EP4168474A1 - Method for recycling filtering facepiece respirators - Google Patents

Method for recycling filtering facepiece respirators

Info

Publication number
EP4168474A1
EP4168474A1 EP21740140.5A EP21740140A EP4168474A1 EP 4168474 A1 EP4168474 A1 EP 4168474A1 EP 21740140 A EP21740140 A EP 21740140A EP 4168474 A1 EP4168474 A1 EP 4168474A1
Authority
EP
European Patent Office
Prior art keywords
pvdf
thermoplastic polymer
recycling
layer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740140.5A
Other languages
German (de)
French (fr)
Inventor
Anthony Bonnet
Salima BOUTTI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4168474A1 publication Critical patent/EP4168474A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0036Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting of large particles, e.g. beads, granules, pellets, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • A62B23/025Filters for breathing-protection purposes for respirators the filter having substantially the shape of a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/044Knives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0484Grinding tools, roller mills or disc mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • B29K2105/124Nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4807Headwear
    • B29L2031/4835Masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a process for recycling respiratory protective masks comprising several layers made from a single thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and comprising a filtration layer of polyvinylidene fluoride.
  • a single thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and comprising a filtration layer of polyvinylidene fluoride.
  • Particle masks are respiratory protection devices capable of filtering out particles and fine dust.
  • FFP masks for "Filtering Facepiece Particles"
  • Their protection perimeter is determined by European standard EN 149 which specifies the minimum characteristics to be required of filtering half-masks used as respiratory protection devices against particles except for evacuation.
  • EN 149 European standard EN 149 which specifies the minimum characteristics to be required of filtering half-masks used as respiratory protection devices against particles except for evacuation.
  • This standard defines three classes of devices, namely FFP1, FFP2 and FFP3, on the basis of three criteria: the maximum penetration of the filter material of aerosols of average diameter by mass of 0.6 ⁇ m, the respiratory resistance and the rate of leakage inward.
  • the FFP1 dust mask has an aerosol filtration rate of at least 80% and an inward leakage rate of 22% or less.
  • the FFP2 mask has an aerosol filtration rate of at least 94% and an inward leakage rate of 8% or less. This mask protects against powdered chemicals and can also serve as protection against aerosols carrying viral particles and / or bacteria.
  • the FFP3 mask has an aerosol filtration rate of at least 99% and an inward leakage rate of 2% at most. It protects against very fine particles of asbestos (asbestosis) or silica (silicosis).
  • Respiratory protection masks are generally composed of fibers, or combinations of synthetic fibers, obtained from thermoplastic polymers such as: polyolefins, polyamides, polyvinyls, polyimides, polyacrylates, poly-methacrylates, polyurethanes or also fluoropolymers, and in particular polyvinylidene fluoride (PVDF).
  • thermoplastic polymers such as: polyolefins, polyamides, polyvinyls, polyimides, polyacrylates, poly-methacrylates, polyurethanes or also fluoropolymers, and in particular polyvinylidene fluoride (PVDF).
  • some include at least one layer of nanofibers which are particularly suitable for providing the barrier properties required for at least FFP2 type respiratory protection.
  • the electrospinning of polymers in solution makes it possible, under certain conditions, to obtain fibers of sufficiently small diameters for good breathability and good mechanical filtration efficiency, and possibly electrostatic, of the membrane for air filtration.
  • Document EP 2517607 describes the advantages of masks comprising at least one layer of nanofibers, and the manufacture thereof by electrospinning.
  • the masks have sandwich-type structures since they include several superimposed layers, for example a three-layer type: non-woven layer - nanofibrous layer - non-woven layer.
  • thermoplastic polymer chosen from among polypropylene, polyethylene terephthalate, polylactic acid and certain polyamides, and PVDF in the form of nanofibres
  • PPA polymer processing aid
  • an additive which allows, among others: to reduce or eliminate the surface defects which appear when the said thermoplastic resin is extruded, to reduce the pressure at the head of the extrusion die, thus making it possible to increase the throughput of the extrusion line, to limit the frequency of cleaning the extrusion die, limit the formation of surface defects on the extruded film.
  • the invention aims to provide a method for recycling respiratory protection masks containing from 98.5 to 99.5% by weight of a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers, said process comprising the steps following: a) grinding of the masks leading to the production of flakes, b) granulation (extrusion) of said flakes leading to the production of a masterbatch in the form of granules.
  • a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride) or PV
  • said masterbatch obtained by the recycling process according to the invention can be used as an extrusion aid agent (or extrusion agent) in the molten process of the predominant thermoplastic for the manufacture of any type of material. 'objects, especially in the form of film, fiber, cable or molded part.
  • the masks subjected to the recycling process according to the invention comprise a layer of PVDF nanofibers obtained by an electrospinning process, said layer being deposited on a substrate of predominantly thermoplastic polymer.
  • the present invention relates to a process for regenerating worn respiratory protective masks allowing the recovery of the polymer raw materials entering into their composition. More particularly, the method according to the invention applies to masks comprising several layers made from a predominant thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6).
  • long chain polyamides such as PA11 or PA12, and comprising a filtration layer made of polyvinylidene fluoride, and results in the manufacture of a masterbatch, which can be used directly as an aid agent for the extrusion of said polymer majority thermoplastic.
  • thermoplastic polymer used in a processing line for the majority thermoplastic polymer leads to an increase of up to 10% in the productivity of the line, and to a reduction in the extrusion pressure of 10 to 20%, compared to extrusion of the same thermoplastic polymer in the absence of extrusion agent. Furthermore, an increased persistence of electrets on the surface of said thermoplastic polymer, obtained using the extrusion agent produced according to the process of the invention, has been observed compared to the same unmodified polymer.
  • the invention is based on the discovery of the capacity of respiratory protective masks, in particular masks of the FFP1 to FFP3 type and surgical masks, comprising a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and a filtration layer of polyvinylidene fluoride nanofibers, to be subjected to a recycling process to provide a playable masterbatch , in the molten state, the role of an extrusion aid agent during the transformation of said predominantly thermoplastic polymer, leading to a reduction in the head pressure in the extruder, allowing an increase in the flow rate during the 'extrusion and reducing the material which deposits at the head of the die, which can create defects on the fibers, rods or extruded films.
  • a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopol
  • the subject of the invention is a process for recycling respiratory protection masks containing from 98.5 to 99.5% by weight of a predominant thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, acid polylactic, homopolymers and copolymers of polyamide 6 (PA6) and of long-chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers, said method comprising a step of grinding the masks leading to the production of flakes, and a step of granulation (extrusion) of said flakes, leading to the production of a masterbatch in the form of granules.
  • a predominant thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, acid polylactic, homopolymers and copolymers of polyamide 6 (PA6) and of long-chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride
  • said method comprises the following characters, if necessary combined.
  • the masks used in this recycling process are used masks containing exclusively a single thermoplastic polymer, called “majority”, chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and PVDF. More particularly, these masks contain from 98.5 to 99.5% by weight of the majority thermoplastic polymer and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers.
  • major chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and PVDF. More particularly, these masks contain from 98.5 to 99.5% by weight of the majority thermoplastic polymer and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers.
  • the recycling process uses surgical masks complying with standard EN 14683.
  • the recycling process uses masks of the FFP type complying with standard EN 149.
  • the recycling process uses a mixture of surgical and FFP-type masks, provided that they have the composition indicated above.
  • worn mask used here includes both masks that have been used (used), as well as unused masks that would have expired because they have exceeded the warranty period provided by the manufacturer, or even material scraps (in particular of polymer thermoplastic) recovered during the manufacture of the masks, which can represent from 15 to 16% of the total material used.
  • the mask used in the recycling process is a breathing mask consisting of a body and retaining straps, said body being composed of at least two and preferably three layers, including a layer of PVDF filter material, said body comprising a nose bar, said retaining straps being fixed to the body of the mask without adding material, preferably by welding.
  • all layers, except PVDF fibers, of materials constituting the body and the retaining straps are composed of nonwovens of the same predominantly thermoplastic polymer material.
  • the majority thermoplastic polymer is chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and of long chain polyamides such as PA11 or PA12.
  • Long chain polyamides are aliphatic polyamides having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9, in particular greater than 10.
  • PVDF used in the context of the invention is also a thermoplastic polymer.
  • the fluoropolymer used in the invention generically designated by the abbreviation "PVDF", is a vinylidene difluoride-based polymer.
  • thermoplastic is meant here a non-elastomeric polymer.
  • An elastomeric polymer is defined as a polymer which can be stretched, at room temperature, to twice its initial length and which, after stress relief, rapidly returns to its initial length, to within 10%, as indicated by ASTM in Special Technical Publication No. 184.
  • the mask to be recycled contains an inner layer of non-woven thermoplastic polymer, with a basis weight of between 20 and 100 g / m 2 and having a permeability of between 500 and 1500 l / m 2 / s measured at 100 Pa.
  • Said thermoplastic polymer exhibits a melt flow index (MFR) of 34 g / 10 min at 230 ° C. under 2.16 kg.
  • the mask to be recycled comprises a central layer comprising a nonwoven substrate, with a basis weight of between 20 and 100 g / m 2 and having a permeability of between 500 and 2500 Fm 2 / s measured at 100 Pa.
  • said substrate is manufactured by spinning-lapping from a thermoplastic polymer which has a hot melt index of 34 g / 10 min at 230 ° C and 2.16 kg.
  • the support layer (the substrate) can, according to another embodiment, be made by extrusion blow molding from a thermoplastic polymer which has a melt flow index of 34 g / 10 min at 230 ° C and 2, 16 kg.
  • the PVDF comprises, and preferably consists of: i. a homopolymeric PVDF; ii. a mixture of two PVDF homopolymers having different viscosities, or different molar masses, or different architectures, for example different degrees of branching; iii. a copolymer comprising vinylidene difluoride (VDF) units and one or more types of comonomer units compatible with vinylidene difluoride (hereinafter referred to as "VDF copolymer”); iv. a blend of a PVDF homopolymer and a VDF copolymer; v. a blend of two VDF copolymers.
  • VDF copolymer a copolymer comprising vinylidene difluoride (VDF) units and one or more types of comonomer units compatible with vinylidene difluoride
  • the comonomers compatible with vinylidene difluoride can be halogenated (fluorinated, chlorinated or brominated) or non-halogenated.
  • compatible comonomer is meant here the capacity of said comonomer to copolymerize with VDF and thus to form a copolymer.
  • fluorinated comonomers examples include: vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoropropenes and in particular 3,3,3-trifluoropropene, tetrafluoropropenes and in particular 2,3,3,3-tetrafluoropropene or 1 , 3,3,3- tetrafluoropropene, hexafluoroisobutylene, perfluorobutylethylene, pentafluoropropenes and in particular 1,1,3,3,3-pentafluoropropene or 1,2,3,3,3-pentafluoropropene, perfluoroalkylvinylethers and in particular those of general formula Rf-0-CF-CF2, Rf being an alkyl group, preferably C1 to C4 (preferred examples being perfluoropropylvinylether and perfluoromethylvinylether).
  • the fluorinated monomer can contain a chlorine or bromine atom. It can in particular be chosen from bromotrifluoroethylene, chlorofluoroethylene, chlorotrifluoroethylene and chlorotrifluoropropene.
  • Chlorofluoroethylene can denote either 1-chloro-1-fluoroethylene or 1-chloro-2-fluoroethylene.
  • the 1-chloro-1-fluoroethylene isomer is preferred.
  • the chlorotrifluoropropene is preferably 1-chloro-3,3,3-trifluoropropene or 2-chloro-3,3,3-trifluoropropene.
  • the VDF copolymer can also include nonhalogenated monomers such as ethylene, and / or acrylic or methacrylic comonomers.
  • the layer of nanofibers is composed of a mixture of two constituents among those mentioned above (ii., Iv. And v.), The mass proportion between the constituents of the mixture varies from 1:99 to 99: 1.
  • said PVDF nanofibers have an average Dv50 fiber diameter of between 30 and 500 nm, preferably from 30 to 300 nm.
  • the Dv50 is the volume median diameter which corresponds to the value of the particle size which divides the population of particles examined exactly in half.
  • the Dv50 is measured according to the ISO 9276 standard - parts 1 to 6.
  • said electrospun PVDF layer has a basis weight of between 0.03 g / m 2 and 3 g / m 2 .
  • the average thickness of this PVDF nanofiber layer is 0.1 ⁇ m to 100 ⁇ m.
  • the diameter of the fibers, their thickness and their distribution can be estimated by scanning electron microscopy (SEM).
  • the solvent used in the electrospinning to dissolve the PVDF is chosen from cyclopentanone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, acetone, ethyl methyl ketone, tetrahydrofuran, g- butyrolactone, hexafluoroisopropanol or their mixtures in all proportions.
  • the PVDF layer deposited by electrospinning can be electrically charged by a corona treatment in order to improve its filtration properties and obtain an aerosol filtration rate of at least 80%, preferably greater than 94%, or even greater than 98. %, and a pressure drop much less than 70 Pa.s for a flow rate of 95L / min of air on inspiration.
  • the used masks to be recycled comprise an outer layer of thermoplastic polymer, having a melt flow index (MFR) of 34 g / 10 min at 230 ° C under 2.16 kg; this nonwoven layer has a basis weight of between 20 and 100 g / m 2 and a permeability of between 500 and 1500 l / m 2 / s measured at 100 Pa.
  • MFR melt flow index
  • the retaining straps of the mask to be recycled are adjustable buckles produced by injection or 3D printing or elastics (non-woven or wrapped filaments), made from said thermoplastic polymer with a grammage of between 10 and 100 gr / m 2 having a hot melt index of 34 g / 10 min at 230 ° C and 2.16 kg.
  • the nasal bar is made from a mixture of 50% by weight of a PVDF homopolymer having a hot melt index of 32 g / 10 min at 230 ° C and 2.16 kg, and 50% by mass of a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and of long chain polyamides such as PA11 or PA12, and having a hot melt index of 34 g / 10 min at 230 ° C under 2.16 kg.
  • a PVDF homopolymer having a hot melt index of 32 g / 10 min at 230 ° C and 2.16 kg
  • a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and of long chain polyamides such as PA11 or PA12, and having a hot melt index of 34 g / 10 min at 230 ° C under 2.16 kg.
  • the recycling process according to the invention comprises a first step of grinding the masks resulting in the production of flakes.
  • the used masks are passed through a knife mill to transform them into fibers of a few millimeters, for example from 1 to 10 mm, preferably from 1 to 5 mm.
  • a grid makes it possible to calibrate the fiber pulp according to the desired length.
  • the grinding is carried out at a temperature which is at least 30 ° C lower than the melting point Tf of the material to be transformed, in the case of semi-crystalline thermoplastic polymers, and at least 30 ° C lower than the glass transition temperature Tg for the case of amorphous thermoplastic polymers.
  • the mask is ground in an extruder, which may be of the single screw or twin screw type, or in a BUS S co-mixer.
  • the crushed masks have metal parts, such as the nosepiece, these can be removed with a magnet.
  • the recycling process according to the invention then comprises a step of granulating said flakes, resulting in the production of a masterbatch in the form of granules.
  • the granulation is carried out in the molten state by extrusion through a die with circular holes, then cutting chilled and drying beads to make granules of 1 to 5 millimeters in diameter.
  • the molten granulation takes place in a BUS S type co-mixer with cutting under water and production of lenticular granules.
  • the invention relates to the use of said masterbatch as an extrusion agent during the extrusion of the same majority thermoplastic polymer as that constituting the recycled mask, apart from the PVDF.
  • the extrusion agent obtained by the recycling process according to the invention is used to reduce or eliminate surface defects which appear during the extrusion of the majority thermoplastic resin. It significantly reduces the time to achieve a stable and flawless extrusion over a range of extrusion parameters that normally exhibit significant extrusion instabilities.
  • the extrusion agent and the thermoplastic resin are contacted in a solid state prior to extrusion. They can be premixed in a solid state or simply introduced into the hopper of the extruder.
  • the extrusion agent can also be introduced in the molten state at any point on the extruder which serves to extrude the thermoplastic resin, for example using a side extruder.
  • the proportion by weight of the extrusion agent is from 1 to 30%, preferably from 1 to 10%, preferably from 1.5 to 10%, even more preferably from 2 to 10% for respectively from 70 to 99%, preferably from 90 to 99%, preferably from 90 to 98.5%, even more preferably from 90 to 98% of thermoplastic resin to be extruded.
  • the masterbatch is particularly useful for the extrusion of thermoplastic polymers in the form of a film or else in the form of a tube, a section or a hollow body. In addition to the advantages already mentioned, it facilitates obtaining a smooth and flawless surface, which is particularly important in the case of a film in order to obtain good optical properties.
  • the extrusion agent also makes it possible to reduce the pressure at the level of the air gap of the die as well as the rate of gels. It also makes it possible to a certain extent to reduce deposits at the outlet of the die.
  • Example 1 Production of electro-spun fibers on spunbond polypropylene (spunbond PP) 18 g / m 2
  • Example 2 Production of electro-spun fibers on spunbond polyester (Spunbond PET) 28 g / m 2
  • the electrospinning solution prepared as described in Example 1 is fed into an electrospinning process on a 28 g / m 2 PET spunbond support.
  • Such nonwovens are for example marketed by the company Mogul under the name Buffalo.
  • An electro-spun fiber-based filtration membrane was thus produced with a width of 480 mm using the conditions given in Table 3.
  • the nasal support bar is made of a rod 1.5 mm in diameter and 10 cm long.
  • This rod is obtained by mixing / extrusion at 230 ° C in a single-screw extruder of a 50/50 mixture by mass of PVDF homopolymer having a melt index of 32 g / 10 min at 230 ° C and 2.16 kg and of polypropylene with a flow rate of 35 g / 10 min at 230 ° C under 2.16 kg.
  • Example 4 Assembly of masaue from the elements produced in examples 1 to 3
  • a mask is produced using the elements obtained in the preceding examples with the following structure: spunbond PP 1 - Espun PP membrane 1- spunbond PP 2.
  • the non-woven “spunbond PP 1” (40 g / m 2 ) forms the outer layer and improves the mechanical strength of the mask body.
  • the “Espun PP 1” intermediate layer filters the aerosols.
  • the “spunbond 2” nonwoven (18 g / m 2 ) placed inside the mask is intended to be in contact with the face of the user, it protects the filtration layer from possible degradation.
  • the elastics are round polypropylene cords, such products are marketed for example by the company Liasa.
  • the cohesion between the layers of nonwovens is obtained by lamination.
  • the nasal bar produced in Example 3 is inserted into a space created by the folding of the nonwoven material over a width of 5 ⁇ 2 mm near the periphery of the mask.
  • the bar is held in place by welding points arranged regularly along the length of the fold.
  • the elastics are attached to each side of the mask so as to form a loop and are attached without adding material by ultrasonic welding.
  • the masks After decontamination by passing in an oven at 70 ° C. for one hour, the masks are ground in a knife mill.
  • the flakes obtained are fed into a BUSS type twin-screw extruder at 230 ° C. in order to produce granules.
  • the granules obtained are composed of approximately 0.9 wt% of PVDF and used as a masterbatch to achieve a concentration of 500 ppm of PVDF in the PP then used in a process for the manufacture of multifilaments by extrusion-spinning.
  • the pressure at the head of the extruder reached during the production of PP multi-flakes in the presence of 500 ppm of PVDF is of the order of 4.8 MPa, that is to say approximately 20% lower than that conventionally obtained during the setting. work of PP alone. Also, the impact of the presence of PVDF is visually observed by less fouling of the dies after several hours of extrusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The invention relates to a method for recycling filtering facepiece respirators comprising a plurality of layers made from a single thermoplastic polymer selected from among polypropylene, polyethylene terephthalate, polylactic acid, polyamide 6 (PA6) homopolymers and copolymers and long chain polyamides such as PA11 or PA12, and comprising a polyvinylidene fluoride filtration layer.

Description

PROCEDE DE RECYCLAGE DE MASQUES DE PROTECTION RESPIRATOIRE PROCESS FOR RECYCLING RESPIRATORY PROTECTIVE MASKS
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La prĂ©sente invention concerne un procĂ©dĂ© de recyclage de masques de protection respiratoire comprenant plusieurs couches fabriquĂ©es Ă  partir d’un seul polymĂšre thermoplastique choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et polyamides longues chaĂźnes tels que le PA11 ou le PA12, et comprenant une couche de filtration en polyfluorure de vinylidĂšne. The present invention relates to a process for recycling respiratory protective masks comprising several layers made from a single thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and comprising a filtration layer of polyvinylidene fluoride.
ARRIERE-PLAN TECHNIQUE TECHNICAL BACKGROUND
Les masques Ă  particules sont des appareils de protection respiratoire aptes Ă  filtrer les particules et les poussiĂšres fines. Parmi ces masques, on trouve des Ă©quipements de protection individuelle comme les masques FFP (pour « Filtering Facepiece Particles »). Leur pĂ©rimĂštre de protection est dĂ©terminĂ© par la norme europĂ©enne EN 149 qui spĂ©cifie les caractĂ©ristiques minimales Ă  exiger des demi-masques filtrants utilisĂ©s comme appareils de protection respiratoire contre les particules sauf pour l’évacuation. Cette norme dĂ©finit trois classes d’appareils, Ă  savoir FFP1, FFP2 et FFP3, sur la base de trois critĂšres : la pĂ©nĂ©tration maximum du matĂ©riau filtrant d’aĂ©rosols de diamĂštre moyen en masse de 0,6 pm, la rĂ©sistance respiratoire et le taux de fuite vers l’intĂ©rieur. Particle masks are respiratory protection devices capable of filtering out particles and fine dust. Among these masks, we find personal protective equipment such as FFP masks (for "Filtering Facepiece Particles"). Their protection perimeter is determined by European standard EN 149 which specifies the minimum characteristics to be required of filtering half-masks used as respiratory protection devices against particles except for evacuation. This standard defines three classes of devices, namely FFP1, FFP2 and FFP3, on the basis of three criteria: the maximum penetration of the filter material of aerosols of average diameter by mass of 0.6 ÎŒm, the respiratory resistance and the rate of leakage inward.
Le masque anti-poussiĂšre FFP1 a un taux de filtration d’aĂ©rosols d’au moins 80% et un taux de fuite vers l’intĂ©rieur de 22% au maximum. The FFP1 dust mask has an aerosol filtration rate of at least 80% and an inward leakage rate of 22% or less.
Le masque FFP2 a un taux de filtration d’aĂ©rosols d’au moins 94% et un taux de fuite vers l’intĂ©rieur de 8% au maximum. Ce masque protĂšge contre les substances chimiques en poudre et peut aussi servir de protection contre les aĂ©rosols transportant des particules virales et/ou des bactĂ©ries. The FFP2 mask has an aerosol filtration rate of at least 94% and an inward leakage rate of 8% or less. This mask protects against powdered chemicals and can also serve as protection against aerosols carrying viral particles and / or bacteria.
Le masque FFP3 prĂ©sente un taux de filtration d’aĂ©rosols de 99 % au minimum et un pourcentage de fuite vers l'intĂ©rieur de 2 % au maximum. Il protĂšge des trĂšs fines particules d'amiante (asbestose) ou de silice (silicose). The FFP3 mask has an aerosol filtration rate of at least 99% and an inward leakage rate of 2% at most. It protects against very fine particles of asbestos (asbestosis) or silica (silicosis).
Il existe aussi des masques Ă  usage mĂ©dical (masques chirurgicaux) Ă©laborĂ©s selon la norme EN 14683, destinĂ©s Ă  Ă©viter la projection vers l’entourage des gouttelettes Ă©mises par celui qui porte le masque. Ces masques protĂšgent Ă©galement le porteur contre les projections de gouttelettes Ă©mises par une personne en vis-Ă -vis. En revanche, selon les circonstances, ils ne protĂšgent pas contre l’inhalation de trĂšs petites particules en suspension dans l’air et potentiellement porteuses de virus. There are also masks for medical use (surgical masks) developed according to standard EN 14683, intended to prevent the projection towards the environment of the droplets emitted by the person wearing the mask. These masks also protect the wearer against the projections of droplets emitted by a person opposite. However, depending on the circumstances, they do not protect against the inhalation of very small particles suspended in the air and potentially carrying viruses.
Les masques de protection respiratoire sont en gĂ©nĂ©ral composĂ©s de fibres, ou d’associations de fibres synthĂ©tiques, obtenues Ă  partir de polymĂšres thermoplastiques tels que : les polyolĂ©fĂŻnes, les polyamides, les polyvinyles, les polyimides, les polyacrylates, les poly- mĂ©thacrylates, les polyurĂ©thanes ou encore les polymĂšres fluorĂ©s, et notamment le polyfluorure de vinylidĂšne (PVDF). Respiratory protection masks are generally composed of fibers, or combinations of synthetic fibers, obtained from thermoplastic polymers such as: polyolefins, polyamides, polyvinyls, polyimides, polyacrylates, poly-methacrylates, polyurethanes or also fluoropolymers, and in particular polyvinylidene fluoride (PVDF).
Parmi les nombreux types de masques connus, certains comprennent au moins une couche de nano-fibres qui sont particuliĂšrement adaptĂ©es Ă  assurer les propriĂ©tĂ©s barriĂšre requises pour une protection respiratoire de type FFP2 au moins. L’électro filage de polymĂšres en solution permet d’obtenir, dans certaines conditions, des fibres de diamĂštres suffisamment petits pour une bonne respirabilitĂ© et une bonne efficacitĂ© de filtration mĂ©canique, et Ă©ventuellement Ă©lectrostatique, de la membrane pour la filtration de l’air. Among the many types of known masks, some include at least one layer of nanofibers which are particularly suitable for providing the barrier properties required for at least FFP2 type respiratory protection. The electrospinning of polymers in solution makes it possible, under certain conditions, to obtain fibers of sufficiently small diameters for good breathability and good mechanical filtration efficiency, and possibly electrostatic, of the membrane for air filtration.
Le document EP 2517607 décrit les avantages des masques comprenant au moins une couche de nano-fibres, et la fabrication de celle-ci par électrofilage ( electrospinning ). Les masques ont des structures de type sandwich car comprenant plusieurs couches superposées, par exemple un tricouche de type : couche de non tissé - couche nanofïbreuse - couche de non tissé. Document EP 2517607 describes the advantages of masks comprising at least one layer of nanofibers, and the manufacture thereof by electrospinning. The masks have sandwich-type structures since they include several superimposed layers, for example a three-layer type: non-woven layer - nanofibrous layer - non-woven layer.
Le document US2019/0314746 dĂ©crit l’obtention d’une membrane poreuse non-tissĂ©e de PVDF par un procĂ©dĂ© d’électrofilage, adaptĂ©e pour la filtration d’air. Les nanofĂŻbres sont Ă©lectrofilĂ©es sur la surface d'un tambour recouvert d’un substrat non-tissĂ© en polypropylĂšne. Document US2019 / 0314746 describes the production of a porous nonwoven PVDF membrane by an electrospinning process, suitable for air filtration. Nanofibers are electrospun onto the surface of a drum covered with a polypropylene nonwoven substrate.
L’utilisation grandissante de masques respiratoires, qu’ils soient Ă  usage unique (jetables) ou rĂ©utilisables, conduit Ă  une problĂ©matique environnementale majeure de gestion de ces dĂ©chets et de la rĂ©utilisation de la matiĂšre polymĂšre utilisĂ©e pour la fabrication de ces masques. Les masques usĂ©s sont potentiellement chargĂ©s en particules et/ou souillĂ©s par des microorganismes pathogĂšnes (bactĂ©ries et/ou virus). Il existe plusieurs mĂ©thodes de nettoyage des masques rĂ©utilisables : lavage avec un dĂ©tergent Ă  60 ou 95°C, stĂ©rilisation Ă  121°C pendant 50 minutes, irradiation par des rayonnements gamma ou bĂȘta, exposition Ă  l’oxyde d’éthylĂšne, chauffage Ă  70°C en chaleur sĂšche ou dans l’eau, utilisation de vapeurs de peroxyde d’hydrogĂšne. The increasing use of respiratory masks, whether they are single-use (disposable) or reusable, leads to a major environmental problem of management of this waste and of the reuse of the polymer material used for the manufacture of these masks. Worn masks are potentially loaded with particles and / or soiled by pathogenic microorganisms (bacteria and / or viruses). There are several methods of cleaning reusable masks: washing with detergent at 60 or 95 ° C, sterilization at 121 ° C for 50 minutes, irradiation with gamma or beta radiation, exposure to ethylene oxide, heating at 70 ° C in dry heat or in water, use of hydrogen peroxide vapors.
Cependant, mĂȘme lorsque le nettoyage est efficace et permet l’élimination des particules de poussiĂšre et/ou des microorganismes dĂ©posĂ©s sur le masque, celui-ci ne peut subir qu’un nombre limitĂ© de cycles de nettoyage, Ă  la fin desquels se posera le problĂšme du traitement des masques usĂ©s et celui de la rĂ©cupĂ©ration souhaitĂ©e de tout ou partie des matiĂšres premiĂšres ayant servi Ă  leur fabrication. Il existe donc un besoin de mettre au point un procĂ©dĂ© de recyclage des masques usagĂ©s permettant de prĂ©venir leur accumulation et G Ă©ventuelle pollution de l’environnement, et la rĂ©cupĂ©ration des matiĂšres premiĂšres ayant servi Ă  leur fabrication. However, even when the cleaning is effective and allows the elimination of dust particles and / or microorganisms deposited on the mask, the latter can only undergo a limited number of cleaning cycles, at the end of which the problem of the treatment of used masks and that of the desired recovery of all or part of the raw materials used in their manufacture. There is therefore a need to develop a method for recycling used masks making it possible to prevent their accumulation and possible G pollution of the environment, and the recovery of the raw materials used in their manufacture.
Il a maintenant Ă©tĂ© trouvĂ© que les masques usĂ©s contenant des couches fabriquĂ©es Ă  partir d’un polymĂšre thermoplastique majoritaire donnĂ©, choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique et certains polyamides, et du PVDF sous forme de nanofĂŻbres, peuvent alimenter un procĂ©dĂ© de recyclage conduisant Ă  l’obtention d’un mĂ©lange maĂźtre apte Ă  ĂȘtre utilisĂ© comme agent d’aide Ă  l’extrusion (en anglais : polymer processing aid ou PPA), c’est- Ă -dire un additif qui permet, entre autres : de rĂ©duire ou d’éliminer les dĂ©fauts de surface qui apparaissent lorsqu’on extrude ladite rĂ©sine thermoplastique, de rĂ©duire la pression en tĂȘte de filiĂšre d’extrusion, permettant ainsi d’augmenter le dĂ©bit de la ligne d’extrusion, de limiter la frĂ©quence de nettoyage de la filiĂšre d’extrusion, de limiter la formation des dĂ©fauts de surface sur le film extrudĂ©. It has now been found that used masks containing layers made from a predominantly thermoplastic polymer chosen from among polypropylene, polyethylene terephthalate, polylactic acid and certain polyamides, and PVDF in the form of nanofibres, can feed a recycling process leading to the production of a masterbatch suitable for use as an extrusion aid agent (in English: polymer processing aid or PPA), that is to say an additive which allows, among others: to reduce or eliminate the surface defects which appear when the said thermoplastic resin is extruded, to reduce the pressure at the head of the extrusion die, thus making it possible to increase the throughput of the extrusion line, to limit the frequency of cleaning the extrusion die, limit the formation of surface defects on the extruded film.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
L’invention vise Ă  fournir un procĂ©dĂ© de recyclage de masques de protection respiratoire contenant de 98,5 Ă  99,5% en poids d’un polymĂšre thermoplastique majoritaire choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et polyamides longues chaĂźnes tels que le PA11 ou le PA12, et de 0,05 Ă  1,5% de poly(fluorure de vinylidĂšne) ou PVDF, notamment sous forme de nanofĂŻbres, ledit procĂ©dĂ© comprenant les Ă©tapes suivantes : a) broyage des masques conduisant Ă  l’obtention de paillettes, b) granulation (extrusion) desdites paillettes conduisant Ă  l’obtention d’un mĂ©lange maĂźtre sous forme de granulĂ©s. The invention aims to provide a method for recycling respiratory protection masks containing from 98.5 to 99.5% by weight of a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers, said process comprising the steps following: a) grinding of the masks leading to the production of flakes, b) granulation (extrusion) of said flakes leading to the production of a masterbatch in the form of granules.
Avantageusement, ledit mĂ©lange maĂźtre obtenu par le procĂ©dĂ© de recyclage selon l’invention peut ĂȘtre utilisĂ© comme agent d’aide Ă  l’extrusion (ou agent d’extrusion) dans la transformation en voie fondue du thermoplastique majoritaire pour la fabrication de tout type d’objets, notamment sous forme de film, fibre, cĂąble ou piĂšce moulĂ©e. Advantageously, said masterbatch obtained by the recycling process according to the invention can be used as an extrusion aid agent (or extrusion agent) in the molten process of the predominant thermoplastic for the manufacture of any type of material. 'objects, especially in the form of film, fiber, cable or molded part.
Selon un mode de rĂ©alisation, les masques soumis au procĂ©dĂ© de recyclage selon l’invention comprennent une couche de nanofĂŻbres de PVDF obtenue par un procĂ©dĂ© d’électrofĂźlage, ladite couche Ă©tant dĂ©posĂ©e sur un substrat de polymĂšre thermoplastique majoritaire. La prĂ©sente invention concerne un procĂ©dĂ© de rĂ©gĂ©nĂ©ration des masques de protection respiratoire usĂ©s permettant la rĂ©cupĂ©ration des matiĂšres premiĂšres polymĂšres entrant dans leur composition. Plus particuliĂšrement, le procĂ©dĂ© selon l’invention s’applique aux masques comprenant plusieurs couches fabriquĂ©es Ă  partir d’un polymĂšre thermoplastique majoritaire choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et polyamides longues chaĂźnes tels que le PA11 ou le PA12, et comprenant une couche de filtration en polyfluorure de vinylidĂšne, et conduit Ă  la fabrication d’un mĂ©lange maĂźtre, directement utilisable en tant qu’agent d’aide Ă  l’extrusion dudit polymĂšre thermoplastique majoritaire. According to one embodiment, the masks subjected to the recycling process according to the invention comprise a layer of PVDF nanofibers obtained by an electrospinning process, said layer being deposited on a substrate of predominantly thermoplastic polymer. The present invention relates to a process for regenerating worn respiratory protective masks allowing the recovery of the polymer raw materials entering into their composition. More particularly, the method according to the invention applies to masks comprising several layers made from a predominant thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6). and long chain polyamides such as PA11 or PA12, and comprising a filtration layer made of polyvinylidene fluoride, and results in the manufacture of a masterbatch, which can be used directly as an aid agent for the extrusion of said polymer majority thermoplastic.
L’emploi de ce mĂ©lange maĂźtre dans une ligne de transformation du polymĂšre thermoplastique majoritaire conduit Ă  une augmentation allant jusqu’à 10% de la productivitĂ© de la ligne, et Ă  la diminution de la pression d'extrusion de 10 Ă  20%, comparativement Ă  l’extrusion du mĂȘme polymĂšre thermoplastique en l’absence d’agent d’extrusion. Par ailleurs, il a Ă©tĂ© constatĂ© une persistance accrue des Ă©lectrets Ă  la surface dudit polymĂšre thermoplastique, obtenue Ă  l’aide de l’agent d’extrusion fabriquĂ© selon le procĂ©dĂ© de l’invention, par rapport au mĂȘme polymĂšre non-modifiĂ©. The use of this masterbatch in a processing line for the majority thermoplastic polymer leads to an increase of up to 10% in the productivity of the line, and to a reduction in the extrusion pressure of 10 to 20%, compared to extrusion of the same thermoplastic polymer in the absence of extrusion agent. Furthermore, an increased persistence of electrets on the surface of said thermoplastic polymer, obtained using the extrusion agent produced according to the process of the invention, has been observed compared to the same unmodified polymer.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION DESCRIPTION OF EMBODIMENTS OF THE INVENTION
L’invention est maintenant dĂ©crite plus en dĂ©tail et de façon non limitative dans la description qui suit. The invention is now described in more detail and in a nonlimiting manner in the description which follows.
L’invention repose sur la dĂ©couverte de la capacitĂ© des masques de protection respiratoire, notamment des masques de type FFP1 Ă  FFP3 et des masques chirurgicaux, comprenant un polymĂšre thermoplastique majoritaire choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et de polyamides longues chaĂźnes tels que le PA11 ou le PA12, et une couche de filtration en nanofibres de polyfluorure de vinylidĂšne, d’ĂȘtre soumis Ă  un procĂ©dĂ© de recyclage pour fournir un mĂ©lange maĂźtre apte Ă  jouer, Ă  l’état fondu, le rĂŽle d’agent d’aide Ă  l’extrusion lors de la transformation dudit polymĂšre thermoplastique majoritaire, conduisant Ă  une rĂ©duction de la pression en tĂȘte dans l’extrudeuse, permettant une augmentation du dĂ©bit lors de l’extrusion et rĂ©duisant la matiĂšre qui se dĂ©pose en tĂȘte de filiĂšre, pouvant crĂ©er des dĂ©fauts sur les fibres, les joncs ou les films extrudĂ©s. Cela permet de diminuer la frĂ©quence de nettoyage de l’équipement et donc les arrĂȘts machine. Selon un premier aspect, l’invention a pour objet un procĂ©dĂ© de recyclage de masques de protection respiratoire contenant de 98,5 Ă  99,5% en poids d’un polymĂšre thermoplastique majoritaire choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et de polyamides Ă  longues chaĂźnes tels que le PA11 ou le PA12, et de 0,05 Ă  1,5% de poly(fluorure de vinylidĂšne) ou PVDF, notamment sous forme de nanofĂŻbres, ledit procĂ©dĂ© comprenant une Ă©tape de broyage des masques conduisant Ă  l’obtention de paillettes, et une Ă©tape de granulation (extrusion) desdites paillettes, conduisant Ă  l’obtention d’un mĂ©lange maĂźtre sous forme de granulĂ©s. The invention is based on the discovery of the capacity of respiratory protective masks, in particular masks of the FFP1 to FFP3 type and surgical masks, comprising a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and a filtration layer of polyvinylidene fluoride nanofibers, to be subjected to a recycling process to provide a playable masterbatch , in the molten state, the role of an extrusion aid agent during the transformation of said predominantly thermoplastic polymer, leading to a reduction in the head pressure in the extruder, allowing an increase in the flow rate during the 'extrusion and reducing the material which deposits at the head of the die, which can create defects on the fibers, rods or extruded films. This makes it possible to reduce the frequency of cleaning the equipment and therefore machine downtime. According to a first aspect, the subject of the invention is a process for recycling respiratory protection masks containing from 98.5 to 99.5% by weight of a predominant thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, acid polylactic, homopolymers and copolymers of polyamide 6 (PA6) and of long-chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers, said method comprising a step of grinding the masks leading to the production of flakes, and a step of granulation (extrusion) of said flakes, leading to the production of a masterbatch in the form of granules.
Selon diverses réalisations, ledit procédé comprend les caractÚres suivants, le cas échéant combinés. According to various embodiments, said method comprises the following characters, if necessary combined.
Les masques mis en Ɠuvre dans ce procĂ©dĂ© de recyclage sont des masques usĂ©s contenant exclusivement un seul polymĂšre thermoplastique, appelĂ© « majoritaire », choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et polyamides Ă  longues chaĂźnes tels que le PA11 ou le PA12, et du PVDF. Plus particuliĂšrement, ces masques contiennent de 98,5 Ă  99,5% en poids de polymĂšre thermoplastique majoritaire et de 0,05 Ă  1,5% de poly(fluorure de vinylidĂšne) ou PVDF, notamment sous forme de nanofĂŻbres. The masks used in this recycling process are used masks containing exclusively a single thermoplastic polymer, called “majority”, chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and long chain polyamides such as PA11 or PA12, and PVDF. More particularly, these masks contain from 98.5 to 99.5% by weight of the majority thermoplastic polymer and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF, in particular in the form of nanofibers.
Selon un mode de réalisation, le procédé de recyclage utilise des masques chirurgicaux respectant la norme EN 14683. According to one embodiment, the recycling process uses surgical masks complying with standard EN 14683.
Selon un mode de réalisation, le procédé de recyclage utilise des masques de type FFP respectant la norme EN 149. According to one embodiment, the recycling process uses masks of the FFP type complying with standard EN 149.
Selon un mode de rĂ©alisation, le procĂ©dĂ© de recyclage met en Ɠuvre un mĂ©lange de masques chirurgicaux et de type FFP, pourvu qu’ils prĂ©sentent la composition indiquĂ©e ci-dessus. According to one embodiment, the recycling process uses a mixture of surgical and FFP-type masks, provided that they have the composition indicated above.
Le terme « masque usĂ© » utilisĂ© ici comprend aussi bien les masques ayant servi (usagĂ©s), que les masques non-utilisĂ©s qui seraient pĂ©rimĂ©s car ayant dĂ©passĂ© la pĂ©riode de garantie prĂ©vue par le fabricant, ou encore les chutes de matiĂšre (notamment de polymĂšre thermoplastique) rĂ©cupĂ©rĂ©es lors de la fabrication des masques, qui peuvent reprĂ©senter de 15 Ă  16% de la matiĂšre totale utilisĂ©e. The term “worn mask” used here includes both masks that have been used (used), as well as unused masks that would have expired because they have exceeded the warranty period provided by the manufacturer, or even material scraps (in particular of polymer thermoplastic) recovered during the manufacture of the masks, which can represent from 15 to 16% of the total material used.
Selon un mode de rĂ©alisation, le masque mis en Ɠuvre dans le procĂ©dĂ© de recyclage est un masque respiratoire constituĂ© d'un corps et de sangles de maintien, ledit corps Ă©tant composĂ© d'au moins deux et de prĂ©fĂ©rence trois couches, dont une couche de matĂ©riau filtrant en PVDF, ledit corps comprenant une barrette nasale, lesdites sangles de maintien Ă©tant fixĂ©es sur le corps du masque sans ajout de matiĂšre, de prĂ©fĂ©rence par soudage. Dans ce masque, toutes les couches, Ă  l’exception des fibres de PVDF, de matĂ©riaux constituant le corps et les sangles de maintien sont composĂ©es de non tissĂ©s du mĂȘme matĂ©riau polymĂšre thermoplastique majoritaire. Le polymĂšre thermoplastique majoritaire est choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et de polyamides Ă  longues chaĂźnes tels que le PA11 ou le PA12. According to one embodiment, the mask used in the recycling process is a breathing mask consisting of a body and retaining straps, said body being composed of at least two and preferably three layers, including a layer of PVDF filter material, said body comprising a nose bar, said retaining straps being fixed to the body of the mask without adding material, preferably by welding. In this mask, all layers, except PVDF fibers, of materials constituting the body and the retaining straps are composed of nonwovens of the same predominantly thermoplastic polymer material. The majority thermoplastic polymer is chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and of long chain polyamides such as PA11 or PA12.
Les polyamides Ă  longue chaĂźne sont des polyamides aliphatiques prĂ©sentant un nombre moyen d’atomes de carbone par atomes d’azote supĂ©rieur Ă  8,5, de prĂ©fĂ©rence supĂ©rieur Ă  9, en particulier supĂ©rieur Ă  10. Long chain polyamides are aliphatic polyamides having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9, in particular greater than 10.
Le PVDF mis en Ɠuvre dans le cadre de l’invention est Ă©galement un polymĂšre thermoplastique. Le polymĂšre fluorĂ© utilisĂ© dans l'invention dĂ©signĂ© gĂ©nĂ©riquement par l’abrĂ©viation « PVDF » est un polymĂšre Ă  base de difluorure de vinylidĂšne. The PVDF used in the context of the invention is also a thermoplastic polymer. The fluoropolymer used in the invention, generically designated by the abbreviation "PVDF", is a vinylidene difluoride-based polymer.
Par « thermoplastique », on entend ici un polymĂšre non Ă©lastomĂ©rique. Un polymĂšre Ă©lastomĂ©rique est dĂ©fini comme Ă©tant un polymĂšre qui peut ĂȘtre Ă©tirĂ©, Ă  tempĂ©rature ambiante, Ă  deux fois sa longueur initiale et qui, aprĂšs relĂąchement des contraintes, reprend rapidement sa longueur initiale, Ă  10 % prĂšs, comme indiquĂ© par l’ASTM dans la SpĂ©cial Technical Publication n°184. By “thermoplastic” is meant here a non-elastomeric polymer. An elastomeric polymer is defined as a polymer which can be stretched, at room temperature, to twice its initial length and which, after stress relief, rapidly returns to its initial length, to within 10%, as indicated by ASTM in Special Technical Publication No. 184.
Selon un mode de réalisation, le masque à recycler contient une couche intérieure en polymÚre thermoplastique non-tissé, de grammage compris entre 20 et 100 g/m2 et présentant une perméabilité comprise entre 500 et 1500 l/m2/s mesurée à 100 Pa. Ledit polymÚre thermoplastique présente un indice de fluidité à chaud (MFR) de 34 g/10 min à 230°C sous 2,16 kg. According to one embodiment, the mask to be recycled contains an inner layer of non-woven thermoplastic polymer, with a basis weight of between 20 and 100 g / m 2 and having a permeability of between 500 and 1500 l / m 2 / s measured at 100 Pa. Said thermoplastic polymer exhibits a melt flow index (MFR) of 34 g / 10 min at 230 ° C. under 2.16 kg.
Selon un mode de réalisation, le masque à recycler comprend une couche centrale comprenant un substrat non-tissé, de grammage compris entre 20 et 100 g/m2 et présentant une perméabilité comprise entre 500 et 2500 Fm2/s mesurée à 100 Pa. According to one embodiment, the mask to be recycled comprises a central layer comprising a nonwoven substrate, with a basis weight of between 20 and 100 g / m 2 and having a permeability of between 500 and 2500 Fm 2 / s measured at 100 Pa.
Selon un mode de rĂ©alisation, ledit substrat est fabriquĂ© par filage-nappage Ă  partir d’un polymĂšre thermoplastique qui prĂ©sente un indice de fluiditĂ© Ă  chaud de 34 g/10 min Ă  230°C et 2,16 kg. According to one embodiment, said substrate is manufactured by spinning-lapping from a thermoplastic polymer which has a hot melt index of 34 g / 10 min at 230 ° C and 2.16 kg.
La couche support (le substrat) peut, selon un autre mode de rĂ©alisation, ĂȘtre fabriquĂ©e par extrusion-soufflage Ă  partir d’un polymĂšre thermoplastique qui prĂ©sente un indice de fluiditĂ© Ă  chaud de 34 g/10 min Ă  230°C et 2,16 kg. The support layer (the substrate) can, according to another embodiment, be made by extrusion blow molding from a thermoplastic polymer which has a melt flow index of 34 g / 10 min at 230 ° C and 2, 16 kg.
Selon un mode de rĂ©alisation, sur ce substrat est dĂ©posĂ©e, par un procĂ©dĂ© d’électro filage, une couche de nanofĂŻbres de PVDF. Selon un mode de rĂ©alisation, le PVDF comprend, et de prĂ©fĂ©rence consiste en : i. un PVDF homopolymĂšre ; ii. un mĂ©lange de deux PVDF homopolymĂšres prĂ©sentant des viscositĂ©s diffĂ©rentes, ou des masses molaires diffĂ©rentes, ou des architectures diffĂ©rentes, par exemple des degrĂ©s de branchement diffĂ©rents ; iii. un copolymĂšre comprenant des unitĂ©s de difluorure de vinylidĂšne (VDF) et un ou plusieurs types d’unitĂ©s de co-monomĂšres compatibles avec le difluorure de vinylidĂšne (appelĂ© ci- aprĂšs « copolymĂšre de VDF »); iv. un mĂ©lange d’un PVDF homopolymĂšre et d’un copolymĂšre de VDF; v. un mĂ©lange de deux copolymĂšres de VDF. According to one embodiment, on this substrate is deposited, by an electro-spinning process, a layer of PVDF nanofibers. According to one embodiment, the PVDF comprises, and preferably consists of: i. a homopolymeric PVDF; ii. a mixture of two PVDF homopolymers having different viscosities, or different molar masses, or different architectures, for example different degrees of branching; iii. a copolymer comprising vinylidene difluoride (VDF) units and one or more types of comonomer units compatible with vinylidene difluoride (hereinafter referred to as "VDF copolymer"); iv. a blend of a PVDF homopolymer and a VDF copolymer; v. a blend of two VDF copolymers.
Les comonomĂšres compatibles avec le difluorure de vinylidĂšne peuvent ĂȘtre halogĂ©nĂ©s (fluorĂ©s, chlorĂ©s ou bromĂ©s) ou non-halogĂ©nĂ©s. Par « comonomĂšre compatible » on entend ici la capacitĂ© dudit comonomĂšre de copolymĂ©riser avec le VDF et de former ainsi un copolymĂšre. The comonomers compatible with vinylidene difluoride can be halogenated (fluorinated, chlorinated or brominated) or non-halogenated. By “compatible comonomer” is meant here the capacity of said comonomer to copolymerize with VDF and thus to form a copolymer.
Des exemples de comonomĂšres fluorĂ©s appropriĂ©s sont : le fluorure de vinyle, le tĂ©trafluoroĂ©thylĂšne, l’hexafluoropropylĂšne, les trifluoropropĂšnes et notamment le 3,3,3- trifluoropropĂšne, les tĂ©trafluoropropĂšnes et notamment le 2,3,3,3-tĂ©trafluoropropĂšne ou le 1, 3,3,3- tĂ©trafluoropropĂšne, l’hexafluoroisobutylĂšne, le perfluorobutylĂ©thylĂšne, les pentafluoropropĂšnes et notamment le 1,1,3,3,3-pentafluoropropĂšne ou le 1,2,3,3,3-pentafluoropropĂšne, les perfluoroalkylvinylĂ©thers et notamment ceux de formule gĂ©nĂ©rale Rf-0-CF-CF2, Rf Ă©tant un groupement alkyle, de prĂ©fĂ©rence en Cl Ă  C4 (des exemples prĂ©fĂ©rĂ©s Ă©tant le perfluoropropylvinylĂ©ther et le perfluoromĂ©thylvinylĂ©ther). Le monomĂšre fluorĂ© peut comporter un atome de chlore ou de brome. Il peut en particulier ĂȘtre choisi parmi le bromotrifluoroĂ©thylĂšne, le chlorofluoroethylĂšne, le chlorotrifluoroĂ©thylĂšne et le chlorotrifluoropropĂšne. Le chlorofluoroĂ©thylĂšne peut dĂ©signer soit le 1-chloro-l-fluoroĂ©thylĂšne, soit le l-chloro-2- fluoroĂ©thylĂšne. L’isomĂšre 1-chloro-l-fluoroĂ©thylĂšne est prĂ©fĂ©rĂ©. Le chlorotrifluoropropĂšne est de prĂ©fĂ©rence le l-chloro-3,3,3-trifluoropropĂšne ou le 2-chloro-3,3,3-trifluoropropĂšne. Examples of suitable fluorinated comonomers are: vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoropropenes and in particular 3,3,3-trifluoropropene, tetrafluoropropenes and in particular 2,3,3,3-tetrafluoropropene or 1 , 3,3,3- tetrafluoropropene, hexafluoroisobutylene, perfluorobutylethylene, pentafluoropropenes and in particular 1,1,3,3,3-pentafluoropropene or 1,2,3,3,3-pentafluoropropene, perfluoroalkylvinylethers and in particular those of general formula Rf-0-CF-CF2, Rf being an alkyl group, preferably C1 to C4 (preferred examples being perfluoropropylvinylether and perfluoromethylvinylether). The fluorinated monomer can contain a chlorine or bromine atom. It can in particular be chosen from bromotrifluoroethylene, chlorofluoroethylene, chlorotrifluoroethylene and chlorotrifluoropropene. Chlorofluoroethylene can denote either 1-chloro-1-fluoroethylene or 1-chloro-2-fluoroethylene. The 1-chloro-1-fluoroethylene isomer is preferred. The chlorotrifluoropropene is preferably 1-chloro-3,3,3-trifluoropropene or 2-chloro-3,3,3-trifluoropropene.
Le copolymĂšre de VDF peut aussi comprendre des monomĂšres non halogĂ©nĂ©s tels que l’éthylĂšne, et/ou des comonomĂšres acryliques ou mĂ©thacryliques. The VDF copolymer can also include nonhalogenated monomers such as ethylene, and / or acrylic or methacrylic comonomers.
Lorsque la couche de nanofĂŻbres est composĂ©e d’un mĂ©lange de deux constituants parmi ceux citĂ©s ci-dessus (ii., iv. et v.), la proportion massique entre les constituants du mĂ©lange varie de 1:99 Ă  99:1. When the layer of nanofibers is composed of a mixture of two constituents among those mentioned above (ii., Iv. And v.), The mass proportion between the constituents of the mixture varies from 1:99 to 99: 1.
Selon un mode de réalisation, lesdites nanofïbres de PVDF présentent un diamÚtre de fibre Dv50 moyen compris entre 30 et 500 nm, de préférence de 30 à 300 nm. Le Dv50 est le diamÚtre médian en volume qui correspond à la valeur de la taille de particule qui divise la population de particules examinée exactement en deux. Le Dv50 est mesuré selon la norme ISO 9276 - parties 1 à 6. Selon un mode de réalisation, ladite couche de PVDF électrofilée présente un grammage compris entre 0,03 g/m2 et 3 g/m2. According to one embodiment, said PVDF nanofibers have an average Dv50 fiber diameter of between 30 and 500 nm, preferably from 30 to 300 nm. The Dv50 is the volume median diameter which corresponds to the value of the particle size which divides the population of particles examined exactly in half. The Dv50 is measured according to the ISO 9276 standard - parts 1 to 6. According to one embodiment, said electrospun PVDF layer has a basis weight of between 0.03 g / m 2 and 3 g / m 2 .
L’épaisseur moyenne de cette couche de nanofibres de PVDF est de 0,1 pm Ă  100 pm. Le diamĂštre des fibres, leur Ă©paisseur et leur distribution peuvent ĂȘtre estimĂ©s par microscopie Ă©lectronique Ă  balayage (SEM). The average thickness of this PVDF nanofiber layer is 0.1 ”m to 100 ”m. The diameter of the fibers, their thickness and their distribution can be estimated by scanning electron microscopy (SEM).
Le solvant utilisĂ© dans l’électrofilage pour dissoudre le PVDF est choisi parmi la cyclopentanone, le N,N-dimĂ©thylacĂ©tamide, le N,N-dimĂ©thylformamide, le dimĂ©thylsulfoxyde, l’acĂ©tone, l’éthyl mĂ©thyl cĂ©tone, le tĂ©trahydrofurane, la g-butyrolactone, l’hexafluoroisopropanol ou leurs mĂ©langes en toutes proportions. The solvent used in the electrospinning to dissolve the PVDF is chosen from cyclopentanone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, acetone, ethyl methyl ketone, tetrahydrofuran, g- butyrolactone, hexafluoroisopropanol or their mixtures in all proportions.
La couche de PVDF dĂ©posĂ© par Ă©lectrofilage peut ĂȘtre chargĂ©e Ă©lectriquement par un traitement corona afin d’amĂ©liorer ses propriĂ©tĂ©s de filtration et obtenir un taux de filtration d'aĂ©rosols d’au moins 80%, de prĂ©fĂ©rence supĂ©rieur Ă  94%, voire supĂ©rieur Ă  98%, et une perte de charge trĂšs infĂ©rieure Ă  70 Pa.s pour un dĂ©bit de 95L/min d’air Ă  l’inspiration. The PVDF layer deposited by electrospinning can be electrically charged by a corona treatment in order to improve its filtration properties and obtain an aerosol filtration rate of at least 80%, preferably greater than 94%, or even greater than 98. %, and a pressure drop much less than 70 Pa.s for a flow rate of 95L / min of air on inspiration.
Selon un mode de réalisation, les masques usés à recycler comprennent une couche extérieure en polymÚre thermoplastique, ayant un indice de fluidité à chaud (MFR) de 34 g/10 min à 230°C sous 2,16 kg ; cette couche en non-tissé a un grammage compris entre 20 et 100 g/m2 et une perméabilité comprise entre 500 et 1500 l/m2/s mesurée à 100 Pa. According to one embodiment, the used masks to be recycled comprise an outer layer of thermoplastic polymer, having a melt flow index (MFR) of 34 g / 10 min at 230 ° C under 2.16 kg; this nonwoven layer has a basis weight of between 20 and 100 g / m 2 and a permeability of between 500 and 1500 l / m 2 / s measured at 100 Pa.
Selon un mode de réalisation, les sangles de maintien du masque à recycler, en polymÚre thermoplastique, sont des boucles ajustables produites par injection ou impression 3D ou des élastiques (non tissé ou filaments guipés), fabriqués à partir dudit polymÚre thermoplastique de grammage compris entre 10 et 100 gr/m2 ayant un indice de fluidité à chaud de 34 g/10 min à 230°C et 2,16 kg. According to one embodiment, the retaining straps of the mask to be recycled, made of thermoplastic polymer, are adjustable buckles produced by injection or 3D printing or elastics (non-woven or wrapped filaments), made from said thermoplastic polymer with a grammage of between 10 and 100 gr / m 2 having a hot melt index of 34 g / 10 min at 230 ° C and 2.16 kg.
Selon un mode de rĂ©alisation, la barrette nasale est fabriquĂ©e Ă  partir d’un mĂ©lange de 50% en poids d’un homopolymĂšre PVDF prĂ©sentant un indice de fluiditĂ© Ă  chaud de 32 g/10 min sous 230°C et 2,16 kg, et 50% en masse d’un polymĂšre thermoplastique majoritaire choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et de polyamides longues chaĂźnes tels que le PA11 ou le PA12, et ayant un indice de fluiditĂ© Ă  chaud de 34 g/10 min Ă  230°C sous 2,16 kg. According to one embodiment, the nasal bar is made from a mixture of 50% by weight of a PVDF homopolymer having a hot melt index of 32 g / 10 min at 230 ° C and 2.16 kg, and 50% by mass of a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 (PA6) and of long chain polyamides such as PA11 or PA12, and having a hot melt index of 34 g / 10 min at 230 ° C under 2.16 kg.
Le procĂ©dĂ© de recyclage selon l’invention comprend une premiĂšre Ă©tape de broyage des masques conduisant Ă  l’obtention de paillettes. The recycling process according to the invention comprises a first step of grinding the masks resulting in the production of flakes.
Selon un mode de rĂ©alisation, les masques usĂ©s sont passĂ©s Ă  travers un broyeur Ă  couteaux pour les transformer en fibres de quelques millimĂštres, par exemple de 1 Ă  10 mm, de prĂ©fĂ©rence de 1 Ă  5 mm. Une grille permet de calibrer la pulpe de fibres en fonction de la longueur souhaitĂ©e. Le broyage s’effectue Ă  une tempĂ©rature qui est d’au moins 30°C infĂ©rieure Ă  la tempĂ©rature de fusion Tf de la matiĂšre Ă  transformer, pour le cas des polymĂšres thermoplastiques semi- cristallins, et d’au moins 30°C infĂ©rieure Ă  la tempĂ©rature de transition vitreuse Tg pour le cas des polymĂšres thermoplastiques amorphes. According to one embodiment, the used masks are passed through a knife mill to transform them into fibers of a few millimeters, for example from 1 to 10 mm, preferably from 1 to 5 mm. A grid makes it possible to calibrate the fiber pulp according to the desired length. The grinding is carried out at a temperature which is at least 30 ° C lower than the melting point Tf of the material to be transformed, in the case of semi-crystalline thermoplastic polymers, and at least 30 ° C lower than the glass transition temperature Tg for the case of amorphous thermoplastic polymers.
Selon un mode de rĂ©alisation, le masque est broyĂ© dans un extrudeuse, qui peut ĂȘtre du type mono vis ou bivis, ou dans un comalaxeur BUS S. According to one embodiment, the mask is ground in an extruder, which may be of the single screw or twin screw type, or in a BUS S co-mixer.
Si les masques broyĂ©s comprennent des parties mĂ©talliques, comme la barrette nasale, celles-ci peuvent ĂȘtre Ă©liminĂ©es au moyen d’un aimant. If the crushed masks have metal parts, such as the nosepiece, these can be removed with a magnet.
Le procĂ©dĂ© de recyclage selon l’invention comprend ensuite une Ă©tape de granulation desdites paillettes, conduisant Ă  l’obtention d’un mĂ©lange maĂźtre sous forme de granulĂ©s. The recycling process according to the invention then comprises a step of granulating said flakes, resulting in the production of a masterbatch in the form of granules.
Selon un mode de rĂ©alisation, la granulation s’effectue Ă  l’état fondu par extrusion au travers d'une filiĂšre Ă  trous circulaires, puis coupe des cordons refroidis et sĂ©chage pour fabriquer des granulĂ©s de 1 Ă  5 millimĂštres de diamĂštre. According to one embodiment, the granulation is carried out in the molten state by extrusion through a die with circular holes, then cutting chilled and drying beads to make granules of 1 to 5 millimeters in diameter.
Selon un autre mode de réalisation, la granulation par voie fondue a lieu dans un comalaxeur de type BUS S avec coupe sous eau et fabrication de granulés lenticulaires. According to another embodiment, the molten granulation takes place in a BUS S type co-mixer with cutting under water and production of lenticular granules.
Selon un deuxiĂšme aspect, l’invention concerne l’utilisation dudit mĂ©lange maĂźtre comme agent d’extrusion lors de l’extrusion du mĂȘme polymĂšre thermoplastique majoritaire que celui constituant le masque recyclĂ©, en dehors du PVDF. According to a second aspect, the invention relates to the use of said masterbatch as an extrusion agent during the extrusion of the same majority thermoplastic polymer as that constituting the recycled mask, apart from the PVDF.
L’agent d’extrusion obtenu par le procĂ©dĂ© de recyclage selon l’invention est utilisĂ© pour rĂ©duire ou Ă©liminer les dĂ©fauts de surface qui apparaissent lors de l’extrusion de la rĂ©sine thermoplastique majoritaire. Il rĂ©duit de façon significative le temps permettant d’obtenir une extrusion stable et sans dĂ©faut dans une gamme de paramĂštre d’extrusion qui normalement prĂ©sente des instabilitĂ©s importantes d’extrusion. The extrusion agent obtained by the recycling process according to the invention is used to reduce or eliminate surface defects which appear during the extrusion of the majority thermoplastic resin. It significantly reduces the time to achieve a stable and flawless extrusion over a range of extrusion parameters that normally exhibit significant extrusion instabilities.
L’agent d’extrusion et la rĂ©sine thermoplastique sont mis en contact Ă  l’état solide avant l’extrusion. Ils peuvent ĂȘtre prĂ©mĂ©langĂ©s Ă  l’état solide ou simplement introduits dans la trĂ©mie de G extrudeuse. L’agent d’extrusion peut aussi ĂȘtre introduit Ă  l’état fondu en un point quelconque de l’extrudeuse qui sert Ă  extrader la rĂ©sine thermoplastique, par exemple Ă  l’aide d’une extrudeuse latĂ©rale. The extrusion agent and the thermoplastic resin are contacted in a solid state prior to extrusion. They can be premixed in a solid state or simply introduced into the hopper of the extruder. The extrusion agent can also be introduced in the molten state at any point on the extruder which serves to extrude the thermoplastic resin, for example using a side extruder.
Selon un mode de rĂ©alisation, la proportion en poids de l’agent d’extrusion est de 1 Ă  30%, de prĂ©fĂ©rence de 1 Ă  10%, prĂ©fĂ©rentiellement de 1,5 Ă  10%, encore plus prĂ©fĂ©rentiellement de 2 Ă  10% pour respectivement de 70 Ă  99%, de prĂ©fĂ©rence de 90 Ă  99%, prĂ©fĂ©rentiellement de 90 Ă  98,5%, encore plus prĂ©fĂ©rentiellement de 90 Ă  98% de rĂ©sine thermoplastique Ă  extrader. Le mĂ©lange maĂźtre est particuliĂšrement utile pour l’extrusion de polymĂšres thermoplastiques sous forme de film ou bien sous forme d’un tube, d’un profilĂ© ou d’un corps creux. Outre les avantages dĂ©jĂ  mentionnĂ©s, il facilite l’obtention d’une surface lisse et sans dĂ©faut, ce qui est particuliĂšrement important dans le cas d’un film pour obtenir de bonnes propriĂ©tĂ©s optiques. L’agent d’extrusion permet aussi de rĂ©duire la pression au niveau de l’entrefer de la filiĂšre ainsi que le taux de gels. Il permet aussi dans une certaine mesure de rĂ©duire les dĂ©pĂŽts en sortie de filiĂšre. According to one embodiment, the proportion by weight of the extrusion agent is from 1 to 30%, preferably from 1 to 10%, preferably from 1.5 to 10%, even more preferably from 2 to 10% for respectively from 70 to 99%, preferably from 90 to 99%, preferably from 90 to 98.5%, even more preferably from 90 to 98% of thermoplastic resin to be extruded. The masterbatch is particularly useful for the extrusion of thermoplastic polymers in the form of a film or else in the form of a tube, a section or a hollow body. In addition to the advantages already mentioned, it facilitates obtaining a smooth and flawless surface, which is particularly important in the case of a film in order to obtain good optical properties. The extrusion agent also makes it possible to reduce the pressure at the level of the air gap of the die as well as the rate of gels. It also makes it possible to a certain extent to reduce deposits at the outlet of the die.
EXEMPLES EXAMPLES
Les exemples suivants illustrent l'invention sans la limiter. The following examples illustrate the invention without limiting it.
Exemple 1 : Production de fibres électro-filées sur polypropylÚne filé-lié (spunbond PP) 18 g/m2 Example 1: Production of electro-spun fibers on spunbond polypropylene (spunbond PP) 18 g / m 2
Un mĂ©lange d’homopolymĂšre (KynarÂź761 A) et de copolymĂšre de VF2 (KynarÂź2801-00) est mis en solution sous agitation durant 2 heures Ă  55°C et selon la composition indiquĂ©e dans le Tableau 1. A mixture of homopolymer (KynarÂź761 A) and of copolymer of VF2 (KynarÂź2801-00) is dissolved with stirring for 2 hours at 55 ° C and according to the composition shown in Table 1.
Tableau 1 Table 1
Cette solution est ensuite alimentĂ©e dans un procĂ©dĂ© d’électro filage sur un support spunbond PP 18 g/m2. De tels non tissĂ©s sont commercialisĂ©s par exemple par la sociĂ©tĂ© Mogul. Une membrane de filtration Ă  base de fibres Ă©lectro-filĂ©es est ainsi produite avec une largeur de 480 mm en utilisant les conditions indiquĂ©es dans le Tableau 2. This solution is then fed into an electro-spinning process on a spunbond PP 18 g / m 2 support . Such nonwovens are sold, for example, by the company Mogul. An electro-spun fiber-based filtration membrane was thus produced with a width of 480 mm using the conditions given in Table 2.
Tableau 2 Table 2
Exemple 2 : Production de fibres électro-filées sur polyester filé-lié (Spunbond PET) 28 g/m2 Example 2: Production of electro-spun fibers on spunbond polyester (Spunbond PET) 28 g / m 2
La solution d’électrofĂŻlage prĂ©parĂ©e comme dĂ©crit dans l’exemple 1 est alimentĂ©e dans un procĂ©dĂ© d’électrofilage sur un support spunbond PET 28 g/m2. De tels non tissĂ©s sont par exemple commercialisĂ©s par la sociĂ©tĂ© Mogul sous le nom Buffalo. Une membrane de filtration Ă  base de fibres Ă©lectro-filĂ©es est ainsi produite avec une largeur de 480 mm en utilisant les conditions indiquĂ©es dans le Tableau 3. The electrospinning solution prepared as described in Example 1 is fed into an electrospinning process on a 28 g / m 2 PET spunbond support. Such nonwovens are for example marketed by the company Mogul under the name Buffalo. An electro-spun fiber-based filtration membrane was thus produced with a width of 480 mm using the conditions given in Table 3.
Tableau 3 Exemple 3 : Production barrette nasale Table 3 Example 3: Nasal bar production
La barre de maintien nasale est formĂ©e d’un jonc de 1,5 mm diamĂštre et 10 cm de long. Ce jonc est obtenu par mĂ©langeage/extrusion Ă  230°C dans une extrudeuse monovis d’un mĂ©lange 50/50 en masse d’homopolymĂšre PVDF prĂ©sentant un indice de fluiditĂ© de 32 g/10 min sous 230°C et 2,16 kg et de polypropylĂšne de fluiditĂ© 35 g/10 min Ă  230°C sous 2,16 kg. The nasal support bar is made of a rod 1.5 mm in diameter and 10 cm long. This rod is obtained by mixing / extrusion at 230 ° C in a single-screw extruder of a 50/50 mixture by mass of PVDF homopolymer having a melt index of 32 g / 10 min at 230 ° C and 2.16 kg and of polypropylene with a flow rate of 35 g / 10 min at 230 ° C under 2.16 kg.
Exemple 4 : Assemblage du masaue à partir des éléments produits dans les exemples 1 à 3Example 4: Assembly of masaue from the elements produced in examples 1 to 3
Un masque est produit Ă  l’aide des Ă©lĂ©ments obtenus dans les exemples prĂ©cĂ©dents avec la structure suivante : spunbond PP 1 - membrane Espun PP 1- spunbond PP 2. Le non-tissĂ© « spunbond PP 1 » (40 g/m2) forme la couche externe et amĂ©liore la rĂ©sistance mĂ©canique du corps du masque. La couche intermĂ©diaire « Espun PP 1 » assure la filtration des aĂ©rosols. Enfin, le non-tissĂ© « spunbond 2 » (18 g/m2) placĂ© Ă  l’intĂ©rieur du masque est destinĂ© Ă  ĂȘtre en contact avec le visage de l'utilisateur, il protĂšge la couche de filtration d'Ă©ventuelles dĂ©gradations. Les Ă©lastiques sont des cordons ronds de polypropylĂšne, de tels produits sont commercialisĂ©s par exemple par la sociĂ©tĂ© Liasa. A mask is produced using the elements obtained in the preceding examples with the following structure: spunbond PP 1 - Espun PP membrane 1- spunbond PP 2. The non-woven “spunbond PP 1” (40 g / m 2 ) forms the outer layer and improves the mechanical strength of the mask body. The “Espun PP 1” intermediate layer filters the aerosols. Finally, the “spunbond 2” nonwoven (18 g / m 2 ) placed inside the mask is intended to be in contact with the face of the user, it protects the filtration layer from possible degradation. The elastics are round polypropylene cords, such products are marketed for example by the company Liasa.
L’assemblage suit les Ă©tapes dĂ©crites ci-dessous : Assembly follows the steps described below:
La cohésion entre les couches de non-tissés est obtenue par lamination. The cohesion between the layers of nonwovens is obtained by lamination.
La barrette nasale produite dans l’exemple 3 est insĂ©rĂ©e dans un espace crĂ©Ă© par le repli de la matiĂšre non-tissĂ©e sur une largeur de 5 ± 2 mm Ă  proximitĂ© de la pĂ©riphĂ©rie du masque. La barrette est maintenue grĂące Ă  des points de soudure disposĂ©s de maniĂšre rĂ©guliĂšre sur la longueur du pli. The nasal bar produced in Example 3 is inserted into a space created by the folding of the nonwoven material over a width of 5 ± 2 mm near the periphery of the mask. The bar is held in place by welding points arranged regularly along the length of the fold.
Les élastiques sont fixés de chaque cÎté du masque de maniÚre à former une boucle et sont fixés sans ajout de matiÚre par soudure ultrason. The elastics are attached to each side of the mask so as to form a loop and are attached without adding material by ultrasonic welding.
Exemple 6 : Broyage / granulation & extrusion du matériau recyclé Example 6: Grinding / granulation & extrusion of recycled material
AprĂšs dĂ©contamination par passage Ă  l’étuve Ă  70°C durant une heure les masques sont broyĂ©s dans un broyeur Ă  couteaux. Les paillettes obtenues sont alimentĂ©es dans un extrudeuse bivis de type BUSS Ă  230°C afin de produire des granulĂ©s. Les granulĂ©s obtenus sont composĂ©s d’environ 0,9 wt% de PVDF et utilisĂ©s comme mĂ©lange maĂźtre pour atteindre une concentration de 500 ppm de PVDF dans le PP ensuite utilisĂ© dans un procĂ©dĂ© de fabrication de multi-fĂŻlaments par extrusion- filage. La pression en tĂȘte d’ extrudeuse atteinte lors de la production de multi-fĂŻlaments de PP en prĂ©sence de 500 ppm de PVDF est de l’ordre de 4,8 MPa, soit environ 20% infĂ©rieure Ă  celle classiquement obtenue lors de la mise en Ɠuvre de PP seul. Aussi, l’impact de la prĂ©sence de PVDF s’observe visuellement par un encrassement moins important des filiĂšres au bout de plusieurs heures d’extrusion. After decontamination by passing in an oven at 70 ° C. for one hour, the masks are ground in a knife mill. The flakes obtained are fed into a BUSS type twin-screw extruder at 230 ° C. in order to produce granules. The granules obtained are composed of approximately 0.9 wt% of PVDF and used as a masterbatch to achieve a concentration of 500 ppm of PVDF in the PP then used in a process for the manufacture of multifilaments by extrusion-spinning. The pressure at the head of the extruder reached during the production of PP multi-flakes in the presence of 500 ppm of PVDF is of the order of 4.8 MPa, that is to say approximately 20% lower than that conventionally obtained during the setting. work of PP alone. Also, the impact of the presence of PVDF is visually observed by less fouling of the dies after several hours of extrusion.

Claims

REVENDICATIONS
1. ProcĂ©dĂ© de recyclage de masques de protection respiratoire contenant de 98,5 Ă  99,5% en poids d’un polymĂšre thermoplastique majoritaire choisi parmi le polypropylĂšne, le polyĂ©thylĂšne tĂ©rĂ©phtalate, l’acide polylactique, les homopolymĂšres et copolymĂšres de polyamide 6 (PA6) et polyamides longues chaĂźnes tels que le PA11 ou le PA12, et de 0,05 Ă  1,5% de poly(fluorure de vinylidĂšne) ou PVDF sous forme de nanofibres, ledit procĂ©dĂ© comprenant une Ă©tape de broyage des masques conduisant Ă  l’obtention de paillettes, et une Ă©tape de granulation desdites paillettes, conduisant Ă  l’obtention d’un mĂ©lange maĂźtre sous forme de granulĂ©s. 1. Process for recycling respiratory protection masks containing from 98.5 to 99.5% by weight of a major thermoplastic polymer chosen from polypropylene, polyethylene terephthalate, polylactic acid, homopolymers and copolymers of polyamide 6 ( PA6) and long chain polyamides such as PA11 or PA12, and from 0.05 to 1.5% of poly (vinylidene fluoride) or PVDF in the form of nanofibers, said process comprising a step of grinding the masks leading to the 'obtaining flakes, and a step of granulating said flakes, leading to obtaining a masterbatch in the form of granules.
2. ProcĂ©dĂ© de recyclage selon la revendication 1, dans lequel le masque mis en Ɠuvre est constituĂ© d'un corps et de sangles de maintien, ledit corps Ă©tant composĂ© d'au moins deux couches, dont une couche de matĂ©riau filtrant en PVDF, lesdites sangles de maintien Ă©tant fixĂ©es sur le corps du masque sans ajout de matiĂšre. 2. The recycling method according to claim 1, wherein the mask used consists of a body and retaining straps, said body being composed of at least two layers, including a layer of PVDF filter material, said retaining straps being fixed to the body of the mask without adding material.
3. ProcĂ©dĂ© de recyclage selon l’une des revendications 1 et 2, dans lequel ledit masque comprend une couche intĂ©rieure non tissĂ©e de grammage compris entre 20 et 100 g/m2 en polymĂšre thermoplastique ayant un indice de fluiditĂ© Ă  chaud de 34 g/10 min Ă  230°C sous 2,16 kg. 3. Recycling method according to one of claims 1 and 2, wherein said mask comprises a nonwoven inner layer with a basis weight of between 20 and 100 g / m 2 of thermoplastic polymer having a hot melt index of 34 g / m. 10 min at 230 ° C under 2.16 kg.
4. ProcĂ©dĂ© de recyclage selon l’une des revendications 1 Ă  3, dans lequel ledit masque comprend une couche centrale comprenant un substrat non-tissĂ©, de grammage compris entre 20 et 100 g/m2 et prĂ©sentant une permĂ©abilitĂ© comprise entre 500 et 2500 l/m2/s mesurĂ©e Ă  100 Pa. 4. Recycling method according to one of claims 1 to 3, wherein said mask comprises a central layer comprising a nonwoven substrate, with a basis weight of between 20 and 100 g / m 2 and having a permeability of between 500 and 2500. l / m 2 / s measured at 100 Pa.
5. ProcĂ©dĂ© de recyclage selon la revendication 4, dans lequel ledit substrat est fabriquĂ© par extrusion-soufflage ou filage-nappage Ă  partir d’un polymĂšre thermoplastique qui prĂ©sente un indice de fluiditĂ© Ă  chaud de 34 g/10 min Ă  230°C et 2,16 kg. 5. The recycling process according to claim 4, wherein said substrate is manufactured by extrusion blow molding or spun-lapping from a thermoplastic polymer which exhibits a melt flow index of 34 g / 10 min at 230 ° C and 2.16 kg.
6. ProcĂ©dĂ© de recyclage selon l’une des revendications 4 et 5, dans lequel ladite couche centrale comprend une couche Ă©lectrofilĂ©e de nanofibres de PVDF. 6. Recycling method according to one of claims 4 and 5, wherein said central layer comprises an electrospun layer of PVDF nanofibers.
7. ProcĂ©dĂ© de recyclage selon l’une des revendications prĂ©cĂ©dentes, dans lequel ledit PVDF comprend un PVDF homopolymĂšre ; un mĂ©lange de deux PVDF homopolymĂšres; un copolymĂšre comprenant des unitĂ©s de difluorure de vinylidĂšne (VDF) et un ou plusieurs types d’unitĂ©s de co-monomĂšres compatibles avec le difluorure de vinylidĂšne ; un mĂ©lange d’un PVDF homopolymĂšre et d’un copolymĂšre de VDF; ou un mĂ©lange de deux copolymĂšres de VDF. 7. The recycling method according to one of the preceding claims, wherein said PVDF comprises a PVDF homopolymer; a mixture of two PVDF homopolymers; a copolymer comprising vinylidene difluoride (VDF) units and one or more types of comonomer units compatible with vinylidene difluoride; a mixture of a PVDF homopolymer and a copolymer of VDF; or a blend of two VDF copolymers.
8. ProcĂ©dĂ© de recyclage selon l’une des revendications prĂ©cĂ©dentes, dans lequel lesdites nano fibres de PVDF prĂ©sentent un diamĂštre de fibre D50 moyen compris entre 30 et 500 nm, de prĂ©fĂ©rence de 30 Ă  300 nm. 8. The recycling process according to one of the preceding claims, wherein said PVDF nanofibers have an average D50 fiber diameter of between 30 and 500 nm, preferably 30 to 300 nm.
9. ProcĂ©dĂ© de recyclage selon l’une des revendications prĂ©cĂ©dentes, dans lequel FĂ©paisseur moyenne de ladite couche de nanofibres de PVDF est de 0,1 pm Ă  100 pm. 9. The recycling method according to one of the preceding claims, wherein the average thickness of said PVDF nanofiber layer is 0.1 ”m to 100 ”m.
10. ProcĂ©dĂ© de recyclage selon l’une des revendications prĂ©cĂ©dentes, dans lequel ledit masque comprend une couche extĂ©rieure non tissĂ©e de grammage compris entre 20 et 100 g/m2 en polymĂšre thermoplastique ayant un indice de fluiditĂ© Ă  chaud de 34 g/10 min Ă  230°C sous 2,16 kg. 10. The recycling method according to one of the preceding claims, wherein said mask comprises a nonwoven outer layer with a basis weight of between 20 and 100 g / m 2 of thermoplastic polymer having a hot melt index of 34 g / 10 min. at 230 ° C under 2.16 kg.
11. ProcĂ©dĂ© de recyclage selon l’une des revendications 2 Ă  10, dans lequel lesdites sangles de maintien sont des boucles ajustables produites par injection ou impression 3D ou des Ă©lastiques, fabriquĂ©s Ă  partir dudit polymĂšre thermoplastique majoritaire. 11. The recycling method according to one of claims 2 to 10, wherein said retaining straps are adjustable buckles produced by injection or 3D printing or elastics, made from said majority thermoplastic polymer.
12. Utilisation du mĂ©lange maĂźtre obtenu par le procĂ©dĂ© de recyclage de masques selon l’une des revendications 1 Ă  11 comme agent d’extrusion lors de l’extrusion dudit polymĂšre thermoplastique. 12. Use of the masterbatch obtained by the mask recycling process according to one of claims 1 to 11 as an extrusion agent during the extrusion of said thermoplastic polymer.
EP21740140.5A 2020-06-19 2021-06-18 Method for recycling filtering facepiece respirators Pending EP4168474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006431A FR3106135B1 (en) 2020-06-19 2020-06-19 PROCESS FOR RECYCLING RESPIRATORY PROTECTIVE MASKS
PCT/FR2021/051111 WO2021255402A1 (en) 2020-06-19 2021-06-18 Method for recycling filtering facepiece respirators

Publications (1)

Publication Number Publication Date
EP4168474A1 true EP4168474A1 (en) 2023-04-26

Family

ID=72560794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740140.5A Pending EP4168474A1 (en) 2020-06-19 2021-06-18 Method for recycling filtering facepiece respirators

Country Status (6)

Country Link
US (1) US20230219262A1 (en)
EP (1) EP4168474A1 (en)
JP (1) JP2023534128A (en)
CN (1) CN115702190A (en)
FR (1) FR3106135B1 (en)
WO (1) WO2021255402A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018001601A1 (en) * 2018-03-01 2019-09-05 Mann+Hummel Gmbh Coalescence separator, in particular for use in a compressor compressed air system, compressor compressed air system and use of a coalescer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873125B1 (en) * 2004-07-16 2008-09-05 Arkema Sa FLUORINATED POLYMER MASTER MIXTURE AND USE THEREOF FOR THE EXTRUSION OF POLYOLEFINS
JP5866295B2 (en) * 2009-12-17 2016-02-17 ă‚čăƒȘăƒŒă‚šăƒ  ă‚€ăƒŽăƒ™ă‚€ăƒ†ă‚Łăƒ– プロパティă‚ș ă‚«ăƒłăƒ‘ăƒ‹ăƒŒ Dimensionally stable nonwoven fibrous webs and methods for their manufacture and use
FR2969466B1 (en) * 2010-12-28 2012-12-28 Deltalyo & Valmy RESPIRATORY PROTECTION MASK FOR RECYCLABLE SINGLE USE
FR2969465B1 (en) * 2010-12-28 2013-09-27 Deltalyo & Valmy RESPIRATORY MASK FOR SINGLE USE WITH IMPROVED SEALING
CZ305230B6 (en) 2011-04-28 2015-06-24 Česká Včela s.r.o. Barrier fabric
US11148085B2 (en) 2018-04-16 2021-10-19 The Hong Kong Polytechnic University Electrostatically-charged nanofiber media and fabrication method thereof
CZ33137U1 (en) * 2019-07-01 2019-08-20 Univerzita Tomáơe Bati ve Zlíně Air filtration filter material

Also Published As

Publication number Publication date
JP2023534128A (en) 2023-08-08
CN115702190A (en) 2023-02-14
WO2021255402A1 (en) 2021-12-23
FR3106135A1 (en) 2021-07-16
FR3106135B1 (en) 2021-12-10
US20230219262A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US9707504B2 (en) Composition having PTFE as main component, mixed powder, material for molding, filtering medium for filter, air filter unit, and a method for manufacturing a porous membrane
EP3238804B1 (en) Filtering material for air filter, filter pack, air filter unit and method of manufacturing filtering material for air filter
JP2017536488A (en) Melt-spun filtration media for respirators and face masks
FR2946176A1 (en) MULTILAYER CONDUCTIVE FIBER AND PROCESS FOR OBTAINING IT BY CO-EXTRUSION
JPH10512620A (en) Co-continuous blend of fluoropolymer and thermoplastic polymer and method of manufacture
EP4168474A1 (en) Method for recycling filtering facepiece respirators
WO2020195853A1 (en) Composite structure, method of manufacturing same, and filter medium containing said composite structure
TW201120274A (en) Method of manufacturing a multilayer conductive fibre by coating-coagulation
WO2021255401A1 (en) Pvdf filtering face-piece respirator and recycling method
JP5292890B2 (en) Composite hollow fiber membrane
JP5357658B2 (en) Composite fiber sheet
JP2015058418A (en) Porous polymer membrane and production method thereof
TWI807595B (en) Air filter material, manufacturing method of air filter material, filter material for masks, and filter material for pleated masks
WO2021255391A1 (en) Nonwoven web of fibres, membrane and mask derived therefrom, and methods for manufacturing and cleaning
JP7219412B2 (en) Air filter medium, pleated filter medium, air filter unit, mask filter medium, and method for regenerating air filter medium
JP6384133B2 (en) Polyolefin fiber and method for producing the same
FR3111647A1 (en) Nonwoven web of fibers, membrane and mask derivative, and methods of making and cleaning.
JP7333119B2 (en) Melt-blown nonwoven fabric and filter comprising the same
WO2024162401A1 (en) Dust-proofing material, protective clothing and method for producing dust-proofing material
FR3111644A1 (en) Nonwoven, porous, and electrostatically charged veil, membrane and mask derivative, and methods of manufacture and cleaning.
CA3209503A1 (en) Production method for multilayer porous hollow fiber membrane, and porous hollow fiber membrane
WO2021255389A1 (en) Method for producing an assembly of fibres comprising a fluorinated polymer made from vdf
FR3111645A1 (en) Process for manufacturing a set of fibers comprising a fluoropolymer based on VDF
TW202005709A (en) Hollow polymer fibres as filtration membranes
CN114427124A (en) Antibacterial flame-retardant polypropylene fiber composition, preparation method thereof, fiber and non-woven fabric

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240118