EP4168615A1 - Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacturing and cleaning - Google Patents

Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacturing and cleaning

Info

Publication number
EP4168615A1
EP4168615A1 EP21740124.9A EP21740124A EP4168615A1 EP 4168615 A1 EP4168615 A1 EP 4168615A1 EP 21740124 A EP21740124 A EP 21740124A EP 4168615 A1 EP4168615 A1 EP 4168615A1
Authority
EP
European Patent Office
Prior art keywords
fibers
polymer
vdf
weight
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740124.9A
Other languages
German (de)
French (fr)
Inventor
Fabrice Domingues Dos Santos
Anthony Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2006471A external-priority patent/FR3111645B1/en
Priority claimed from FR2006468A external-priority patent/FR3111647B1/en
Priority claimed from FR2006469A external-priority patent/FR3111644B1/en
Priority claimed from FR2006472A external-priority patent/FR3111646A1/en
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4168615A1 publication Critical patent/EP4168615A1/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/022Membrane sterilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/32By heating or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/52Crystallinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the invention relates to the field of porous webs of fibers based on fluorinated polymer (s) and membranes derived therefrom.
  • the invention relates to such webs for the filtration of nano and / or submicron aerosols comprising a set of fibers based on fluoropolymer.
  • the invention also relates to the use of such sails, or membranes derived therefrom, in air filtration devices, in particular in filtering respiratory protection devices.
  • the invention also relates to a method for implementing these webs and / or these membranes.
  • the invention relates to a method for cleaning these sails and / or these membranes.
  • filtering devices for respiratory protection masks for medical use, FFP-type masks , cartridge masks with assisted ventilation or not
  • filtering respiratory protection devices it was also important that they are sufficiently comfortable for their user (“good breathability") and reusable.
  • a key component of air filtration devices is the presence of one or more porous membranes made from non-woven fibers. These membranes ensure the blocking of potentially harmful aerosols comprising small particles, such as bacteria or viruses.
  • These processes can be associated with processes making it possible to electrostatically charge the nonwovens, by plasma treatment, and in particular by direct current corona treatment, by friction (triboelectric effect), by wet steam or even by dry steam.
  • a membrane having fibers whose surface is electrostatically charged will have an ability to block polluting or infectious elements by electrostatic effect, and will thus have an improved filtration efficiency compared to an uncharged membrane.
  • the membranes are generally composed from fibers, or combinations of synthetic fibers, obtained from thermoplastic polymers such as, without being exhaustive: polyolefins, polyamides, polyvinyls, polyimides, polyacrylates, poly-methacrylates , polyurethanes or else fluoropolymers, and in particular polyvinylidene fluoride.
  • thermoplastic polymers such as, without being exhaustive: polyolefins, polyamides, polyvinyls, polyimides, polyacrylates, poly-methacrylates , polyurethanes or else fluoropolymers, and in particular polyvinylidene fluoride.
  • the most widely used polymers to date are polyolefins, and in particular polypropylene.
  • the first effect, "impact”, is that observed when particles have dimensions close to that of the size of the pores, and are thus blocked by impact with the fibers.
  • the second effect is linked to the fact that the diffusing particles have a Brownian component in their displacement and are thus susceptible to make contact and adhere to the fibers. This mechanism makes it possible to prevent the passage of particles smaller than the size of the pores.
  • the third effect is associated with electrostatic phenomena. If the particles to be filtered are charged or polarizable, they are likely to be attracted to fibers which themselves have charges or dipoles. This third effect makes it possible to limit the passage of particles whose dimensions are significantly smaller than the size of the pores. The smaller the diameter of the fibers, it is more pronounced.
  • Efficiency is the membrane's ability to block harmful aerosols. It is evaluated by the difference in the concentration of the pollutant upstream and downstream of the filter element according to the following formula:
  • the characteristics of the pollutants specifically studied are generally defined by higher ranges of particle sizes that are sought to be eliminated.
  • the pressure drop, DR is the pressure difference between the upstream and downstream side of the filter element through which a gas flow may or may not include the pollutants. It thus characterizes the ability of a gas like air to pass through the filter element.
  • the aim will be to have the lowest possible pressure drop, in particular for filter elements entering into filtering respiratory protection devices, without assisted ventilation, because too great a pressure drop causes difficulty in being able to breathe without assistance. through the mask.
  • the quality factor, Qf (t), is defined by the formula:
  • the quality factor makes it possible to globally evaluate the performances and the possibilities of use of a filter, by balancing its efficiency in filtering particles of given dimensions, and its pressure drop, therefore its ability to allow a gas flow to circulate, and in particular the air sucked in or the carbon dioxide exhaled.
  • the quality factor depends on an optimization, the characteristic size of the pores, the porosity (volume of the filter element not filled by the fibers) and the electrostatic efficiency.
  • This compromise is all the more difficult to achieve as the particles which one seeks to filter are of small sizes. This is in particular the case for the filtration of viruses which have a characteristic size of the order of 100 nm or a few hundred nanometers.
  • a method particularly suited to the production of porous nonwoven membranes for protection against viruses is the electrospinning process of polymers in solution.
  • a solution containing the polymer formulation and additives in a suitable solvent formulation is pushed through a narrow, needle-shaped die or nozzle.
  • This pathway is brought to a high electric potential (positive or negative), generally of the order of several kilovolts, or tens of kilovolts.
  • a high electric potential positive or negative
  • the electrostatic charges generated in the solution by the field will compensate for surface tension forces forcing the fluid drops to stretch.
  • the solvent evaporates almost all, if not all, of the solid fibers will form and be deposited on a collector connected to an electrical ground.
  • the set of fibers can thus form a porous nonwoven membrane. This process makes it possible to produce fibers of variable dimensions, and in particular fibers whose diameter has the order of magnitude of ten or a hundred nanometers, which processes such as conventional fusion processes cannot do.
  • US2019 / 0314746 It is known in the prior art, for example in US2019 / 0314746, to obtain a porous nonwoven PVDF web by an electrospinning process, suitable for air filtration. More specifically, US2019 / 0314746 describes the electrospinning process of a PVDF solution, the PVDF used having a molecular weight of 530,000, at 20% w / v (weight for volume) in a mixture of DMF / acetone solvents in proportions 8/2 (v / v), at a voltage of 20 kV. The nanofibers are electrospun on the surface of a drum covered with a non-woven polypropylene (PP) substrate.
  • PP polypropylene
  • the membrane formed by the PVDF veil on its PP substrate is dried at 40 ° C in a vacuum oven to best remove the residual solvent.
  • the dried membrane is then polarized by Corona to fully charge the electrets.
  • the set of PVDF fibers in the membrane has a diameter distribution with a median diameter of 450 nm.
  • PVDF poly (vinylidene fluoride), more commonly known as PVDF, provides hydrophobic and chemically resistant membranes.
  • PVDF is a semi-crystalline thermoplastic polymer, which exhibits polymorphism, that is, it can crystallize in different crystalline phases: a, b, y and d.
  • the sequence of conformations, trans (T) or left (G), along the chains as well as the arrangement of the chains between them in the crystal (symmetry) define the phase as well as its polar or nonpolar character.
  • the alpha phase can be described by sequences of TGTG conformation (Left Trans + Left Trans -). This is the only non-polar phase.
  • the beta phase can be described by sequences of uniquely “trans” (T) conformations along the chains, themselves ordered in a non-centrosymmetric orthorhombic cell.
  • T trans
  • the beta phase is the most polar phase.
  • alpha phase there are intermediates between the alpha phase and the beta phase, in particular the gamma phase, which can be described by chains of T3GT3G conformation. It is polar but much less than the beta phase.
  • the delta phase is also polar, but has been little studied.
  • the polar phases exhibit important ferroelectric properties. This means that the application to the material of an electric field at a value greater than a characteristic field called the coercive field (E c ), allows the orientation of the dipoles formed by the CF bonds in the same direction. This orientation of the dipoles, sufficiently stable over time due to ferroelectric properties, gives the material a remanent polarization with zero electric field.
  • E c coercive field
  • the presence of beta phase in PVDF fibers is particularly advantageous for air filtration applications because this makes it possible to generate charges linked to the material and therefore to increase the electrostatic efficiency (higher electrostatic efficiency compared to fibers of non-ferroelectric dielectric materials).
  • the veil and / or the membrane derived from it does not contain or only contains very few fibers with a diameter less than or equal to 0.1 pm. It is therefore necessary to develop veils and / or membranes by derivative whose electrostatic efficiency component is improved so as to possibly compensate for a loss of mechanical efficiency, due to the use of fibers having a diameter greater than 0.1 ⁇ m.
  • the objective of the invention is to provide a web and / or a membrane for the filtration of nanometric and / or submicron aerosols meeting at least one of the aforementioned needs.
  • An objective of the invention is to provide, at least according to certain embodiments, a web and / or a membrane suitable for filtering air, the fibers of which have improved ferroelectric properties.
  • Another objective of the invention is to provide, at least according to certain embodiments, a veil and / or a membrane suitable for filtering air intended to be breathed in, and therefore not presenting any toxicological danger to human health. .
  • Another objective of the invention is, at least according to certain embodiments, to provide a veil and / or a membrane intended to be used as a filtering part of a filtering respiratory protection device.
  • Another object of the invention is to provide, at least according to certain embodiments, a web and / or a membrane for filtering air which, for a given pressure drop, has improved efficiency.
  • Another objective of the invention is to provide, at least according to certain embodiments, a web and / or a membrane for filtering the air which, for a given efficiency, has a lower pressure drop.
  • Another objective of the invention is to provide, at least according to certain embodiments, a web and / or a membrane for filtering air, the electrostatic efficiency of which is stable over time, in particular under various operating conditions. humidity and temperature.
  • Another object of the invention is to provide, at least according to certain embodiments, a veil and / or a membrane "durable", that is to say having a low impact on the environment.
  • one objective is to provide a web and / or a membrane for filtering air which can be reused after cleaning and / or sterilization.
  • a filter comprising the web and / or the membrane as well as any assembly on which the filter can be mounted removably or not;
  • the invention relates to a nonwoven, porous and electrostatically charged web, suitable for the filtration of nano and / or submicron aerosols. It comprises a multiplicity of fibers of composition C1.
  • Composition C1 comprises at least 50% by weight of at least one polymer P1 based on the repeating unit derived from vinylidene fluoride (VDF).
  • the fibers of composition C1 have a degree of crystallinity in polar phase (s), preferably in beta phase only, of at least 65% by weight, relative to their total weight.
  • the web according to the invention due in particular to better ferroelectric properties, has improved electrostatic efficiency.
  • the fibers of composition C1 have a degree of crystallinity in polar phase (s), preferably in only beta phase, of at least 75%, or of at least 80%, or of at least 85%, or at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight, based on their total weight.
  • the polymer P1 is selected from the group consisting of: a VDF homopolymer; a copolymer having a repeat unit derived from VDF and at least one repeat unit derived from a monomer other than VDF, the other monomer being chosen from the list consisting of: vinyl fluoride (VF), tetrafluoroethylene ( TFE), trifluoroethylene (TrFE), a chlorofluoroethylene (CFE), a chlorodifluoroethylene, chlorotrifluoroethylene (CTFE), dichlorodifluoroethylene, a trichlorofluoroethylene, hexafluoropropylene (FIFP), a trifluoropropropene, trifluoropropene, a tetoropropene hexafluoroisobutylene, perfluorobutylethylene, a pentafluoropropene, a perfluoroether, in particular a perfluoroal
  • the polymer P1 is a PVDF, a P (VDF-HFP), a P (VDF-TFE), a P (VDF-TrFE), or a mixture thereof.
  • said at least one polymer P1 is a mixture consisting of:
  • the polymer P1 represents at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99, 0%, by weight of composition C1.
  • composition C1 further comprises at least one RG polymer chosen from the list consisting of: a poly (methyl methacrylate) (PMMA), a poly (ethyl methacrylate) (PEMA), a poly ( methyl acrylate) (PMA), poly (ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) (PVMK), thermoplastic polyurethane (TPU), thermoplastic starch, copolymers derived therefrom, and mixtures thereof.
  • RG polymer chosen from the list consisting of: a poly (methyl methacrylate) (PMMA), a poly (ethyl methacrylate) (PEMA), a poly ( methyl acrylate) (PMA), poly (ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) (PVMK), thermoplastic polyurethane (TPU), thermoplastic star
  • the polymer P1 consists of a PVDF and the polymer P1 ′ consists of a PMMA, the proportion by mass of P1 ′ relative to the sum of the masses of the polymers P1 and P1 ′ being 15% at 40%, preferably from 16% to 30%, and extremely preferably from 17% to 23%.
  • the veil according to the invention consists of fibers of composition C1.
  • the web has a basis weight of 0.01 g / m 2 to 3 g / m 2 , preferably from 0.02 g / m 2 to 1 g / m 2 , and extremely preferably from 0.03 g / m 2 to 0.5 g / m 2 .
  • the web comprises less than 1%, preferably less than 0.5%, and more preferably less than 0.1%, by number of fibers having a diameter strictly less than 100 nm.
  • the invention also relates to a method of manufacturing a nonwoven, porous and electrostatically charged web, suitable for the filtration of nano and / or submicron aerosols, the web being according to the embodiments described above.
  • the process includes:
  • composition C1 comprising at least 50% by weight of at least one polymer P1 based on a repeating unit obtained from VDF;
  • composition C1 a step of forming the veil by electrospinning of composition C1.
  • the invention further relates to a membrane suitable for the filtration of nano and / or submicron aerosols comprising:
  • the web within the membrane has a basis weight of 0.01 g / m 2 to 3 g / m 2 , preferably from 0.02 g / m 2 to 1 g / m 2 , and extremely preferably from 0.03 g / m 2 to 0.5 g / m 2 .
  • the support layer is a nonwoven set of fibers chosen from: polyolefins, such as polyethylene (PE) or polypropylene (PP), polyesters, such as poly (ethylene terephthalate) (PET), a poly (butylene terephthalate) (PBT), or a poly (ethylene naphthalate) (PEN), polyamides or copolyamides, such as a PA 11, a PA 12, a PA 6, a PA 6 , 6, a PA 6.10, a polyacrylonitrile (PAN), fluoropolymers, such as a polyvinylidene fluoride (PVDF), a fluorinated ethylene propylene (FEP) or a polytetrafluoroethylene (PTFE), and their mixture.
  • polyolefins such as polyethylene (PE) or polypropylene (PP)
  • PET poly (ethylene terephthalate)
  • PBT poly (butylene terephthalate)
  • PEN poly (ethylene na
  • the invention relates to a method for washing / sterilizing a veil according to the embodiments described above or of a membrane according to the embodiments described above comprising a heat treatment step implemented. at a temperature of 40 ° C to 90 ° C, preferably from 55 ° C to 85 ° C, and extremely preferably at a temperature of 65 ° C to 80 ° C.
  • FIG. 1 schematically represents a first device for electrospinning (“with needle”).
  • FIG. 2 schematically shows a second device for electrospinning (“without needle”).
  • FIG. 3 schematically shows a membrane according to a first embodiment.
  • FIG. 4 schematically shows a membrane according to a second embodiment.
  • FIG. 5 schematically shows a membrane according to a third embodiment.
  • FIG. 6 schematically shows a filtering half-mask comprising a membrane according to the invention.
  • FIG. 7 schematically represents a possible architecture of the filter used in the half-mask according to Figure 6.
  • the invention relates to a nonwoven, porous and electrostatically charged web, suitable for the filtration of nano and / or submicron aerosols, comprising a multiplicity of fibers of composition C1.
  • Composition C1 comprises at least 50% by weight of at least one polymer P1 based on a repeating unit obtained from VDF.
  • the fibers of composition C1 have a degree of crystallinity in polar phase (s) of at least 65% by weight relative to the total weight of fibers.
  • the beta phase is the majority polar phase, that is to say it represents more than 50% by weight of the polar phases.
  • the beta phase represents more than 80%, or even more than 95% of the polar phases.
  • the gamma and / or delta phases are not detected, and the fibers are then considered to consist only of the beta phase as the polar crystalline phase.
  • the beta phase can be described by chains of all-trans (T) conformations along the polymer chains P1. It is the most polar phase among the different possible phases that the polymer P1 can adopt. Due to the presence of crystals in the form of beta phase, the polymer P1 is ferroelectric. It can be characterized by a cycle of hysteresis of the electric displacement-applied electric field curve. Its coercive field at 25 ° C is typically greater than or equal to 40 V / pm. Its remanent polarization at 25 ° C is quite high, and can typically reach a value greater than 40 mC / m 2 .
  • the fibers of the web according to the invention are polarizable at a relatively weak coercive electric field and exhibit a relatively high remanent polarization.
  • Polarized fibers form permanent dipoles which are stable over time and against humidity (hydrophobicity).
  • Polarized fibers are also temperature stable. This makes it possible to consider methods of washing / sterilizing the veil and / or a membrane by deriving it and reusing the latter without significant loss of filtration efficiency.
  • pores are understood to mean that the web has a set of empty spaces called pores.
  • the pores are advantageously mainly open pores, i.e. they can be connected between them to form very fine channels. This makes it possible to make the veil and therefore any membrane by drifting permeable to air.
  • electrostatically charged is meant that the web has dipole charges and, where appropriate, space charges.
  • aerosol is understood to denote a suspension in a gas, in particular air, of solid and / or liquid particles having a negligible fall speed. In air at 25 ° C and 1015 hPa, this generally corresponds to particles smaller than about 100 ⁇ m. Aerosol particles with their three external dimensions less than 1 micrometer (also called PM1) are referred to as submicron. Aerosol particles having their three external dimensions of less than 100 nanometers are referred to as nanometric.
  • Sub-micron or nanometric aerosols include dust, mists and mists, as well as bioaerosols.
  • Dust, mists and fog can be emitted by automobile traffic (incomplete combustion) or certain industrial activities (particles of chemical and / or thermal origin, or secondary particles, formed during a change of state of the material , during a chemical reaction or during gas condensation or liquid solidification steps.
  • Bioaerosols are aerosols containing living microorganisms (viruses, bacteria, molds and protozoa) or substances or products from these organisms (eg: toxins, dead microorganisms or fragments of microorganisms). Bioaerosols are ubiquitous in the environment and in the workplace. They can come from people, animals, plants and manipulated material, or be generated by a process, for example. In the case of the Covid 19 virus, the virus can be present in the air as droplets propelled by sneezing, coughing, spitting, or emitted by simple exhalations.
  • Aerosols comprising NaCl particles with sizes ranging from 50 nm to 500 nm can advantageously be used to test the effectiveness of the veil, or of the membrane drifting, against loads of the bioaerosol type.
  • fiber is understood to denote a filamentary element, which can generally be described by a diameter and a length.
  • nonwoven web of fibers is understood to denote a set of fibers obtained in particular by assembling fibers, without weaving or knitting.
  • An additional definition has been proposed by the EDANA (European Disposai and Nonwoven Association), according to the EN ISO 9092 standard, as meaning made of a sheet of individual fibers, oriented directly or at random, linked by friction, cohesion or adhesion.
  • degree of crystallinity in the polar phase is understood to mean the proportion by mass of crystals being in a polar phase relative to the total weight of fiber. It can be obtained by making the product of the rate of crystallinity of the fiber by the relative rate of polar crystalline phase (s) within the crystalline phases.
  • the "degree of crystallinity" can be measured by wide angle x-ray scattering (WAXS). This gives a spectrum of the intensity diffused as a function of the diffraction angle. This spectrum identifies the presence of crystals, when peaks are visible on the spectrum in addition to the amorphous halo. In the spectrum, we can measure the area of the crystal peaks (denoted AC) and the area of the amorphous halo (denoted AH). The mass proportion of crystalline phase in the fiber is then calculated by the ratio: (AC) / (AC + AH).
  • one method of quickly estimating the rate of crystallinity is to measure the enthalpy of fusion of fibers (DH) by Differential Scanning Calorimetry (DSC) on first heat at a temperature ramp of 10 ° C / min. The mass proportion of crystalline phase in the fiber is then estimated by the ratio: (AHm + AHc) / DH100%, in which DHiti is the enthalpy of fusion, DHo is the enthalpy associated with the Curie transition and DH100% is l theoretical enthalpy of a 100% crystalline sample.
  • DSC Differential Scanning Calorimetry
  • the relative rate of polar crystalline phase (s) in the crystalline phases corresponds in particular to the mass proportion of beta, gamma and delta phases in the crystalline phases. It can be determined by different techniques such as Differential Scanning Calorimetry (DSC), X-ray spectroscopy or Fourier transform infrared spectroscopy (FTIR).
  • DSC Differential Scanning Calorimetry
  • FTIR Fourier transform infrared spectroscopy
  • the beta phase being the most polar phase and / or the gamma and delta phases being able to be minority or nonexistent
  • the relative rate of polar crystalline phase (s) in the crystalline phases can generally be simplified, to a greater or lesser extent. approximate, as the beta phase rate only in the crystalline phases.
  • a a is the absorbance of a characteristic band of the alpha phase, for example at 766cm 1 ,
  • a b is the absorbance of a band characteristic of the beta phase, for example at 840cm 1 ,
  • K a is the absorption coefficient corresponding to the characteristic wavelength of the alpha phase (for 766 cm 1 , K a is estimated at 6, 1.10 4 ).
  • K b is the absorption coefficient corresponding to the characteristic wavelength of the beta phase (for 840 cm 1 , K b is estimated at 7.7.10 4 ).
  • copolymer is understood in the broad sense to denote a polymer resulting from the copolymerization of at least two types of chemically different monomers, called comonomers.
  • a copolymer, in the broad sense is therefore formed of at least two repeat patterns. It can for example be formed of two, three or four repeating patterns.
  • a copolymer, in the strict sense is formed of exactly two repeating units, such as, for example, P (VDF-TrFE).
  • mixture of polymers is understood to denote a macroscopically homogeneous polymer composition.
  • the term encompasses mixtures of compatible polymers, that is to say miscible, the mixture exhibiting a glass transition temperature intermediate to those of these polymers considered individually.
  • the term also encompasses such compositions composed of phases which are immiscible with one another and dispersed on a micrometric scale.
  • melting temperature is understood to denote the temperature at which an at least partially crystallized polymer changes to a viscous liquid state.
  • the melting temperature can be measured by differential scanning calorimetry (DSC) according to standard NF EN ISO 11357-3: 2018, in second heating, using a heating rate of 10 ° C / min.
  • the fibers of composition C1 have a degree of crystallinity in polar phase (s) of at least 65%, and preferably of at least 75%, or of at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight relative to their total weight.
  • the fibers of composition C1 have a degree of crystallinity in the beta phase of at least 65%, and preferentially of at least 75%, or of at least 80%, or of at least 85%, or of at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight relative to their total weight.
  • the fibers of composition C1 have a degree of crystallinity of at least 60%, or of at least 65%, or of at least 70%, or of at least 75%, or of at least 80%. , or at least 85%, or at least 90%, or at least 95%, or at least 99%.
  • the fibers of composition C1 have a relative rate of polar crystalline phase (s), in particular of beta phase, of at least 85%, or of at least 90%, or of at least 95 %, or at least 99%.
  • the level of crystallinity and / or the relative level of polar crystalline phase (s) can be increased in various ways, as shown in embodiments below.
  • the polymer P1 is selected from the group consisting of: a VDF homopolymer; a copolymer having a repeat unit derived from VDF and at least one repeat unit derived from a monomer other than VDF, the other monomer being chosen from the list consisting of: vinyl fluoride (VF), tetrafluoroethylene ( TFE), trifluoroethylene (TrFE), a chlorofluoroethylene (CFE), a chlorodifluoroethylene, chlorotrifluoroethylene (CTFE), dichlorodifluoroethylene, a trichlorofluoroethylene, hexafluoropropylene (HFP), a trifluoropropropene, trifluoropropene, a tetoropropene hexafluoroisobutylene, perfluorobutylethylene, a pentafluoropropene, a perfluoroether, in particular a perfluoroal
  • Rf-O-CF-CF2 Rf being an alkyl group, preferably C1 to C4, and for example methyl vinyl ether (MVE) or isopropyl vinyl ether (PVE).
  • acrylic or methacrylic type monomers mention may be made of: acrylic acid, methacrylic acid, (2-trifluoromethyl) acrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypopyl methacrylate, hydroxyethylhexyl acrylate, hydroxyethyl hexyl methacrylate, and a mixture thereof.
  • P1 comprises a copolymer
  • the latter is advantageously a random copolymer.
  • the polymer P1 is a PVDF, a P (VDF-HFP), a P (VDF-TFE), a P (VDF-TrFE), or a mixture thereof.
  • said at least one polymer P1 consists of PVDF.
  • said at least one polymer P1 consists of a P (VDF-HFP), or of a P (VDF-TFE), or of a P (VDF-TrFE).
  • said at least one polymer P1 is a mixture consisting of:
  • PVDF-HFP P (VDF-TFE) and P (VDF-TrFE); the mass proportion of PVDF relative to that of the copolymer ranging from 1: 99 to 99: 1.
  • the proportion by mass of PVDF relative to that of the copolymer is from 10:90 to 90:10. More preferably, the proportion by weight of PVDF relative to that of the copolymer is from 25:75 to 75:25.
  • the P (VDF-FIFP) advantageously has a molar proportion of repeating unit derived from the FIFP of 15% to 35%.
  • the P (VDF-TFE) advantageously has a molar proportion of repeating unit derived from TFE of 8% to 30%, preferably from 15% to 28%, more preferably from 18% to 25%, and extremely preferably from 20 % to 22%, relative to the total number of moles of units derived from VDF and TFE.
  • the P (VDF-TrFE) advantageously has a molar proportion of repeating unit derived from TrFE of 15 to 50%, preferably from 16% to 35%, more preferably from 17% to 32%, and extremely preferably from 18%. at 28%, relative to the total number of moles of the units derived from VDF and TrFE.
  • the polymer P1 has a melt index at 230 ° C under a load of 12.5 kg, from 0.1 to 15 g / 10 minutes, preferably from 1 to 10 g / 10 minutes, and again preferably from 3 to 8 g / 10 minutes, as measured according to the standard ASTM D1238-13.
  • composition C1 comprises at least 50% by weight of polymer P1 relative to the total weight of C1. Sufficiently high proportions of polymer P1 in C1 make it possible to guarantee good crystallization of C1 in predominantly ferroelectric form. According to certain embodiments, composition C1 comprises at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99.0% of the polymer P1.
  • composition C1 can also comprise at least one PT polymer other than the polymer P1.
  • the PT polymer can in particular be chosen from the list consisting of: a poly (methyl methacrylate) (PMMA), a poly (ethyl methacrylate) (PEMA), a poly (methyl acrylate) (PMA), a poly ( ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) (PVMK), thermoplastic polyurethane (TPU), thermoplastic starch, copolymers derived therefrom, and mixtures thereof .
  • composition C1 comprises a polymer P1 and a PT polymer, P1 consisting of a PVDF and PT consisting of a PMMA.
  • the mass proportion of PMMA relative to the sum of the masses of PMMA and PVDF is advantageously from 15% to 40%, preferably from 16% to 30%, and even more preferably from 17% to 23%.
  • the addition of PMMA to PVDF in these proportions makes it possible to significantly increase the level of crystallinity in the beta phase and only affects the level of crystallinity to a lesser extent.
  • composition C1 can further include a number of additives.
  • An example of an additive is, for example, an additive with a bactericidal or fungicidal effect.
  • Composition C1 preferably comprises less than 5% by weight, or less than 4% by weight, or less than 3% by weight, or less than 2% by weight, or less than 1% by weight of additive.
  • composition C1 does not include an electrically and / or thermally conductive additive, such as carbon nanotubes, graphene or even an organosilicate.
  • an electrically and / or thermally conductive additive such as carbon nanotubes, graphene or even an organosilicate.
  • such conductive additives can have a negative effect on the stability of the space charges that can participate in the induction efficiency (electrostatic efficiency) of the membrane. In particular, they are likely to cause premature discharge of fibers over time or premature in specific environments (eg washing and / or sterilization).
  • composition C1 does not include any inorganic ferroelectric particle, such as ferrite particles, or BaTiO3 particles.
  • composition C1 does not include a nanofiller, that is to say a filler having at least one dimension less than or equal to 100 nm. Indeed, such loads would be likely to present risks by inhalation for human health.
  • composition C1 can consist solely of polymer P1.
  • the web generally comprises at least 50% by weight of fibers of composition C1 relative to the total weight of the web.
  • the haze comprises at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99 , 0% fibers of composition C1.
  • the veil can also comprise at least one composition C1 ′ different from composition C1.
  • This other composition can be a composition consisting of at least 50% by weight of at least one polymer other than P1.
  • This other composition can in particular be a composition consisting of at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% by weight of 'another polymer than P1.
  • the polymer other than P1 can be one of the aforementioned polymers P1 ′.
  • the polymer other than P1 can also be a polymer chosen from the list consisting of: a polyolefin, such as a polyethylene or a polypropylene, a polyamide (PA 11; PA 12; PA 6; PA 6.6; PA 6.10) , a poly (ethylene terephthalate) (PET), a polyaryletherketone, a polyether sulfone, a polymethacrylic ester, a polyacrylic ester, a polyethylene oxide (PEO), a polyethylene glycol (PEG), a polystyrene (PS), an acid polylactic acid (PLA), a polyacrylic acid (PA), a polyvinyl alcohol (PVA), a polysulfone, a polyacrylonitrile, a polyurethane, a polycaprolactone, a polyimide, a fluoropolymer, such as a PVDF, a P (VDF-HFP), one P (VDF-TFE), one P (V
  • the web can consist solely of fibers of composition C1.
  • the fibers of the web advantageously have a median diameter strictly greater than 100 nm.
  • the diameter of the fibers and their distribution can be estimated by scanning electron microscopy (SEM), counting and analysis by dedicated software.
  • the median diameter of the fibers of the web is greater than or equal to 150 nm, or greater than or equal to 200 nm, or greater than or equal to 250 nm.
  • the median diameter of the fibers of the web is less than or equal to 1600 nm, or less than or equal to 1400 nm, or less than or equal to 1200 nm, or less than or equal to 1000 nm, or less than or equal to 800 nm, or less than or equal to 600 nm, or less than or equal to 550 nm, or less than or equal to 500 nm, or less than or equal to 450 nm.
  • the web comprises less than 1%, preferably less than 0.5%, and more preferably less than 0.1%, by number of fibers having a diameter strictly less than 100 nm.
  • the median diameter of the fibers of the web can in particular be from 150 nm to 600 nm, preferably from 200 nm to 500 nm, and even more preferably from 250 nm to 450 nm.
  • the web has a basis weight (basis weight) of 0.01 g / m 2 to 3 g / m 2 .
  • the basis weight can be estimated by simply weighing a given area, for example 200 mm x 250 mm, preferably after baking to ensure the absence of residual solvent.
  • the web preferably has a basis weight of 0.02 g / m 2 to 1 g / m 2 and, more preferably, a basis weight of 0.03 g / m 2 to 0.5 g / m 2 .
  • the web has an average thickness of 0.1 ⁇ m to 100 ⁇ m.
  • the average thickness can, for example, be estimated using a mechanical micrometer, an optical or laser sensor, or by optical microscopy or by scanning electron microscopy (SEM).
  • the web preferably has an average thickness of 0.2 ⁇ m to 10 ⁇ m and, more preferably, from 0.3 ⁇ m to 0.8 ⁇ m.
  • the web has a pressure drop less than or equal to 500 Pa for a nominal air flow rate of 95 L / min and / or a pressure drop less than or equal to 100 Pa for a nominal air flow of 95 L / min. 30 L / min air (see standard EN149 + A1: 2009).
  • the web preferably has a pressure drop of less than or equal to 350 Pa, preferably less than or equal to 250 Pa, preferably less than or equal to 100 Pa, and extremely preferably less than or equal to 50 Pa for an air flow rate of 95 L / min.
  • the web preferably has a pressure drop of less than or equal to 75 Pa, preferably less than or equal to 50 Pa and extremely preferably less than or equal to 25 Pa for an air flow rate of 30 L / min.
  • the membrane has an efficiency of at least 75% for aerosols of a nebulized NaCl solution (particle size ranging from 50 nm to 500 nm).
  • the membrane can in particular have an efficiency of at least 80%, or of at least 85%, or of at least 90%, or of at least 94%, or of at least 95%, or of at least at least 96%, or at least 99%, or at least 99.90%, or at least 99.95%.
  • the units derived from VDF in the polymer P1 are derived, at least in part, from a bio-based VDF.
  • bio-based VDF means “derived from biomass”. This improves the ecological footprint of the membrane.
  • Bio-based VDF can be characterized by a renewable carbon content, i.e. carbon of natural origin and originating from a biomaterial or biomass, of at least 1 atomic% as determined by the carbon content. 14C according to standard NF EN 16640.
  • the term “renewable carbon” indicates that the carbon is of natural origin and comes from a biomaterial (or biomass), as indicated below.
  • the bio-carbon content may be greater than 5%, preferably greater than 10%, preferably greater than 25%, preferably greater than or equal to 33%, preferably greater than 50%, of preferably greater than or equal to 66%, preferably greater than 75%, preferably greater than 90%, preferably greater than 95%, preferably greater than 98%, preferably greater than 99%, advantageously equal to 100%.
  • a method for manufacturing a web according to the invention comprises a step of forming the web by electrospinning (electrospinning) of at least one composition C1.
  • Electrospinning is a well-known electrohydrodynamic process, making it possible to manufacture small-size polymer fibers, in particular fibers with a diameter ranging from a few tens of nanometers to several hundred nanometers.
  • electrospinning is a well-known electrohydrodynamic process, making it possible to manufacture small-size polymer fibers, in particular fibers with a diameter ranging from a few tens of nanometers to several hundred nanometers.
  • An electrically charged jet is ejected from the top of the Taylor cone and then accelerated by an electric field.
  • the jet extends in the direction of the electric field and thins as it travels toward a grounded collection electrode.
  • the extension of the jet and its thinning are accompanied by a solidification of polymer fibers.
  • the fibers resulting from the jet are recovered directly on the collection electrode, or advantageously on a substrate placed in front of the collection electrode, at the end of their journey.
  • the electrospinning can in particular be “with needle” or “without needle”, as explained schematically by Figures 1 and 2 below.
  • the veil consists of a single composition C1, itself made up of the polymer P1.
  • FIG. 1 shows the diagram of a "needle" electrospinning installation, generally used in the laboratory.
  • the installation 10 comprises a syringe 11 comprising a solution 12 of polymer P1.
  • the syringe is generally fitted with a pump (not shown) allowing the flow of solution to be controlled as it exits. Facing the syringe is a collection electrode 14 connected to ground.
  • a high voltage generator 13 between the syringe and the collection electrode 14 generates an electric field.
  • a filament 15, subjected to the electric field, is ejected from the syringe 11, and is preferably deposited on a substrate 16, different from the collection electrode 14.
  • FIG. 2 shows the diagram of a “needleless” electrospinning installation, generally advantageous in order to allow greater productivity (quantity deposited for a given time), over a larger surface.
  • the installation 20 comprises a bath 21, open, comprising the polymer P1 in a fluid state (in solution, in the molten state, etc.) and a rotating electrode 22 immersed in the bath 21.
  • the speed of rotation of the electrode makes it possible to adapt the flow of composition C1 being ejected from the bath.
  • Facing the bath 21 and the rotating electrode 22 is a collecting electrode 24 connected to earth.
  • a high voltage generator 23 between the bath 21 / rotating electrode 22 and the collecting electrode 24 makes it possible to generate an electric field.
  • Filaments 25, subjected to the electric field, are ejected from the bath 21. They are preferably deposited on a substrate 26, different from the collection electrode 24.
  • the substrate 26 can in particular be an unwinding strip.
  • process parameters can be adjusted so as to obtain a web with advantageous properties, in particular having good filtration efficiency and / or low pressure drop and / or can have fibers of size less than 100 nm.
  • the parameters are in particular adjusted so as to obtain fibers of the desired size, with a substantially homogeneous appearance and minimizing the presence of beads.
  • the polymer P1 can be dissolved in different solvents or mixtures of solvents (“liquid vehicle”).
  • the liquid vehicle does not include dimethylsulfoxide (DMSO) and comprises, consists essentially of, or consists of: at least 50% by weight of a (first) liquid having a solubility parameter of Hansen dr from 7 MPa 1/2 to 20 MPa 1/2 and has a boiling point above 100 ° C.
  • DMSO dimethylsulfoxide
  • the (first) liquid has a Hansen solubility parameter dr of 15 MPa 1/2 to 20 MPa 1/2 , preferably from 15 MPa 1/2 to 18 MPa 1/2 .
  • the first liquid can in particular consist of gamma-butyrolactone, propylene carbonate, or a mixture thereof. This variant is particularly suitable when the fluoropolymer comprises a PVDF or consists of a PVDF.
  • the (first) liquid has a Hansen solubility parameter dr of 8 MPa 1/2 to 15 MPa 1/2 , preferably from 10 MPa 1/2 to 15 MPa 1/2 .
  • the first liquid can in particular consist of cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, and their mixture.
  • the (first) liquid is chosen from the list consisting of: cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, gamma-butyrolactone, propylene carbonate, and their mixture.
  • the (first) liquid can be chosen from the list consisting of: cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, and their mixture.
  • the (first) liquid consists of cyclopentanone.
  • the liquid vehicle of this first embodiment can comprise at least a second liquid, the second liquid having a boiling point of less than or equal to 100 ° C.
  • the second liquid can in particular be chosen from the list consisting of: acetone, ethyl acetate, 2-butanone, water and a mixture thereof.
  • the second liquid consists of ethyl acetate or a mixture of ethyl acetate and water.
  • the liquid vehicle comprises water, with water constituting up to 5% by weight, preferably up to 3% by weight of the liquid vehicle.
  • the liquid vehicle consists of said at least one first liquid and said at least one second liquid.
  • the mass proportion of the first liquid relative to the second liquid is from 20:80 to 80:20, and preferably from 50:50 to 75:25.
  • the vehicle comprises: at least 15% by weight of dimethylsulfoxide (DMSO), relative to the total weight of liquid vehicle, and at least one second liquid, the second liquid having a Hansen solubility parameter dr from 7 MPa 1/2 to 15 MPa 1/2 and a boiling point strictly above 100 ° C.
  • DMSO dimethylsulfoxide
  • the DMSO represents at least 20%, preferably at least 25%, and more preferably at least 30% by weight of the total weight of the liquid vehicle.
  • the second liquid represents at least 10% by weight of the total weight of the liquid vehicle.
  • the second liquid has a Hansen solubility parameter dr greater than or equal to 8 MPa 1/2 , preferably greater than or equal to 9 MPa 1/2 and extremely preferably greater than or equal to 10 MPa 1 / 2 .
  • the second liquid is selected from the list consisting of: cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, and a mixture thereof.
  • the second liquid consists of cyclopentanone.
  • the mass ratio of DMSO relative to the second liquid is then advantageously from 40:60 to 60:40.
  • the liquid vehicle consists of DMSO and said at least one second liquid.
  • the mass ratio of DMSO relative to the second liquid is then advantageously from 40:60 to 60:40.
  • the liquid vehicle comprises at least a third liquid, the third liquid having a boiling point of less than or equal to 100 ° C.
  • the third liquid advantageously represents from 5% to 60% by weight relative to the total weight of the liquid vehicle.
  • the third liquid is selected from the list consisting of: acetone, ethyl acetate, 2-butanone, water, and a mixture thereof.
  • the third liquid is ethyl acetate or a mixture of water and ethyl acetate.
  • the third liquid comprises water, with water constituting up to 5% by weight, preferably up to 3% by weight, of the liquid vehicle.
  • the mass ratio by weight of the sum of the weights of DMSO and of the second liquid relative to the weight of the third liquid is advantageously from 20:80 to 80:20, preferably from 40:60 to 60:40.
  • the liquid vehicle consists of DMSO, said at least one second liquid and said at least one third liquid.
  • the mass ratio by weight of the sum of the weights of DMSO and the second liquid relative to the weight of the third liquid is advantageously from 20:80 to 80:20, preferably from 40:60 to 60:40.
  • none of the following solvents is used in the composition of the liquid vehicle to dissolve the polymer P1, because of their CMR risk (carcinogenic, mutagenic, toxic for reproduction): NN-dimethylformamide (DMF), N, N-dimethylacetamide (DMac), tetrahydrofuran (THF), tetramethylurea, trimethylphosphate and N-methyl-2-pyrrolidone.
  • none of the following solvents is used in the composition of the liquid vehicle to dissolve the polymer P1, because of their CMR risk (carcinogenic, mutagenic, toxic for reproduction): NN-dimethylformamide (DMF), N, N-dimethylacetamide (DMac), tetrahydrofuran (THF), tetramethylurea, trimethylphosphate and N-methyl-2-pyrrolidone.
  • the polymer P1 is dissolved in a DMSO / cyclopentanone / ethyl acetate liquid vehicle.
  • Acetone and ethyl acetate in particular make the mixtures more volatile and ensure good crystallization of the fibers.
  • the concentration of the polymer P1 in one of the abovementioned solvents or their mixture is between a minimum value and a maximum value, below or beyond which the electrospun age no longer substantially forms a filament but also beads.
  • the amount of polymer P1 in one of the aforementioned solvents or their mixture represents from 3% to 30% by weight, preferably from 6% to 20% by weight, and extremely preferably from 9% to 12% of the total weight of solution.
  • the polymer P1 generally has a weight-average molecular mass chosen between a minimum value and a maximum value. In fact, too low a molecular mass results in the presence of unwanted beads during electrospinning. Too high a molecular weight tends to produce fibers of too large a diameter.
  • the polymer P1 generally has a mass molecular weight average ranging from 100,000 g / mol to 2,000,000 g / mol. Preferably, it has a weight average molecular mass of 300,000 g / mol to 1,500,000 g / mol, and extremely preferably of 400,000 to 700,000 g / mol.
  • the concentration of P1 is necessarily greater than the critical entanglement concentration.
  • the viscosity of the polymer solution P1 measured by a BROOKFIELD viscometer at 25 ° C., is generally 50 to 300 cP.
  • the viscosity of the solution is 75 to 265 cP, and extremely preferably 80 to 150 cP.
  • the solution may include an additive to improve the processability of the filament to be electrospun.
  • the additive can in particular be an additive making it possible to modulate certain electrohydrodynamic properties of the solution.
  • the mass proportion of the additive generally does not exceed 5% of the total weight of the solution.
  • the additive can in particular be water.
  • the advantage of water is that it increases the conductivity of the solution and evaporates during the electrospinning step.
  • the additive can also be a salt.
  • salts include NaCl and LiCl or else ammonium salts such as: TBAC (tetrabutylammonium chloride), TEAC (tetraethylammonium chloride) or TEAB (tetraethylammonium bromide).
  • TBAC tetrabutylammonium chloride
  • TEAC tetraethylammonium chloride
  • TEAB tetraethylammonium bromide
  • Equipment parameters such as for the devices used in the installations shown in Figures 1 and 2, can also be adjusted:
  • the inter-electrode voltage can generally be adjusted to a value of 5 kV to 40 kV; preferably the inter-electrode voltage is chosen so as to be as low as possible so as to limit the energy consumption of the process and to prevent at best any risk from 9 kV to 25 kV and extremely preferably from 10 kV to 20 kV; the distance between the polymer ejection zone and the substrate: the latter is generally adjusted from 5 cm to 30 cm, and preferably from 10 cm to 20 cm;
  • the polymer P1 ejection rate is advantageously chosen so as to be as high as possible depending on the type of equipment (syringe 11 or rotating electrode 22 soaking in the bath 21);
  • the temperature of the medium in which the polymer filament P1 being formed is intended to move this directly influences the evaporation temperature of the solvent from the solution; preferably this temperature is close to ambient temperature. It can in particular be from 10 ° C to 80 ° C, preferably from 20 ° C to 60 ° C and more preferably from 25 ° C to 45 ° C.
  • this humidity is 20% to 60% at the temperature of the medium.
  • the web formed by electrospinning does not necessarily require an additional polarization step, since due to the strong electric field exerted, the fibers are generally in a sufficiently polarized state after electrospinning.
  • the web formed by electrospinning can undergo, after its formation, an annealing step at a temperature below the melting temperature of the polymer and then cooled to ambient temperature (25 ° C.).
  • This annealing step optionally evaporates the residual solvent and optionally increases the crystallinity, and therefore the ferroelectric properties, of P1.
  • the annealing step will usually be followed by a polarization step, by contact or by corona.
  • the web according to the invention can be thick enough on its own to form a membrane suitable for the filtration of nano and / or submicron aerosols.
  • a nano and / or submicron aerosol filtration membrane according to the invention may comprise:
  • the web has a basis weight of 0.01 g / m 2 to 3 g / m 2 .
  • the web preferably has a basis weight of 0.02 g / m 2 to 1 g / m 2 and, more preferably, a basis weight of 0.03 g / m 2 to 0.5 g / m 2 .
  • the web has an average thickness of 0.1 ⁇ m to 100 ⁇ m.
  • the web preferably has an average thickness of 0.2 ⁇ m to 10 ⁇ m and more preferably 0.3 ⁇ m to 0.8 ⁇ m.
  • the support layer makes it possible in particular to ensure the good mechanical strength of the membrane.
  • the backing layer can be a woven or non-woven assembly of fibers.
  • the support layer has a low pressure drop.
  • the support layer in particular when the web is implemented by electrospinning, can be the substrate on which the web has been electrospun.
  • the support layer can be a nonwoven assembly of thermoplastic fibers.
  • the support layer can in particular be a nonwoven set of fibers chosen from: polyolefins, such as a polyethylene (PE) or a polypropylene (PP), polyesters, such as a poly (ethylene terephthalate) (PET), a poly (butylene terephthalate) (PBT), or a poly (ethylene naphthalate) (PEN), polyamides or copolyamides, such as a PA 11, a PA 12, a PA 6, a PA 6.6, a PA 6 , 10, polyacrylonitrile (PAN), fluoropolymers, such as polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP) or polytetrafluoroethylene (PTFE), and a mixture thereof.
  • PVDF polyvinylidene fluoride
  • FEP fluorinated ethylene propylene
  • PTFE polytetrafluoroethylene
  • the support layer is capable of being obtained by a meltblown process or by a spunbond process.
  • a meltblown process generally makes it possible to obtain fibers having a diameter ranging from 0.5 ⁇ m to 10 ⁇ m.
  • a spunbond process generally makes it possible to obtain fibers having a diameter ranging from 10 ⁇ m to 50 ⁇ m and is generally less expensive to implement than a meltblown process.
  • the support layer has a basis weight of 5 g / m 2 to 100 g / m 2 , preferably from 10 g / m 2 to 50 g / m 2 and extremely preferably from 15 g / m 2 to 40 g / m 2 .
  • a membrane comprises one or more webs according to the invention, for example essentially constituted (s), or constituted (s), of PVDF fibers or of fibers consisting of a mixture of PVDF and: P (VDF-HFP) or P (VDF-TFE) or P (VDF-TrFE), or of fibers consisting of a mixture of PVDF and PMMA.
  • the web (s) are obtained by electrospinning and have a basis weight of 0.02 g / m 2 to 1 g / m 2 .
  • the substrate can in particular be a PVDF, a PP or else a PET obtained by meltblowing and having a basis weight of 10 g / m 2 to 50 g / m 2 .
  • Figure 3 shows a multilayer membrane 30 consisting of a support layer 31 and a single web 32.
  • Figure 4 shows a multilayer membrane 40 consisting of a support layer 41 covered on each side (“sandwich”) respectively with a web 42 and a web 43.
  • the webs 42 and 43 may be identical or, on the contrary, different. , in particular have a composition and / or a different grammage and / or a thickness.
  • the web 42 may be of the same chemical composition as the web 43 but have a different basis weight and / or thickness.
  • Figure 5 shows a multilayer membrane 50 consisting of a support layer 51 successively covered with three webs 52, 53 and 54 according to the invention.
  • the webs 52, 53 and 54 may be identical or, on the contrary, different, in particular have a composition and / or a different basis weight and / or a thickness.
  • the web and / or the membrane according to the invention can constitute a filter and / or form part of a multilayer assembly constituting a filter, constituting or forming part of a device for filtering nano and / or submicron aerosols of the air.
  • the device for filtering nano and / or submicron aerosols from the air is a filtering device for respiratory protection.
  • the respiratory protection device can in particular be a filtering half-mask, a half-mask comprising a filter or a mask comprising a filter.
  • the respirator may be free-ventilated or assisted-ventilated.
  • the breathing apparatus is ventilated.
  • the respiratory protection device can in particular be a filtering half-mask as presented below.
  • the breathing apparatus can in particular be a mask for medical use (see standard EN 14683) or an FFP type mask (see standard EN 149).
  • the filter comprising the web and / or the membrane only allows the filtration of nano and / or sub micron aerosols from the air.
  • the filter comprising the web and / or the membrane is a combined filter allowing the filtration of nano and / or submicron aerosols and the anti-gas filtration.
  • FIG. 6 represents a filtering half-mask 60 comprising a filter 61, means for fixing the filter to the face, and in particular a nose bar 62, an elastic flange 63, as well as an exhalation valve 64 (optional in certain configurations) .
  • the filter 61 consists of three layers: two outer layers 72 and 73, one adapted and intended to be in contact with the face of a user, the other adapted and intended to be in contact with the face of a user. contact with the external environment as well as a middle layer formed by the membrane 30.
  • the veil and / or the membrane according to the invention can advantageously be washed and / or sterilized so that it can be reused. They can preferably be washed / sterilized, at least 5 times, preferably at least 10 times, more preferably at least 20 times, again preferably at least 30 times and, extremely preferably at least 50 times.
  • Washing can be done in particular with water, preferably with hot water.
  • Methods of sterilization include:
  • An example of chemical treatment is treatment with hydrogen peroxide (HPV / HPVP), VHP, HPGP, iHP and aHP
  • UV-C treatment is treatment with radiation with a wavelength ranging from 100 to 280 nm. It allows the veil and / or the membrane to be sterilized.
  • the UV-C treatment is implemented by a lamp having a radiation peak between 230 nm and 270 nm, in particular around 254 nm.
  • the treatment is generally applied at a dose of 1 J / cm to 120 J / cm, preferably 1 J / cm to 50 J / cm.
  • the heat treatment can be carried out at a temperature generally greater than or equal to 40 ° C. for a sufficient period of time, preferably less than or equal to 30 minutes and more preferably less than or equal to 15 minutes. It can in particular be used at a temperature greater than or equal to 50 ° C, or greater than or equal to 60 ° C, or greater than or equal to 70 ° C, or greater than or equal to 80 ° C.
  • the heat can be so-called “dry” heat or so-called “wet” heat (humidity above 50%).
  • Devices making it possible to carry out such treatments are in particular heating cabinets, water baths, autoclaves, ovens.
  • the treatment is to be chosen and adapted according to various constraints: nature and resistance of the materials other than the veil to undergo the treatment, use in hospitals or for domestic purposes, etc. It is therefore recommended for the user of a washable and / or sterilizable respiratory protection device to be well informed by carefully reading the manufacturer's instruction manual as well as the recommendations of official bodies. normative and / or health, these recommendations may change over time. To our knowledge, domestic ovens and microwave ovens for domestic use are not, at the time of writing this application, of the washing / sterilization methods recommended for masks for domestic use by the main official regulatory bodies. and / or health, in particular due to the lack of existing data and the potential risk of biological / chemical contamination of the ovens.
  • the ANSM in its opinion of March 25, 2020, revised on April 21, 2020, recommends, for example, for fabric masks for non-sanitary use, planned in the context of the COVID epidemic, for home treatment: i) a machine wash with a detergent suitable for the fabric, the cycle of which will include at least a 30-minute tray at 60 ° C and ii) mechanical drying or conventional drying, followed in both cases by steam ironing at a temperature compatible with the composition of the mask.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The invention relates to a nonwoven web obtained by electrospinning, suitable for filtering nanoscale and/or submicrometer scale aerosols, comprising a multiplicity of fibers having composition C1, the composition C1 containing at least 50% by weight of at least one polymer P1 based on the repeating unit derived from vinylidene fluoride (VDF), said fibres having composition C1 having a degree of crystallinity in the polar phase(s), preferably only in the beta phase, of at least 65% by weight relative to the total weight thereof. The invention also relates to a method for producing the web, to a membrane comprising the web and to a method for washing/sterilizing the web or membrane.

Description

Description Description
Titre : Voile non tissé, poreux, et chargé électrostatiquement, membrane et masque en dérivant et procédés de fabrication et de nettoyage. Title: Nonwoven, porous, and electrostatically charged veil, membrane and mask by derivative, and manufacturing and cleaning processes.
Domaine technique Technical area
L'invention concerne le domaine des voiles poreux de fibres à base de polymère(s) fluoré(s) et de membranes en dérivant. The invention relates to the field of porous webs of fibers based on fluorinated polymer (s) and membranes derived therefrom.
En particulier, l’invention concerne de tels voiles pour la filtration d'aérosols nano et/ou sub-microniques comprenant un ensemble de fibres à base de polymère fluoré. In particular, the invention relates to such webs for the filtration of nano and / or submicron aerosols comprising a set of fibers based on fluoropolymer.
L’invention concerne également l’utilisation de tels voiles, ou de membranes en dérivant, dans des dispositifs de filtration d’air, notamment dans des appareils filtrants de protection respiratoire. The invention also relates to the use of such sails, or membranes derived therefrom, in air filtration devices, in particular in filtering respiratory protection devices.
L’invention concerne également un procédé permettant de mettre en œuvre ces voiles et/ou ces membranes. The invention also relates to a method for implementing these webs and / or these membranes.
L’invention concerne enfin un procédé de nettoyage de ces voiles et/ou de ces membranes. Finally, the invention relates to a method for cleaning these sails and / or these membranes.
Art antérieur Prior art
Dans le contexte de la crise sanitaire liée au Coronavirus Covid-19, il s’est révélé particulièrement important de développer et produire des dispositifs de filtrations d’air, notamment des appareils filtrants de protection respiratoire (masques à usage médical, masques de type FFP, masques cartouches à ventilation assistée ou non) ou autres appareils destinés à la filtration de l’air, plus efficaces, performants, durables, et garantissent la bonne sécurité et la bonne santé des utilisateurs. Concernant, les appareils filtrants de protection respiratoires, il s’est également révélé important que ces derniers soient suffisamment confortables pour leur utilisateur (« bonne respirabilité ») et réutilisables. In the context of the health crisis linked to the Coronavirus Covid-19, it has proved to be particularly important to develop and produce air filtration devices, in particular filtering devices for respiratory protection (masks for medical use, FFP-type masks , cartridge masks with assisted ventilation or not) or other devices intended for the filtration of the air, more efficient, efficient, durable, and guarantee the good safety and the good health of the users. Regarding filtering respiratory protection devices, it was also important that they are sufficiently comfortable for their user ("good breathability") and reusable.
Un élément clé des dispositifs de filtration d’air, notamment des appareils filtrants de protection respiratoire, est la présence d’une ou plusieurs membranes poreuses composées de fibres non-tissées. Ces membranes assurent le blocage des aérosols potentiellement néfastes comprenant des particules de petite taille, comme des bactéries ou encore des virus. A key component of air filtration devices, including respiratory protection filter devices, is the presence of one or more porous membranes made from non-woven fibers. These membranes ensure the blocking of potentially harmful aerosols comprising small particles, such as bacteria or viruses.
Plusieurs procédés sont connus pour réaliser de telles membranes où des fibres non-tissées sont déposées ou non sur un substrat poreux. Il est notamment connu des procédés à partir de films de polymères (par exemple : le cardage ou le broyage de film), à partir de polymères fondus par soufflage (par exemple : meltblown ), ou à partir de polymères en solution (par exemple : l’électrofilage en solution, également connu sous son terme anglais : solution electrospinning) (voir : Irwin M. Hutten, in Handbook of Nonwoven Filter Media (Second Edition)).Several methods are known for making such membranes where nonwoven fibers are or are not deposited on a porous substrate. It is in particular known processes from polymer films (for example: carding or film grinding), from polymers melted by blow molding (for example: meltblown), or from polymers in solution (for example: electrospinning solution, also known by its English term: electrospinning solution) (see: Irwin M. Hutten, in Handbook of Nonwoven Filter Media (Second Edition)).
Ces procédés peuvent être associés à des procédés permettant de charger électrostatiquement les non-tissés, par traitement plasma, et en particulier par traitement corona en courant continu, par friction (effet triboélectrique), par vapeur humide ou encore par vapeur sèche. These processes can be associated with processes making it possible to electrostatically charge the nonwovens, by plasma treatment, and in particular by direct current corona treatment, by friction (triboelectric effect), by wet steam or even by dry steam.
Une membrane possédant des fibres dont la surface est chargée électrostatiquement aura une capacité à bloquer les éléments polluants ou infectieux par effet électrostatique, et aura ainsi une efficacité de filtration améliorée par rapport à une membrane non chargée. A membrane having fibers whose surface is electrostatically charged will have an ability to block polluting or infectious elements by electrostatic effect, and will thus have an improved filtration efficiency compared to an uncharged membrane.
Les membranes sont en général composées à partir de fibres, ou d’associations de fibres synthétiques, obtenues à partir de polymères thermoplastiques comme, sans être exhaustif : les polyoléfines, les polyamides, les polyvinyles, les polyimides, les polyacrylates, les poly-méthacrylates, les polyuréthanes ou encore les polymères fluorés, et notamment le polyfluorure de vinylidène. Les polymères les plus largement utilisés à ce jour sont les polyoléfines, et en particulier le polypropylène. The membranes are generally composed from fibers, or combinations of synthetic fibers, obtained from thermoplastic polymers such as, without being exhaustive: polyolefins, polyamides, polyvinyls, polyimides, polyacrylates, poly-methacrylates , polyurethanes or else fluoropolymers, and in particular polyvinylidene fluoride. The most widely used polymers to date are polyolefins, and in particular polypropylene.
On distingue habituellement trois mécanismes physiques principaux par lequel un élément filtrant permet de limiter le passage d’aérosols portés par un flux gazeux. Deux sont liés à des effets mécaniques, le troisième à des effets électrostatiques. Le premier effet, « l’impact », est celui observé lorsque des particules ont des dimensions proches de celle de la taille des pores, et sont ainsi bloquées par impact avec les fibres. There are usually three main physical mechanisms by which a filter element makes it possible to limit the passage of aerosols carried by a gas flow. Two are related to mechanical effects, the third to electrostatic effects. The first effect, "impact", is that observed when particles have dimensions close to that of the size of the pores, and are thus blocked by impact with the fibers.
Le second effet, « la diffusion », est lié au fait que les particules diffusantes ont une composante brownienne dans leur déplacement et sont ainsi susceptibles d’entrer en contact et d’adhérer au fibres. Ce mécanisme permet d’empêcher le passage de particules de tailles inférieures à la dimension des pores. The second effect, "diffusion", is linked to the fact that the diffusing particles have a Brownian component in their displacement and are thus susceptible to make contact and adhere to the fibers. This mechanism makes it possible to prevent the passage of particles smaller than the size of the pores.
Le troisième effet, « l’induction », est associé à des phénomènes électrostatiques. Si les particules à filtrer sont chargées ou polarisables, elles sont susceptibles d’être attirées par des fibres possédant elles même des charges ou des dipôles. Ce troisième effet permet de limiter le passage de particules dont les dimensions sont significativement inférieures à la taille de pores. Il est d’autant plus marqué que les fibres ont un petit diamètre. The third effect, "induction", is associated with electrostatic phenomena. If the particles to be filtered are charged or polarizable, they are likely to be attracted to fibers which themselves have charges or dipoles. This third effect makes it possible to limit the passage of particles whose dimensions are significantly smaller than the size of the pores. The smaller the diameter of the fibers, it is more pronounced.
Par ailleurs, pour évaluer les performances d’une membrane, plusieurs critères sont couramment utilisés et notamment : l’efficacité, la perte de charge ainsi que le facteur de qualité. In addition, to assess the performance of a membrane, several criteria are commonly used, including: efficiency, pressure drop as well as the quality factor.
L’efficacité, h(ΐ), est la capacité de la membrane à bloquer les aérosols néfastes. Elle est évaluée par la différence de concentration du polluant en amont et en aval de l’élément filtrant selon la formule suivante : Efficiency, h (ΐ), is the membrane's ability to block harmful aerosols. It is evaluated by the difference in the concentration of the pollutant upstream and downstream of the filter element according to the following formula:
[Math 1] dans laquelle Cm et Coût sont les concentrations en polluant spécifiquement identifiés comme devant être filtrés en amont ou en aval de l’élément filtrant.[Math 1] where Cm and Cost are the pollutant concentrations specifically identified as having to be filtered upstream or downstream of the filter element.
Les caractéristiques des polluants spécifiquement étudiés sont en général définies par des gammes supérieures de tailles de particules que l’on cherche à éliminer. The characteristics of the pollutants specifically studied are generally defined by higher ranges of particle sizes that are sought to be eliminated.
On cherchera généralement à avoir une efficacité maximale qui se détériore le moins possible en fonction du temps, de la température, de l’humidité, dans des environnements plus ou moins agressifs, ou lors d’étapes de traitement, de décontamination et/ou régénération de la membrane. We will generally seek to have maximum efficiency which deteriorates as little as possible as a function of time, temperature, humidity, in more or less aggressive environments, or during stages of treatment, decontamination and / or regeneration. of the membrane.
L’efficacité h(ί) peut être exprimée selon deux composantes selon la formule suivante : The efficiency h (ί) can be expressed as two components using the following formula:
[Math 2] h{ί rj.{m(t) + e(t». dans laquelle m(t) est la composante liée aux effets mécaniques et e(t) est la composante liée aux effets électrostatiques. [Math 2] h {ί rj. {M (t) + e (t ». in which m (t) is the component related to mechanical effects and e (t) is the component related to electrostatic effects.
Il est aisé de comprendre que lorsque les dimensions caractéristiques des pores diminuent, la composante mécanique de l’efficacité augmente et donc l’efficacité de l’élément filtrant aussi. It is easy to understand that as the characteristic pore size decreases, the mechanical component of efficiency increases and hence the efficiency of the filter element as well.
La perte de charge, DR, est la différence de pression entre l’amont et l’aval de l’élément filtrant traversé par un flux gazeux comprenant ou non les éléments polluants. Elle caractérise ainsi la capacité qu’à un gaz comme l’air à traverser l’élément filtrant. On cherchera en général à avoir une perte de charge la plus faible possible, en particulier pour les éléments filtrants entrant dans des appareils filtrants de protection respiratoire, sans ventilation assistée, car une perte de charge trop importante entraîne des difficultés à pouvoir respirer sans assistance à travers le masque. The pressure drop, DR, is the pressure difference between the upstream and downstream side of the filter element through which a gas flow may or may not include the pollutants. It thus characterizes the ability of a gas like air to pass through the filter element. In general, the aim will be to have the lowest possible pressure drop, in particular for filter elements entering into filtering respiratory protection devices, without assisted ventilation, because too great a pressure drop causes difficulty in being able to breathe without assistance. through the mask.
Il n’est donc généralement pas souhaitable de diminuer trop les dimensions caractéristiques des pores et/ou la porosité afin de ne pas trop augmenter la perte de charge de l’élément filtrant. It is therefore generally not desirable to reduce the characteristic pore dimensions and / or the porosity too much so as not to increase the pressure drop of the filter element too much.
Le facteur de qualité, Qf(t), se définit par la formule : The quality factor, Qf (t), is defined by the formula:
[Math 3] dans laquelle h(ί) et DR sont respectivement l’efficacité et la perte de charge, telles que définies ci-dessus. [Math 3] in which h (ί) and DR are the efficiency and the pressure drop, respectively, as defined above.
Le facteur de qualité permet d’évaluer globalement les performances et les possibilités d’utilisation d’un filtre, en équilibrant son efficacité à filtrer des particules de dimensions données, et sa perte de charge, donc sa capacité à laisser circuler un flux gazeux, et en particulier l’air aspiré ou le dioxyde de carbone expiré. The quality factor makes it possible to globally evaluate the performances and the possibilities of use of a filter, by balancing its efficiency in filtering particles of given dimensions, and its pressure drop, therefore its ability to allow a gas flow to circulate, and in particular the air sucked in or the carbon dioxide exhaled.
On comprend bien que le facteur de qualité dépend d’une optimisation la taille caractéristique des pores, la porosité (volume de l’élément filtrant non rempli par les fibres) et de l’efficacité électrostatique. On cherchera à augmenter l’efficacité en ayant des pores suffisamment petits pour bloquer les particules polluantes ou infectieuses mais suffisamment grandes pour permettre une faible perte de charge. On cherchera de même à maximiser l’effet électrostatique qui permet d’augmenter la taille des pores tout en permettant une grande efficacité, et l’on cherchera à minimiser le diamètre des fibres pour permettre la formation de pores petites tout en gardant une porosité élevée. Ce compromis est d’autant plus difficile à réaliser que les particules que l’on cherche à filtrer sont de petites tailles. C’est en particulier le cas pour la filtration des virus qui ont une taille caractéristique de l’ordre de 100 nm ou quelques centaines de nanomètres.It is understood that the quality factor depends on an optimization, the characteristic size of the pores, the porosity (volume of the filter element not filled by the fibers) and the electrostatic efficiency. We will seek to increase the efficiency by having pores small enough to block polluting or infectious particles but large enough to allow a low loss of charged. We will also seek to maximize the electrostatic effect which makes it possible to increase the size of the pores while allowing high efficiency, and we will seek to minimize the diameter of the fibers to allow the formation of small pores while maintaining high porosity. . This compromise is all the more difficult to achieve as the particles which one seeks to filter are of small sizes. This is in particular the case for the filtration of viruses which have a characteristic size of the order of 100 nm or a few hundred nanometers.
Un procédé particulièrement adapté à la réalisation de membranes poreuses non tissées pour protection contre les virus est le procédé d’électrofilage (en anglais : electrospinning) de polymères en solution. Dans ce procédé une solution contenant la formulation de polymère et d’additifs dans une formulation de solvants appropriés est poussée au travers d’une filière ou buse étroite, en forme d’aiguille. Cette filière est portée à un potentiel électrique (positif ou négatif) élevé, en général de l’ordre de plusieurs kilovolts, ou dizaines de kilovolts. Ouand la solution est suffisamment polaire et/ou conductrice, les charges électrostatiques générées dans la solution par le champ vont compenser les forces de tension de surface forçant les gouttes de fluide à s’étirer. Le solvant s’évaporant en quasi-totalité, voire en totalité, des fibres solides vont se former et se déposer sur un collecteur relié à une masse électrique. L’ensemble de fibres peut ainsi former une membrane poreuse non- tissée. Ce procédé permet de réaliser des fibres de dimensions variables, et en particulier des fibres dont le diamètre a pour ordre de grandeur la dizaine ou la centaine de nanomètres, ce que des procédés comme les procédés par fusion classiques ne peuvent faire. A method particularly suited to the production of porous nonwoven membranes for protection against viruses is the electrospinning process of polymers in solution. In this process a solution containing the polymer formulation and additives in a suitable solvent formulation is pushed through a narrow, needle-shaped die or nozzle. This pathway is brought to a high electric potential (positive or negative), generally of the order of several kilovolts, or tens of kilovolts. When the solution is sufficiently polar and / or conductive, the electrostatic charges generated in the solution by the field will compensate for surface tension forces forcing the fluid drops to stretch. As the solvent evaporates almost all, if not all, of the solid fibers will form and be deposited on a collector connected to an electrical ground. The set of fibers can thus form a porous nonwoven membrane. This process makes it possible to produce fibers of variable dimensions, and in particular fibers whose diameter has the order of magnitude of ten or a hundred nanometers, which processes such as conventional fusion processes cannot do.
Il est connu dans l’art antérieur, par exemple dans US2019/0314746, l’obtention d’un voile poreux non-tissé de PVDF par un procédé d’électrofilage, adaptée pour la filtration d’air. Plus précisément, US2019/0314746 décrit le procédé d’électrofilage d’une solution de PVDF, le PVDF utilisé ayant un poids moléculaire de 530000, à 20% p/v (poids pour volume) dans un mélange de solvants DMF /acétone en proportions 8/2 (v/v), à une tension de 20 kV. Les nanofibres sont électrofilées sur la surface d'un tambour recouvert d’un substrat non-tissé en polypropylène (PP). Une fois l’électrofilage des nanofibres terminé, la membrane formée par le voile de PVDF sur son substrat de PP, est séchée à 40 °C dans une étuve à vide pour éliminer au mieux le solvant résiduel. La membrane séchée est ensuite polarisée par Corona pour charger complètement les électrets. L’ensemble de fibres de PVDF dans la membrane a une distribution de diamètres avec un diamètre médian de 450 nm. It is known in the prior art, for example in US2019 / 0314746, to obtain a porous nonwoven PVDF web by an electrospinning process, suitable for air filtration. More specifically, US2019 / 0314746 describes the electrospinning process of a PVDF solution, the PVDF used having a molecular weight of 530,000, at 20% w / v (weight for volume) in a mixture of DMF / acetone solvents in proportions 8/2 (v / v), at a voltage of 20 kV. The nanofibers are electrospun on the surface of a drum covered with a non-woven polypropylene (PP) substrate. Once the electrospinning of the nanofibers is completed, the membrane formed by the PVDF veil on its PP substrate is dried at 40 ° C in a vacuum oven to best remove the residual solvent. The dried membrane is then polarized by Corona to fully charge the electrets. The set of PVDF fibers in the membrane has a diameter distribution with a median diameter of 450 nm.
L’électrofilage en solution permet d’obtenir, dans certaines conditions, des fibres de diamètres suffisamment petits pour une bonne respirabilité et une bonne efficacité de filtration mécanique de la membrane pour la filtration de l’air. Le poly(fluorure de vinylidène), plus communément appelé PVDF, permet d’obtenir des membranes hydrophobes et résistantes chimiquement. Le PVDF est un polymère thermoplastique semi-cristallin, qui présente un polymorphisme, à savoir qu’il peut cristalliser sous différentes phases cristallines : a, b, y et d. L’enchaînement des conformations, trans (T) ou gauche (G), le long des chaînes ainsi que l’arrangement des chaînes entre-elles dans le cristal (symétrie) définissent la phase ainsi que son caractère polaire ou non polaire.The electrospinning in solution makes it possible to obtain, under certain conditions, fibers of sufficiently small diameters for good breathability and good mechanical filtration efficiency of the membrane for air filtration. Poly (vinylidene fluoride), more commonly known as PVDF, provides hydrophobic and chemically resistant membranes. PVDF is a semi-crystalline thermoplastic polymer, which exhibits polymorphism, that is, it can crystallize in different crystalline phases: a, b, y and d. The sequence of conformations, trans (T) or left (G), along the chains as well as the arrangement of the chains between them in the crystal (symmetry) define the phase as well as its polar or nonpolar character.
La phase alpha peut être décrite par des enchaînements de conformation TGTG (Trans Gauche + Trans Gauche -). C’est la seule phase apolaire. The alpha phase can be described by sequences of TGTG conformation (Left Trans + Left Trans -). This is the only non-polar phase.
La phase beta peut être décrite par des enchaînements de conformations uniquement « trans »(T) le long des chaînes, elles-mêmes ordonnées dans une maille orthorhombique non centro-symétrique. La phase beta est la phase la phase la plus polaire. The beta phase can be described by sequences of uniquely “trans” (T) conformations along the chains, themselves ordered in a non-centrosymmetric orthorhombic cell. The beta phase is the most polar phase.
Il existe des intermédiaires entre la phase alpha et la phase beta, notamment la phase gamma, qui peut être décrite par des enchaînements de conformation T3GT3G. Elle est polaire mais beaucoup moins que la phase beta. La phase delta est également polaire mais n’a été que très peu étudiée. There are intermediates between the alpha phase and the beta phase, in particular the gamma phase, which can be described by chains of T3GT3G conformation. It is polar but much less than the beta phase. The delta phase is also polar, but has been little studied.
Les phases polaires, notamment la phase la plus polaire beta, présentent d’importantes propriétés ferroélectriques. Ceci signifie que l’application au matériau d’un champ électrique à une valeur supérieure à un champ caractéristique appelé champ coercitif (Ec), permet l’orientation des dipôles formés par les liaisons C-F dans la même direction. Cette orientation des dipôles, suffisamment stable dans le temps du fait de des propriétés ferroélectriques, confère au matériau une polarisation rémanente à champ électrique nul. Ainsi, la présence de phase beta dans les fibres de PVDF est particulièrement intéressante pour des applications de filtration de l’air car ceci permet de générer des charges liées au matériau et donc d’augmenter l’efficacité électrostatique (efficacité électrostatique supérieure par rapport à des fibres de matériaux diélectriques non ferroélectriques). The polar phases, especially the more polar beta phase, exhibit important ferroelectric properties. This means that the application to the material of an electric field at a value greater than a characteristic field called the coercive field (E c ), allows the orientation of the dipoles formed by the CF bonds in the same direction. This orientation of the dipoles, sufficiently stable over time due to ferroelectric properties, gives the material a remanent polarization with zero electric field. Thus, the presence of beta phase in PVDF fibers is particularly advantageous for air filtration applications because this makes it possible to generate charges linked to the material and therefore to increase the electrostatic efficiency (higher electrostatic efficiency compared to fibers of non-ferroelectric dielectric materials).
Il est connu de Andrew & al. (voir: Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir, 2008, vol. 24, no 3, p. 670-672), l’électrofilage de solutions de PVDF dans le diméthylformamide (DMF). En faisant varier certains paramètres du procédé, en l’occurrence la concentration en PVDF dans la solution et la tension appliquée lors de l’électrofilage, les auteurs arrivent à obtenir un voile de fibres en PVDF ayant une cristallinité de 49% à 58%, le pourcentage de phase beta dans la phase cristalline étant d’au plus 75%. Ainsi, les fibres obtenues ont un taux de phase beta de 37% à 47% en poids par rapport au poids de fibres. It is known from Andrew & al. (see: Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir, 2008, vol. 24, no 3, p. 670-672), electrospinning of solutions of PVDF in dimethylformamide (DMF). By varying certain parameters of the process, in this case the concentration of PVDF in the solution and the voltage applied during the electrospinning, the authors manage to obtain a veil of PVDF fibers having a crystallinity of 49% to 58%, the percentage of beta phase in the crystalline phase being at most 75%. Thus, the fibers obtained have a beta phase level of 37% to 47% by weight relative to the weight of fibers.
Il est connu de Baqueri & al. (voir : Influence of Processing conditions on polymorphie behavior, crystallinity, and morphology of electrospun poly (Vinylidene fluoride) nanofibers. Journal of Applied Polymer Science, 2015, vol. 132, no 30) l’électrofilage de solutions de PVDF à une concentration de 20% en poids dans du DMF. Les auteurs arrivent à obtenir avec un débit d’électrofilage de 0,5 mL/h et une tension appliquée lors de l’électrofilage de 13 kV, un voile de fibres en PVDF ayant une cristallinité de 53% le pourcentage de phase beta dans la phase cristalline étant d’au plus 83%. Ainsi, les fibres obtenues ont un taux de phase beta de 44% en poids par rapport au poids de fibres. De plus leur diamètre médian est de 55 nm. It is known from Baqueri & al. (see: Influence of Processing conditions on polymorphie behavior, crystallinity, and morphology of electrospun poly (Vinylidene fluoride) nanofibers. Journal of Applied Polymer Science, 2015, vol. 132, no 30) electrospinning of PVDF solutions at a concentration of 20% by weight in DMF. The authors manage to obtain with an electrospinning flow rate of 0.5 mL / h and a voltage applied during electrospinning of 13 kV, a veil of PVDF fibers having a crystallinity of 53% the percentage of beta phase in the crystalline phase being at most 83%. Thus, the fibers obtained have a beta phase level of 44% by weight relative to the weight of fibers. In addition, their median diameter is 55 nm.
Il existe un besoin de fournir des voiles de fibres ayant une proportion de phase beta par rapport au poids de fibres plus important afin d’améliorer les propriétés ferroélectriques du voile. There is a need to provide webs of fibers having a proportion of beta phase to the greater weight of fibers in order to improve the ferroelectric properties of the web.
Par ailleurs, du fait de la solubilité limitée du PVDF dans un petit nombre de solvants généralement assez toxiques, tel le DMF, la mise en œuvre d’un procédé d’électrofilage de fibres de PVDF en solution peut être assez fastidieuse du fait de la manipulation en quantités importantes de ces solvants. Il est par ailleurs à ne pas négliger, dans certains cas au moins et dans une certaine mesure, que ces solvants peuvent rester imprégnés dans les fibres de PVDF. Ceci pose des problèmes potentiels de sécurité et d’hygiène pour les utilisateurs, en particulier, si les membranes sont utilisées pour fabriquer des appareils filtrants de protection respiratoire. Il existe donc un besoin de s’affranchir de l’utilisation de solvants toxiques, ou à tout le moins d’utiliser des solvants moins toxiques, pour fabriquer un voile de polymère fluoré et/ou une membrane en dérivant. Moreover, due to the limited solubility of PVDF in a small number of generally quite toxic solvents, such as DMF, the implementation of an electrospinning process of PVDF fibers in solution can be rather tedious due to the handling of large quantities of these solvents. It should also not be overlooked, in certain cases at least and to a certain extent, that these solvents can remain impregnated in the PVDF fibers. This poses potential health and safety concerns for users, in particular, if the membranes are used to manufacture products. filtering respiratory protection devices. There is therefore a need to do away with the use of toxic solvents, or at the very least to use less toxic solvents, to manufacture a fluoropolymer veil and / or a membrane derived therefrom.
En outre, il est préférable, à cause des risques de toxicité des nano-objets pour l’Homme, que le voile et/ou la membrane en dérivant ne contienne pas ou ne contienne que très peu de fibres de diamètre inférieur ou égal à 0.1 pm. Il convient donc de développer des voiles et/ou membranes en dérivant dont la composante électrostatique de l’efficacité est améliorée de sorte à éventuellement compenser une perte d’efficacité mécanique, due à l’utilisation de fibres ayant un diamètre supérieur à 0.1 pm. In addition, it is preferable, because of the risks of toxicity of nano-objects for humans, that the veil and / or the membrane derived from it does not contain or only contains very few fibers with a diameter less than or equal to 0.1 pm. It is therefore necessary to develop veils and / or membranes by derivative whose electrostatic efficiency component is improved so as to possibly compensate for a loss of mechanical efficiency, due to the use of fibers having a diameter greater than 0.1 μm.
Objectifs Goals
L’objectif de l’invention est de proposer un voile et/ou une membrane pour la filtration d'aérosols nanométriques et/ou sub-microniques répondant à au moins l’un des besoins précités. The objective of the invention is to provide a web and / or a membrane for the filtration of nanometric and / or submicron aerosols meeting at least one of the aforementioned needs.
Un objectif de l’invention est de proposer, au moins selon certains modes de réalisation, un voile et/ou une membrane adaptée pour la filtration d’air dont les fibres ont des propriétés ferroélectriques améliorées. An objective of the invention is to provide, at least according to certain embodiments, a web and / or a membrane suitable for filtering air, the fibers of which have improved ferroelectric properties.
Un autre objectif de l’invention est de proposer, au moins selon certains modes de réalisation, un voile et/ou une membrane adaptée pour la filtration d’un air destiné à être respiré, et donc ne présentant aucun danger toxicologique pour la santé humaine. Another objective of the invention is to provide, at least according to certain embodiments, a veil and / or a membrane suitable for filtering air intended to be breathed in, and therefore not presenting any toxicological danger to human health. .
Un autre objectif de l’invention est, au moins selon certains modes de réalisation, de proposer un voile et/ou une membrane destinée à être utilisée comme partie filtrante d’un appareil filtrant de protection respiratoire. Another objective of the invention is, at least according to certain embodiments, to provide a veil and / or a membrane intended to be used as a filtering part of a filtering respiratory protection device.
Un autre objectif de l’invention est de proposer, au moins selon certains modes de réalisation, un voile et/ou une membrane pour la filtration de l’air qui, pour une perte de charge donnée, possède une efficacité améliorée. Another object of the invention is to provide, at least according to certain embodiments, a web and / or a membrane for filtering air which, for a given pressure drop, has improved efficiency.
Un autre objectif de l’invention est de proposer, au moins selon certains modes de réalisation, un voile et/ou une membrane pour la filtration de l’air qui, pour une efficacité donnée, possède une perte de charge moindre. Un autre objectif de l’invention est de proposer, au moins selon certains modes de réalisation, un voile et/ou une membrane pour la filtration de l’air dont l'efficacité électrostatique est stable dans le temps, notamment dans diverses conditions d’humidité et de température. Another objective of the invention is to provide, at least according to certain embodiments, a web and / or a membrane for filtering the air which, for a given efficiency, has a lower pressure drop. Another objective of the invention is to provide, at least according to certain embodiments, a web and / or a membrane for filtering air, the electrostatic efficiency of which is stable over time, in particular under various operating conditions. humidity and temperature.
Un autre objectif de l’invention est de proposer, au moins selon certains modes de réalisation, un voile et/ou une membrane « durables », c’est-à-dire ayant un impact faible sur l’environnement. En particulier, un objectif est de proposer un voile et/ou une membrane pour la filtration de l’air qui puisse être réutilisés après nettoyage et/ou stérilisation. Another object of the invention is to provide, at least according to certain embodiments, a veil and / or a membrane "durable", that is to say having a low impact on the environment. In particular, one objective is to provide a web and / or a membrane for filtering air which can be reused after cleaning and / or sterilization.
D’autres objectifs découlant directement des objectifs précités sont notamment de : Other objectives arising directly from the aforementioned objectives are in particular to:
- proposer un procédé de fabrication du voile et/ou de la membrane; - proposing a process for manufacturing the veil and / or the membrane;
- proposer un filtre comprenant le voile et/ou la membrane ainsi que tout assemblage sur lequel le filtre peut être monté de manière amovible ou non ;- Provide a filter comprising the web and / or the membrane as well as any assembly on which the filter can be mounted removably or not;
- proposer un procédé de lavage et/ou stérilisation du voile et/ou de la membrane, d’un filtre en dérivant, voire d’un assemblage sur lequel le filtre est monté de manière amovible ou non. - provide a method for washing and / or sterilizing the veil and / or the membrane, a derivative filter, or even an assembly on which the filter is mounted removably or not.
Résumé de l’invention Summary of the invention
L’invention concerne un voile non-tissé, poreux et chargé électrostatiquement, adapté pour la filtration d'aérosols nano et/ou sub-microniques. Il comprend une multiplicité de fibres de composition C1. La composition C1 comprend au moins 50% en poids d’au moins un polymère P1 à base du motif de répétition issu du fluorure de vinylidène (VDF). Les fibres de composition C1 ont un taux de cristallinité en phase(s) polaire(s), préférentiellement en phase uniquement beta, d’au moins 65% en poids, par rapport à leur poids total. The invention relates to a nonwoven, porous and electrostatically charged web, suitable for the filtration of nano and / or submicron aerosols. It comprises a multiplicity of fibers of composition C1. Composition C1 comprises at least 50% by weight of at least one polymer P1 based on the repeating unit derived from vinylidene fluoride (VDF). The fibers of composition C1 have a degree of crystallinity in polar phase (s), preferably in beta phase only, of at least 65% by weight, relative to their total weight.
Ainsi le voile selon l’invention, du fait notamment de meilleures propriétés ferroélectriques, a une efficacité électrostatique améliorée. Thus the web according to the invention, due in particular to better ferroelectric properties, has improved electrostatic efficiency.
Selon certains modes de réalisation, les fibres de composition C1 ont un taux de cristallinité en phase(s) polaire(s), préférentiellement en phase uniquement beta, d’au moins 75%, ou d’au moins 80%, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 95%, ou d’au moins 96%, ou d’au moins 97%, ou d’au moins 98%, ou d’au moins 99% en poids, par rapport à leur poids total. Selon certains modes de réalisation, le polymère P1 est choisi dans le groupe constitué de : un homopolymère de VDF ; un copolymère ayant un motif de répétition issu du VDF et au moins un motif de répétition issu d’un autre monomère que le VDF, l’autre monomère étant choisi dans la liste constituée de: le fluorure de vinyle (VF), le tétrafluoroéthylène (TFE), le trifluoroéthylène (TrFE), un chlorofluoroéthylène (CFE), un chlorodifluoroéthylène, le chlorotrifluoréthylène (CTFE), le dichlorodifluoroéthylène, un trichlorofluoroéthylène, l’hexafluoropropylène (FIFP), un trifluoropropène, un tétrafluoropropène, un chloro-trifluoropropène, l’hexafluoroisobutylène, le perfluorobutyléthylène, un pentafluoropropène, un perfluoroéther, notamment un perfluoroalkylvinyléther, l’éthylène, un monomère acrylique, un monomère méthacrylique et, leur mélange ; et un mélange d’homopolymère(s) et de copolymère(s). According to certain embodiments, the fibers of composition C1 have a degree of crystallinity in polar phase (s), preferably in only beta phase, of at least 75%, or of at least 80%, or of at least 85%, or at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight, based on their total weight. According to some embodiments, the polymer P1 is selected from the group consisting of: a VDF homopolymer; a copolymer having a repeat unit derived from VDF and at least one repeat unit derived from a monomer other than VDF, the other monomer being chosen from the list consisting of: vinyl fluoride (VF), tetrafluoroethylene ( TFE), trifluoroethylene (TrFE), a chlorofluoroethylene (CFE), a chlorodifluoroethylene, chlorotrifluoroethylene (CTFE), dichlorodifluoroethylene, a trichlorofluoroethylene, hexafluoropropylene (FIFP), a trifluoropropropene, trifluoropropene, a tetoropropene hexafluoroisobutylene, perfluorobutylethylene, a pentafluoropropene, a perfluoroether, in particular a perfluoroalkylvinylether, ethylene, an acrylic monomer, a methacrylic monomer and their mixture; and a mixture of homopolymer (s) and copolymer (s).
Selon certains modes de réalisation, le polymère P1 est un PVDF, un P(VDF- HFP), un P(VDF-TFE), un P(VDF-TrFE), ou leur mélange. According to some embodiments, the polymer P1 is a PVDF, a P (VDF-HFP), a P (VDF-TFE), a P (VDF-TrFE), or a mixture thereof.
Selon certains modes de réalisation, ledit au moins un polymère P1 est un mélange constitué de : According to certain embodiments, said at least one polymer P1 is a mixture consisting of:
- un PVDF, - a PVDF,
- un copolymère choisi parmi : P(VDF-HFP), P(VDF-TFE) et P(VDF-TrFE) ; la proportion massique de PVDF par rapport à celle du copolymère allant de- a copolymer chosen from: P (VDF-HFP), P (VDF-TFE) and P (VDF-TrFE); the mass proportion of PVDF relative to that of the copolymer ranging from
1 :99 à 99:1, préférentiellement de 10 :90 à 90 :10, et de manière extrêmement préférentielle de 25:75 à 75:25. 1:99 to 99: 1, preferably from 10:90 to 90:10, and extremely preferably from 25:75 to 75:25.
Selon certains modes de réalisation, le polymère P1 représente au moins 60%, ou au moins 70%, ou au moins 80%, ou au moins 90%, ou au moins 95%, ou au moins 97.5%, ou au moins 99,0%, en poids de la composition C1. According to certain embodiments, the polymer P1 represents at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99, 0%, by weight of composition C1.
Selon certains modes de réalisation, la composition C1 comprend en outre au moins un polymère RG choisi dans la liste constituée de : un poly(méthacrylate de méthyle) (PMMA), un poly(méthacrylate d’éthyle) (PEMA), un poly(acrylate de méthyle) (PMA), un poly(acrylate d’éthyle) (PEA), un poly(acétate de vinyle) (PVAc), un poly(vinyl méthyl cétone) (PVMK), un polyuréthane thermoplastique (TPU), un amidon thermoplastique, des copolymères en dérivant, et leurs mélanges. Selon certains modes de réalisation, le polymère P1 est constitué d’un PVDF et le polymère P1’ est constitué d’un PMMA, la proportion massique de P1 ’ par rapport à la somme des masses des polymères P1 et P1 ’ étant de 15% à 40%, préférentiellement de 16% à 30%, et de manière extrêmement préférentielle de 17% à 23%. According to certain embodiments, composition C1 further comprises at least one RG polymer chosen from the list consisting of: a poly (methyl methacrylate) (PMMA), a poly (ethyl methacrylate) (PEMA), a poly ( methyl acrylate) (PMA), poly (ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) (PVMK), thermoplastic polyurethane (TPU), thermoplastic starch, copolymers derived therefrom, and mixtures thereof. According to certain embodiments, the polymer P1 consists of a PVDF and the polymer P1 ′ consists of a PMMA, the proportion by mass of P1 ′ relative to the sum of the masses of the polymers P1 and P1 ′ being 15% at 40%, preferably from 16% to 30%, and extremely preferably from 17% to 23%.
Selon certains modes de réalisation, le voile selon l’invention est constitué des fibres de composition C1. According to certain embodiments, the veil according to the invention consists of fibers of composition C1.
Selon certains modes de réalisation, le voile a un grammage de 0.01 g/m2 à 3 g/m2, préférentiellement de 0.02 g/m2 à 1 g/m2, et de manière extrêmement préférentielle de 0.03 g/m2 à 0.5 g/m2. According to certain embodiments, the web has a basis weight of 0.01 g / m 2 to 3 g / m 2 , preferably from 0.02 g / m 2 to 1 g / m 2 , and extremely preferably from 0.03 g / m 2 to 0.5 g / m 2 .
Selon certains modes de réalisation, le voile comprend moins de 1%, préférentiellement moins de 0.5%, et de manière davantage préférée moins de 0,1%, en nombre de fibres ayant un diamètre strictement inférieur à 100 nm. According to certain embodiments, the web comprises less than 1%, preferably less than 0.5%, and more preferably less than 0.1%, by number of fibers having a diameter strictly less than 100 nm.
L’invention concerne également un procédé de fabrication d’un voile non-tissé, poreux et chargé électrostatiquement, adapté pour la filtration d'aérosols nano et/ou sub-microniques, le voile étant selon des modes de réalisation décrits ci- dessus. Le procédé comprend : The invention also relates to a method of manufacturing a nonwoven, porous and electrostatically charged web, suitable for the filtration of nano and / or submicron aerosols, the web being according to the embodiments described above. The process includes:
- la fourniture d’au moins une composition C1 , ladite composition C1 comprenant au moins 50% en poids d’au moins un polymère P1 à base d’unité de répétition issue du VDF ; - the provision of at least one composition C1, said composition C1 comprising at least 50% by weight of at least one polymer P1 based on a repeating unit obtained from VDF;
- une étape de formation du voile par électrofilage de la composition C1. a step of forming the veil by electrospinning of composition C1.
L’invention concerne en outre, une membrane adaptée pour la filtration d'aérosols nano et/ou sub-microniques comprenant : The invention further relates to a membrane suitable for the filtration of nano and / or submicron aerosols comprising:
- au moins un voile selon des modes de réalisation décrits ci-dessus ; et,- at least one veil according to the embodiments described above; and,
- une couche support supportant ledit voile. - a support layer supporting said web.
Selon certains modes de réalisation, le voile au sein de la membrane a un grammage de 0.01 g/m2 à 3 g/m2, préférentiellement de 0.02 g/m2 à 1 g/m2, et de manière extrêmement préférentielle de 0.03 g/m2 à 0.5 g/m2. According to certain embodiments, the web within the membrane has a basis weight of 0.01 g / m 2 to 3 g / m 2 , preferably from 0.02 g / m 2 to 1 g / m 2 , and extremely preferably from 0.03 g / m 2 to 0.5 g / m 2 .
Selon certains modes de réalisation, la couche support est un ensemble non- tissé de fibres choisies parmi : des polyoléfines, comme un polyéthylène (PE) ou un polypropylène (PP), des polyesters, comme un poly(téréphtalate d’éthylène) (PET), un poly(téréphtalate de butylène) (PBT), ou encore un poly(naphtalate d’éthylène) (PEN), des polyamides ou copolyamides, comme un PA 11, un PA 12, un PA 6, un PA 6,6, un PA 6,10, un polyacrylonitrile (PAN), des polymères fluorés, comme un polyfluorure de vinylidène (PVDF), un éthylène propylène fluoré (FEP) ou un polytétrafluoroéthylène (PTFE), et leur mélange. According to certain embodiments, the support layer is a nonwoven set of fibers chosen from: polyolefins, such as polyethylene (PE) or polypropylene (PP), polyesters, such as poly (ethylene terephthalate) (PET), a poly (butylene terephthalate) (PBT), or a poly (ethylene naphthalate) (PEN), polyamides or copolyamides, such as a PA 11, a PA 12, a PA 6, a PA 6 , 6, a PA 6.10, a polyacrylonitrile (PAN), fluoropolymers, such as a polyvinylidene fluoride (PVDF), a fluorinated ethylene propylene (FEP) or a polytetrafluoroethylene (PTFE), and their mixture.
Enfin, l’invention concerne un procédé de lavage/stérilisation d’un voile selon des modes de réalisation décrits ci-dessus ou d’une membrane selon des modes de réalisation décrits ci-dessus comprenant une étape de traitement par la chaleur mise en œuvre à une température de 40°C à 90° C, préférentiellement de 55° C à 85°C, et de manière extrêmement préférentielle à une température de 65°C à 80°C. Finally, the invention relates to a method for washing / sterilizing a veil according to the embodiments described above or of a membrane according to the embodiments described above comprising a heat treatment step implemented. at a temperature of 40 ° C to 90 ° C, preferably from 55 ° C to 85 ° C, and extremely preferably at a temperature of 65 ° C to 80 ° C.
Figures Figures
[Fig. 1] représente schématiquement un premier dispositif pour électrofilage (« avec aiguille »). [Fig. 1] schematically represents a first device for electrospinning (“with needle”).
[Fig. 2] représente schématiquement un deuxième dispositif pour électrofilage (« sans aiguille »). [Fig. 2] schematically shows a second device for electrospinning (“without needle”).
[Fig. 3] représente schématiquement une membrane selon un premier mode de réalisation. [Fig. 3] schematically shows a membrane according to a first embodiment.
[Fig. 4] représente schématiquement une membrane selon un deuxième mode de réalisation. [Fig. 4] schematically shows a membrane according to a second embodiment.
[Fig. 5] représente schématiquement une membrane selon un troisième mode de réalisation. [Fig. 5] schematically shows a membrane according to a third embodiment.
[Fig. 6] représente schématiquement un demi-masque filtrant comprenant une membrane selon l’invention. [Fig. 6] schematically shows a filtering half-mask comprising a membrane according to the invention.
[Fig. 7] représente schématiquement une architecture possible du filtre utilisé dans le demi-masque selon la Figure 6. [Fig. 7] schematically represents a possible architecture of the filter used in the half-mask according to Figure 6.
Description détaillée de l’invention Detailed description of the invention
Voile L’invention concerne un voile non-tissé, poreux et chargé électrostatiquement, adapté pour la filtration d'aérosols nano et/ou sub-microniques, comprenant une multiplicité de fibres de composition C1. La composition C1 comprend au moins 50% en poids d’au moins un polymère P1 à base d’unité de répétition issue du VDF. Les fibres de composition C1 ont un taux de cristallinité en phase(s) polaire(s) d’au moins 65% en poids par rapport au poids total de fibres. Avantageusement, la phase beta est la phase polaire majoritaire, c’est-à-dire qu’elle représente plus de 50% en poids des phases polaires. De manière préférée, la phase beta représente plus de 80%, ou encore plus de 95% des phases polaires. Dans de nombreux cas, les phase gamma et/ou delta ne sont pas détectées, et on considère alors que les fibres sont constituées uniquement de phase beta comme phase cristalline polaire. Sail The invention relates to a nonwoven, porous and electrostatically charged web, suitable for the filtration of nano and / or submicron aerosols, comprising a multiplicity of fibers of composition C1. Composition C1 comprises at least 50% by weight of at least one polymer P1 based on a repeating unit obtained from VDF. The fibers of composition C1 have a degree of crystallinity in polar phase (s) of at least 65% by weight relative to the total weight of fibers. Advantageously, the beta phase is the majority polar phase, that is to say it represents more than 50% by weight of the polar phases. Preferably, the beta phase represents more than 80%, or even more than 95% of the polar phases. In many cases, the gamma and / or delta phases are not detected, and the fibers are then considered to consist only of the beta phase as the polar crystalline phase.
La phase beta peut être décrite par des enchaînements de conformations all- trans (T) le long des chaînes de polymère P1. Elle est la phase la plus polaire parmi les différentes phases possibles que peut adopter le polymère P1. Du fait de la présence de cristaux sous forme de phase beta, le polymère P1 est ferroélectrique. Il peut être caractérisé par un cycle d’hystérésis de la courbe déplacement électrique-champ électrique appliqué. Son champ coercitif à 25°C est typiquement supérieur ou égal à 40 V/ pm. Sa polarisation rémanente à 25°C est assez élevée, et peut typiquement atteindre une valeur supérieure à 40 mC/m2. The beta phase can be described by chains of all-trans (T) conformations along the polymer chains P1. It is the most polar phase among the different possible phases that the polymer P1 can adopt. Due to the presence of crystals in the form of beta phase, the polymer P1 is ferroelectric. It can be characterized by a cycle of hysteresis of the electric displacement-applied electric field curve. Its coercive field at 25 ° C is typically greater than or equal to 40 V / pm. Its remanent polarization at 25 ° C is quite high, and can typically reach a value greater than 40 mC / m 2 .
Ainsi, les fibres du voile selon l’invention, en particulier les fibres de composition C1 , sont polarisables à un champ électrique coercitif relativement faible et présentent une polarisation rémanente relativement élevée. Les fibres polarisées forment des dipôles permanents stables dans le temps et à l’humidité (hydrophobicité). Les fibres polarisées sont également stables en température. Ceci permet d’envisager des procédés de lavage / stérilisation du voile et/ou d’une membrane en dérivant et une réutilisation de ces derniers sans perte significative d’efficacité de filtration. Thus, the fibers of the web according to the invention, in particular the fibers of composition C1, are polarizable at a relatively weak coercive electric field and exhibit a relatively high remanent polarization. Polarized fibers form permanent dipoles which are stable over time and against humidity (hydrophobicity). Polarized fibers are also temperature stable. This makes it possible to consider methods of washing / sterilizing the veil and / or a membrane by deriving it and reusing the latter without significant loss of filtration efficiency.
On entend par le terme « poreux » signifier que le voile présente un ensemble d’espaces vides appelés pores. Les pores sont avantageusement principalement des pores ouverts, c’est-à-dire qu’ils peuvent être reliés entre eux pour former des canaux très fins. Ceci permet de rendre le voile et donc toute membrane en dérivant perméable à l’air. The term “porous” is understood to mean that the web has a set of empty spaces called pores. The pores are advantageously mainly open pores, i.e. they can be connected between them to form very fine channels. This makes it possible to make the veil and therefore any membrane by drifting permeable to air.
On entend par l’expression « chargé électrostatiquement » signifier que le voile possède des charges dipolaires et, le cas échéant, des charges d’espace.By "electrostatically charged" is meant that the web has dipole charges and, where appropriate, space charges.
On entend par le terme « aérosol » désigner une suspension dans un gaz, notamment l’air, de particules solides et/ou liquides présentant une vitesse de chute négligeable. Dans l’air, à 25°C et 1015 hPa, cela correspond généralement à des particules de taille inférieure à environ 100 pm. Les particules d’aérosol ayant leurs trois dimensions externes inférieures à 1 micromètre (également appelées PM1) sont qualifiées de sub-microniques. Les particules d’aérosol ayant leur trois dimensions externes inférieures à 100 nanomètres sont qualifiées de nanométriques. The term "aerosol" is understood to denote a suspension in a gas, in particular air, of solid and / or liquid particles having a negligible fall speed. In air at 25 ° C and 1015 hPa, this generally corresponds to particles smaller than about 100 µm. Aerosol particles with their three external dimensions less than 1 micrometer (also called PM1) are referred to as submicron. Aerosol particles having their three external dimensions of less than 100 nanometers are referred to as nanometric.
Les aérosols sub-microniques ou nanométriques englobent les poussières, les brumes et brouillards, ainsi que les bioaérosols. Sub-micron or nanometric aerosols include dust, mists and mists, as well as bioaerosols.
Les poussières, brumes et brouillard peuvent être émis par le trafic automobile (combustion incomplète) ou certaines d’activités industrielles (particules d’origine chimique et/ou thermique, ou particules secondaires, formées lors d’un changement d’état de la matière, lors d’une réaction chimique ou lors d’étapes de condensation de gaz ou solidification de liquides. Dust, mists and fog can be emitted by automobile traffic (incomplete combustion) or certain industrial activities (particles of chemical and / or thermal origin, or secondary particles, formed during a change of state of the material , during a chemical reaction or during gas condensation or liquid solidification steps.
Les bioaérosols sont des aérosols contenant des microorganismes vivants (virus, bactéries, moisissures et protozoaires) ou des substances ou produits provenant de ces organismes (ex. : toxines, microorganismes morts ou fragments de microorganismes). Les bioaérosols sont omniprésents dans l’environnement et dans les milieux de travail. Ils peuvent provenir des personnes, des animaux, des plantes et du matériel manipulé, ou être générés par un procédé, par exemple. Dans le cas du virus Covid 19, le virus peut être présent dans l’air sous forme de gouttelettes propulsées par éternuements, toux, postillons, ou émises par de simple expirations. Bioaerosols are aerosols containing living microorganisms (viruses, bacteria, molds and protozoa) or substances or products from these organisms (eg: toxins, dead microorganisms or fragments of microorganisms). Bioaerosols are ubiquitous in the environment and in the workplace. They can come from people, animals, plants and manipulated material, or be generated by a process, for example. In the case of the Covid 19 virus, the virus can be present in the air as droplets propelled by sneezing, coughing, spitting, or emitted by simple exhalations.
Il existe diverses méthodes de mesure, indirectes (par exemple par prélèvement, mesure de concentration et observation microscopique) ou directes (par exemple par des méthodes électriques), bien connues de l’Homme de l’Art, afin d’évaluer la concentration en particules et leur répartition granulométrique dans un aérosol. Des aérosols comprenant des particules de NaCI de tailles allant de 50 nm à 500 nm peuvent avantageusement être utilisés pour tester l’efficacité du voile, ou de membrane en dérivant, face à des charges de type bioaérosol. There are various measurement methods, indirect (for example by sampling, measurement of concentration and microscopic observation) or direct (for example by electrical methods), well known to those skilled in the art, in order to evaluate the concentration of particles and their particle size distribution in an aerosol. Aerosols comprising NaCl particles with sizes ranging from 50 nm to 500 nm can advantageously be used to test the effectiveness of the veil, or of the membrane drifting, against loads of the bioaerosol type.
On entend par le terme « fibre » désigner un élément filamenteux, pouvant généralement être décrit par un diamètre et une longueur. The term “fiber” is understood to denote a filamentary element, which can generally be described by a diameter and a length.
On entend par « voile non-tissé de fibres », désigner un ensemble de fibres obtenu notamment par assemblage de fibres, sans tissage, ni tricotage. Une définition complémentaire a été proposée par l'EDANA ( European Disposai and Nonwoven Association ), suivant la norme EN ISO 9092, comme signifiant fait d'une nappe de fibres individuelles, orientées directement ou au hasard, liées par friction, cohésion ou adhésion. The term “nonwoven web of fibers” is understood to denote a set of fibers obtained in particular by assembling fibers, without weaving or knitting. An additional definition has been proposed by the EDANA (European Disposai and Nonwoven Association), according to the EN ISO 9092 standard, as meaning made of a sheet of individual fibers, oriented directly or at random, linked by friction, cohesion or adhesion.
On entend par l’expression « taux de cristallinité en phase polaire » signifier la proportion massique de cristaux étant dans une phase polaire par rapport au poids total de fibre. Il peut être obtenu en faisant le produit du taux de cristallinité de la fibre par le taux relatif de phase(s) cristalline(s) polaire(s) au sein des phases cristallines. The expression "degree of crystallinity in the polar phase" is understood to mean the proportion by mass of crystals being in a polar phase relative to the total weight of fiber. It can be obtained by making the product of the rate of crystallinity of the fiber by the relative rate of polar crystalline phase (s) within the crystalline phases.
Le « taux de cristallinité » peut être mesuré par diffusion des rayons X aux grands angles (WAXS). On obtient ainsi un spectre de l’intensité diffusée en fonction de l’angle de diffraction. Ce spectre permet d’identifier la présence de cristaux, lorsque des pics sont visibles sur le spectre en plus du halo amorphe. Dans le spectre, on peut mesurer l’aire des pics cristallins (notée AC) et l’aire du halo amorphe (notée AH). La proportion massique de phase cristalline dans la fibre est alors calculée par le rapport : (AC)/(AC +AH). The "degree of crystallinity" can be measured by wide angle x-ray scattering (WAXS). This gives a spectrum of the intensity diffused as a function of the diffraction angle. This spectrum identifies the presence of crystals, when peaks are visible on the spectrum in addition to the amorphous halo. In the spectrum, we can measure the area of the crystal peaks (denoted AC) and the area of the amorphous halo (denoted AH). The mass proportion of crystalline phase in the fiber is then calculated by the ratio: (AC) / (AC + AH).
Alternativement, une méthode pour estimer rapidement le taux de cristallinité est de mesurer l’enthalpie de fusion des fibres (DH) par Calorimétrie Différentielle à Balayage (DSC) en première chauffe à une rampe de températures de 10°C/min. La proportion massique de phase cristalline dans la fibre est alors estimée par le rapport : (AHm+ AHc )/ DH100%, dans lequel DHiti est l’enthalpie de fusion, DHo est l’enthalpie associée à la transition de Curie et DH100% est l’enthalpie théorique d’un échantillon 100% cristallin. Alternatively, one method of quickly estimating the rate of crystallinity is to measure the enthalpy of fusion of fibers (DH) by Differential Scanning Calorimetry (DSC) on first heat at a temperature ramp of 10 ° C / min. The mass proportion of crystalline phase in the fiber is then estimated by the ratio: (AHm + AHc) / DH100%, in which DHiti is the enthalpy of fusion, DHo is the enthalpy associated with the Curie transition and DH100% is l theoretical enthalpy of a 100% crystalline sample.
Le taux relatif de phase(s) cristalline(s) polaire(s) dans les phases cristallines correspond notamment à la proportion massique en phases beta, gamma et delta dans les phases cristallines. Il peut être déterminé par différentes techniques comme la Calorimétrique différentielle à Balayage (DSC), la Spectroscopie à rayons X ou la Spectroscopie infrarouge par transformée de Fourier (FTIR). La phase beta étant la phase la plus polaire et/ou les phases gamma et delta pouvant être minoritaires ou inexistantes, le taux relatif de phase(s) cristalline(s) polaires dans les phases cristallines peut généralement être simplifié, de manière plus ou moins approximative, comme étant le taux de phase beta uniquement dans les phases cristallines. The relative rate of polar crystalline phase (s) in the crystalline phases corresponds in particular to the mass proportion of beta, gamma and delta phases in the crystalline phases. It can be determined by different techniques such as Differential Scanning Calorimetry (DSC), X-ray spectroscopy or Fourier transform infrared spectroscopy (FTIR). The beta phase being the most polar phase and / or the gamma and delta phases being able to be minority or nonexistent, the relative rate of polar crystalline phase (s) in the crystalline phases can generally be simplified, to a greater or lesser extent. approximate, as the beta phase rate only in the crystalline phases.
En outre, l’état de l’art montre que les phases cristallines de fibres obtenues par électrofilage de PVDF sont quasi exclusivement alpha et beta. Afin d’estimer la proportion relative, F(P), de phase beta par rapport aux phases cristallines dans un échantillon à partir de son spectre infrarouge, on utilise les intensités relatives et les coefficients d’absorption de bandes caractéristiques des deux phases. F( ) est donnée par la relation : In addition, the state of the art shows that the crystal phases of fibers obtained by electrospinning PVDF are almost exclusively alpha and beta. In order to estimate the relative proportion, F (P), of beta phase to crystal phases in a sample from its infrared spectrum, we use the relative intensities and characteristic band absorption coefficients of the two phases. F () is given by the relation:
[Math 4] dans laquelle : xa et Cb sont les fractions relatives de phase alpha et beta dans les phases cristallines, [Math 4] in which: x a and C b are the relative fractions of alpha and beta phase in the crystal phases,
Aaest l’absorbance d’une bande caractéristique de la phase alpha, par exemple à 766cm 1, A a is the absorbance of a characteristic band of the alpha phase, for example at 766cm 1 ,
Ab est l’absorbance d’une bande caractéristique de la phase beta par exemple à 840cm 1, A b is the absorbance of a band characteristic of the beta phase, for example at 840cm 1 ,
Ka est le coefficient d’absorption correspondant à la longueur d’onde caractéristique de la phase alpha (pour 766 cm 1, Ka est estimé à 6, 1.104). K a is the absorption coefficient corresponding to the characteristic wavelength of the alpha phase (for 766 cm 1 , K a is estimated at 6, 1.10 4 ).
Kb est le coefficient d’absorption correspondant à la longueur d’onde caractéristique de la phase beta (pour 840 cm 1, Kb est estimé à 7,7.104). K b is the absorption coefficient corresponding to the characteristic wavelength of the beta phase (for 840 cm 1 , K b is estimated at 7.7.10 4 ).
On entend par le terme « copolymère », au sens large, désigner un polymère issu de la copolymérisation d'au moins deux types de monomères chimiquement différents, appelés co-monomères. Un copolymère, au sens large, est donc formé d'au moins deux motifs de répétition. Il peut par exemple être formé de deux, trois ou quatre motifs de répétition. Un copolymère, au sens strict, est formé d’exactement deux motifs de répétition, comme par exemple le P(VDF- TrFE). The term “copolymer” is understood in the broad sense to denote a polymer resulting from the copolymerization of at least two types of chemically different monomers, called comonomers. A copolymer, in the broad sense, is therefore formed of at least two repeat patterns. It can for example be formed of two, three or four repeating patterns. A copolymer, in the strict sense, is formed of exactly two repeating units, such as, for example, P (VDF-TrFE).
On entend par le terme « mélange de polymères » désigner une composition de polymères homogène macroscopiquement. Le terme englobe les mélanges de polymères compatibles, c'est à dire miscibles, le mélange présentant une température de transition vitreuse intermédiaire à celles de ces polymères considérés individuellement. Le terme englobe également de telles compositions composées de phases non miscibles entre elles et dispersées à échelle micrométrique. The term “mixture of polymers” is understood to denote a macroscopically homogeneous polymer composition. The term encompasses mixtures of compatible polymers, that is to say miscible, the mixture exhibiting a glass transition temperature intermediate to those of these polymers considered individually. The term also encompasses such compositions composed of phases which are immiscible with one another and dispersed on a micrometric scale.
On entend par le terme « température de fusion » désigner la température à laquelle un polymère au moins partiellement cristallisé passe à un état liquide visqueux. La température de fusion peut être mesurée par calorimétrie différentielle à balayage (DSC) selon la norme NF EN ISO 11357-3 :2018, en deuxième chauffe, en utilisant une vitesse de chauffe de 10°C/min. The term “melting temperature” is understood to denote the temperature at which an at least partially crystallized polymer changes to a viscous liquid state. The melting temperature can be measured by differential scanning calorimetry (DSC) according to standard NF EN ISO 11357-3: 2018, in second heating, using a heating rate of 10 ° C / min.
Dans la présente demande, les formes singulières « un », respectivement « le », signifient par défaut « au moins un », et respectivement « ledit au moins un » (ces dernières formulations ne sont pas toujours utilisées de sorte à alléger certaines tournures de phrase), à moins qu’indiqué autrement. In the present application, the singular forms “one”, respectively “the”, mean by default “at least one”, and respectively “said at least one” (these latter formulations are not always used so as to alleviate certain turns of phrase. sentence), unless otherwise noted.
Dans l’ensemble des gammes énoncées dans la présente demande, les bornes sont incluses sauf mention contraire. In all of the ranges set out in this application, the terminals are included unless otherwise specified.
Selon certains modes de réalisation, les fibres de composition C1 ont un taux de cristallinité en phase(s) polaire(s) d’au moins 65%, et préférentiellement d’au moins 75%, ou d’au moins 80%, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 95%, ou d’au moins 96%, ou d’au moins 97%, ou d’au moins 98%, ou d’au moins 99% en poids par rapport à leur poids total. According to certain embodiments, the fibers of composition C1 have a degree of crystallinity in polar phase (s) of at least 65%, and preferably of at least 75%, or of at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight relative to their total weight.
Préférentiellement, les fibres de composition C1 ont un taux de cristallinité en phase beta d’au moins 65%, et préférentiellement d’au moins 75%, ou d’au moins 80%, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 95%, ou d’au moins 96%, ou d’au moins 97%, ou d’au moins 98%, ou d’au moins 99% en poids par rapport à leur poids total. Avantageusement, les fibres de composition C1 ont un taux de cristallinité d’au moins 60%, ou d’au moins 65%, ou d’au moins 70%, ou d’au moins 75%, ou d’au moins 80%, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 95%, ou d’au moins 99%. Preferably, the fibers of composition C1 have a degree of crystallinity in the beta phase of at least 65%, and preferentially of at least 75%, or of at least 80%, or of at least 85%, or of at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight relative to their total weight. Advantageously, the fibers of composition C1 have a degree of crystallinity of at least 60%, or of at least 65%, or of at least 70%, or of at least 75%, or of at least 80%. , or at least 85%, or at least 90%, or at least 95%, or at least 99%.
Avantageusement, les fibres de composition C1 ont taux relatif de phase(s) cristalline(s) polaire(s), notamment de phase beta, d’au moins 85%, ou d’au moins 90%, ou d’au moins 95%, ou d’au moins 99%. Advantageously, the fibers of composition C1 have a relative rate of polar crystalline phase (s), in particular of beta phase, of at least 85%, or of at least 90%, or of at least 95 %, or at least 99%.
Le taux de cristallinité et/ou le taux relatif de phase(s) cristalline(s) polaire(s) peuvent être augmentés de diverses manières, comme présenté dans des modes de réalisation ci-après. The level of crystallinity and / or the relative level of polar crystalline phase (s) can be increased in various ways, as shown in embodiments below.
Selon certains modes de réalisation, le polymère P1 est choisi dans le groupe constitué de : un homopolymère de VDF ; un copolymère ayant un motif de répétition issu du VDF et au moins un motif de répétition issu d’un autre monomère que le VDF, l’autre monomère étant choisi dans la liste constituée de: le fluorure de vinyle (VF), le tétrafluoroéthylène (TFE), le trifluoroéthylène (TrFE), un chlorofluoroéthylène (CFE), un chlorodifluoroéthylène, le chlorotrifluoréthylène (CTFE), le dichlorodifluoroéthylène, un trichlorofluoroéthylène, l’hexafluoropropylène (HFP), un trifluoropropène, un tétrafluoropropène, un chloro-trifluoropropène, l’hexafluoroisobutylène, le perfluorobutyléthylène, un pentafluoropropène, un perfluoroéther, notamment un perfluoroalkylvinyléther, l’éthylène, un monomère acrylique, un monomère méthacrylique, et leur mélange ; et un mélange d’homopolymère(s) et de copolymère(s) précités. According to some embodiments, the polymer P1 is selected from the group consisting of: a VDF homopolymer; a copolymer having a repeat unit derived from VDF and at least one repeat unit derived from a monomer other than VDF, the other monomer being chosen from the list consisting of: vinyl fluoride (VF), tetrafluoroethylene ( TFE), trifluoroethylene (TrFE), a chlorofluoroethylene (CFE), a chlorodifluoroethylene, chlorotrifluoroethylene (CTFE), dichlorodifluoroethylene, a trichlorofluoroethylene, hexafluoropropylene (HFP), a trifluoropropropene, trifluoropropene, a tetoropropene hexafluoroisobutylene, perfluorobutylethylene, a pentafluoropropene, a perfluoroether, in particular a perfluoroalkylvinylether, ethylene, an acrylic monomer, a methacrylic monomer, and their mixture; and a mixture of the aforementioned homopolymer (s) and copolymer (s).
Il est bien entendu que tous les isomères géométriques des composés fluorés précités sont inclus dans les terminologies ci-dessus, tels que : le 1 ,1- chlorofluoroéthylène (1 ,1 -CFE), le 1 ,2-chlorofluoroéthylène (1 ,2-CFE), 1 ,2- dichloro-1 ,2-difluoroéthylène, 1 ,1 -dichloro-1 ,1 - difluoroéthylène et 1 ,1 ,2-trichloro- 2-fluoroéthylène, le 3,3,3-trifluoropropène, le 2-chloro-3,3,3-trifluoropropène (1233xf), le 1-chloro-3,3,3-trifluoropropène (1233zd), le 1 , 3,3,3- tétrafluoropropène, le 2,3,3,3-tétrafluoropropène (ou 1234yf), le 3-chloro-2,3,3- trifluoropropène (ou 1233yf), le 3-chloro-3,3,3-trifluoropropène, le 1 ,1 ,3,3,3- pentafluoropropène ou le 1 ,2,3,3,3-pentafluoropropène. Parmi les perfluoroalkylvinyléthers, on peut citer ceux de formule générale : Rf- 0-CF-CF2, Rf étant un groupement alkyle, de préférence en C1 à C4 et par exemple le méthylvinyléther (MVE) ou l’isopropyl vinyléther (PVE). It is understood that all the geometric isomers of the aforementioned fluorinated compounds are included in the above terminologies, such as: 1, 1-chlorofluoroethylene (1, 1 -CFE), 1, 2-chlorofluoroethylene (1, 2- CFE), 1, 2-dichloro-1, 2-difluoroethylene, 1, 1 -dichloro-1, 1 - difluoroethylene and 1, 1, 2-trichloro-2-fluoroethylene, 3,3,3-trifluoropropene, 2 -chloro-3,3,3-trifluoropropene (1233xf), 1-chloro-3,3,3-trifluoropropene (1233zd), 1, 3,3,3-tetrafluoropropene, 2,3,3,3- tetrafluoropropene (or 1234yf), 3-chloro-2,3,3-trifluoropropene (or 1233yf), 3-chloro-3,3,3-trifluoropropene, 1, 1, 3,3,3-pentafluoropropene or 1, 2,3,3,3-pentafluoropropene. Among the perfluoroalkylvinylethers, mention may be made of those of general formula: Rf-O-CF-CF2, Rf being an alkyl group, preferably C1 to C4, and for example methyl vinyl ether (MVE) or isopropyl vinyl ether (PVE).
Parmi les monomères de type acrylique ou méthacrylique, on peut citer : l’acide acrylique, l’acide méthacrylique, l’acide (2-trifluorométhyl) acrylique, l’hydroxyéthyl acrylate, l’hydroxyéthyl méthacrylate, l’hydroxypropyl acrylate, l’hydroxypopyl méthacrylate, l’hydroxyéthylhexyl acrylate, l’hydroxyethyl hexyl méthacrylate, et leur mélange. Among the acrylic or methacrylic type monomers, mention may be made of: acrylic acid, methacrylic acid, (2-trifluoromethyl) acrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypopyl methacrylate, hydroxyethylhexyl acrylate, hydroxyethyl hexyl methacrylate, and a mixture thereof.
Dans les modes de réalisation où P1 comprend un copolymère, ce dernier est avantageusement un copolymère statistique. In the embodiments where P1 comprises a copolymer, the latter is advantageously a random copolymer.
Dans des modes de réalisation préférés le polymère P1 est un PVDF, un P(VDF-HFP), un P(VDF-TFE), un P(VDF-TrFE), ou leur mélange. In preferred embodiments, the polymer P1 is a PVDF, a P (VDF-HFP), a P (VDF-TFE), a P (VDF-TrFE), or a mixture thereof.
Selon certains modes de réalisation, ledit au moins un polymère P1 est constitué de PVDF. Ceci inclue des mélanges de PVDFs, notamment de PVDFs ayant des masses molaires moléculaires en poids différentes. According to certain embodiments, said at least one polymer P1 consists of PVDF. This includes mixtures of PVDFs, in particular PVDFs having different molecular weight molecular masses.
Selon certains modes de réalisation, ledit au moins un polymère P1 est constitué d’un P(VDF-HFP), ou d’un P(VDF-TFE), ou d’un P(VDF-TrFE). Ceci inclue des mélanges de copolymères, par exemple P(VDF-TrFE), ayant des ratios en monomères différents et/ou des masses molaires moléculaires en poids différentes. According to some embodiments, said at least one polymer P1 consists of a P (VDF-HFP), or of a P (VDF-TFE), or of a P (VDF-TrFE). This includes mixtures of copolymers, for example P (VDF-TrFE), having different monomer ratios and / or different molecular weight molecular weights.
Selon certains modes de réalisation, ledit au moins un polymère P1 est un mélange constitué de : According to certain embodiments, said at least one polymer P1 is a mixture consisting of:
- un PVDF, - a PVDF,
- un copolymère choisi parmi : P(VDF-HFP), P(VDF-TFE) et P(VDF-TrFE) ; la proportion massique du PVDF par rapport à celle du copolymère allant de 1 :99 à 99:1. - a copolymer chosen from: P (VDF-HFP), P (VDF-TFE) and P (VDF-TrFE); the mass proportion of PVDF relative to that of the copolymer ranging from 1: 99 to 99: 1.
Préférentiellement, la proportion massique de PVDF par rapport à celle du copolymère est de 10:90 à 90:10. De manière davantage préférée, la proportion massique de PVDF par rapport à celle du copolymère est de 25:75 à 75:25.Preferably, the proportion by mass of PVDF relative to that of the copolymer is from 10:90 to 90:10. More preferably, the proportion by weight of PVDF relative to that of the copolymer is from 25:75 to 75:25.
Le P(VDF-FIFP) a avantageusement une proportion molaire en motif de répétition issu du FIFP de 15% à 35%. Le P(VDF-TFE) a avantageusement une proportion molaire en motif de répétition issu du TFE de 8% à 30%, préférentiellement de 15% à 28%, préférentiellement encore de 18% à 25%, et de manière extrêmement préférée de 20% à 22%, par rapport au nombre total de moles des motifs issus du VDF et du TFE. The P (VDF-FIFP) advantageously has a molar proportion of repeating unit derived from the FIFP of 15% to 35%. The P (VDF-TFE) advantageously has a molar proportion of repeating unit derived from TFE of 8% to 30%, preferably from 15% to 28%, more preferably from 18% to 25%, and extremely preferably from 20 % to 22%, relative to the total number of moles of units derived from VDF and TFE.
Le P(VDF-TrFE) a avantageusement une proportion molaire en motif de répétition issu du TrFE de 15 à 50%, préférentiellement de 16% à 35%, préférentiellement encore de 17% à 32%, et de manière extrêmement préférée de 18% à 28%, par rapport au nombre total de moles des motifs issus du VDF et du TrFE. The P (VDF-TrFE) advantageously has a molar proportion of repeating unit derived from TrFE of 15 to 50%, preferably from 16% to 35%, more preferably from 17% to 32%, and extremely preferably from 18%. at 28%, relative to the total number of moles of the units derived from VDF and TrFE.
Selon certains modes de réalisation, le polymère P1 a un indice de fluidité à 230°C sous une charge de 12,5 kg, de 0,1 à 15 g/10 minutes, préférentiellement de 1 à 10 g/10 minutes, et encore préférentiellement de 3 à 8 g/10 minutes, tel que mesuré selon la norme ASTM D1238-13. According to certain embodiments, the polymer P1 has a melt index at 230 ° C under a load of 12.5 kg, from 0.1 to 15 g / 10 minutes, preferably from 1 to 10 g / 10 minutes, and again preferably from 3 to 8 g / 10 minutes, as measured according to the standard ASTM D1238-13.
La composition C1 comprend au moins 50% en poids du polymère P1 par rapport au poids total de C1. Des proportions suffisamment élevées en polymère P1 dans C1 permettent de garantir une bonne cristallisation de C1 sous forme majoritairement ferroélectrique. Selon certains modes de réalisation, la composition C1 comprend au moins 60%, ou au moins 70%, ou au moins 80%, ou au moins 90%, ou au moins 95%, ou au moins 97,5%, ou au moins 99,0% du polymère P1. Composition C1 comprises at least 50% by weight of polymer P1 relative to the total weight of C1. Sufficiently high proportions of polymer P1 in C1 make it possible to guarantee good crystallization of C1 in predominantly ferroelectric form. According to certain embodiments, composition C1 comprises at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99.0% of the polymer P1.
Selon certains modes de réalisation, la composition C1 peut comprendre, en outre, au moins un polymère PT autre que le polymère P1. Le polymère PT peut notamment être choisi dans la liste constituée de : un poly(méthacrylate de méthyle) (PMMA), un poly(méthacrylate d’éthyle) (PEMA), un poly(acrylate de méthyle) (PMA), un poly(acrylate d’éthyle) (PEA), un poly(acétate de vinyle) (PVAc), un poly(vinyl méthyl cétone) (PVMK), un polyuréthane thermoplastique (TPU), un amidon thermoplastique, des copolymères en dérivant, et leurs mélanges. According to certain embodiments, composition C1 can also comprise at least one PT polymer other than the polymer P1. The PT polymer can in particular be chosen from the list consisting of: a poly (methyl methacrylate) (PMMA), a poly (ethyl methacrylate) (PEMA), a poly (methyl acrylate) (PMA), a poly ( ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) (PVMK), thermoplastic polyurethane (TPU), thermoplastic starch, copolymers derived therefrom, and mixtures thereof .
Selon certains modes de réalisation, la composition C1 comprend un polymère P1 et un polymère PT, P1 étant constitué d’un PVDF et PT étant constitué d’un PMMA. Avantageusement, la proportion massique de PMMA par rapport à la somme des masses de PMMA et PVDF est avantageusement de 15% à 40%, préférentiellement de 16% à 30%, et de manière encore plus préférentielle de 17% à 23%. L’ajout de PMMA au PVDF dans ces proportions permet d’augmenter sensiblement le taux de cristallinité en phase beta et n’affecte que dans une moindre mesure le taux de cristallinité. According to certain embodiments, composition C1 comprises a polymer P1 and a PT polymer, P1 consisting of a PVDF and PT consisting of a PMMA. Advantageously, the mass proportion of PMMA relative to the sum of the masses of PMMA and PVDF is advantageously from 15% to 40%, preferably from 16% to 30%, and even more preferably from 17% to 23%. The addition of PMMA to PVDF in these proportions makes it possible to significantly increase the level of crystallinity in the beta phase and only affects the level of crystallinity to a lesser extent.
Selon certains modes de réalisation, la composition C1 peut comprendre en outre un certain nombre d’additifs. Un exemple d’additif est par exemple un additif à effet bactéricide ou fongicide. La composition C1 comprend préférentiellement moins de 5% en poids, ou moins de 4% en poids, ou moins de 3% en poids, ou moins de 2% en poids, ou moins de 1% en poids d’additif.According to some embodiments, composition C1 can further include a number of additives. An example of an additive is, for example, an additive with a bactericidal or fungicidal effect. Composition C1 preferably comprises less than 5% by weight, or less than 4% by weight, or less than 3% by weight, or less than 2% by weight, or less than 1% by weight of additive.
De manière avantageuse, la composition C1 ne comprend pas d’additif conducteur électrique et/ou thermique, tels des nanotubes de carbone, du graphène ou encore un organosilicate. En effet de tels additifs conducteurs peuvent avoir un effet négatif sur la stabilité des charges d’espace pouvant participer à l’efficacité par induction (efficacité électrostatique) de la membrane. En particulier, ils sont susceptibles de provoquer une décharge prématurée des fibres dans le temps ou prématurée dans des environnements spécifiques (par exemple lavage et/ou de stérilisation). Advantageously, composition C1 does not include an electrically and / or thermally conductive additive, such as carbon nanotubes, graphene or even an organosilicate. Indeed, such conductive additives can have a negative effect on the stability of the space charges that can participate in the induction efficiency (electrostatic efficiency) of the membrane. In particular, they are likely to cause premature discharge of fibers over time or premature in specific environments (eg washing and / or sterilization).
De même, et de manière avantageuse, la composition C1 ne comprend pas de particule ferroélectrique inorganique, telles des particules de ferrite, ou des particules de BaTi03. Likewise, and advantageously, composition C1 does not include any inorganic ferroelectric particle, such as ferrite particles, or BaTiO3 particles.
De même, et de manière avantageuse, la composition C1 ne comprend pas de nanocharge, c’est-à-dire de charge ayant au moins une dimension inférieure ou égale à 100 nm. En effet, de telles charges seraient susceptible de présenter des risques par inhalation pour la santé humaine. Likewise, and advantageously, composition C1 does not include a nanofiller, that is to say a filler having at least one dimension less than or equal to 100 nm. Indeed, such loads would be likely to present risks by inhalation for human health.
Alternativement à ces modes de réalisation, la composition C1 peut être constituée uniquement du polymère P1. Alternatively to these embodiments, composition C1 can consist solely of polymer P1.
Le voile comprend généralement au moins 50% en poids de fibres de composition C1 par rapport au poids total du voile. Selon certains modes de réalisation, le voile comprend au moins 60%, ou au moins 70%, ou au moins 80%, ou au moins 90%, ou au moins 95%, ou au moins 97,5%, ou au moins 99,0% de fibres de composition C1. The web generally comprises at least 50% by weight of fibers of composition C1 relative to the total weight of the web. According to some embodiments, the haze comprises at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99 , 0% fibers of composition C1.
Selon certains modes de réalisation, le voile peut comprendre en outre au moins une composition C1’ différente de la composition C1. Cette autre composition peut être une composition constituée d’au moins 50% en poids d’au moins un autre polymère que P1. Cette autre composition peut notamment être une composition constituée d’au moins 60%, ou d’au moins 70%, ou d’au moins 80%, ou d’au moins 90%, ou d’au moins 95% en poids d’un autre polymère que P1. L’autre polymère que P1 peut être un des polymères P1 ’ précités. L’autre polymère que P1 peut également être un polymère choisi dans la liste constituée de : une polyoléfine, comme un polyéthylène ou un polypropylène, un polyamide (PA 11 ; PA 12 ; PA 6 ; PA 6,6 ; PA 6,10), un poly(téréphtalate d’éthylène) (PET), un polyaryléthercétone, un polyéther sulfone, un ester polyméthacrylique, un ester polyacrylique, un polyéthylène oxyde (PEO), un polyéthylène glycol (PEG), un polystyrène (PS), un acide polylactique (PLA), un acide polyacrylique (PA), un alcool polyvinylique (PVA), un polysulfone, un polyacrylonitrile, un polyuréthane, un polycaprolactone, un polyimide, un polymère fluoré, tel un PVDF, un P(VDF-HFP), un P(VDF-TFE), un P(VDF- CFE), un P(VDF-TrFE-CFE), un P(VDF-T rFE-CTFE), un fluorure de polyvinyle (PVF), un polychlorotrifluoroéthylène (PCTFE), un polytétrafluoroéthylène (PTFE), un poly(éthylène-co-tétrafluoroporpène (ETFE), un poly(tétrafluoroéthylène-co-perfluoropropyl éther) (PFA), un poly(éthylène-co- chlorotrifluoroéthylène) (E-CTFE), un poly (tétrafluoroéthylène co perfluoropropène) (E-CTFE), un polyméthacrylate de méthyle (PMMA), un copolymère du PMMA, tel un poly (méthylméthacylate-co-éthylacrylate) ou un copolymère bloc PMMA-PS, un poly(méthacrylate d’éthyle) (PEMA), un poly(acrylate de méthyle) (PMA), un poly(acrylate d’éthyle) (PEA), un poly(acétate de vinyle) (PVAc), un poly(vinyl méthyl cétone) (PVMK), un polyuréthane thermoplastique (TPU), un amidon thermoplatique, des copolymères en dérivant, et leurs mélanges. According to certain embodiments, the veil can also comprise at least one composition C1 ′ different from composition C1. This other composition can be a composition consisting of at least 50% by weight of at least one polymer other than P1. This other composition can in particular be a composition consisting of at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% by weight of 'another polymer than P1. The polymer other than P1 can be one of the aforementioned polymers P1 ′. The polymer other than P1 can also be a polymer chosen from the list consisting of: a polyolefin, such as a polyethylene or a polypropylene, a polyamide (PA 11; PA 12; PA 6; PA 6.6; PA 6.10) , a poly (ethylene terephthalate) (PET), a polyaryletherketone, a polyether sulfone, a polymethacrylic ester, a polyacrylic ester, a polyethylene oxide (PEO), a polyethylene glycol (PEG), a polystyrene (PS), an acid polylactic acid (PLA), a polyacrylic acid (PA), a polyvinyl alcohol (PVA), a polysulfone, a polyacrylonitrile, a polyurethane, a polycaprolactone, a polyimide, a fluoropolymer, such as a PVDF, a P (VDF-HFP), one P (VDF-TFE), one P (VDF-CFE), one P (VDF-TrFE-CFE), one P (VDF-T rFE-CTFE), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (PCTFE) , polytetrafluoroethylene (PTFE), poly (ethylene-co-tetrafluoroporpene (ETFE), poly (tetrafluoroethylene-co-perfluoropropyl ether) (PFA), poly (ethylene-co-chlorotrifluoroethylene) (E-CTFE), u n poly (tetrafluoroethylene co-perfluoropropene) (E-CTFE), a polymethyl methacrylate (PMMA), a copolymer of PMMA, such as a poly (methylmethacylate-co-ethylacrylate) or a PMMA-PS block copolymer, a poly (methacrylate of ethyl) (PEMA), poly (methyl acrylate) (PMA), poly (ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) (PVMK) , thermoplastic polyurethane (TPU), thermoplatic starch, copolymers derived therefrom, and mixtures thereof.
Alternativement à ces modes de réalisation le voile peut être constitué uniquement de fibres de composition C1. As an alternative to these embodiments, the web can consist solely of fibers of composition C1.
Les fibres du voile ont avantageusement un diamètre médian strictement supérieur à 100 nm. Le diamètre des fibres et leur distribution peut être estimé par microscopie électronique à balayage (SEM), comptage et analyse par un logiciel dédié. Selon certains modes de réalisation, le diamètre médian des fibres du voile est supérieur ou égal à 150 nm, ou supérieur ou égal à 200 nm, ou supérieur ou égal à 250 nm. The fibers of the web advantageously have a median diameter strictly greater than 100 nm. The diameter of the fibers and their distribution can be estimated by scanning electron microscopy (SEM), counting and analysis by dedicated software. According to certain embodiments, the median diameter of the fibers of the web is greater than or equal to 150 nm, or greater than or equal to 200 nm, or greater than or equal to 250 nm.
Selon certains modes de réalisation, le diamètre médian des fibres du voile est inférieur ou égal à 1600 nm, ou inférieur ou égal à 1400 nm, ou inférieur ou égal à 1200 nm, ou inférieur ou égal à 1000 nm, ou inférieur ou égal à 800 nm, ou inférieur ou égal à 600 nm, ou inférieur ou égal à 550 nm, ou inférieur ou égal à 500 nm, ou inférieur ou égal à 450 nm. According to some embodiments, the median diameter of the fibers of the web is less than or equal to 1600 nm, or less than or equal to 1400 nm, or less than or equal to 1200 nm, or less than or equal to 1000 nm, or less than or equal to 800 nm, or less than or equal to 600 nm, or less than or equal to 550 nm, or less than or equal to 500 nm, or less than or equal to 450 nm.
Selon certains modes de réalisation, le voile comprend moins de 1%, préférentiellement moins de 0.5%, et de manière davantage préférée moins de 0,1%, en nombre de fibres ayant un diamètre strictement inférieur à 100 nm.According to certain embodiments, the web comprises less than 1%, preferably less than 0.5%, and more preferably less than 0.1%, by number of fibers having a diameter strictly less than 100 nm.
Ces modes de réalisation sont notamment avantageux lorsque le voile est destiné à être utilisé dans un appareil filtrant de protection respiratoire du fait des risques potentiels engendrés par la respiration d’objets nanométriques, c’est-à-dire ayant au moins une dimension de taille inférieure à 100 nm. These embodiments are particularly advantageous when the veil is intended for use in a filtering device for respiratory protection because of the potential risks generated by the breathing of nanometric objects, that is to say having at least one size dimension. less than 100 nm.
Selon certains modes de réalisations, le diamètre médian des fibres du voile peut notamment être de 150 nm à 600 nm, préférentiellement de 200 nm à 500 nm, et encore préférentiellement de 250 nm à 450 nm. According to certain embodiments, the median diameter of the fibers of the web can in particular be from 150 nm to 600 nm, preferably from 200 nm to 500 nm, and even more preferably from 250 nm to 450 nm.
Selon certains modes de réalisation, le voile a un grammage (masse surfacique) de 0.01 g/m2 à 3 g/m2. Le grammage peut être estimé par simple pesée d’une superficie donnée, par exemple 200 mm x 250 mm, préférablement après étuvage pour s’assurer de l’absence de solvant résiduel. Le voile a préférentiellement un grammage de 0.02 g/m2 à 1 g/m2 et, de manière davantage préférée un grammage de 0.03 g/m2 à 0.5 g/m2. According to some embodiments, the web has a basis weight (basis weight) of 0.01 g / m 2 to 3 g / m 2 . The basis weight can be estimated by simply weighing a given area, for example 200 mm x 250 mm, preferably after baking to ensure the absence of residual solvent. The web preferably has a basis weight of 0.02 g / m 2 to 1 g / m 2 and, more preferably, a basis weight of 0.03 g / m 2 to 0.5 g / m 2 .
Selon certains modes de réalisation, le voile a une épaisseur moyenne de 0.1 pm à 100 pm. L’épaisseur moyenne peut par exemple être estimée à l’aide d’un micromètre mécanique, d’un capteur optique ou laser, ou encore par microscopie optique ou par microscopie électronique à balayage (MEB). Le voile a préférentiellement une épaisseur moyenne de 0.2 pm à 10 pm et, de manière encore préférentielle de 0.3 pm à 0.8 pm. According to some embodiments, the web has an average thickness of 0.1 µm to 100 µm. The average thickness can, for example, be estimated using a mechanical micrometer, an optical or laser sensor, or by optical microscopy or by scanning electron microscopy (SEM). The web preferably has an average thickness of 0.2 μm to 10 μm and, more preferably, from 0.3 μm to 0.8 μm.
Selon certains modes de réalisation, le voile a une perte de charge inférieure ou égale à 500 Pa pour un débit nominal d’air de 95 L/min et/ou une perte de charge inférieure ou égale à 100 Pa pour un débit nominal d’air de 30 L/min (voir norme EN149+A1 :2009). Le voile a préférentiellement une perte de charge inférieure ou égale à 350 Pa, préférentiellement inférieure ou égale à 250 Pa, préférentiellement inférieure ou égale à 100 Pa, et de manière extrêmement préférée inférieure ou égale à 50 Pa pour un débit d’air de 95 L/min. Le voile a préférentiellement une perte de charge inférieure ou égale à 75 Pa, préférentiellement inférieure ou égale à 50 Pa et de manière extrêmement préférée inférieur ou égale à 25 Pa pour un débit d’air de 30 L/min. According to some embodiments, the web has a pressure drop less than or equal to 500 Pa for a nominal air flow rate of 95 L / min and / or a pressure drop less than or equal to 100 Pa for a nominal air flow of 95 L / min. 30 L / min air (see standard EN149 + A1: 2009). The web preferably has a pressure drop of less than or equal to 350 Pa, preferably less than or equal to 250 Pa, preferably less than or equal to 100 Pa, and extremely preferably less than or equal to 50 Pa for an air flow rate of 95 L / min. The web preferably has a pressure drop of less than or equal to 75 Pa, preferably less than or equal to 50 Pa and extremely preferably less than or equal to 25 Pa for an air flow rate of 30 L / min.
Selon certains modes de réalisation, la membrane a une efficacité d’au moins 75 % pour des aérosols d’une solution de NaCI nébulisée (taille des particules allant de 50 nm à 500 nm). La membrane peut notamment avoir une efficacité d’au moins 80 %, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 94%, ou d’au moins 95%, ou d’au moins 96%, ou d’au moins 99%, ou d’au moins 99,90%, ou d’au moins 99,95%. According to some embodiments, the membrane has an efficiency of at least 75% for aerosols of a nebulized NaCl solution (particle size ranging from 50 nm to 500 nm). The membrane can in particular have an efficiency of at least 80%, or of at least 85%, or of at least 90%, or of at least 94%, or of at least 95%, or of at least at least 96%, or at least 99%, or at least 99.90%, or at least 99.95%.
Selon certains modes de réalisation, les motifs issus du VDF dans le polymère P1 sont issus, au moins en partie, d’un VDF biosourcé. Le terme « biosourcé » signifie « issu de la biomasse ». Ceci permet d’améliorer l’empreinte écologique de la membrane. Le VDF biosourcé peut être caractérisé par une teneur en carbone renouvelable, c’est-à-dire en carbone d’origine naturelle et provenant d’un biomatériau ou de la biomasse, d'au moins 1 % atomique comme déterminé par la teneur en 14C selon la norme NF EN 16640. Le terme de « carbone renouvelable » indique que le carbone est d’origine naturelle et provient d'un biomatériau (ou de la biomasse), comme indiqué ci-après. Selon certains modes de réalisation, la teneur en bio-carbone peut être supérieure à 5%, de préférence supérieure à 10%, de préférence supérieure à 25%, de préférence supérieure ou égale à 33%, de préférence supérieure à 50%, de préférence supérieure ou égale à 66%, de préférence supérieure à 75%, de préférence supérieure à 90%, de préférence supérieure à 95%, de préférence supérieure à 98%, de préférence supérieure à 99%, avantageusement égale à 100%. According to certain embodiments, the units derived from VDF in the polymer P1 are derived, at least in part, from a bio-based VDF. The term “biobased” means “derived from biomass”. This improves the ecological footprint of the membrane. Bio-based VDF can be characterized by a renewable carbon content, i.e. carbon of natural origin and originating from a biomaterial or biomass, of at least 1 atomic% as determined by the carbon content. 14C according to standard NF EN 16640. The term “renewable carbon” indicates that the carbon is of natural origin and comes from a biomaterial (or biomass), as indicated below. According to some embodiments, the bio-carbon content may be greater than 5%, preferably greater than 10%, preferably greater than 25%, preferably greater than or equal to 33%, preferably greater than 50%, of preferably greater than or equal to 66%, preferably greater than 75%, preferably greater than 90%, preferably greater than 95%, preferably greater than 98%, preferably greater than 99%, advantageously equal to 100%.
Procédé Process
Un procédé pour fabriquer un voile selon l’invention comprend une étape de formation du voile par électrofilage (electrospinning) d’au moins une composition C1. L’électrofilage est un procédé électrohydrodynamique bien connu, permettant de fabriquer des fibres de polymères de petite taille, notamment des fibres de diamètre allant de quelques dizaines de nanomètres à plusieurs centaines de nanomètres. Lorsqu'une tension électrique suffisamment haute est appliquée à une gouttelette de polymère à l’état fondu ou en solution, la gouttelette se charge. Une force de répulsion électrostatique s'oppose alors à la tension de surface de la gouttelette forçant cette dernière à s'étirer, jusqu’à former un cône, appelé « cône de Taylor ». Un jet chargé électriquement est éjecté du sommet du cône de Taylor puis accéléré par un champ électrique. Le jet s’étend dans la direction du champ électrique et s’amincit lors de son déplacement vers une électrode de collecte reliée à la terre. L’extension du jet et son amincissement s’accompagnent d’une solidification de fibres de polymères. Les fibres issues du jet sont récupérées directement sur l’électrode de collecte, ou avantageusement sur un substrat placé devant l’électrode de collecte, à la fin de leur parcours. L’électrofilage peut notamment être « avec aiguille » ou « sans aiguille », comme expliqué de manière schématique par les figures 1 et 2 ci-dessous. Afin de faciliter les explications, nous considérerons par la suite, à titre purement pédagogique et nullement limitatif, que le voile est constitué d’une unique composition C1 , elle-même constituée du polymère P1. A method for manufacturing a web according to the invention comprises a step of forming the web by electrospinning (electrospinning) of at least one composition C1. Electrospinning is a well-known electrohydrodynamic process, making it possible to manufacture small-size polymer fibers, in particular fibers with a diameter ranging from a few tens of nanometers to several hundred nanometers. When a sufficiently high electrical voltage is applied to a droplet of polymer in the molten state or in solution, the droplet becomes charged. An electrostatic repulsion force then opposes the surface tension of the droplet forcing the latter to stretch, until it forms a cone, called a “Taylor cone”. An electrically charged jet is ejected from the top of the Taylor cone and then accelerated by an electric field. The jet extends in the direction of the electric field and thins as it travels toward a grounded collection electrode. The extension of the jet and its thinning are accompanied by a solidification of polymer fibers. The fibers resulting from the jet are recovered directly on the collection electrode, or advantageously on a substrate placed in front of the collection electrode, at the end of their journey. The electrospinning can in particular be “with needle” or “without needle”, as explained schematically by Figures 1 and 2 below. In order to facilitate the explanations, we will consider hereafter, purely for educational purposes and in no way limiting, that the veil consists of a single composition C1, itself made up of the polymer P1.
La Figure 1 présente le schéma d’une installation d’électrofilage « avec aiguille », généralement utilisée en laboratoire. L’installation 10 comprend une seringue 11 comprenant une solution 12 de polymère P1. La seringue est généralement munie d’une pompe (non représentée) permettant de contrôler le débit de solution en sortant. Faisant face à la seringue se trouve une électrode de collecte 14 reliée à la terre. Un générateur haute tension 13 entre la seringue et l’électrode de collecte 14 permet de générer un champ électrique. Un filament 15, soumis au champ électrique, est éjecté de la seringue 11 , et est préférablement déposé sur un substrat 16, différent de l’électrode de collecte 14. Figure 1 shows the diagram of a "needle" electrospinning installation, generally used in the laboratory. The installation 10 comprises a syringe 11 comprising a solution 12 of polymer P1. The syringe is generally fitted with a pump (not shown) allowing the flow of solution to be controlled as it exits. Facing the syringe is a collection electrode 14 connected to ground. A high voltage generator 13 between the syringe and the collection electrode 14 generates an electric field. A filament 15, subjected to the electric field, is ejected from the syringe 11, and is preferably deposited on a substrate 16, different from the collection electrode 14.
La Figure 2 présente le schéma d’une installation d’électrofilage « sans aiguille », généralement avantageux pour permettre une plus grande productivité (quantité déposée pour un temps donné), sur une surface plus étendue. L’installation 20 comprend un bain 21, ouvert, comprenant le polymère P1 dans un état fluide (en solution, à l’état fondu, etc) et une électrode tournante 22 trempant dans le bain 21 . La vitesse de rotation de l’électrode permet d’adapter le flux de composition C1 étant éjectée du bain. Faisant face au bain 21 et à l’électrode tournante 22 se trouve une électrode de collecte 24 reliée à la terre. Un générateur haute tension 23 entre le bain 21 /électrode tournante 22 et l’électrode de collecte 24 permet de générer un champ électrique. Des filaments 25, soumis au champ électrique, sont éjectés du bain 21 . Ils sont préférablement déposés sur un substrat 26, différent de l’électrode de collecte 24. Le substrat 26 peut notamment être une bande déroulante. FIG. 2 shows the diagram of a “needleless” electrospinning installation, generally advantageous in order to allow greater productivity (quantity deposited for a given time), over a larger surface. The installation 20 comprises a bath 21, open, comprising the polymer P1 in a fluid state (in solution, in the molten state, etc.) and a rotating electrode 22 immersed in the bath 21. The speed of rotation of the electrode makes it possible to adapt the flow of composition C1 being ejected from the bath. Facing the bath 21 and the rotating electrode 22 is a collecting electrode 24 connected to earth. A high voltage generator 23 between the bath 21 / rotating electrode 22 and the collecting electrode 24 makes it possible to generate an electric field. Filaments 25, subjected to the electric field, are ejected from the bath 21. They are preferably deposited on a substrate 26, different from the collection electrode 24. The substrate 26 can in particular be an unwinding strip.
Plusieurs paramètres du procédé peuvent être ajustés de telles sorte à obtenir un voile aux propriétés avantageuses, notamment ayant une bonne efficacité de filtration et/ou une faible perte de charge et/ou peut de fibres de taille inférieure à 100 nm. Les paramètres sont notamment ajustés de telle sorte à obtenir des fibres de taille voulue, d’aspect sensiblement homogène et minimisant la présence de billes. Several process parameters can be adjusted so as to obtain a web with advantageous properties, in particular having good filtration efficiency and / or low pressure drop and / or can have fibers of size less than 100 nm. The parameters are in particular adjusted so as to obtain fibers of the desired size, with a substantially homogeneous appearance and minimizing the presence of beads.
Le polymère P1 peut être dissout dans différents solvants ou mélanges de solvants (« véhicule liquide »). The polymer P1 can be dissolved in different solvents or mixtures of solvents (“liquid vehicle”).
Selon un premier mode de réalisation, le véhicule liquide ne comprend pas de diméthylsulfoxyde (DMSO) et comprend, est essentiellement constitué de, ou est constitué de : au moins 50% en poids d’un (premier) liquide ayant un paramètre de solubilité de Hansen dr de 7 MPa1/2 à 20 MPa1/2 et a une température d’ébullition supérieure à 100°C. According to a first embodiment, the liquid vehicle does not include dimethylsulfoxide (DMSO) and comprises, consists essentially of, or consists of: at least 50% by weight of a (first) liquid having a solubility parameter of Hansen dr from 7 MPa 1/2 to 20 MPa 1/2 and has a boiling point above 100 ° C.
Selon certaines variantes, le (premier) liquide a un paramètre de solubilité de Hansen dr de 15 MPa1/2 à 20 MPa1/2, préférentiellement de 15 MPa1/2 à 18 MPa1/2. Le premier liquide peut notamment être constitué de la gamma- butyrolactone, du propylène carbonate, ou de leur mélange. Cette variante est particulièrement adaptée lorsque la polymère fluoré comprend un PVDF ou est constitué d’un PVDF. According to certain variants, the (first) liquid has a Hansen solubility parameter dr of 15 MPa 1/2 to 20 MPa 1/2 , preferably from 15 MPa 1/2 to 18 MPa 1/2 . The first liquid can in particular consist of gamma-butyrolactone, propylene carbonate, or a mixture thereof. This variant is particularly suitable when the fluoropolymer comprises a PVDF or consists of a PVDF.
Selon d’autres variantes, le (premier) liquide a un paramètre de solubilité de Hansen dr de 8 MPa1/2 à 15 MPa1/2, préférentiellement de 10 MPa1/2 à 15 MPa1/2. Le premier liquide peut notamment être constitué de la cyclopentanone, le diméthyl phtalate, l’acétoacétate d’éthyle, le triéthyl phosphate, le lactate d’éthyle, et leur mélange. Selon le premier mode de réalisation, le (premier) liquide est choisi dans la liste constituée de : la cyclopentanone, le diméthyl phtalate, l’acétoacétate d’éthyle, le triéthyl phosphate, le lactate d’éthyle, la gamma-butyrolactone, le propylène carbonate, et leur mélange. Préférentiellement, le (premier) liquide peut être choisi dans la liste constituée de : la cyclopentanone, le diméthyl phtalate, l’acétoacétate d’éthyle, le triéthyl phosphate, le lactate d’éthyle, et leur mélange. According to other variants, the (first) liquid has a Hansen solubility parameter dr of 8 MPa 1/2 to 15 MPa 1/2 , preferably from 10 MPa 1/2 to 15 MPa 1/2 . The first liquid can in particular consist of cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, and their mixture. According to the first embodiment, the (first) liquid is chosen from the list consisting of: cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, gamma-butyrolactone, propylene carbonate, and their mixture. Preferably, the (first) liquid can be chosen from the list consisting of: cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, and their mixture.
Selon certains modes de réalisation, le (premier) liquide est constitué de la cyclopentanone. According to some embodiments, the (first) liquid consists of cyclopentanone.
Le véhicule liquide de ce premier mode de réalisation peut comprendre au moins un deuxième liquide, le deuxième liquide ayant une température d’ébullition inférieure ou égale à 100°C. Le deuxième liquide peut notamment être choisi parmi la liste constituée de : l’acétone, l’acétate d’éthyle, la 2- butanone, l’eau et leur mélange. Avantageusement, le deuxième liquide est constitué d’acétate d’éthyle ou d’un mélange d’acétate d’éthyle et d’eau. The liquid vehicle of this first embodiment can comprise at least a second liquid, the second liquid having a boiling point of less than or equal to 100 ° C. The second liquid can in particular be chosen from the list consisting of: acetone, ethyl acetate, 2-butanone, water and a mixture thereof. Advantageously, the second liquid consists of ethyl acetate or a mixture of ethyl acetate and water.
Selon certains modes de réalisation, le véhicule liquide comprend de l’eau, l’eau constituant jusqu’à 5% en poids, préférentiellement jusqu’à 3% en poids du véhicule liquide. In some embodiments, the liquid vehicle comprises water, with water constituting up to 5% by weight, preferably up to 3% by weight of the liquid vehicle.
Selon certains modes de réalisation, le véhicule liquide est constitué dudit au moins un premier liquide et dudit au moins un deuxième liquide. According to some embodiments, the liquid vehicle consists of said at least one first liquid and said at least one second liquid.
Selon certains modes de réalisation, la proportion massique en premier liquide par rapport au deuxième liquide est de 20:80 à 80:20, et préférentiellement de 50:50 à 75 :25. According to certain embodiments, the mass proportion of the first liquid relative to the second liquid is from 20:80 to 80:20, and preferably from 50:50 to 75:25.
Selon un deuxième mode de réalisation, le véhicule comprend : au moins 15% en poids de diméthylsulfoxyde (DMSO), par rapport au poids total de véhicule liquide, et au moins un deuxième liquide, le deuxième liquide ayant un paramètre de solubilité de Hansen dr de 7 MPa1/2 à 15 MPa1/2 et une température d’ébullition strictement supérieure à 100°C. According to a second embodiment, the vehicle comprises: at least 15% by weight of dimethylsulfoxide (DMSO), relative to the total weight of liquid vehicle, and at least one second liquid, the second liquid having a Hansen solubility parameter dr from 7 MPa 1/2 to 15 MPa 1/2 and a boiling point strictly above 100 ° C.
Selon certains modes de réalisation, le DMSO représente au moins 20%, préférentiellement au moins 25%, et encore préférentiellement au moins 30% en poids du poids total du véhicule liquide. According to certain embodiments, the DMSO represents at least 20%, preferably at least 25%, and more preferably at least 30% by weight of the total weight of the liquid vehicle.
Selon certains modes de réalisation, le deuxième liquide représente au moins 10% en poids du poids total du véhicule liquide. Selon certains modes de réalisation, le deuxième liquide a un paramètre de solubilité de Hansen dr supérieur ou égal à 8 MPa1/2, préférentiellement supérieur ou égal à 9 MPa1/2 et de manière extrêmement préférée supérieur ou égal à 10 MPa1/2. According to some embodiments, the second liquid represents at least 10% by weight of the total weight of the liquid vehicle. According to certain embodiments, the second liquid has a Hansen solubility parameter dr greater than or equal to 8 MPa 1/2 , preferably greater than or equal to 9 MPa 1/2 and extremely preferably greater than or equal to 10 MPa 1 / 2 .
Selon certains modes de réalisation, le deuxième liquide est choisi dans la liste constituée de : la cyclopentanone, le diméthyl phtalate, l’acétoacétate d’éthyle, le triéthyl phosphate, le lactate d’éthyle, et leur mélange. According to some embodiments, the second liquid is selected from the list consisting of: cyclopentanone, dimethyl phthalate, ethyl acetoacetate, triethyl phosphate, ethyl lactate, and a mixture thereof.
Selon certains modes de réalisation, le deuxième liquide est constitué de cyclopentanone. According to some embodiments, the second liquid consists of cyclopentanone.
Selon certains modes de réalisation, le ratio massique en DMSO par rapport au deuxième liquide est alors avantageusement de 40 :60 à 60 :40. According to certain embodiments, the mass ratio of DMSO relative to the second liquid is then advantageously from 40:60 to 60:40.
Selon certains modes de réalisation, le véhicule liquide est constitué du DMSO et dudit au moins un deuxième liquide. Le ratio massique en DMSO par rapport au deuxième liquide est alors avantageusement de 40 :60 à 60 :40. According to some embodiments, the liquid vehicle consists of DMSO and said at least one second liquid. The mass ratio of DMSO relative to the second liquid is then advantageously from 40:60 to 60:40.
Selon certains modes de réalisation, le véhicule liquide comprend au moins un troisième liquide, le troisième liquide ayant une température d’ébullition inférieure ou égale à 100°C. Le troisième liquide représente avantageusement de 5% à 60% en poids par rapport au poids total du véhicule liquide. According to some embodiments, the liquid vehicle comprises at least a third liquid, the third liquid having a boiling point of less than or equal to 100 ° C. The third liquid advantageously represents from 5% to 60% by weight relative to the total weight of the liquid vehicle.
Selon certains modes de réalisation, le troisième liquide est choisi parmi la liste constituée de : l’acétone, l’acétate d’éthyle, la 2-butanone, l’eau et leur mélange. Selon certains modes de réalisation, le troisième liquide est constitué d’acétate d’éthyle ou d’un mélange d’eau et d’acétate d’éthyle. According to some embodiments, the third liquid is selected from the list consisting of: acetone, ethyl acetate, 2-butanone, water, and a mixture thereof. In some embodiments, the third liquid is ethyl acetate or a mixture of water and ethyl acetate.
Selon certains modes de réalisation, le troisième liquide comprend de l’eau, l’eau constituant jusqu’à 5% en poids, préférentiellement jusqu’à 3% en poids, du véhicule liquide. In some embodiments, the third liquid comprises water, with water constituting up to 5% by weight, preferably up to 3% by weight, of the liquid vehicle.
Selon certains modes de réalisation, le ratio massique en poids de la somme des poids du DMSO et du deuxième liquide par rapport au poids du troisième liquide est avantageusement de 20:80 à 80:20, préférentiellement de 40:60 à 60:40. According to certain embodiments, the mass ratio by weight of the sum of the weights of DMSO and of the second liquid relative to the weight of the third liquid is advantageously from 20:80 to 80:20, preferably from 40:60 to 60:40.
Selon certains modes de réalisation, le véhicule liquide est constitué du DMSO, dudit au moins un deuxième liquide et dudit au moins un troisième liquide. Le ratio massique en poids de la somme des poids du DMSO et du deuxième liquide par rapport au poids du troisième liquide est avantageusement de 20:80 à 80:20, préférentiellement de 40:60 à 60:40. According to some embodiments, the liquid vehicle consists of DMSO, said at least one second liquid and said at least one third liquid. The mass ratio by weight of the sum of the weights of DMSO and the second liquid relative to the weight of the third liquid is advantageously from 20:80 to 80:20, preferably from 40:60 to 60:40.
Avantageusement, aucun des solvants suivants n’est utilisé dans la composition du véhicule liquide pour dissoudre le polymère P1 , du fait de leur risque CMR (cancérigène, mutagène, toxique pour la reproduction) : la N-N- diméthylformamide (DMF), la N,N-diméthylacétamide (DMac), le tétrahydrofurane (THF), la tétraméthylurée, le triméthylphosphate et la N-méthyl- 2-pyrrolidone. Advantageously, none of the following solvents is used in the composition of the liquid vehicle to dissolve the polymer P1, because of their CMR risk (carcinogenic, mutagenic, toxic for reproduction): NN-dimethylformamide (DMF), N, N-dimethylacetamide (DMac), tetrahydrofuran (THF), tetramethylurea, trimethylphosphate and N-methyl-2-pyrrolidone.
Avantageusement, aucun des solvants suivants n’est utilisé dans la composition du véhicule liquide pour dissoudre le polymère P1 , du fait de leur risque CMR (cancérigène, mutagène, toxique pour la reproduction) : la N-N- diméthylformamide (DMF), la N,N-diméthylacétamide (DMac), le tétrahydrofurane (THF), la tétraméthylurée, le triméthylphosphate et la N-méthyl- 2-pyrrolidone. Advantageously, none of the following solvents is used in the composition of the liquid vehicle to dissolve the polymer P1, because of their CMR risk (carcinogenic, mutagenic, toxic for reproduction): NN-dimethylformamide (DMF), N, N-dimethylacetamide (DMac), tetrahydrofuran (THF), tetramethylurea, trimethylphosphate and N-methyl-2-pyrrolidone.
Selon certains modes de réalisation, le polymère P1 est dissout dans un véhicule liquide DMSO/cyclopentanone/acétate d’éthyle. L’acétone et l’acétate d’éthyle permettent notamment de rendre les mélanges plus volatils et assurent une bonne cristallisation des fibres. In some embodiments, the polymer P1 is dissolved in a DMSO / cyclopentanone / ethyl acetate liquid vehicle. Acetone and ethyl acetate in particular make the mixtures more volatile and ensure good crystallization of the fibers.
La concentration du polymère P1 dans un des solvants précités ou leur mélange est comprise entre une valeur minimale et une valeur maximale, en deçà ou au- delà desquelles électrofil âge ne forme plus substantiellement de filament mais également des billes. Généralement, la quantité en polymère P1 dans un des solvants précités ou leur mélange représente de 3% à 30% en poids, préférentiellement de 6% à 20% en poids, et de manière extrêmement préférée de 9% à 12% du poids total de solution. The concentration of the polymer P1 in one of the abovementioned solvents or their mixture is between a minimum value and a maximum value, below or beyond which the electrospun age no longer substantially forms a filament but also beads. Generally, the amount of polymer P1 in one of the aforementioned solvents or their mixture represents from 3% to 30% by weight, preferably from 6% to 20% by weight, and extremely preferably from 9% to 12% of the total weight of solution.
Le polymère P1 a généralement une masse moléculaire moyenne en poids choisie entre une valeur minimale et une valeur maximale. En effet, une masse moléculaire trop faible entraîne la présence billes, non souhaitées, lors de l’électrofilage. Une masse moléculaire trop élevée a tendance à produire des fibres de trop grand diamètre. Le polymère P1 a généralement une masse moléculaire moyenne en poids allant de 100000 g/mol à 2000000 g/mol. Préférentiellement, il a une masse moléculaire moyenne en poids de 300000 g/mol à 1 500000 g/mol, et de manière extrêmement préférée de 400000 à 700 000 g/mol. The polymer P1 generally has a weight-average molecular mass chosen between a minimum value and a maximum value. In fact, too low a molecular mass results in the presence of unwanted beads during electrospinning. Too high a molecular weight tends to produce fibers of too large a diameter. The polymer P1 generally has a mass molecular weight average ranging from 100,000 g / mol to 2,000,000 g / mol. Preferably, it has a weight average molecular mass of 300,000 g / mol to 1,500,000 g / mol, and extremely preferably of 400,000 to 700,000 g / mol.
Pour un polymère P1 de masse moléculaire donnée, dans un solvant ou mélange de solvants donnés, la concentration de P1 est nécessairement supérieure à la concentration critique d’enchevêtrement. For a polymer P1 of given molecular weight, in a given solvent or mixture of solvents, the concentration of P1 is necessarily greater than the critical entanglement concentration.
La viscosité de la solution de polymère P1 , mesurée par viscosimètre BROOKFIELD à 25°C, est généralement de 50 à 300 cP. Préférentiellement, la viscosité de la solution est de 75 à 265 cP, et de manière extrêmement préférée de 80 à 150 cP. The viscosity of the polymer solution P1, measured by a BROOKFIELD viscometer at 25 ° C., is generally 50 to 300 cP. Preferably, the viscosity of the solution is 75 to 265 cP, and extremely preferably 80 to 150 cP.
Selon certains modes de réalisation, la solution peut comprendre un additif permettant d’améliorer la processabilité du filament à électrofiler. L’additif peut notamment être un additif permettant de moduler certaines propriétés électrohydrodynamique de la solution. La proportion massique d’additif ne dépasse généralement pas 5% du poids total de la solution. According to some embodiments, the solution may include an additive to improve the processability of the filament to be electrospun. The additive can in particular be an additive making it possible to modulate certain electrohydrodynamic properties of the solution. The mass proportion of the additive generally does not exceed 5% of the total weight of the solution.
L’additif peut notamment être de l’eau. L’eau a pour avantage de faire augmenter la conductivité de la solution et de s’évaporer au cours de l’étape d’électrofilage. The additive can in particular be water. The advantage of water is that it increases the conductivity of the solution and evaporates during the electrospinning step.
L’additif peut également être un sel. Citons par exemple NaCI et LiCI ou encore les sels d’ammonium tels : TBAC (chlorure de tétrabutylammonium), TEAC (chlorure de tétraéthylammoniun) ou TEAB (bromure de tétraéthylammonium). Ces sels peuvent avantageusement être éliminés, au moins en partie, par lavage, notamment par lavage à l’eau, après formation des fibres par électrofilage. The additive can also be a salt. Examples include NaCl and LiCl or else ammonium salts such as: TBAC (tetrabutylammonium chloride), TEAC (tetraethylammonium chloride) or TEAB (tetraethylammonium bromide). These salts can advantageously be removed, at least in part, by washing, in particular by washing with water, after formation of the fibers by electrospinning.
Des paramètres d’appareillage, tels que pour les dispositifs utilisés dans les installations représentées aux Figures 1 et 2, peuvent également être ajustés :Equipment parameters, such as for the devices used in the installations shown in Figures 1 and 2, can also be adjusted:
- le voltage inter-électrode : ce dernier peut être généralement ajusté à une valeur de 5 kV à 40 kV ; de préférence le voltage inter-électrodes est choisi de sorte à être aussi faible que possible de sorte à limiter la consommation énergétique du procédé et à empêcher au mieux tout risque de de 9 kV à 25 kV et de manière extrêmement préférée de 10 kV à 20 kV ; - la distance entre la zone d’éjection du polymère et le substrat : cette dernière est généralement ajustée de 5 cm à 30 cm, et de préférence de 10 cm à 20 cm ;- the inter-electrode voltage: the latter can generally be adjusted to a value of 5 kV to 40 kV; preferably the inter-electrode voltage is chosen so as to be as low as possible so as to limit the energy consumption of the process and to prevent at best any risk from 9 kV to 25 kV and extremely preferably from 10 kV to 20 kV; the distance between the polymer ejection zone and the substrate: the latter is generally adjusted from 5 cm to 30 cm, and preferably from 10 cm to 20 cm;
- le débit d’éjection de polymère P1 : ce dernier est avantageusement choisi de manière à être le plus élevé possible en fonction du type d’appareillage (seringue 11 ou électrode tournante 22 trempant dans le bain 21) ; - The polymer P1 ejection rate: the latter is advantageously chosen so as to be as high as possible depending on the type of equipment (syringe 11 or rotating electrode 22 soaking in the bath 21);
- la température du milieu dans lequel le filament de polymère P1 en formation est destiné à se déplacer : ceci influence directement la température d’évaporation du solvant de la solution ; préférentiellement cette température est proche de la température ambiante. Elle peut notamment être de 10 °C à 80 °C, préférentiellement de 20 °C à 60 °C et de manière davantage préférée de 25 °C à 45 °C. - the temperature of the medium in which the polymer filament P1 being formed is intended to move: this directly influences the evaporation temperature of the solvent from the solution; preferably this temperature is close to ambient temperature. It can in particular be from 10 ° C to 80 ° C, preferably from 20 ° C to 60 ° C and more preferably from 25 ° C to 45 ° C.
- l’humidité relative dans lequel le filament de polymère P1 en formation est destiné à se déplacer ; préférentiellement, cette humidité est de 20% à 60% à la température du milieu. - the relative humidity in which the forming polymer filament P1 is intended to move; preferably, this humidity is 20% to 60% at the temperature of the medium.
- ou d’autres conditions spécifiques, par exemple une convection forcée de l’air pour favoriser l’évaporation du solvant. - or other specific conditions, for example forced air convection to promote evaporation of the solvent.
Le voile formé par électrofilage ne nécessite pas obligatoirement d’étape supplémentaire de polarisation, puisque du fait du fort champ électrique exercé, les fibres se trouvent généralement dans un état suffisamment polarisé après électrofilage. The web formed by electrospinning does not necessarily require an additional polarization step, since due to the strong electric field exerted, the fibers are generally in a sufficiently polarized state after electrospinning.
Le voile formé par électrofilage peut subir après sa formation une étape de recuit à une température inférieure à la température de fusion du polymère puis refroidi à température ambiante (25°C). Cette étape de recuit permet d’évaporer éventuellement le solvant résiduel et d’augmenter éventuellement la cristallinité, et donc les propriétés ferroélectriques, de P1. L’étape de recuit sera habituellement suivie d’une étape de polarisation, par contact ou par corona. The web formed by electrospinning can undergo, after its formation, an annealing step at a temperature below the melting temperature of the polymer and then cooled to ambient temperature (25 ° C.). This annealing step optionally evaporates the residual solvent and optionally increases the crystallinity, and therefore the ferroelectric properties, of P1. The annealing step will usually be followed by a polarization step, by contact or by corona.
Membrane Membrane
Le voile selon l’invention peut être suffisamment épais à lui seul pour former une membrane adaptée pour la filtration d'aérosols nano et/ou sub-microniques.The web according to the invention can be thick enough on its own to form a membrane suitable for the filtration of nano and / or submicron aerosols.
A contrario, une membrane de filtration d'aérosols nano et/ou sub-microniques selon l’invention, peut comprendre : Conversely, a nano and / or submicron aerosol filtration membrane according to the invention may comprise:
- au moins un voile selon l’invention ; et, - une couche support poreuse supportant ledit au moins un voile. - at least one veil according to the invention; and, - a porous support layer supporting said at least one web.
Selon certains modes de réalisation, le voile a un grammage de 0,01 g/m2 à 3 g/m2. Le voile a préférentiellement un grammage de 0,02 g/m2 à 1 g/m2 et, de manière davantage préférée un grammage de 0,03 g/m2 à 0,5 g/m2. According to some embodiments, the web has a basis weight of 0.01 g / m 2 to 3 g / m 2 . The web preferably has a basis weight of 0.02 g / m 2 to 1 g / m 2 and, more preferably, a basis weight of 0.03 g / m 2 to 0.5 g / m 2 .
Selon certains modes de réalisation, le voile a une épaisseur moyenne de 0,1 pm à 100 pm. Le voile a préférentiellement une épaisseur moyenne de 0,2 pm à 10 pm et, de manière encore préférentielle de 0,3 pm à 0,8 pm. In some embodiments, the web has an average thickness of 0.1 µm to 100 µm. The web preferably has an average thickness of 0.2 µm to 10 µm and more preferably 0.3 µm to 0.8 µm.
La couche support permet notamment d’assurer la bonne tenue mécanique de la membrane. La couche support peut être un ensemble tissé ou non-tissé de fibres. The support layer makes it possible in particular to ensure the good mechanical strength of the membrane. The backing layer can be a woven or non-woven assembly of fibers.
Avantageusement la couche support a une faible perte de charge. Advantageously, the support layer has a low pressure drop.
Selon certains modes de réalisation, notamment lors que le voile est mis en œuvre par électrofilage, la couche support peut être le substrat sur lequel le voile a été électrofilé. According to certain embodiments, in particular when the web is implemented by electrospinning, the support layer can be the substrate on which the web has been electrospun.
Selon certains modes de réalisation, la couche support peut être un ensemble non-tissé de fibres thermoplastiques. La couche support peut notamment être un ensemble non-tissé de fibres choisies parmi : des polyoléfines, comme un polyéthylène (PE) ou un polypropylène (PP), des polyesters, comme un poly(téréphtalate d’éthylène) (PET), un poly(téréphtalate de butylène) (PBT), ou encore un poly(naphtalate d’éthylène) (PEN), des polyamides ou copolyamides, comme un PA 11, un PA 12, un PA 6, un PA 6,6, un PA 6,10, un polyacrylonitrile (PAN), des polymères fluorés, comme un polyfluorure de vinylidène (PVDF), un éthylène propylène fluoré (FEP) ou un polytétrafluoroéthylène (PTFE), et leur mélange. According to certain embodiments, the support layer can be a nonwoven assembly of thermoplastic fibers. The support layer can in particular be a nonwoven set of fibers chosen from: polyolefins, such as a polyethylene (PE) or a polypropylene (PP), polyesters, such as a poly (ethylene terephthalate) (PET), a poly (butylene terephthalate) (PBT), or a poly (ethylene naphthalate) (PEN), polyamides or copolyamides, such as a PA 11, a PA 12, a PA 6, a PA 6.6, a PA 6 , 10, polyacrylonitrile (PAN), fluoropolymers, such as polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP) or polytetrafluoroethylene (PTFE), and a mixture thereof.
Selon certains modes de réalisation, la couche support est susceptible d’être obtenue par un procédé de fusion-soufflage (meltblown) ou par un procédé de filage-nappage (spunbond). Un procédé meltblown permet généralement d’obtenir des fibres ayant un diamètre allant de 0,5 pm à 10 pm. Un procédé spunbond permet généralement d’obtenir des fibres ayant un diamètre allant de 10 pm à 50 pm et est généralement moins cher à mettre en œuvre qu’un procédé meltblown. Selon certains modes de réalisation, la couche support a un grammage de 5 g/m2 à 100 g/m2, préférentiellement de 10 g/m2 à 50 g/m2 et de manière extrêmement préférée de 15 g/m2 à 40 g/m2. According to certain embodiments, the support layer is capable of being obtained by a meltblown process or by a spunbond process. A meltblown process generally makes it possible to obtain fibers having a diameter ranging from 0.5 μm to 10 μm. A spunbond process generally makes it possible to obtain fibers having a diameter ranging from 10 μm to 50 μm and is generally less expensive to implement than a meltblown process. According to certain embodiments, the support layer has a basis weight of 5 g / m 2 to 100 g / m 2 , preferably from 10 g / m 2 to 50 g / m 2 and extremely preferably from 15 g / m 2 to 40 g / m 2 .
Selon des modes de réalisation particuliers, une membrane comprend un ou plusieurs voiles selon l’invention, par exemple essentiellement constitué(s), ou constitué(s), de fibres de PVDF ou de fibres constituées d’un mélange de PVDF et : P(VDF-HFP) ou P(VDF-TFE) ou P(VDF-TrFE), ou encore de fibres constituées d’un mélange de PVDF et PMMA. Le(s) voile(s) sont obtenu(s) par électrofilage et ont un grammage de 0,02 g/m2 à 1 g/m2. Le substrat peut être notamment un PVDF, un PP ou encore un PET obtenu par fusion-soufflage et ayant un grammage de 10 g/m2 à 50 g/m2. According to particular embodiments, a membrane comprises one or more webs according to the invention, for example essentially constituted (s), or constituted (s), of PVDF fibers or of fibers consisting of a mixture of PVDF and: P (VDF-HFP) or P (VDF-TFE) or P (VDF-TrFE), or of fibers consisting of a mixture of PVDF and PMMA. The web (s) are obtained by electrospinning and have a basis weight of 0.02 g / m 2 to 1 g / m 2 . The substrate can in particular be a PVDF, a PP or else a PET obtained by meltblowing and having a basis weight of 10 g / m 2 to 50 g / m 2 .
La Figure 3 présente une membrane 30 multicouches constituée d’une couche support 31 et d’un seul voile 32. Figure 3 shows a multilayer membrane 30 consisting of a support layer 31 and a single web 32.
La Figure 4 présente une membrane 40 multicouches constituée d’une couche support 41 recouverte de chaque côté (« en sandwich ») respectivement d’un voile 42 et d’un voile 43. Les voiles 42 et 43 peuvent être identiques ou au contraire différents, notamment présenter une composition et/ou un grammage et/ou une épaisseur différents. Par exemple, le voile 42 peut être de même composition chimique que le voile 43 mais présenter un grammage et/ou une épaisseur différents. Figure 4 shows a multilayer membrane 40 consisting of a support layer 41 covered on each side (“sandwich”) respectively with a web 42 and a web 43. The webs 42 and 43 may be identical or, on the contrary, different. , in particular have a composition and / or a different grammage and / or a thickness. For example, the web 42 may be of the same chemical composition as the web 43 but have a different basis weight and / or thickness.
La Figure 5 présente une membrane 50 multicouches constituée d’une couche support 51 recouverte successivement de trois voiles 52, 53 et 54 selon l’invention. Les voiles 52, 53 et 54 peuvent être identiques ou au contraire différents, notamment présenter une composition et/ou un grammage et/ou une épaisseur différents. Figure 5 shows a multilayer membrane 50 consisting of a support layer 51 successively covered with three webs 52, 53 and 54 according to the invention. The webs 52, 53 and 54 may be identical or, on the contrary, different, in particular have a composition and / or a different basis weight and / or a thickness.
Dispositif de filtration d'aérosols nano et/ou sub-microniques de l’airNano and / or sub-micron aerosol filtration device from the air
Le voile et/ou la membrane selon l’invention peuvent constituer un filtre et/ou faire partie d’un assemblage multicouches constituant un filtre, constituant ou faisant partie d’un dispositif de filtration d'aérosols nano et/ou sub-microniques de l’air. The web and / or the membrane according to the invention can constitute a filter and / or form part of a multilayer assembly constituting a filter, constituting or forming part of a device for filtering nano and / or submicron aerosols of the air.
Selon certains modes de réalisation, le dispositif de filtration d'aérosols nano et/ou sub-microniques de l’air est un appareil filtrant de protection respiratoire. Il existe de nombreuses conceptions différentes d’appareils de protection respiratoire, bien connues de l’Homme du Métier (Publication INERIS, ED 6106, Les appareils de protection respiratoire, août 2019 - ISBN 978-2-7389-2503-9). L’appareil de protection respiratoire peut notamment être un demi-masque filtrant, un demi-masque comprenant un filtre ou un masque comprenant un filtre. L’appareil de protection respiratoire peut-être à ventilation libre ou à ventilation assistée. According to certain embodiments, the device for filtering nano and / or submicron aerosols from the air is a filtering device for respiratory protection. There are many different designs of respiratory protection devices, well known to those skilled in the art (INERIS publication, ED 6106, Respiratory protection devices, August 2019 - ISBN 978-2-7389-2503-9). The respiratory protection device can in particular be a filtering half-mask, a half-mask comprising a filter or a mask comprising a filter. The respirator may be free-ventilated or assisted-ventilated.
Selon des modes de réalisation préférés de l’invention, l’appareil de protection respiratoire est à ventilation libre. L’appareil de protection respiratoire peut notamment être un demi-masque filtrant comme présenté ci-après. L’appareil respiratoire peut notamment être un masque à usage médical (voir norme EN 14683) ou un masque de type FFP (voir norme EN 149). According to preferred embodiments of the invention, the breathing apparatus is ventilated. The respiratory protection device can in particular be a filtering half-mask as presented below. The breathing apparatus can in particular be a mask for medical use (see standard EN 14683) or an FFP type mask (see standard EN 149).
Selon certains modes de réalisation, le filtre comprenant le voile et/ou la membrane permet uniquement la filtration d'aérosols nano et/ou sub microniques de l’air. According to some embodiments, the filter comprising the web and / or the membrane only allows the filtration of nano and / or sub micron aerosols from the air.
Selon certains modes de réalisation, le filtre comprenant le voile et/ou la membrane est un filtre combiné permettant la filtration d'aérosols nano et/ou sub-microniques et la filtration anti-gaz. According to certain embodiments, the filter comprising the web and / or the membrane is a combined filter allowing the filtration of nano and / or submicron aerosols and the anti-gas filtration.
La Figure 6 représente un demi-masque filtrant 60 comprenant un filtre 61 , des moyens de fixation du filtre au visage, et notamment une barrette de nez 62, une bride élastique 63, ainsi qu’une valve expiratoire 64 (optionnelle dans certaines configurations). FIG. 6 represents a filtering half-mask 60 comprising a filter 61, means for fixing the filter to the face, and in particular a nose bar 62, an elastic flange 63, as well as an exhalation valve 64 (optional in certain configurations) .
En référence à la Figure 7, le filtre 61 est constitué de trois couches : deux couches externes 72 et 73, l’une adaptée et destinée à être en contact avec le visage d’un utilisateur, l’autre adaptée et destinée à être en contact avec l’environnement extérieur ainsi qu’une couche médiane constituée par la membrane 30. With reference to Figure 7, the filter 61 consists of three layers: two outer layers 72 and 73, one adapted and intended to be in contact with the face of a user, the other adapted and intended to be in contact with the face of a user. contact with the external environment as well as a middle layer formed by the membrane 30.
Procédé de lavage/stérilisation Washing / sterilization process
Le voile et/ou la membrane selon l’invention peuvent avantageusement être lavés et/ou stérilisés de sorte à pouvoir être réutilisés. Ils peuvent préférentiellement être lavés/stérilisés, au moins 5 fois, préférentiellement au moins 10 fois, encore préférentiellement au moins 20 fois, encore préférentiellement au moins 30 fois et, de manière extrêmement préférée au moins 50 fois. The veil and / or the membrane according to the invention can advantageously be washed and / or sterilized so that it can be reused. They can preferably be washed / sterilized, at least 5 times, preferably at least 10 times, more preferably at least 20 times, again preferably at least 30 times and, extremely preferably at least 50 times.
Le lavage peut se faire notamment à l’eau, préférentiellement à l’eau chaude. Des méthodes de stérilisation incluent : Washing can be done in particular with water, preferably with hot water. Methods of sterilization include:
- un traitement chimique, par une substance chimique à l’état liquide ou à l’état de vapeur; - chemical treatment, by a chemical substance in the liquid state or in the vapor state;
- un traitement par UV-C, - UV-C treatment,
- un traitement par la chaleur ; et - heat treatment; and
- une combinaison de traitements. - a combination of treatments.
Un exemple de traitement chimique est un traitement par du peroxyde d’hydrogène (HPV/HPVP), VHP, HPGP, iHP and aHP An example of chemical treatment is treatment with hydrogen peroxide (HPV / HPVP), VHP, HPGP, iHP and aHP
Le traitement par UV-C est un traitement par rayonnements ayant une longueur d’ondes allant de 100 à 280 nm. Il permet de stériliser le voile et/ou la membrane. Avantageusement, le traitement UV-C est mis en œuvre par une lampe ayant un pic de rayonnement entre 230 nm et 270 nm, notamment autour de 254 nm. Le traitement est généralement appliqué à une dose de 1 J/cm à 120 J/cm, préférentiellement de 1 J/cm à 50 J/Cm. UV-C treatment is treatment with radiation with a wavelength ranging from 100 to 280 nm. It allows the veil and / or the membrane to be sterilized. Advantageously, the UV-C treatment is implemented by a lamp having a radiation peak between 230 nm and 270 nm, in particular around 254 nm. The treatment is generally applied at a dose of 1 J / cm to 120 J / cm, preferably 1 J / cm to 50 J / cm.
Le traitement par la chaleur peut être mis en œuvre à une température généralement supérieure ou égale à 40°C pendant une durée suffisante, préférentiellement inférieure ou égale à 30 minutes et de manière davantage préférée inférieure ou égale à 15 minutes. Il peut notamment être mis en œuvre à une température supérieure ou égale à 50°C, ou supérieure ou égale à 60°C, ou supérieure ou égale à 70°C, ou supérieure ou égale à 80°C. The heat treatment can be carried out at a temperature generally greater than or equal to 40 ° C. for a sufficient period of time, preferably less than or equal to 30 minutes and more preferably less than or equal to 15 minutes. It can in particular be used at a temperature greater than or equal to 50 ° C, or greater than or equal to 60 ° C, or greater than or equal to 70 ° C, or greater than or equal to 80 ° C.
La chaleur peut être une chaleur dite « sèche » ou une chaleur dite « humide » (taux d’humidité supérieur à 50%). The heat can be so-called "dry" heat or so-called "wet" heat (humidity above 50%).
Des appareils permettant de réaliser de tels traitements sont notamment les armoires chauffantes, les bains-maries, les autoclaves, les fours. Devices making it possible to carry out such treatments are in particular heating cabinets, water baths, autoclaves, ovens.
Le traitement est à choisir et à adapter en fonction de diverses contraintes : nature et résistance des autres matériaux que le voile devant subir le traitement, utilisation en milieu hospitalier ou à titre domestique, etc. Il est à ce titre recommandé pour l’utilisateur d’un appareil de protection respiratoire lavable et/ou stérilisable de bien se renseigner en lisant attentivement la notice d’instruction du fabricant ainsi que les recommandations d’organismes officiels normatifs et/ou de santé, ces recommandations pouvant être amenées à évoluer au cours du temps. A notre connaissance, les fours domestiques et les fours micro-ondes à usage domestique ne font pas partie au moment de l’écriture de la présente demande, des méthodes de lavage/stérilisation recommandées pour des masques à usage domestique par les principaux organismes officiels normatifs et/ou de santé, du fait notamment du manque de données existant et du risque potentiel de contamination biologique/chimique des fours. L’ANSM, dans son avis du 25 mars 2020, révisé le 21 avril 2020, recommande par exemple pour des masques en tissu à usage non sanitaire, prévus dans le cadre de l’épidémie COVID, pour un traitement à domicile :i) un lavage en machine avec un produit lessiviel adapté au tissu dont le cycle comprendra au minimum un plateau de 30 minutes à 60°C et ii) un séchage mécanique ou un séchage conventionnel, suivi dans les 2 cas d'un repassage à la vapeur a une température compatible avec la composition du masque. The treatment is to be chosen and adapted according to various constraints: nature and resistance of the materials other than the veil to undergo the treatment, use in hospitals or for domestic purposes, etc. It is therefore recommended for the user of a washable and / or sterilizable respiratory protection device to be well informed by carefully reading the manufacturer's instruction manual as well as the recommendations of official bodies. normative and / or health, these recommendations may change over time. To our knowledge, domestic ovens and microwave ovens for domestic use are not, at the time of writing this application, of the washing / sterilization methods recommended for masks for domestic use by the main official regulatory bodies. and / or health, in particular due to the lack of existing data and the potential risk of biological / chemical contamination of the ovens. The ANSM, in its opinion of March 25, 2020, revised on April 21, 2020, recommends, for example, for fabric masks for non-sanitary use, planned in the context of the COVID epidemic, for home treatment: i) a machine wash with a detergent suitable for the fabric, the cycle of which will include at least a 30-minute tray at 60 ° C and ii) mechanical drying or conventional drying, followed in both cases by steam ironing at a temperature compatible with the composition of the mask.

Claims

Revendications Claims
1. Voile non-tissé obtenu par électrofilage, adapté pour la filtration d'aérosols nano et/ou sub-microniques, comprenant une multiplicité de fibres de composition C1, la composition C1 comprenant au moins 50% en poids d’au moins un polymère P1 à base du motif de répétition issu du fluorure de vinylidène (VDF), lesdites fibres de composition C1 ayant un taux de cristallinité en phase(s) polaire(s), préférentiellement en phase uniquement beta, d’au moins 65% en poids, par rapport à leur poids total. 1. Nonwoven web obtained by electrospinning, suitable for the filtration of nano and / or submicron aerosols, comprising a multiplicity of fibers of composition C1, composition C1 comprising at least 50% by weight of at least one polymer P1 based on the repeating unit derived from vinylidene fluoride (VDF), said fibers of composition C1 having a degree of crystallinity in polar phase (s), preferably in only beta phase, of at least 65% by weight , relative to their total weight.
2. Voile selon la revendication 1 , dans lequel lesdites fibres de composition C1 ont un taux de cristallinité en phase(s) polaire(s), préférentiellement en phase uniquement beta, d’au moins 75%, ou d’au moins 80%, ou d’au moins 85%, ou d’au moins 90%, ou d’au moins 95%, ou d’au moins 96%, ou d’au moins 97%, ou d’au moins 98%, ou d’au moins 99% en poids, par rapport à leur poids total. 2. Sail according to claim 1, wherein said fibers of composition C1 have a degree of crystallinity in polar phase (s), preferably in only beta phase, of at least 75%, or at least 80%. , or at least 85%, or at least 90%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% by weight, relative to their total weight.
3. Voile selon l’une quelconque des revendications 1 et 2, dans lequel le polymère P1 est choisi dans le groupe constitué de : un homopolymère de VDF ; un copolymère ayant un motif de répétition issu du VDF et au moins un motif de répétition issu d’un autre monomère que le VDF, l’autre monomère étant choisi dans la liste constituée de: le fluorure de vinyle (VF), le tétrafluoroéthylène (TFE), le trifluoroéthylène (TrFE), un chlorofluoroéthylène (CFE), un chlorodifluoroéthylène, le chlorotrifluoréthylène (CTFE), le dichlorodifluoroéthylène, un trichlorofluoroéthylène, l’hexafluoropropylène (FIFP), un trifluoropropène, un tétrafluoropropène, un chloro-trifluoropropène, l’hexafluoroisobutylène, le perfluorobutyléthylène, un pentafluoropropène, un perfluoroéther, notamment un perfluoroalkylvinyléther, l’éthylène, un monomère acrylique, un monomère méthacrylique et, leur mélange ; et un mélange d’homopolymère(s) et de copolymère(s). 3. Sail according to any one of claims 1 and 2, wherein the polymer P1 is selected from the group consisting of: a VDF homopolymer; a copolymer having a repeat unit derived from VDF and at least one repeat unit derived from a monomer other than VDF, the other monomer being chosen from the list consisting of: vinyl fluoride (VF), tetrafluoroethylene ( TFE), trifluoroethylene (TrFE), a chlorofluoroethylene (CFE), a chlorodifluoroethylene, chlorotrifluoroethylene (CTFE), dichlorodifluoroethylene, a trichlorofluoroethylene, hexafluoropropylene (FIFP), a trifluoropropropene, trifluoropropene, a tetoropropene hexafluoroisobutylene, perfluorobutylethylene, a pentafluoropropene, a perfluoroether, in particular a perfluoroalkylvinylether, ethylene, an acrylic monomer, a methacrylic monomer and their mixture; and a mixture of homopolymer (s) and copolymer (s).
4. Voile selon l’une quelconque des revendications 1 à 3, dans lequel le polymère P1 est un PVDF, un P(VDF-HFP), un P(VDF-TFE), un P(VDF- TrFE), ou leur mélange. 4. Sail according to any one of claims 1 to 3, wherein the polymer P1 is a PVDF, a P (VDF-HFP), a P (VDF-TFE), a P (VDF-TrFE), or a mixture thereof. .
5. Voile selon l’une quelconque des revendications 1 à 4, dans lequel ledit au moins un polymère P1 est un mélange constitué de : 5. Sail according to any one of claims 1 to 4, wherein said at least one polymer P1 is a mixture consisting of:
- un PVDF, - a PVDF,
- un copolymère choisi parmi : P(VDF-HFP), P(VDF-TFE) et P(VDF- TrFE) ; la proportion massique de PVDF par rapport à celle du copolymère allant de 1 :99 à 99:1 , préférentiellement de 10 :90 à 90 :10, et de manière extrêmement préférentielle de 25:75 à 75:25. - a copolymer chosen from: P (VDF-HFP), P (VDF-TFE) and P (VDF-TrFE); the proportion by mass of PVDF relative to that of the copolymer ranging from 1:99 to 99: 1, preferably from 10:90 to 90:10, and extremely preferably from 25:75 to 75:25.
6. Voile selon l’une quelconque des revendications 1 à 5, dans lequel le polymère P1 représente au moins 60%, ou au moins 70%, ou au moins 80%, ou au moins 90%, ou au moins 95%, ou au moins 97.5%, ou au moins 99,0%, en poids de la composition C1. 6. Sail according to any one of claims 1 to 5, wherein the polymer P1 represents at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97.5%, or at least 99.0%, by weight of composition C1.
7. Voile selon l’une quelconque des revendications 1 à 6, dans lequel la composition C1 comprend en outre au moins un polymère P1 ’ choisi dans la liste constituée de : un poly(méthacrylate de méthyle) (PMMA), un poly(méthacrylate d’éthyle) (PEMA), un poly(acrylate de méthyle) (PMA), un poly(acrylate d’éthyle) (PEA), un poly(acétate de vinyle) (PVAc), un poly(vinyl méthyl cétone) (PVMK), un polyuréthane thermoplastique (TPU), un amidon thermoplastique, des copolymères en dérivant, et leurs mélanges. 7. Sail according to any one of claims 1 to 6, wherein composition C1 further comprises at least one polymer P1 'chosen from the list consisting of: a poly (methyl methacrylate) (PMMA), a poly (methacrylate). ethyl) (PEMA), poly (methyl acrylate) (PMA), poly (ethyl acrylate) (PEA), poly (vinyl acetate) (PVAc), poly (vinyl methyl ketone) ( PVMK), thermoplastic polyurethane (TPU), thermoplastic starch, copolymers derived therefrom, and mixtures thereof.
8. Voile selon la revendication 7, dans lequel le polymère P1 est constitué d’un PVDF et le polymère P1 ’ est constitué d’un PMMA, la proportion massique de P1 ’ par rapport à la somme des masses des polymères P1 et P1 ’ étant de 15% à 40%, préférentiellement de 16% à 30%, et de manière extrêmement préférentielle de 17% à 23%. 8. Sail according to claim 7, wherein the polymer P1 consists of a PVDF and the polymer P1 ′ consists of a PMMA, the proportion by weight of P1 ′ relative to the sum of the masses of the polymers P1 and P1 ′. being from 15% to 40%, preferably from 16% to 30%, and extremely preferably from 17% to 23%.
9. Voile selon l’une quelconque des revendications 1 à 8, constitué des fibres de composition C1. 9. Sail according to any one of claims 1 to 8, consisting of fibers of composition C1.
10. Voile selon l’une quelconque des revendications 1 à 9, ayant un grammage de 0.01 g/m2 à 3 g/m2, préférentiellement de 0.02 g/m2 à 1 g/m2, et de manière extrêmement préférentielle de 0.03 g/m2 à 0.5 g/m2. 10. Sail according to any one of claims 1 to 9, having a basis weight of 0.01 g / m 2 to 3 g / m 2 , preferably from 0.02 g / m 2 to 1 g / m 2 , and extremely preferably from 0.03 g / m 2 to 0.5 g / m 2 .
11.Voile selon l’une quelconque des revendications 1 à 10, comprenant moins de 1%, préférentiellement moins de 0.5%, et de manière davantage préférée moins de 0,1%, en nombre de fibres ayant un diamètre strictement inférieur à 100 nm. 11.Veil according to any one of claims 1 to 10, comprising less than 1%, preferably less than 0.5%, and more preferably less than 0.1%, by number of fibers having a diameter strictly less than 100 nm. .
12. Voile selon l’une quelconque des revendications 1 à 11, ne comprenant aucun des solvants de la liste constituée de : la N-N-diméthylformamide (DMF), la N,N-diméthylacétamide (DMac), le tétrahydrofurane (THF), la tétraméthylurée, le triméthylphosphate et la N-méthyl-2-pyrrolidone. 12. Sail according to any one of claims 1 to 11, not comprising any of the solvents from the list consisting of: NN-dimethylformamide (DMF), N, N-dimethylacetamide (DMac), tetrahydrofuran (THF), tetramethylurea, trimethylphosphate and N-methyl-2-pyrrolidone.
13. Membrane adaptée pour la filtration d'aérosols nano et/ou sub microniques comprenant : 13. Membrane suitable for filtration of nano and / or submicron aerosols comprising:
- au moins un voile selon l’une quelconque des revendications 1 à 12. - at least one veil according to any one of claims 1 to 12.
- une couche support supportant ledit voile. - a support layer supporting said web.
14. Membrane selon la revendication 13, dans laquelle ladite couche support est un ensemble non-tissé de fibres choisies parmi : des polyoléfines, comme un polyéthylène (PE) ou un polypropylène (PP), des polyesters, comme un poly(téréphtalate d’éthylène) (PET), un poly(téréphtalate de butylène) (PBT), ou encore un poly(naphtalate d’éthylène) (PEN), des polyamides ou copolyamides, comme un PA 11 , un PA 12, un PA 6, un PA 6,6, un PA 6,10, un polyacrylonitrile (PAN), des polymères fluorés, comme un polyfluorure de vinylidène (PVDF), un éthylène propylène fluoré (FEP) ou un polytétrafluoroéthylène (PTFE), et leur mélange. 14. The membrane of claim 13, wherein said support layer is a nonwoven set of fibers selected from: polyolefins, such as polyethylene (PE) or polypropylene (PP), polyesters, such as poly (terephthalate). ethylene) (PET), a poly (butylene terephthalate) (PBT), or a poly (ethylene naphthalate) (PEN), polyamides or copolyamides, such as a PA 11, a PA 12, a PA 6, a PA 6.6, PA 6.10, polyacrylonitrile (PAN), fluoropolymers, such as polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP) or polytetrafluoroethylene (PTFE), and their mixture.
15. Procédé de lavage/stérilisation d’un voile selon l’une quelconque des revendications 1 à 12 ou d’une membrane selon l’une quelconque des revendications 13 et 14 comprenant une étape de traitement par la chaleur mise en œuvre à une température de 40°C à 90° C, préférentiellement de 55° C à 85°C, et de manière extrêmement préférentielle à une température de 65°C à 80°C. 15. A method of washing / sterilizing a veil according to any one of claims 1 to 12 or of a membrane according to any one of claims 13 and 14 comprising a heat treatment step implemented at a temperature. from 40 ° C to 90 ° C, preferably from 55 ° C to 85 ° C, and extremely preferably at a temperature from 65 ° C to 80 ° C.
EP21740124.9A 2020-06-19 2021-06-17 Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacturing and cleaning Pending EP4168615A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR2006471A FR3111645B1 (en) 2020-06-19 2020-06-19 Process for manufacturing a set of fibers comprising a fluoropolymer based on VDF
FR2006468A FR3111647B1 (en) 2020-06-19 2020-06-19 Non-woven fiber veil, membrane and mask derived therefrom, and manufacturing and cleaning processes.
FR2006469A FR3111644B1 (en) 2020-06-19 2020-06-19 Non-woven, porous, and electrostatically charged veil, membrane and mask deriving therefrom and methods of manufacture and cleaning thereof.
FR2006472A FR3111646A1 (en) 2020-06-19 2020-06-19 Process for manufacturing a set of fibers comprising a fluorinated copolymer based on VDF
PCT/FR2021/051088 WO2021255390A1 (en) 2020-06-19 2021-06-17 Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacturing and cleaning

Publications (1)

Publication Number Publication Date
EP4168615A1 true EP4168615A1 (en) 2023-04-26

Family

ID=76859645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740124.9A Pending EP4168615A1 (en) 2020-06-19 2021-06-17 Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacturing and cleaning

Country Status (5)

Country Link
US (1) US20230226501A1 (en)
EP (1) EP4168615A1 (en)
JP (1) JP2023530163A (en)
CN (1) CN115885067A (en)
WO (2) WO2021255390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651457B (en) * 2022-10-25 2023-10-31 东华大学 Block material with three-dimensional nano-network structure and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716411A (en) * 1993-06-30 1995-01-20 Kureha Chem Ind Co Ltd Composite filter
WO2006115270A1 (en) * 2005-04-26 2006-11-02 Nitto Denko Corporation Filter medium, process for producing the same, method of use thereof, and filter unit
KR100925775B1 (en) * 2007-09-21 2009-11-11 경희대학교 산학협력단 Method for producing polyvinylidene fluoride nanofiber web with high ?- type crystal structure
US9885154B2 (en) * 2009-01-28 2018-02-06 Donaldson Company, Inc. Fibrous media
CN102439210B (en) * 2009-03-31 2015-12-16 3M创新有限公司 Non woven fibre web of dimensionally stable and production and preparation method thereof
AU2011218854B2 (en) * 2010-02-23 2015-03-12 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
KR101884701B1 (en) * 2011-11-03 2018-08-03 (주)아모레퍼시픽 PVDF NANOFIBROUS MEMBRANE WITH HIGH RATIO OF β-PHASE, PIEZOELECTRIC AND FERROELECTRIC PROPERTIES, AND MANUFACTURING METHOD OF THE SAME
PL2809433T3 (en) * 2012-01-27 2018-04-30 Zeus Industrial Products, Inc. Electrospun porous media
JP6789818B2 (en) * 2014-04-10 2020-11-25 スリーエム イノベイティブ プロパティズ カンパニー Fibers and articles containing the fibers
FR3047008B1 (en) 2016-01-25 2019-10-25 Arkema France USE OF A VINYLIDENE FLUORIDE COPOLYMER FOR CONFINING A FILM OF ADHESION PROPERTIES
CN105688349B (en) * 2016-04-18 2019-04-19 广州拜费尔空气净化材料有限公司 Virus-proof mask
US11148085B2 (en) 2018-04-16 2021-10-19 The Hong Kong Polytechnic University Electrostatically-charged nanofiber media and fabrication method thereof
CN111270414A (en) * 2020-03-23 2020-06-12 清华大学深圳国际研究生院 Flexible piezoelectric fiber membrane and preparation method and application thereof

Also Published As

Publication number Publication date
US20230226501A1 (en) 2023-07-20
CN115885067A (en) 2023-03-31
WO2021255391A1 (en) 2021-12-23
WO2021255390A1 (en) 2021-12-23
JP2023530163A (en) 2023-07-13

Similar Documents

Publication Publication Date Title
CN106165040B (en) electret
Liu et al. High‐performance PM0. 3 air filters using self‐polarized electret nanofiber/nets
Kaur et al. Plasma-induced graft copolymerization of poly (methacrylic acid) on electrospun poly (vinylidene fluoride) nanofiber membrane
US6811696B2 (en) Hydrophobic membrane materials for filter venting applications
Bui et al. Ferroelectric PVDF nanofiber membrane for high-efficiency PM0. 3 air filtration with low air flow resistance
US20150209691A1 (en) Fluoropolymer fine fiber
Ganesh et al. Hierarchical structured electrospun nanofibers for improved fog harvesting applications
WO2021255390A1 (en) Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacturing and cleaning
Guo et al. Fabrication of robust green superhydrophobic hybrid nanofiber-nanosphere membrane for membrane distillation
JP2014124578A (en) Filtration material for filter and production method of the same
JPWO2016088692A1 (en) Manufacturing method of electret filter
JP6794618B2 (en) Electret filter
FR3111644A1 (en) Nonwoven, porous, and electrostatically charged veil, membrane and mask derivative, and methods of manufacture and cleaning.
Yardimci et al. Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes
FR3111647A1 (en) Nonwoven web of fibers, membrane and mask derivative, and methods of making and cleaning.
JP2014226628A (en) Electret filter
Huang et al. A single step fabrication of bio-inspired high efficiency and durable water harvester made of polymer membranes
EP4168152A1 (en) Pvdf filtering face-piece respirator and recycling method
WO2021255389A1 (en) Method for producing an assembly of fibres comprising a fluorinated polymer made from vdf
FR3111645A1 (en) Process for manufacturing a set of fibers comprising a fluoropolymer based on VDF
KR102314307B1 (en) Electrets and Electret Filters
JP2020011215A (en) Air filter medium, filter pack, and air filter unit
EP4168474A1 (en) Method for recycling filtering facepiece respirators
JP2011052359A (en) Composite structure including three-dimensional structure and filter using the structure
Cox et al. Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)