmomentab gabe-Charakteristik des Verbrennungsmotor VM an die Fahrwiderstände des Kraft fahrzeugs weist der Antriebsstrang ein Getriebe G auf. Das Getriebe G kann bei spielsweise ein Automatikgetriebe, ein automatisiertes Getriebe mit einer einzigen Anfahrkupplung, ein Doppelkupplungsgetriebe, ein CVT-Getriebe oder ein Hand schaltgetriebe sein. Abtriebsseitig ist das Getriebe G mit einem Differentialgetriebe AG verbunden, welche die Antriebsleistung auf Antriebsräder DW verteilt. 1a shows a drive train of a motor vehicle. The drive train has an internal combustion engine VM. The drive train has a transmission G to adapt the speed and torque output characteristics of the internal combustion engine VM to the driving resistances of the motor vehicle. The transmission G can be an automatic transmission, an automated transmission with a single starting clutch, a dual clutch transmission, a CVT transmission or a manual transmission, for example. On the output side, the gear G is connected to a differential gear AG, which distributes the drive power to drive wheels DW.
Im Antriebsstrang gemäß Fig. 1a ist zwischen dem Verbrennungsmotor VM und dem Getriebe G ein Hybridmodul HY angeordnet. Das Hybridmodul HY weist eine elektri sche Maschine EM auf, mittels der das Kraftfahrzeug rein elektrisch oder hybridisch zusammen mit dem Verbrennungsmotor VM antreibbar ist. Das Hybridmodul HY kann eine in Fig. 1a nicht dargestellte Trennkupplung aufweisen, mittels der eine Drehmomentübertragung zwischen Verbrennungsmotor VM und elektrischer Ma schine EM schaltbar ist. In the drive train according to FIG. 1 a, a hybrid module HY is arranged between the internal combustion engine VM and the transmission G. The hybrid module HY has an electrical cal machine EM, by means of which the motor vehicle can be driven purely electrically or hybridically together with the internal combustion engine VM. The hybrid module HY can have a separating clutch, not shown in FIG. 1a, by means of which a torque transmission between the internal combustion engine VM and the electrical machine EM can be switched.
Fig. 1 b zeigt eine weitere Konfiguration eines Kraftfahrzeug-Antriebsstrangs. Darin ist ein Hybridmodul HY2 vorgesehen, welches im Gegensatz zum Antriebsstrang ge mäß Fig. 1a an der Abtriebsseite des Getriebes G angeordnet ist. Auch das Hyb ridmodul HY2 weist eine elektrische Maschine EM auf, mittels der das Kraftfahrzeug rein elektrisch oder hybridisch zusammen mit dem Verbrennungsmotor VM antreib bar ist. 1 b shows a further configuration of a motor vehicle drive train. A hybrid module HY2 is provided therein, which, in contrast to the drive train according to FIG. 1a, is arranged on the output side of the transmission G. The hybrid module HY2 also has an electrical machine EM, by means of which the motor vehicle can be driven purely electrically or in a hybrid manner together with the internal combustion engine VM.
Fig. 1c zeigt eine weitere Konfiguration eines Kraftfahrzeug-Antriebsstrangs. Darin ist kein Hybridmodul vorgesehen; stattdessen ist die elektrische Maschine EM Bestand teil des Getriebes G. Ein solches Getriebe G wird auch als Hybridgetriebe bezeich net. Fig. 1d zeigt eine weitere Konfiguration eines Kraftfahrzeug-Antriebsstrangs, welcher im Gegensatz zu den Antriebssträngen gemäß Fig. 1a bis Fig. 1 c ein rein elektrischer Antriebsstrang ohne Verbrennungsmotor ist. Ein elektrischer Achsantrieb EA weist eine elektrische Maschine EM auf, deren Antriebsleistung über das Differentialge triebe AG auf Antriebsräder DW des Kraftfahrzeugs verteilt wird. Auch ein solcher Antriebsstrang könnte ein Getriebe zwischen dem Achsantrieb EA und dem Differen tialgetriebe AG aufweisen, beispielsweise ein 2-Gang-Getriebe. Ein derartiger elektri scher Achsantrieb EA könnte auch mit einer verbrennungsmotorisch angetriebenen zweiten Achse kombiniert werden. 1c shows a further configuration of a motor vehicle drive train. There is no hybrid module in it; Instead, the electric machine EM is part of the transmission G. Such a transmission G is also referred to as a hybrid transmission. 1d shows a further configuration of a motor vehicle drive train which, in contrast to the drive trains according to FIGS. 1 a to 1 c, is a purely electric drive train without an internal combustion engine. An electric axle drive EA has an electric machine EM, the drive power of which is distributed to drive wheels DW of the motor vehicle via the Differentialge gear AG. Such a drive train could also have a transmission between the axle drive EA and the differential gear AG, for example a 2-speed transmission. Such an electric axle drive EA could also be combined with a second axle driven by an internal combustion engine.
Die Hybridmodule HY, HY2, das Hybridgetriebe G und der Achsantrieb EA bilden An triebseinheiten für das Kraftfahrzeug. Fig. 2a zeigt eine schematische Schnittansicht einer solchen Antriebseinheit HY, HY2, G, EA. Die elektrische Maschine EM ist in ei nem metallischen Gehäuse GG angeordnet, und weist einen drehfesten Stator S und einen Rotor R auf. Der Rotor R ist mit einer Rotorwelle RW verbunden, welche über ein Lager WL an dem Gehäuse GG gelagert ist. Derart kann sich der Rotor R mits amt der Rotorwelle RW um eine Achse RA drehen. The hybrid modules HY, HY2, the hybrid transmission G and the axle drive EA form drive units for the motor vehicle. 2a shows a schematic sectional view of such a drive unit HY, HY2, G, EA. The electrical machine EM is arranged in a metallic housing GG and has a non-rotatable stator S and a rotor R. The rotor R is connected to a rotor shaft RW, which is mounted on the housing GG via a bearing WL. In this way, the rotor R can rotate together with the rotor shaft RW about an axis RA.
Der Stator S weist ein Statorblechpaket SB auf, an dem zumindest eine Statorwick lung SW angeordnet ist. Das Statorblechpaket SB ist über mehrere Schrauben SS an dem Gehäuse GG befestigt, beispielsweise über drei Schrauben SS. Dazu weist das Statorblechpaket SB Durchgangsöffnungen SB1 auf, durch die die Schrauben SS in axialer Richtung hindurchgeführt sind. Im Gehäuse GG sind Gewindebohrungen GG1 angeordnet, die mit einem Außengewinde der Schrauben SS Zusammenwirken. The stator S has a stator lamination stack SB on which at least one stator winding SW is arranged. The laminated stator core SB is fastened to the housing GG by means of several screws SS, for example three screws SS. For this purpose, the laminated stator core SB has through openings SB1 through which the screws SS are passed in the axial direction. In the housing GG, threaded bores GG1 are arranged, which interact with an external thread of the screws SS.
Der Stator S ist von dem Gehäuse GG elektrisch isoliert, um die Übertragung von Störströmen ausgehend vom Stator S über das Gehäuse GG und über das Lager WL zur Rotorwelle RW zu verringern. Dazu sind zwischen dem Statorblechpaket SB und dem Gehäuse GG elektrisch isolierende Distanzhalter SD angeordnet. Diese Dis tanzhalter SD bestehen beispielsweise aus Keramik oder einem hochdruckfesten Kunststoff. Zwischen einem Schraubenkopf der Schrauben SS und dem Statorblech paket SD sind ebenfalls elektrisch isolierende Distanzhalter SD2 angeordnet. Fig. 2b zeigt eine weitere schematische Schnittansicht der Antriebseinheit HY, HY2, G, EA. Darin ist die Zentrierung des Stators S im Gehäuse GG dargestellt. Zur Zent rierung sind zwei Zentrierstifte SC vorgesehen, wobei in der Darstellung gemäß Fig. 2b nur einer dieser zwei Zentrierstifte SC dargestellt ist. Ein Ende des Zentrier stifts SC ist in einer Bohrung GG2 im Gehäuse GG angeordnet, das andere Ende des Zentrierstifts SC ist in einer Zentrieraufnahme SBZ im Statorblechpaket SB an geordnet. Die Zentrieraufnahme SBZ ist in diesem Ausführungsbeispiel durch eine Ausnehmung SB2 ausgebildet. Die Zentrierstifte SC sind aus einem elektrisch isolie renden Werkstoff gefertigt, beispielsweise aus Keramik. Die Zentrierstifte SC sind in die Bohrungen GG2 und in die Ausnehmungen SB2 eingepasst. Die Bohrungen GG2 und die Zentrieraufnahme SBZ weisen eine geringe Positionstoleranz gegenüber der Achse RA auf, um einen möglichst gleichmäßigen Luftspalt zwischen Stator S und Rotor R zu gewährleisten. Im Ausführungsbeispiel gemäß Fig. 2b führt der Zentrier stift SC durch den Distanzhalter SD hindurch. Hierzu sind verschiedene Ausführun gen möglich, die beispielhaft in Fig. 3a bis Fig. 6b beschrieben sind. The stator S is electrically isolated from the housing GG in order to reduce the transmission of interference currents originating from the stator S via the housing GG and via the bearing WL to the rotor shaft RW. For this purpose, electrically insulating spacers SD are arranged between the stator lamination stack SB and the housing GG. These spacers SD consist, for example, of ceramic or a high-pressure-resistant plastic. Electrically insulating spacers SD2 are also arranged between a screw head of the screws SS and the stator lamination packet SD. Fig. 2b shows a further schematic sectional view of the drive unit HY, HY2, G, EA. This shows the centering of the stator S in the housing GG. Two centering pins SC are provided for centering, with only one of these two centering pins SC being shown in the illustration according to FIG. 2b. One end of the centering pin SC is arranged in a hole GG2 in the housing GG, the other end of the centering pin SC is arranged in a centering receptacle SBZ in the stator lamination stack SB. In this exemplary embodiment, the centering receptacle SBZ is formed by a recess SB2. The centering pins SC are made of an electrically insulating material, such as ceramic. The centering pins SC are fitted into the bores GG2 and into the recesses SB2. The holes GG2 and the centering mount SBZ have a low position tolerance with respect to the axis RA in order to ensure an air gap between stator S and rotor R that is as uniform as possible. In the embodiment according to FIG. 2b, the centering pin SC leads through the spacer SD. Various embodiments are possible for this purpose, which are described by way of example in FIGS. 3a to 6b.
Fig. 2c zeigt eine schematische Schnittansicht der Antriebseinheit HY, HY2, G, EA gemäß einer weiteren möglichen Ausgestaltung. In dieser Ausgestaltung sind die Zentrierstifte SC aus einem metallischen Werkstoff gefertigt, beispielsweise aus Stahl. Zur elektrischen Isolation zwischen Zentrierstift SC und Statorblech paket SB weist die Zentrieraufnahme SBZ elektrisch isolierende Hülsen SBH auf, welche in je eine Ausnehmung SB3 des Statorblechpakets SB eingesetzt sind. Der axiale Ab stand zwischen Statorblech paket SB und Gehäuse GG wird durch die Distanzhalter SD gewährleistet, die in der Schnittansicht gemäß Fig. 2c nicht sichtbar sind. 2c shows a schematic sectional view of the drive unit HY, HY2, G, EA according to a further possible embodiment. In this embodiment, the centering pins SC are made of a metallic material, for example steel. For electrical insulation between the centering pin SC and stator lamination package SB, the centering receptacle SBZ has electrically insulating sleeves SBH, which are each inserted into a recess SB3 of the stator lamination package SB. The axial From stood between stator lamination package SB and housing GG is guaranteed by the spacers SD, which are not visible in the sectional view of FIG. 2c.
Fig. 3a zeigt eine Draufsicht auf einen Distanzhalter SD gemäß einem ersten Ausfüh rungsbeispiel. Der Distanzhalter SD ist plattenförmig ausgebildet und weist ein Durchgangsloch SDA1 und ein Durchgangsloch SDA2 auf. Im eingebauten Zustand führt eine der Schrauben SS durch das Durchgangsloch SDA1 . Das Durchgangsloch SDA1 ist größer als der Durchmesser der Schrauben SS. An zwei gegenüberliegen den Rändern des Distanzhalters SD sind Vorsprünge SDX ausgebildet. Diese dienen zum Halten des Distanzhalters SD im Gehäuse GG, damit der Distanzhalter SD wäh rend der Montage sicher in Position bleibt bevor das Statorblechpaket SB an das Gehäuse GG befestigt wird. Über die Vorsprünge SDX kann der Distanzhalter SD in entsprechende Aufnahmen im Gehäuse GG eingeclipst werden. Fig. 3a shows a plan view of a spacer SD according to a first Ausfüh approximately example. The spacer SD is plate-shaped and has a through hole SDA1 and a through hole SDA2. When installed, one of the screws SS leads through the through hole SDA1. The through hole SDA1 is larger than the diameter of the screws SS. Projections SDX are formed on two opposite edges of the spacer SD. These are used to hold the spacer SD in the housing GG so that the spacer SD remains securely in position during assembly before the stator laminated core SB is attached to the Housing GG is attached. The spacer SD can be clipped into corresponding receptacles in the housing GG via the projections SDX.
Fig. 3b zeigt eine Schnittansicht durch den Distanzhalter SD durch eine in Fig. 3a an gegebene Schnittebene A-A, wobei zusätzlich der Zentrierstift SC dargestellt ist. Der Zentrierstift SC führt durch das Durchgangsloch SDA2, wobei der Durchmesser des Zentrierstifts SC kleiner ist als das Durchgangsloch SDA2. Denn der Distanzhalter SD ist durch die Vorsprünge SDX in Position gehalten, sodass ein entsprechender Lageausgleich zur Position des Zentrierstifts SC erforderlich ist. FIG. 3b shows a sectional view through the spacer SD through a sectional plane A-A given in FIG. 3a, the centering pin SC also being shown. The centering pin SC leads through the through hole SDA2, the diameter of the centering pin SC being smaller than the through hole SDA2. This is because the spacer SD is held in position by the projections SDX, so that a corresponding position compensation for the position of the centering pin SC is required.
Fig. 4a zeigt eine Draufsicht auf einen Distanzhalter SD gemäß einem zweiten Aus führungsbeispiel. Fig. 4b zeigt eine Schnittansicht durch den Distanzhalter SD durch eine in Fig. 4a angegebene Schnittebene B-B, wobei zusätzlich der Zentrierstift SC dargestellt ist. Im Gegensatz zum Ausführungsbeispiel gemäß Fig. 3a und Fig. 3b entfallen die Vorsprünge SDX. Das Durchgangsloch SDA2 ist nun kleiner, sodass der Zentrierstift SC in das Durchgangsloch SDA2 eingepasst ist. Bei einer derartigen Konstruktion können bei der Montage zunächst die Zentrierstifte SC in die Bohrun gen GG2 des Gehäuses GG eingesetzt werden. Anschließend werden die Distanz halter SD auf die Zentrierstifte SC aufgeschoben und durch diese in Position gehal ten. Fig. 4a shows a plan view of a spacer SD according to a second exemplary embodiment. FIG. 4b shows a sectional view through the spacer SD through a sectional plane B-B indicated in FIG. 4a, the centering pin SC also being shown. In contrast to the exemplary embodiment according to FIGS. 3a and 3b, the projections SDX are omitted. The through hole SDA2 is now smaller, so that the centering pin SC is fitted into the through hole SDA2. With such a construction, the centering pins SC can first be inserted into the holes GG2 of the housing GG during assembly. The spacers SD are then pushed onto the centering pins SC and held in position by them.
Fig. 5a zeigt eine Draufsicht auf einen Distanzhalter SD gemäß einem dritten Ausfüh rungsbeispiel. Fig. 5b zeigt eine Schnittansicht durch den Distanzhalter SD durch eine in Fig. 5a angegebene Schnittebene C-C. Der Distanzhalter SD gemäß dem dritten Ausführungsbeispiel ist einteilig mit dem Zentrierstift SC ausgebildet; das Durchgangsloch SDA2 entfällt dementsprechend. Ein derartiger Distanzhalter SD mit Zentrierstift SC kann beispielsweise durch ein Keramikbauteil realisiert werden. Fig. 5a shows a plan view of a spacer SD according to a third Ausfüh approximately example. FIG. 5b shows a sectional view through the spacer SD through a sectional plane C-C indicated in FIG. 5a. The spacer SD according to the third embodiment is formed in one piece with the centering pin SC; the through hole SDA2 is accordingly omitted. Such a spacer SD with a centering pin SC can be implemented, for example, by a ceramic component.
Fig. 6a zeigt eine Draufsicht auf einen Distanzhalter SD gemäß einem vierten Aus führungsbeispiel. Fig. 6b zeigt eine Schnittansicht durch den Distanzhalter SD durch eine in Fig. 6a angegebene Schnittebene D-D. Der Distanzhalter SD weist nun einen Montagestift SDM auf. Der Montagestift SDM ist auf der gehäuseseitigen Stirnfläche des Distanzhalters SD angeordnet. Im montierten Zustand ist der Montagestift SDM in eine entsprechende Aufnahmebohrung im Gehäuse GG eingeführt, um den Dis tanzhalter SD in Position zu halten. Dadurch kann auf die Vorsprünge SDX verzichtet werden. Es ist auch eine Ausführung des Distanzhalters SD mit zwei Montagestiften SDM denkbar, um ein Verkippen des Distanzhalters SD zu vermeiden. Fig. 6a shows a plan view of a spacer SD according to a fourth exemplary embodiment. FIG. 6b shows a sectional view through the spacer SD through a sectional plane DD indicated in FIG. 6a. The spacer SD now has a mounting pin SDM. The mounting pin SDM is arranged on the housing-side end face of the spacer SD. The assembly pin SDM is in the assembled state Introduced into a corresponding mounting hole in the housing GG to hold the spacer SD in position. This means that the SDX projections can be dispensed with. An embodiment of the spacer SD with two mounting pins SDM is also conceivable in order to prevent the spacer SD from tilting.
Bezugszeichen Reference number
VM Verbrennungsmotor VM internal combustion engine
HY Hybridmodul HY hybrid module
HY2 Hybridmodul HY2 hybrid module
G Getriebe G transmission
EA Elektrischer Achsantrieb AG Differentialgetriebe EA Elektrischer Achsantrieb AG differential gear
DW Antriebsrad DW drive wheel
EM Elektrische Maschine EM electric machine
S Stator S stator
SB Statorblechpaket SB stator lamination package
SB1 Durchgangsöffnung SB1 through opening
SBZ Zentrieraufnahme SBZ center mount
SB2 Ausnehmung SB2 recess
SB3 Ausnehmung SB3 recess
SW Statorwicklung SW stator winding
R Rotor R rotor
RW Rotorwelle RW rotor shaft
RA Drehachse RA axis of rotation
WL Lager WL warehouse
GG Gehäuse GG housing
GG1 Gewindebohrung GG1 threaded hole
GG2 Bohrung GG2 bore
SS Schraube SS screw
SC Zentrierstift SC centering pin
SD2 Distanzhalter SD2 spacer
SD Distanzhalter SD spacers
SDA1 Durchgangsloch SDA1 through hole
SDA2 Durchgangsloch SDA2 through hole
SDX Vorsprung SDX advantage
SDM Montagestift SDM mounting pin

Claims

Patentansprüche Claims
1. Elektrische Maschine (EM) mit einem Gehäuse (GG), wobei die elektrische Ma schine (EM) innerhalb des Gehäuses (GG) angeordnet ist und einen drehfesten Sta tor (S) und einen drehbar gelagerten Rotor (R) aufweist, 1. Electrical machine (EM) with a housing (GG), wherein the electrical machine (EM) is arranged within the housing (GG) and has a non-rotatable Sta tor (S) and a rotatably mounted rotor (R),
- wobei der Stator (S) gegenüber dem Gehäuse (GG) elektrisch isoliert ist, - the stator (S) being electrically isolated from the housing (GG),
- wobei der Stator (S) ein Statorblechpaket (SB) und zumindest eine daran ange ordnete Statorwicklung (SW) aufweist, - The stator (S) has a stator lamination stack (SB) and at least one stator winding (SW) attached to it,
- wobei das Statorblechpaket (SB) über mehrere in axialer Richtung ausgerichtete Schrauben (SS) an dem Gehäuse (GG) befestigt ist, - The laminated stator core (SB) being fastened to the housing (GG) via several screws (SS) aligned in the axial direction,
- wobei zwischen dem Statorblechpaket (SB) und dem Gehäuse (GG) elektrisch isolierende Distanzhalter (SD) angeordnet sind, und - With electrically insulating spacers (SD) being arranged between the stator lamination stack (SB) and the housing (GG), and
- wobei zumindest zwei Zentrierstifte (SC) zur Zentrierung des Stators (S) im Ge häuse (GG) vorgesehen sind. - At least two centering pins (SC) are provided for centering the stator (S) in the housing (GG).
2. Elektrische Maschine (EM) nach Anspruch 1 , dadurch gekennzeichnet, dass jeder der Zentrierstifte (SC) an einem Ende in einer Bohrung (GG2) im Gehäuse (GG) und einem anderen Ende in einer Zentrieraufnahme (SBZ) im Statorblechpaket (SB) an geordnet ist. 2. Electrical machine (EM) according to claim 1, characterized in that each of the centering pins (SC) at one end in a bore (GG2) in the housing (GG) and at the other end in a centering receptacle (SBZ) in the stator core (SB) is arranged.
3. Elektrische Maschine (EM) nach Anspruch 2, dadurch gekennzeichnet, dass die Zentrierstifte (SC) metallisch sind und dass durch die Zentrieraufnahme (SBZ) eine elektrische Isolation zwischen dem Zentrierstift (SC) und der Statorblechpaket (SB) gebildet wird. 3. Electrical machine (EM) according to claim 2, characterized in that the centering pins (SC) are metallic and that electrical insulation between the centering pin (SC) and the stator core (SB) is formed by the centering receptacle (SBZ).
4. Elektrische Maschine (EM) nach Anspruch 3, dadurch gekennzeichnet, dass die Zentrieraufnahme (SBZ) elektrisch isolierende Hülsen (SBH) aufweisen, welche in je eine Ausnehmung (SB3) im Statorblech paket (SB) eingesetzt sind. 4. Electrical machine (EM) according to claim 3, characterized in that the centering receptacle (SBZ) have electrically insulating sleeves (SBH) which are inserted into a recess (SB3) in the stator lamination package (SB).
5. Elektrische Maschine (EM) nach Anspruch 1 oder Anspruch 2, dadurch gekenn zeichnet, dass die Zentrierstifte (SC) aus einem elektrisch isolierenden Werkstoff be stehen. 5. Electrical machine (EM) according to claim 1 or claim 2, characterized in that the centering pins (SC) be made of an electrically insulating material.
6. Elektrische Maschine (EM) nach einem der Ansprüche 1 bis 5, dadurch gekenn zeichnet, dass zumindest einer der Distanzhalter (SD) ein Durchgangsloch (SDA2) aufweist, wobei zumindest einer der Zentrierstifte (SC) durch das Durchgangsloch (SDA2) geführt ist. 6. Electrical machine (EM) according to one of claims 1 to 5, characterized in that at least one of the spacers (SD) has a through hole (SDA2), at least one of the centering pins (SC) being guided through the through hole (SDA2) .
7. Elektrische Maschine (EM) nach einem der Ansprüche 1 bis 6, dadurch gekenn zeichnet, dass zumindest einer der Distanzhalter (SD) durch zumindest einen der Zentrierstifte (SC) in Position gehalten ist. 7. Electrical machine (EM) according to one of claims 1 to 6, characterized in that at least one of the spacers (SD) is held in position by at least one of the centering pins (SC).
8. Elektrische Maschine (EM) nach einem der Ansprüche 1 bis 6, dadurch gekenn zeichnet, dass zumindest einer der Distanzhalter (SD) in das Gehäuse (GG) einge- clipst ist. 8. Electrical machine (EM) according to one of claims 1 to 6, characterized in that at least one of the spacers (SD) is clipped into the housing (GG).
9. Elektrische Maschine (EM) nach Anspruch 1 oder Anspruch 2, dadurch gekenn zeichnet, dass zumindest einer der Zentrierstifte (SC) mit zumindest einem der Dis tanzhalter (SD) einteilig ausgeführt ist. 9. Electrical machine (EM) according to claim 1 or claim 2, characterized in that at least one of the centering pins (SC) is made in one piece with at least one of the spacers (SD).
10. Elektrische Maschine (EM) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass an zumindest einem der Distanzhalter (SD) ein Montagestift (SDM) ausgebildet ist, wobei der Montagestift (SDM) mit einer Aufnahmebohrung im Gehäuse (GG) zusammenwirkt. 10. Electrical machine (EM) according to one of the preceding claims, characterized in that a mounting pin (SDM) is formed on at least one of the spacers (SD), the mounting pin (SDM) cooperating with a receiving bore in the housing (GG).
11. Elektrische Maschine (EM) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer der Distanzhalter (SD) an das Statorblechpa ket (SB) oder an das Gehäuse (GG) geklebt ist. 11. Electrical machine (EM) according to one of the preceding claims, characterized in that at least one of the spacers (SD) is glued to the Statorblechpa ket (SB) or to the housing (GG).
12. Elektrische Maschine (EM) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Schrauben (SS) und den Distanzhaltern (SD) ein Luftspalt besteht. 12. Electrical machine (EM) according to one of the preceding claims, characterized in that there is an air gap between the screws (SS) and the spacers (SD).
13. Elektrische Maschine (EM) nach Anspruch 12, dadurch gekennzeichnet, dass jede der Schrauben (SS) durch ein Durchgangsloch (SDA1 ) der Distanzhalter (SD) geführt ist. 13. Electrical machine (EM) according to claim 12, characterized in that each of the screws (SS) is guided through a through hole (SDA1) of the spacer (SD).
14. Antriebseinheit (HY, HY2, G, EA) für ein Kraftfahrzeug, gekennzeichnet durch eine elektrische Maschine (EM) nach einem der Ansprüche 1 bis 13, wobei die elekt rische Maschine (EM) zum Antrieb des Kraftfahrzeugs eingerichtet ist. 14. Drive unit (HY, HY2, G, EA) for a motor vehicle, characterized by an electric machine (EM) according to one of claims 1 to 13, wherein the electric machine (EM) is set up to drive the motor vehicle.
EP21735606.2A 2020-06-24 2021-06-17 Electric machine and motor vehicle drive unit Pending EP4173116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020207816.5A DE102020207816A1 (en) 2020-06-24 2020-06-24 Electric machine and motor vehicle drive unit
PCT/EP2021/066326 WO2021259740A1 (en) 2020-06-24 2021-06-17 Electric machine and motor vehicle drive unit

Publications (1)

Publication Number Publication Date
EP4173116A1 true EP4173116A1 (en) 2023-05-03

Family

ID=76662448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21735606.2A Pending EP4173116A1 (en) 2020-06-24 2021-06-17 Electric machine and motor vehicle drive unit

Country Status (5)

Country Link
US (1) US20230170747A1 (en)
EP (1) EP4173116A1 (en)
CN (1) CN115668692A (en)
DE (1) DE102020207816A1 (en)
WO (1) WO2021259740A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH287364A (en) 1950-09-16 1952-11-30 Siemens Ag Power tool with a housing made of metal.
US3693035A (en) * 1970-09-15 1972-09-19 Black & Decker Mfg Co Double insulated field mounting for universal motor
FR2115648A5 (en) 1970-11-27 1972-07-07 Thomson Houston Hotchkis
DE8431216U1 (en) 1984-10-24 1985-03-21 Böttcher Siegener Feinmechanik GmbH, 5927 Erndtebrück LENGTH LINKING FOR FLUIDIC VALVES
DE4321540C2 (en) 1993-06-29 1998-07-02 Fhp Motors Gmbh Electric motor with a stator core package
DE10040851A1 (en) 2000-08-21 2002-03-07 Siemens Ag Electrical machine with insulated machine housing
US6376946B1 (en) 2001-08-23 2002-04-23 Bill Lee D.C. brushless air fan with an annular oil trough
US6654213B2 (en) 2002-02-15 2003-11-25 Sunonwealth Electric Machine Industry Co., Ltd. Stator and bearing fixing structure of a motor
FR2886363B1 (en) 2005-05-24 2007-07-06 Renault Sas FLAT METAL JOINT HAVING FRANGIBLE LINK PARTS
WO2008027535A2 (en) 2006-09-01 2008-03-06 Sears David B Insulator for stator assembly of brushless dc motor
KR20080026872A (en) * 2006-09-21 2008-03-26 엘지전자 주식회사 Switched reluctance motor
JP5630650B2 (en) 2010-01-12 2014-11-26 日本電産株式会社 Motor and motor manufacturing method
DE102012224153A1 (en) 2012-12-21 2014-06-26 Robert Bosch Gmbh Stator for an electric machine
DE102014006190A1 (en) * 2014-04-30 2015-11-05 Audi Ag Drive device for a motor vehicle

Also Published As

Publication number Publication date
CN115668692A (en) 2023-01-31
DE102020207816A1 (en) 2021-12-30
US20230170747A1 (en) 2023-06-01
WO2021259740A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2020099048A1 (en) Support device for a rotor of a separately excited internal-rotor synchronous machine consisting of a support ring and a star disc
EP2907226B1 (en) Rotor assembly for an electric machine
DE102018204692A1 (en) Rotor-rotor shaft arrangement with cohesive connection
EP3171496A1 (en) Motor assembly
WO2021185490A1 (en) Rotor of an electric motor
WO2004086591A1 (en) Electrical machine with a rotor bearing that is integrated inside the stator
WO2004042891A1 (en) Permanent-magnet machine having an axial air gap
EP0749643A1 (en) Electric motor
WO2007107131A1 (en) Stator for an electric motor and method for the production thereof
WO2020015999A1 (en) Electric motor and pump comprising such an electric motor
DE3044050A1 (en) HOLDING DEVICE FOR A BEARING
EP1524751B1 (en) Brushless electric motor
EP4173116A1 (en) Electric machine and motor vehicle drive unit
EP0542171A1 (en) Power unit for railway traction units
DE3635987C2 (en)
EP3669444A1 (en) Electric motor, comprising a rotor
DE29603748U1 (en) Motor vehicle drive with an electric motor
DE102018205475A1 (en) Assembly procedure for a hybrid module
WO2021032762A1 (en) Method for arranging an electric machine on a transmission, and drive device
DE102007006364A1 (en) Drive unit with an axial gear for steering the wheels of a vehicle
DE2149972A1 (en) SMALL ELECTRIC MOTOR
EP2193592B1 (en) Rotor support of an electric machine
DE102016105654B4 (en) System and method for mechanically connecting an epicyclic gear to a motor housing and motor-gear assembly
EP1971012A1 (en) Terminal board and electric machine
WO2019154682A1 (en) Electric drive unit for a motor vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)