EP4168532A1 - Biostimulant based on bacteria for better adaptation of plants to hydric and osmotic stresses - Google Patents

Biostimulant based on bacteria for better adaptation of plants to hydric and osmotic stresses

Info

Publication number
EP4168532A1
EP4168532A1 EP21740260.1A EP21740260A EP4168532A1 EP 4168532 A1 EP4168532 A1 EP 4168532A1 EP 21740260 A EP21740260 A EP 21740260A EP 4168532 A1 EP4168532 A1 EP 4168532A1
Authority
EP
European Patent Office
Prior art keywords
water
bacteria
plant
strains
soils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740260.1A
Other languages
German (de)
French (fr)
Inventor
Mohamed Hafidi
Lamfeddal Kouisni
Ahmed NAFIS
Yedir Ouhdouch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCP SA
Original Assignee
OCP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCP SA filed Critical OCP SA
Publication of EP4168532A1 publication Critical patent/EP4168532A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces
    • C12R2001/47Streptomyces albus

Definitions

  • Bacteria-based biostimulant for better adaptation of plants to water and osmotic stress Bacteria-based biostimulant for better adaptation of plants to water and osmotic stress.
  • Figure 1 Diagram of the technique for evaluating the degree of hydrophobicity of a sandy soil (a) and determination of the volume of water retained (b)
  • FIG. 2 Elemental analysis of sand at low altitude a: BNT: untreated sand, b: BT: sand treated with butanone. (% CK in BNT is 29 against 14 in BT)
  • Figure 3a Macroscopic and microscopic aspects of isolates (NI, N3 & N4) degrading commercial waxes.
  • Figure 3b Phylogenetic tree of bacterial strains capable of degrading waxes (NI, N4 and N3) retained for this invention.
  • Figure 4 Examples of use of insoluble forms of K and P expressed by the extent of growth of strains (NI, N4 and N3) on screening media (Aleksandrov & NBRIP)
  • FIG. 5 Protocol followed for the evaluation of root colonization of alfalfa and Aradopsis seedlings by strains (NI, N4 and N 3).
  • Graph 1 PGP traits of NI, N4 and N4 strains: Germination index, TCP solubilization of Mica and auxin production
  • Potassium (K) is an essential element involved in water management at the plant level. Indeed, For plants, potassium (K) plays an important role in water and osmotic status: (i) by regulating the opening and closing of stomata, (ii) by the osmotic adjustment of the plant (turgor) , (iii) and by root growth. In addition to these 3 functions, the University of Halle has demonstrated a significant impact of potassium on the useful water reserve of the soil (Damm 2012).
  • This invention describes obtaining a plant biostimulant based on bacteria isolated from the root system of desert plants (rhizospheric soils).
  • the choice of this habitat is not trivial.
  • Our goal was to understand how the plants in this stressed habitat manage to resist and cope with the lack of water.
  • These bacteria which help desert plants are able to reduce water and osmotic stress thanks to their following essential properties:
  • BDC waxes
  • BDC + BSK bacterial inoculum based on the optimization of certain biological properties in these bacteria
  • BDC + BSK- Plant the role of the partnership (BDC + BSK- Plant) on the development of the host plant will be optimized by intimately combining the impact of these (BCD + BSK) on the plant directly (water, mineral, hormonal effect, etc. ) and indirectly (alteration of potassium and inorganic phosphate).
  • BCD + BSK Bacillus subtilis .
  • These bacteria are cultivated on liquid nutrient medium obtained from soybean flour juice after filtration (3g / L of water). After a period of culture depending on the physiological characteristics of (BCD + BSK), the propagules are recovered by filtration, washed with sterile water to remove all chemical traces from the nutrient medium used then ground in a Waring Blender and stored at room temperature and at 4 ° C.
  • Granules of potassium (Mica) (50 ⁇ m diameter) or commercial perlite are immersed in a sterile solution composed (i) of soybean flour juice (3 g / L), previously sterilized (ii) of propagules (1 g dry weight per liter of mixture).
  • mice and / or perlite granules impregnated with the bacteria are incubated at 28 ° C. for 2 days.
  • the perlite and Mica granules thus colonized by (BCD + BSK) forming propagules on the surface are then dried in air and placed in flasks to store them at room temperature and / or at 4 ° C.
  • Another advantage of this invention is the fact that the seeds or seeds can be inoculated directly with the propagules of (BCD + BSK) by the method of seed bacterization.
  • a new method of isolating bacteria, a new biotechnology and a new biostimulant isolating bacteria, a new biotechnology and a new biostimulant.
  • BDC Effect Optimization
  • Rhizospheric soils collected near the roots of desert plants have very low water repellency (with a time of less than 10 seconds).
  • bare sands far from the root system of plants show pronounced hydrophobicity with a time that is between 250-260 seconds.
  • Method 1 The rhizospheric or non-rhizospheric sand grains are washed with sterile distilled water and dried were seeded (deposited) directly in a minimum culture medium (MM) without any source of organic carbon.
  • the composition of MM consists of the following ingredients (for 1 liter): (KNO 3 2g, K 2 HPO 4 lg, MgS0 4 0.5 g, NaCl 0.5g, CaC0 3g, FeS0 4 0.01g and noble agar or agarose 14g
  • the only source of organic carbon is that which surrounds the grains of sand.
  • Method 2 From 200g of rhizospheric or non-rhizospheric rice, dried, treated with butanone to extract waxes and propagules from microorganisms. After evaporation of the butanone, the suspension of propagules was seeded on the MM + 5 g of commercial wax (for 1 liter MM + agar-agar not usable by bacteria). Three waxes were used.
  • the colonies developed were purified and tested for their ability to degrade a wide range of commercial waxes, namely, Carnauba wax, Candelilla wax and Mimosa wax.
  • the controls were used: MM + Agar-agar and wax + agar-agar
  • N3 isolate is identified as Voyl anyium bmchyspomm
  • N 4 isolate identified as Streptomyces mutabilis
  • NI is identified as Streptomyces acumycini.
  • PGP plant growth promotion
  • Aleksandrov and NBRIP media without any soluble source of K and P represent negative controls.
  • Aleksandrov and NBRIP media with soluble sources of K and P represent positive controls.
  • TCP source of P
  • Mica used for the solubilization of K and P in the same culture medium.
  • An example of the growth obtained is given in figure 4.
  • the solubilization performance of the insoluble forms of K and P of these isolates was measured via the analysis of the culture juices by ISP (Inductively Coupled Plasma).
  • ISP Inductively Coupled Plasma
  • the AIA assay was performed in the juice of cultures as well. Germination tests were carried out on Arabidopsis taliana seeds as a model plant. Before germinating the seeds, the latter were disinfected and bacterized by stem cells (NI, N4 and N 3) cultured for three days in Bennett's medium in order to produce sufficient biomass. Subsequently, the seeds of the model plant were cultivated under optimal growth conditions and the results are noted after 5 days.
  • the sandy soil used is characterized by the physicochemical parameters recorded in graph n ° 2.
  • the strains (NI, N4 and N3) are cultivated on liquid nutrient medium obtained from soybean flour juice after filtration (3 g / L of water). After 3 days, the propagules are recovered by filtration, washed with sterile water to remove all chemical traces from the nutrient medium used, then ground in a Waring Blender then dried. 100 g of the water-repellent sand of composition indicated in Table 2 are inoculated with 10 6 CFU (colony-forming unit) of each strain. The dried propagules were mixed well with the sand.
  • the N3 strain identified as Poyl angium bmchyspomm showed a biostimulating capacity of alfalfa seedlings with a yield of more than 50% compared to the commercial expansive vermiculite control product (Graph 5).
  • the results of alfalfa plants were found to be more interesting in terms of the biomass yield of the obtained plant material.
  • the biostimulatory effect of the N3 strain is the most important. In fact, this strain has made it possible to increase the yield in terms of plant biomass by more than 50% and it is the same strain that has made it possible to obtain the increase in water retention of about 10% of the soil. used.
  • the potassium contents of the different parts of the alfalfa seedlings were improved for the seedlings inoculated with the N3 strain.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

This invention describes the obtaining of a biostimulant based on 3 bacterial strains for boosting plant resistance to hydric and osmotic stresses. These bacteria are capable of increasing the hydric potential of soils by means of the degradation of waxes (BDC) which coat the components of soils and reduce the capacity of the latter to store sufficient rain and/or irrigation water. In addition, these bacteria help plants to save water more successfully via optimal and continual potassium nutrition (BSK). These three bacteria (BDC + BSK) are coded N1, N4 and N3 and identified (N1 = Streptomyces acrimycini N4= Streptomyces mutabilis and N3= Polyangium brachysporum). This invention also describes a new bacterial inoculum formulation based on the optimisation of certain biological properties in these bacteria (N1, N4 and N3), namely their properties in increasing the water retention capacity of soils and in solubilising and mobilising the forms of potassium for the plant from complex inorganic forms which are not accessible to the plant without the microbial partner thereof (BCD and BSK). By including together propagules of these bacteria and perlite as a matrix, the ability of the (BDC and BSK) to increase the sponge capacity of soils and to solubilise the insoluble forms of potassium and make them accessible to the plant will be increased. As a result, the role of the (BDC and BSK- Plant) partnership on the development of the host plant will be optimised by intimately combining the impact of these bacteria on the plant directly (control of absorption, conduction and transpiration) and indirectly (availability of the water in soils in a uniform manner, by modification of the components that cause water loss by leaching, evaporation).

Description

DESCRIPTION DETAILLEE DE L’INVENTIONDETAILED DESCRIPTION OF THE INVENTION
Biostimulant à base de bactéries pour une meilleure adaptation des plantes aux stress hydrique et osmotique.Bacteria-based biostimulant for better adaptation of plants to water and osmotic stress.
Figures et graphes listing Figures and graphs listing
Figure 1: Schéma de la technique pour évaluer le degré d’hydrophobicité d’un sol sableux(a) et détermination du volume d’eau retenue (b) Figure 1: Diagram of the technique for evaluating the degree of hydrophobicity of a sandy soil (a) and determination of the volume of water retained (b)
Figure 2 : Analyse élémentaire du sable à basse altitude a : BNT : sable non traité, b : BT : sable traité par le butanone. (le % CK dans BNT est 29 contre 14 dans BT) Figure 2: Elemental analysis of sand at low altitude a: BNT: untreated sand, b: BT: sand treated with butanone. (% CK in BNT is 29 against 14 in BT)
Figure 3a : Aspects macroscopiques et microscopiques des isolats (NI, N3 & N4) dégradant les cires commerciales. Figure 3a: Macroscopic and microscopic aspects of isolates (NI, N3 & N4) degrading commercial waxes.
Figure 3b : Arbre phylogénétiques des souches bactériennes capables de dégrader les cires (NI, N4 et N3) retenus pour cette invention. (NI, N4 et N3) sont caractérisées par les séquences Seq N3, Seq N4, & Seq NI (Planche 1) et déposées au service IDA des CCMM avec des accessions : Nl= CCMMP1, N4 = CCMMP2 etN3 = CCMM P3Figure 3b: Phylogenetic tree of bacterial strains capable of degrading waxes (NI, N4 and N3) retained for this invention. (NI, N4 and N3) are characterized by the sequences Seq N3, Seq N4, & Seq NI (Plate 1) and submitted to the IDA service of the CCMMs with accessions: Nl = CCMMP1, N4 = CCMMP2 andN3 = CCMM P3
Figure 4 : Exemples d’utilisation des formes insolubles du K et P exprimée par l’ampleur de croissance des souches (NI, N4 et N3) sur les milieux de criblages (Aleksandrov & NBRIP)Figure 4: Examples of use of insoluble forms of K and P expressed by the extent of growth of strains (NI, N4 and N3) on screening media (Aleksandrov & NBRIP)
Figure 5 : Protocole suivi pour l’évaluation de la colonisation racinaire des plantules de luzerne et d ’Aradopsis par les souches (NI, N4 et N 3). Figure 5: Protocol followed for the evaluation of root colonization of alfalfa and Aradopsis seedlings by strains (NI, N4 and N 3).
Figure 6. Le surnageant obtenu de la culture N3 mélangé à l’eau améliorer le mouillage et la pénétration d’un sol hydrofuge. (Légende : goutte eau et goutte eau + 50% de jus de culture de la souche N3,) Figure 6. The supernatant obtained from the N3 culture mixed with water improves the wetting and penetration of water repellent soil. (Legend: drop of water and drop of water + 50% culture juice of the N3 strain,)
GRAPHES GRAPHS
Graphe 1 : Traits PGP des souches NI, N4 et N4 : Index de germination, la solubilisation du TCP du Mica et la production d’auxine Graph 1: PGP traits of NI, N4 and N4 strains: Germination index, TCP solubilization of Mica and auxin production
Graphe n° 2. Quelques les paramètres physico-chimiques du sol sableux utiliséGraph n ° 2. Some of the physicochemical parameters of the sandy soil used
Graphe 3. Effet de l’inoculation d’un sol sableux par les souches (NI, N4 et N3) sur la capacité de rétention d’eau Graph 3. Effect of inoculation of sandy soil by strains (NI, N4 and N3) on water retention capacity
Graphe 4 : Le design du protocole expérimental pour les tests agronomiques Graph 4: The design of the experimental protocol for agronomic tests
Graphe 5. Effet biostimulant des différentes parties de plantules de luzernes par les souches (NI, N3 & N4) comparé au produit commercial (C)témoin vermiculite expansive et non inoculé (NI). Graph 5. Biostimulating effect of the different parts of alfalfa seedlings by the strains (NI, N3 & N4) compared to the commercial product (C) control expansive and uninoculated vermiculite (NI).
- Régime d’irrigation de 25% ; - Régime d’irrigation de 50% ; - Régime d’irrigation de 75% Le changement climatique est un sujet d’actualité depuis plusieurs années. De nombreuses études traitent le sujet et posent des constats et perspectives qui peuvent nous inquiéter sur le futur. L’agriculture se trouve face à un défi majeur dans plusieurs régions du monde (Ainsworth et Orth, 2010). Le changement climatique que nous subissons s’illustre notamment par des périodes de sécheresse de plus en plus fréquentes et plus longues. Les conséquences sur les rendements des cultures peuvent être dramatiques. Les stress hydrique et osmotique sont et seront toujours les stress abiotiques les plus importants au niveau global. Les terres cultivables souffrent d’un manque d’eau ce qui cause des stress hydriques fréquents. Ce phénomène est non seulement amplifié par le changement climatique mais aussi par la présence de la matière organique non mouillable sous forme de cires qui enrobent les composantes des sols et réduisent la capacité de ces derniers à stocker suffisamment d’eau pluviale et/ou d’irrigation. Le potassium(K) est un élément essentiel impliqué dans la gestion de l’eau au niveau des plantes. En effet, Pour les plantes, le potassium (K) joue un rôle important sur statut hydrique et osmotique : (i) en régulant l’ouverture et la fermeture des stomates, (ii) par l’ajustement osmotique de la plante (turgescence), (iii) et par la croissance racinaire. En plus de ces 3 fonctions, l’université de Halle a mis en évidence un impact significatif du potassium sur la réserve en eau utile du sol (Damm 2012). - Irrigation regime of 25%; - 50% irrigation regime; - 75% irrigation regime Climate change has been a hot topic for several years. Numerous studies deal with the subject and make observations and perspectives that may worry us about the future. Agriculture faces a major challenge in many parts of the world (Ainsworth and Orth, 2010). The climate change we are experiencing is illustrated in particular by increasingly frequent and longer periods of drought. The consequences on crop yields can be dramatic. Water and osmotic stresses are and always will be the most important abiotic stresses at the global level. Arable land suffers from a lack of water which causes frequent water stress. This phenomenon is not only amplified by climate change but also by the presence of non-wettable organic matter in the form of waxes which coat the components of the soils and reduce the latter's capacity to store sufficient rainwater and / or soil. irrigation. Potassium (K) is an essential element involved in water management at the plant level. Indeed, For plants, potassium (K) plays an important role in water and osmotic status: (i) by regulating the opening and closing of stomata, (ii) by the osmotic adjustment of the plant (turgor) , (iii) and by root growth. In addition to these 3 functions, the University of Halle has demonstrated a significant impact of potassium on the useful water reserve of the soil (Damm 2012).
Il existe des solutions aujourd’hui qui augmentent la capacité de rétention de l’eau par les sols. Cependant, ces solutions sont soit coûteuses, soit difficiles à appliquer. Par exemple, l’addition de l’argile dans le sol, nécessite 300t d’argile/hectare (Carter and Hetherington 2006). There are solutions today that increase the water holding capacity of soils. However, these solutions are either expensive or difficult to apply. For example, adding clay to the soil requires 300t of clay / hectare (Carter and Hetherington 2006).
La recherche d’autres voies supplémentaires moins chères, écologique et efficiente est devenue une exigence. La mise au point d’un nouveau produit biostimulant à base de microorganismes pour améliorer la mouillabilité des sols, booster la capacité de rétention d’eau par les sols et la bonne gestion de la transpiration pour renforcer l’économie de l’eau par les plantes est une nécessité urgente. Cette invention propose une alternative basée sur un concept innovant qui s ’ inspire de la nature. The search for other cheaper, ecological and efficient additional routes has become a requirement. The development of a new biostimulant product based on microorganisms to improve the wettability of soils, boost the water retention capacity of the soils and the good management of perspiration to strengthen the water economy by plants is an urgent need. This invention provides an alternative based on an innovative concept inspired by nature.
Cette invention décrit l’obtention d’un biostimulant de plantes à base de bactéries isolées à partir du système racinaire des plantes désertiques (sols rhizosphériques). Le choix de cet habitat n’est pas anodin. Notre objectif était de comprendre comment les plantes de cet habitat stressé arrivent à résister et à gérer le manque d’eau. Ces bactéries qui aident les plantes désertiques sont capables de réduire le stress hydrique et osmotiques grâce à leurs propriétés essentielles suivantes : This invention describes obtaining a plant biostimulant based on bacteria isolated from the root system of desert plants (rhizospheric soils). The choice of this habitat is not trivial. Our goal was to understand how the plants in this stressed habitat manage to resist and cope with the lack of water. These bacteria which help desert plants are able to reduce water and osmotic stress thanks to their following essential properties:
Dégradation des cires (BDC) qui enrobent les particules des sols et réduisent la capacité de ces derniers à stocker suffisamment d’eau, atmosphérique ou rosée, pluviale et/ou d’irrigation. Degradation of waxes (BDC) that coat soil particles and reduce the soil's ability to store sufficient water, atmospheric or dew, rain and / or irrigation.
Solubilisation et mobilisation des formes insolubles du potassium en formes assimilables par les plantes (B SK) pour maîtriser l’économie de l’eau. Solubilization and mobilization of insoluble forms of potassium into forms that can be assimilated by plants (B SK) to control water savings.
Elle décrit également une nouvelle formulation d’inoculum bactérien basée sur l’optimisation de certaines propriétés biologiques chez ces bactéries (BDC +BSK) à savoir : leur capacité à dégrader les cires, à solubiliser et à mobiliser du potassium sous formes assimilables par la plante à partir de formes potassiques inorganiques complexes qui ne sont pas accessibles à la plante sans son partenaire microbien (BDC + B SK). En incluant ensemble des propagules de ces bactéries et une source de potassium minérale imbibée dans un jus de farine de soja, la capacité des (BDC+ BSK) à dégrader plusieurs cires et à solubiliser du potassium, du phosphore et à produire l’hormone de type auxine et les rendre accessibles aux plantes. De ce fait, le rôle du partenariat (BDC+ BSK- Plante) sur le développement de la plante hôte sera optimisé en combinant intimement l’impact de ces (BCD +BSK) sur la plante directement (effet hydrique, minéral, hormonal etc..) et indirectement (altération du potassium et du phosphate inorganique). It also describes a new formulation of bacterial inoculum based on the optimization of certain biological properties in these bacteria (BDC + BSK) namely: their ability to degrade waxes, to solubilize and to mobilize potassium in forms that can be assimilated by the plant. from complex inorganic potassium forms which are not accessible to the plant without its microbial partner (BDC + B SK). By including together propagules of these bacteria and a source of mineral potassium soaked in soybean flour juice, the ability of (BDC + BSK) to break down several waxes and to solubilize potassium, phosphorus and to produce hormone type auxin and make them accessible to plants. Therefore, the role of the partnership (BDC + BSK- Plant) on the development of the host plant will be optimized by intimately combining the impact of these (BCD + BSK) on the plant directly (water, mineral, hormonal effect, etc. ) and indirectly (alteration of potassium and inorganic phosphate).
Ces bactéries (BCD+ BSK) sont cultivées sur milieu nutritif liquide obtenu à partir du jus de farine de soja après fdtration (3g /L d’eau). Après une durée de culture dépendant des caractéristiques physiologiques des (BCD+BSK), les propagules sont récupérées par filtration, lavées à l’eau stérile pour éliminer toutes traces chimiques issues du milieu nutritif utilisé puis broyés au Waring Blender et conservés à température ambiante et à 4°C. Des granules de potassium (Mica) (50 pm diamètre) ou de perlite commerciale sont immergées dans une solution stérile composée (i) du jus de farine de soja (3 g /L), préalablement stérilisée (ii) de propagules (1 g poids sec par litre de mélange). Après 2 heures d’immersion sous agitation, les granules du Mica et/ou perlite imprégnés par les bactéries (BCD+BSK), sont incubées à 28°C pendant 2 jours. Les granules de perlites et du Mica ainsi colonisées par (BCD+BSK) en formant des propagules à la surface sont ensuite séchées à l’air et mis des flacons pour les conserver à température ambiante et/ou à 4°C. These bacteria (BCD + BSK) are cultivated on liquid nutrient medium obtained from soybean flour juice after filtration (3g / L of water). After a period of culture depending on the physiological characteristics of (BCD + BSK), the propagules are recovered by filtration, washed with sterile water to remove all chemical traces from the nutrient medium used then ground in a Waring Blender and stored at room temperature and at 4 ° C. Granules of potassium (Mica) (50 µm diameter) or commercial perlite are immersed in a sterile solution composed (i) of soybean flour juice (3 g / L), previously sterilized (ii) of propagules (1 g dry weight per liter of mixture). After 2 hours of immersion with stirring, the Mica and / or perlite granules impregnated with the bacteria (BCD + BSK) are incubated at 28 ° C. for 2 days. The perlite and Mica granules thus colonized by (BCD + BSK) forming propagules on the surface are then dried in air and placed in flasks to store them at room temperature and / or at 4 ° C.
Un autre avantage de cette invention est le fait qu’on peut inoculer directement les semences ou graines par les propagules des (BCD+BSK) par le procédé de bactérisation de semences. Another advantage of this invention is the fact that the seeds or seeds can be inoculated directly with the propagules of (BCD + BSK) by the method of seed bacterization.
Pour la définition de l’invention, il s’agit d’ : For the definition of the invention, it is:
Un nouveau procédé d’isolement de bactéries, une nouvelle biotechnologie et d’un un nouveau biostimulant. A new method of isolating bacteria, a new biotechnology and a new biostimulant.
Pour le Problème(s) technique(s) que l’invention permettrait de résoudre ?For the technical problem (s) that the invention would solve?
1) Optimisation de l’effet (BDC) pour augmenter le potentiel hydrique des sols en éliminant les cires qui empêchent l’absorption de l’eau par les particules des sols et booster la capacité de ces derniers à retenir plus d’eau. Parmi les avantages : 1) Effect Optimization (BDC) to increase the water potential of soils by removing waxes that prevent water absorption by soil particles and boosting the soil's ability to hold more water. Among the advantages:
Réduire l’impact des changements climatiques sur les cultures Reduce the impact of climate change on crops
Augmenter la capacité des sols à retenir de l’eau Increase the capacity of soils to retain water
Optimiser l’utilisation de l’eau Optimizing the use of water
Réduire l’évaporation de l’eau des sols sableux Reduce water evaporation from sandy soils
Augmenter les surfaces des terres arables et améliorer les rendements agricoles Increase the area of arable land and improve agricultural yields
Améliorer les conditions d’adaptation des plantes aux stress hydriques Improve the conditions for plants to adapt to water stress
Homogénéiser la germination des semences dans les sols hydrofuges Homogenize seed germination in water-repellent soils
Diminuer l’érosion des sols Reduce soil erosion
2) Optimisation de l’effet (BSK) pour une meilleure gestion de l’économie de l’eau par la plante hôte grâce à une nutrition potassique optimale et permanente. Cette dernière permettra une bonne absorption, conduction et la maîtrise de la transpiration en conditions de stress hydriques et osmotique. La présence optimale et permanente du potassium permettra également d’avoir impact positif sur la réserve en eau utile du sol. 2) Optimization of the effect (BSK) for better management of water saving by the host plant through optimal and permanent potassium nutrition. The latter will allow good absorption, conduction and control of perspiration in stressful conditions. hydrous and osmotic. The optimal and permanent presence of potassium will also have a positive impact on the useful water reserve of the soil.
Pour mieux décrire l’invention cet exemple : To better describe the invention, this example:
En première étape, l’obtention des (BDC + BSK) a- L’isolement des (BDC + BSK) à partir des échantillons de sables collectés à partir des sols rhizosphériques de certaines plantes désertiques adaptées aux stress hydrique et osmotique. Dans cette optique, les prélèvements ont été effectués dans la région de Merzouga et autres (Maroc). De même, des échantillons de plantes ont été récoltés à partir des sites étudiés. b- Etude des caractéristiques des sols sableux collectés : As a first step, obtaining (BDC + BSK) a- Isolation of (BDC + BSK) from sand samples collected from rhizospheric soils of certain desert plants adapted to water and osmotic stress. With this in mind, the samples were taken in the region of Merzouga and others (Morocco). Likewise, plant samples were collected from the sites studied. b- Study of the characteristics of the collected sandy soils:
L’étude de la capacité de rétention d’eau et l’hydrophobicité des sols sableux a été effectuée par deux techniques à savoirs, la technique «MED : Molarity Ethanol Drop» (figure la). Cette technique a pour principe, la concentration d'éthanol nécessaire pour pénétrer le sol en moins de 10 secondes(MED). La deuxième technique consiste en la mesure du volume retenu (figure lb). The study of the water retention capacity and hydrophobicity of sandy soils was carried out by two techniques, namely the "MED: Molarity Ethanol Drop" technique (figure la). This technique is based on the concentration of ethanol necessary to penetrate the soil in less than 10 seconds (MED). The second technique consists of measuring the retained volume (figure lb).
> Détermination et appréciation de l’hydrophobicité du sable (norme standard : MED)> Determination and assessment of the hydrophobicity of the sand (standard standard: MED)
Temps mis par la goutte d'eau pour disparaître à la surface du sol non mouillant: Time taken for the drop of water to disappear on the surface of the non-wetting soil:
✓ <1 seconde Non significatif ✓ <1 second Not significant
✓ 1-10 secondes Très faible hydrofugation ✓ 1-10 seconds Very low water repellency
✓ 10-50 secondes Faible hydrofugation ✓ 10-50 seconds Low water repellency
✓ 50-260 secondes Hydrofugation modérée ✓ 50-260 seconds Moderate water repellency
✓ >260 secondes Hydrofugation modérée à sévère Les sols rhizosphériques prélevés à côté des racines des plantes désertiques possèdent une très faible hydrophobicité (avec un temps inférieur à 10 secondes). Cependant, les sables nus loin du système racinaire des plantes montrent une hydrophobicité prononcée avec un temps qui se situe entre 250 -260 secondes. ✓> 260 seconds Moderate to severe water repellency Rhizospheric soils collected near the roots of desert plants have very low water repellency (with a time of less than 10 seconds). However, bare sands far from the root system of plants show pronounced hydrophobicity with a time that is between 250-260 seconds.
Pour déterminer le volume d’eau retenu dans le sable, nous avons suivi le protocole suivant : 1- Installer un tissu (comme filtres) dans les deux entonnoirs. To determine the volume of water retained in the sand, we followed the following protocol: 1- Install a cloth (as filters) in the two funnels.
2- Déposer chaque entonnoir sur une éprouvette différente graduée. 2- Place each funnel on a different graduated test tube.
3- Prendre les deux échantillons du sable (50 grammes, 1 traité avec le butanone pour éliminer les cires qui entourent les grains du sable et l’autre non traité) et déposer chacun dans l’entonnoir. 3- Take the two sand samples (50 grams, 1 treated with butanone to remove the waxes surrounding the grains of sand and the other untreated) and place each in the funnel.
4- Mettre 100 ml d’eau distillée dans un bêcher gradué. 4- Put 100 ml of distilled water in a graduated beaker.
5- Démarrer le chronomètre et verser doucement les 100 ml d’eau. 5- Start the stopwatch and slowly pour in the 100 ml of water.
6- Avec l’éprouvette graduée, mesurer la quantité d’eau recueillie. 6- Using the graduated cylinder, measure the quantity of water collected.
NB : Le traitement avec le butanone du sable hydrofuge a permis de solubiliser les minces couches de cires qui entourent les grains de sable ainsi d’augmenter la surface de contacte des grains de ce dernier avec l’eau. NB: The treatment of the water-repellent sand with butanone made it possible to dissolve the thin layers of waxes which surround the grains of sand, thus increasing the contact surface of the grains of the latter with water.
Après la réalisation du test, nous avons constaté que : After carrying out the test, we noticed that:
- Le temps que prend l’eau pour traverser le sable traité (élimination des cires avec le butanone) est long par rapport au sable non traité. - The time taken for water to pass through the treated sand (removal of waxes with butanone) is long compared to untreated sand.
- Le volume d’eau recueilli dans le sable traité est plus faible par rapport au sable non traité, donc le sable traité retient plus d’eau. - The volume of water collected in treated sand is lower compared to untreated sand, so treated sand retains more water.
- La vitesse d'écoulement du sable non traité, vis-à-vis de l’eau, est importante par rapport à celle de l’échantillon traité. c- Détermination de la composition élémentaire du sable désertique exploré - The flow velocity of untreated sand, vis-à-vis the water, is large compared to that of the treated sample. c- Determination of the elemental composition of the desert sand explored
La composition élémentaire du sable collecté et traité (BT) et non traité (BNT) par le butanone a été effectuée via l’analyse par le microscope électronique à balayage (figure 2a et 2b). The elemental composition of the collected and treated (BT) and untreated (BNT) sand with butanone was determined by scanning electron microscope analysis (Figures 2a and 2b).
Les résultats montrent que les grains de sable contiennent une quantité non négligeable de matière organique sous forme de cire. Cela a été confirmé lors de l’élimination de cette peau mince de cire par le butanone. En effet, les pourcentages en carbone trouvés sont plus faibles par rapport au cas où le sable est non traité (figure 2). Pour le choix du butanone comme solvant pour éliminer la matière organique cirée du sable, le butanone est volatil et n’a pas d’effet antimicrobien prononcé. Ce choix nous a permis l’accès aux bactéries emprisonnées dans la cire et qui ne sont pas isolables par la technique standard de microbiologie du sol. d- Isolement et identification des bactéries capables de dégrader la cire : Afin d’isoler les bactéries ayant la capacité de dégrader la cire, deux méthodes ont été adoptées. Méthode 1: Les grains du sable rhizosphériques ou non rhizosphérique sont lavés à l’eau distillée stérile et séchés ont été ensemencés (déposés) directement dans un milieu de culture minimum (MM) sans aucune source de carbone organique. La composition de MM est constituée par les ingrédients suivants (pour 1 litre): (KNO3 2g, K2HPO4 lg, MgS04 0.5 g, NaCl 0.5g, CaC0 3g, FeS04 0.01g et agar-agar noble ou agarose 14g. Comme on peut le remarquer, la seule source de carbone organique est celle qui entoure les grains du sable. The results show that the grains of sand contain a significant amount of organic matter in the form of wax. This was confirmed during the removal of this thin wax skin by butanone. Indeed, the carbon percentages found are lower compared to the case where the sand is untreated (figure 2). For the choice of butanone as a solvent for removing waxed organic matter from sand, butanone is volatile and has no pronounced antimicrobial effect. This choice gave us access to bacteria trapped in the wax and which cannot be isolated by the standard soil microbiology technique. d- Isolation and identification of bacteria capable of degrading wax: In order to isolate the bacteria having the ability to degrade wax, two methods were adopted. Method 1: The rhizospheric or non-rhizospheric sand grains are washed with sterile distilled water and dried were seeded (deposited) directly in a minimum culture medium (MM) without any source of organic carbon. The composition of MM consists of the following ingredients (for 1 liter): (KNO 3 2g, K 2 HPO 4 lg, MgS0 4 0.5 g, NaCl 0.5g, CaC0 3g, FeS0 4 0.01g and noble agar or agarose 14g As can be seen, the only source of organic carbon is that which surrounds the grains of sand.
Méthode 2 : A partir de 200g du sable rizhospérique ou non rhizosphérique, séché traité par le butanone pour extraire les cires et propagules des microorganismes. Après évaporation du butanone, la suspension de propagules a été ensemencée sur le MM + 5 g de cire commercial (pour 1 litre MM + agar-agar non utilisable par les bactéries). Trois cires ont été utilisées. Method 2: From 200g of rhizospheric or non-rhizospheric rice, dried, treated with butanone to extract waxes and propagules from microorganisms. After evaporation of the butanone, the suspension of propagules was seeded on the MM + 5 g of commercial wax (for 1 liter MM + agar-agar not usable by bacteria). Three waxes were used.
Les colonies développées ont été purifiées et testées pour leurs capacités à dégrader une large gamme de cires commerciales à savoirs, la cire de Carnauba, la cire de Candelilla et la cire de Mimosa. Les témoins ont été utilisés : MM + Agar-agar et cire + agar-agar The colonies developed were purified and tested for their ability to degrade a wide range of commercial waxes, namely, Carnauba wax, Candelilla wax and Mimosa wax. The controls were used: MM + Agar-agar and wax + agar-agar
Au total, 13 isolats ont montré la capacité de dégrader une large gamme de cire et leurs diversités morphologiques et moléculaires ont été étudiées. La diversité morphologique a été étudiée via la détermination de la forme, le type de Gram, l’aspect macroscopique des colonies, aspects microscopiques des cellules, les pigments diffusibles produits. Dans le cas des actinobactéries, la couleur du mycélium aérien et de substrat (figure 3a) a été notée. La diversité moléculaire des isolats a été effectuée via l’isolement, la purification, l’amplification et le séquençage du gène qui code pour 1ARN 16S par la plateforme d’analyse «Macrogen-Corée du Sud». Les résultats ont montré que les isolats ne sont pas pathogènes et montrent une diversité taxonomique (figure 3b). Trois souches (NI, N4 et N3) ont été sélectionnées. De point taxinomique, l’isolat N3 est identifié comme Voyl anyium bmchyspomm, l’isolat N 4 identifié comme Streptomyces mutabilis et NI est identifié comme Streptomyces acûmycini. Dans la deuxième étape, étude des propriétés ou traits de promotion de la croissance des plantes (PGP) des souches (NI = CCMMP1, N4 = CCMMP2 et N3 = CCMMP 3) capables de dégrader les cires sélectionnées a) Etude qualitative de la solubilisation des formes insolubles du K, P In total, 13 isolates showed the ability to degrade a wide range of waxes and their morphological and molecular diversities were investigated. Morphological diversity was studied by determining the shape, the type of Gram, the macroscopic appearance of the colonies, the microscopic aspects of the cells, the diffusible pigments produced. In the case of actinobacteria, the color of the aerial and substrate mycelium (Figure 3a) was noted. The molecular diversity of the isolates was carried out via the isolation, purification, amplification and sequencing of the gene which codes for 16S RNA by the “Macrogen-South Korea” analysis platform. The results showed that the isolates are not pathogenic and show taxonomic diversity (Figure 3b). Three strains (NI, N4 and N3) were selected. Taxonomically, the N3 isolate is identified as Voyl anyium bmchyspomm, the N 4 isolate identified as Streptomyces mutabilis and NI is identified as Streptomyces acumycini. In the second step, study of the properties or traits of plant growth promotion (PGP) of the strains (NI = CCMMP1, N4 = CCMMP2 and N3 = CCMMP 3) capable of degrading the selected waxes a) Qualitative study of the solubilization of insoluble forms of K, P
Pour étudier les traits PGP des bactéries (NI, N4 et N3) dégradant les cires sélectionnées, les tests de solubilisation de K et de P ont été effectués sur les milieux de cultures solides. La solubilisation de P a été réalisée dans le milieu NBRIP (National Botanical Research Institute of Phosphate) additionné du phosphate tricalcique(TCP) (Ca (P03)2 comme source inorganique de P. La solubilisation de K a été effectuée sur le milieu Aleksandrov avec le Mica comme seule source de K insoluble. Les résultats obtenus montrent la capacité de ces trois souches (NI, N4 et N3) à utiliser les formes insolubles du K et P. L’ampleur de l’utilisation des formes insolubles du K et P est évaluée par l’intensité de la croissance. Les milieux Aleksandrov et NBRIP sans aucune source soluble du K et P représentent les témoins négatifs. Les milieux Aleksandrov et NBRIP avec sources solubles du K et P représentent les témoins positifs. Le milieu Aleksandrov dont la source du P est le (TCP) et la source du K est le Mica a utilisé pour la solubilisation du K et P dans le même milieu de culture. Un exemple de croissance obtenue est consigné dans la figure 4. b) Etude quantitative de la solublisation du K, P, la production Acide Indolo Acétique(AIA) et l’effet sur la germination des graines d’Arabidopsis taliana comme plante modèle. To study the PGP traits of bacteria (NI, N4 and N3) degrading the selected waxes, the K and P solubilization tests were carried out on solid culture media. The solubilization of P was carried out in NBRIP medium (National Botanical Research Institute of Phosphate) supplemented with tricalcium phosphate (TCP) (Ca (P03) 2 as an inorganic source of P. The solubilization of K was carried out on Aleksandrov medium with Mica as the only source of insoluble K. The results obtained show the capacity of these three strains (NI, N4 and N3) to use the insoluble forms of K and P. The extent of the use of the insoluble forms of K and P is evaluated by the intensity of growth. Aleksandrov and NBRIP media without any soluble source of K and P represent negative controls. Aleksandrov and NBRIP media with soluble sources of K and P represent positive controls. Aleksandrov medium whose source of P is (TCP) and source of K is Mica used for the solubilization of K and P in the same culture medium. An example of the growth obtained is given in figure 4. b) Quantitative study of the solubli K, P, Indolo Acetic Acid (IAA) production and the effect on seed germination of Arabidopsis taliana as a model plant.
La performance de solubilisation des formes insolubles du K et P de ces isolats a été mesurée via l’analyse des jus de cultures par ISP (Inductively Coupled Plasma). Le dosage l’AIA a été effectué dans le jus de cultures également. Les tests de germination ont été effectués sur les graines d’Arabidopsis taliana comme plante modèle. Avant de faire germer les graines, ces dernières ont été désinfectées et bactérisées par les cellules des souches (NI, N4 et N 3) cultivées pendant trois jours dans le milieu Bennett afin de produire une biomasse suffisante. Par la suite, les graines de la plante modèle ont été cultivées dans les conditions optimales de croissance et les résultats sont notés après 5 jours. Les résultats de ces traits favorisant la croissance des plantes des souches (NI, N4 et N 3) sont consignés dans le graphe 1 c) Etude de la colonisation des racines des plantes d’Aradopsis taliania et la luzerne par les cellules des souches (NI, N4 et N 3). The solubilization performance of the insoluble forms of K and P of these isolates was measured via the analysis of the culture juices by ISP (Inductively Coupled Plasma). The AIA assay was performed in the juice of cultures as well. Germination tests were carried out on Arabidopsis taliana seeds as a model plant. Before germinating the seeds, the latter were disinfected and bacterized by stem cells (NI, N4 and N 3) cultured for three days in Bennett's medium in order to produce sufficient biomass. Subsequently, the seeds of the model plant were cultivated under optimal growth conditions and the results are noted after 5 days. The results of these traits promoting plant growth of the strains (NI, N4 and N 3) are shown in graph 1 c) Study of the colonization of the roots of Aradopsis taliania and alfalfa plants by stem cells (NI, N4 and N 3).
Cette étude de la colonisation des racines des plantes par les cellules des souches (NI, N4 et N 3) a été réalisée selon le schéma de la figure 5. Les résultats obtenus ont montré que les trois souches ont bien colonisé les racines des plantules testées. Aucun effet négatif sur la santé des plantules n’est pas observé durant la durée du test. This study of the colonization of plant roots by stem cells (NI, N4 and N 3) was carried out according to the diagram in FIG. 5. The results obtained showed that the three strains did indeed colonize the roots of the tested plantlets. . No negative effect on the health of the seedlings was observed during the test period.
En troisième étape, Etude de la performance des souches (NI, N4 et N 3) à augmenter la capacité de rétention d’eau par un sol sableux. In the third step, study of the performance of strains (NI, N4 and N 3) in increasing the water retention capacity of sandy soil.
Le sol sableux utilisé est caractérisé par les paramètres physico-chimiques consignés dans le graphe n° 2. The sandy soil used is characterized by the physicochemical parameters recorded in graph n ° 2.
Les souches (NI, N4 et N3) sont cultivées sur milieu nutritif liquide obtenu à partir du jus de farine de soja après fdtration (3g/L d’eau). Après 3 jours, les propagules sont récupérées par filtration, lavées à l’eau stérile pour éliminer toutes traces chimiques issues du milieu nutritif utilisé puis broyés au Waring Blender puis séchées. 100 g du sable hydrofuge de composition indiquée dans le tableau 2 sont ensemencés par 106UFC (unité formant colonie) de chaque souche. Les propagules séchées ont été bien mélangées avec le sable.The strains (NI, N4 and N3) are cultivated on liquid nutrient medium obtained from soybean flour juice after filtration (3 g / L of water). After 3 days, the propagules are recovered by filtration, washed with sterile water to remove all chemical traces from the nutrient medium used, then ground in a Waring Blender then dried. 100 g of the water-repellent sand of composition indicated in Table 2 are inoculated with 10 6 CFU (colony-forming unit) of each strain. The dried propagules were mixed well with the sand.
Après incubation pendant 3 semaines, nous avons pu confirmer la capacité des souches (NI, N4 et N3) à améliorer l’effet éponge des particules du sol sableux testé. Le sable inoculé par souche N3 ( Polyangium brachysporum ) CCMMP3 a montré la capacité de rétention d’eau avec une augmentation de 10% (graphe 3). After incubation for 3 weeks, we were able to confirm the ability of the strains (NI, N4 and N3) to improve the sponge effect of particles in the sandy soil tested. Sand inoculated with CCMMP3 strain N3 (Polyangium brachysporum) showed water retention capacity with an increase of 10% (graph 3).
Dans l’avant dernière étape de cette invention, essais agronomique en conditions contrôlées sous serre après inoculation de la luzerne par les souches (NI, N3 et N4) In the penultimate step of this invention, agronomic trials under controlled conditions in a greenhouse after inoculation of alfalfa with the strains (NI, N3 and N4)
Pour valider les capacités d’amélioration de rétention d’eau par le sol sableux inoculé et son effet sur la promotion de la croissance, nous avons effectué des essais agronomiques sous serre sur une plante modèle « la luzerne ». Trois souches (NI, N4 et N3) ont été choisies afin d’étudier leurs effets sur la promotion de la croissance de la plante modèle choisie ( Medicago sativa) soumise aux régimes d’irrigation croissants et sous des conditions de température et d’humidité contrôlées. La souche N3 est identifiée comme Poyl angium bmchyspomm, Isolat N 4 identifié comme Streptomyces mutabilis et NI est identifié comme Streptomyces acrimycini. Des pots de 200 grammes de sol hydrofuge de composition indiquée dans le graphe 2 ont été utilisés. Pour l’inoculation, quatre graines de luzerne bactérisées par chaque souche par pot. Les 4 plantules de luzernes bactérisées et germées sur boites de Pétri puis exposer à un régime hydriques de 25, 50 et 75% par rapport à la capacité au champ du sol hydrofuge utilisé. Deux types de sols ont été utilisés, un avec 0.4 g de K insoluble (Mica) et l’autre normal sans aucune source de K. Un sol mélangé par de la vermiculite expansive à 25% a été utilisé comme témoin commercial. La culture a été effectuée pendant 1 mois et selon le protocole consigné dans le graphe 4. To validate the ability to improve water retention by inoculated sandy soil and its effect on growth promotion, we carried out agronomic trials in a greenhouse on a model plant "alfalfa". Three strains (NI, N4 and N3) were chosen in order to study their effects on the promotion of the growth of the chosen model plant (Medicago sativa) subjected to increasing irrigation regimes and under conditions of temperature and humidity. controlled. Strain N3 is identified as Poyl angium bmchyspomm, Isolate N 4 identified as Streptomyces mutabilis and NI is identified as Streptomyces acrimycini. Jars of 200 grams of water-repellent soil of composition indicated in graph 2 were used. For inoculation, four seeds of alfalfa bacterialized by each strain per pot. The 4 alfalfa seedlings are bacterized and germinated on Petri dishes and then expose to a water regime of 25, 50 and 75% compared to the field capacity of the water-repellent soil used. Two types of soil were used, one with 0.4 g of insoluble K (Mica) and the other normal without any source of K. A soil mixed with 25% expanding vermiculite was used as a commercial control. The culture was carried out for 1 month and according to the protocol recorded in graph 4.
Les résultats obtenus sont très intéressants. En effet, la souche N3 identifiée comme Poyl angium bmchyspomm a montré une capacité biostimulante des plantules de luzerne avec un rendement de plus de 50% par rapport au produit commercial témoin vermiculite expansive (Graphe 5). The results obtained are very interesting. In fact, the N3 strain identified as Poyl angium bmchyspomm showed a biostimulating capacity of alfalfa seedlings with a yield of more than 50% compared to the commercial expansive vermiculite control product (Graph 5).
Après la récolté, les résultats des plantes de luzerne sont avérés plus intéressants en termes du rendement en biomasse de la matière végétale obtenue. L’effet de biostimulation de la souche N3 ( Polyangium brachysporum) est le plus important. En effet, cette souche a permis d’augmenter le rendement en termes de biomasse végétale de plus de 50% et c’est la même souche qui a permis l’obtention l’augmentation de la rétention en eau d’environ 10% du sol utilisé. Pour les teneurs en K des différentes parties de plantules de luzernes, comparées aux témoins non inoculés, les teneurs en Potassium des différentes parties des plantules de luzernes ont été améliorées pour les plantules inoculées par la souche N3. After harvest, the results of alfalfa plants were found to be more interesting in terms of the biomass yield of the obtained plant material. The biostimulatory effect of the N3 strain (Polyangium brachysporum) is the most important. In fact, this strain has made it possible to increase the yield in terms of plant biomass by more than 50% and it is the same strain that has made it possible to obtain the increase in water retention of about 10% of the soil. used. For the K contents of the different parts of alfalfa seedlings, compared to the uninoculated controls, the potassium contents of the different parts of the alfalfa seedlings were improved for the seedlings inoculated with the N3 strain.
Dans la dernière étape de cette invention, il a été démontré que le processus de la dégradation de cires par des souches NI, N4 et N3 est lié à l’excrétion d’une ou plusieurs molécules de type bio-surfactant. Le processus de dissolution du Mica implique vraisemblablement la destruction des liaisons ioniques fortes existant entre les éléments constitutifs de cette roche potassique. La souche N3 apparentée à Polyangium brachysporum) a montré la meilleure capacité à dégrader les cires. Le bio-surfactant existant dans le jus de fermentation de cette souche a réduit la tension superficiel d’un sol hydrofuge (figure 6 ) In the last step of this invention, it was shown that the process of degradation of waxes by strains NI, N4 and N3 is linked to the excretion of one or more molecules of the bio-surfactant type. The dissolving process of Mica probably involves the destruction of the strong ionic bonds existing between the constituent elements of this potassium rock. The strain N3 related to Polyangium brachysporum) showed the best ability to degrade waxes. The bio-surfactant present in the fermentation juice of this strain reduced the surface tension of a water-repellent soil (Figure 6)
Références Ainsworth, E.A., Ort, D.R. (2010). How do we improve crop production in a warming worl d? Plant Physiology 154, 526D530. References Ainsworth, EA, Ort, DR (2010). How do we improve crop production in a warming worl d? Plant Physiology 154, 526D530.
Damm S., Hofmann B., Gransee A. & Christen O. (2012): Zum Einfluss langjâhrig differen zierter Kaliumdüngung auf Parameter des Bodenwasserhaushaltes, Archives of Agrono my and Soil Science, DOI:l 0.1080/03650340.2011.606217 Damm S., Hofmann B., Gransee A. & Christen O. (2012): Zum Einfluss langjâhrig differen zierter Kaliumdüngung auf Parameter des Bodenwasserhaushaltes, Archives of Agrono my and Soil Science, DOI: l 0.1080 / 03650340.2011.606217
Damm S., Hofmann B., Gransee A. & Christen O. (2012): Wirkung differenzierter KD Düngung auf bodenphysikalische Eigenschaften, Bodenwassergehalt und Ertrag von Zu ckerriiben und Sommergerste auf einem Tschemosem im Mitteldeutschen Trockengebi et, Archives of Agronomy and Soil Science, DOI: 10.1080/03650340.2012.6639Damm S., Hofmann B., Gransee A. & Christen O. (2012): Wirkung differenzierter KD Düngung auf bodenphysikalische Eigenschaften, Bodenwassergehalt und Ertrag von Zu ckerriiben und Sommergerste auf einem Tschemosem im Mitteldeutschen Trockenge and Archives Science, Agronomy and Soil of Mitteldeutschen Trockengebi DOI: 10.1080 / 03650340.2012.6639
Carter D and Hetherington R. (2006) Claying water repelient soils. Department of Agriculture and Food, Western Australia Agdex 514. Carter D and Hetherington R. (2006) Claying water repelient soils. Department of Agriculture and Food, Western Australia Agdex 514.
NI Sequence (ADNr 16S)NI Sequence (16S rDNA)
ACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGATGAACCACCTTCGGGTGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGATGAACCACCTTCGGGTG
GGGATTAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTGGGACAGGGATTAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTGGGACA
AGCCCTGGAAACGGGGTCTAATACCGGATACTGACCCGCTTGGGCATCCAAGCGGTTCGAGCCCTGGAAACGGGGTCTAATACCGGATACTGACCCGCTTGGGCATCCAAGCGGTTCG
AAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGAGGTAATGGAAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGAGGTAATGG
CTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTG
AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAA
AGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCA
GCAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCGCAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCC
AGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGAGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAG
CTCGTAGGCGGCTTGTCACGTCGGTTGTGAAAGCCCGGGGCTTAACCCCGGGTCTGCACTCGTAGGCGGCTTGTCACGTCGGTTGTGAAAGCCCGGGGCTTAACCCCGGGTCTGCA
GTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAATTCCTGGTGTAGCGGTGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAATTCCTGGTGTAGCGGT
GAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCGATACGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCGATAC
TGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCAC
GCCGTAAACGGTGGGCACTAGGTGTGGGCAACATTCCACGTTGTCCGTGCCGCAGCTAGCCGTAAACGGTGGGCACTAGGTGTGGGCAACATTCCACGTTGTCCGTGCCGCAGCTA
ACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTG
ACGGGGGCCCGCACAAGCGGCGGAGCATGTGGCTTAATTCGACGCAACGCGAAGAACCACGGGGGCCCGCACAAGCGGCGGAGCATGTGGCTTAATTCGACGCAACGCGAAGAACC
TTACCAAGGCTTGACATACACCGGAAAACCCTGGAGACAGGGTCCCCCTTGTGGTCGGTTTACCAAGGCTTGACATACACCGGAAAACCCTGGAGACAGGGTCCCCCTTGTGGTCGGT
GTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG
CAACGAGCGCAACCCTTGTCCCGTGTTGCCAGCAGGCCCTTGTGGTGCTGGGGACTCACCAACGAGCGCAACCCTTGTCCCGTGTTGCCAGCAGGCCCTTGTGGTGCTGGGGACTCAC
GGGAGACCGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGCCGGGAGACCGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAGTCATCATGCC
CCTTATGTCTTGGGCTGCACACGTGCTACAATGGCCGGTACAATGAGCTGCGATACCGCCCTTATGTCTTGGGCTGCACACGTGCTACAATGGCCGGTACAATGAGCTGCGATACCGC
GAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGAC
CCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACGTTCCCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACGTTCC
CGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAGCCGGTGGCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAGCCGGTGG
CCCAACCCCTTGTGGGAGGGAGCTGTCGAAGGTGGGACTGGCGATTGGGACGAAGT CCCAACCCCTTGTGGGAGGGAGCTGTCGAAGGTGGGACTGGCGATTGGGACGAAGT
>N3 Sequence (ADNr 16S)> N3 Sequence (16S rDNA)
GCTCAGATTGAACGCTGGCGGCATGCCTTACACATGCAAGTCGAACGGCAGCACGGGAGCTCAGATTGAACGCTGGCGGCATGCCTTACACATGCAAGTCGAACGGCAGCACGGGA
GCAATCCTGGTGGCGAGTGGCGAACGGGTGAGTAATACATCGGAACGTGCCCAGTAGTGCAATCCTGGTGGCGAGTGGCGAACGGGTGAGTAATACATCGGAACGTGCCCAGTAGT
GGGGGATAGCCCGGCGAAAGCCGGATTAATACCGCATACGACCTGAGGGTGAAAGCGGGGGGATAGCCCGGCGAAAGCCGGATTAATACCGCATACGACCTGAGGGTGAAAGCG
GGGGACCGCAAGGCCTCGCGCTATTGGAGCGGCCGATGTCAGATTAGCTAGTTGGTGGGGGGACCGCAAGGCCTCGCGCTATTGGAGCGGCCGATGTCAGATTAGCTAGTTGGTGG
GGTAAAGGCCTACCAAGGCGACGATCTGTAGCTGGTCTGAGAGGACGACCAGCCACACGGTAAAGGCCTACCAAGGCGACGATCTGTAGCTGGTCTGAGAGGACGACCAGCCACAC
TGGGCGCAAGCCTGATCCAGCCATGCCGCGTGCGGGAAGAAGGCCTTCGGGTTGTAAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGCGGGAAGAAGGCCTTCGGGTTGTAAA
AAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGC
GTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTGTGCAAGACAGATGTGAGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTGTGCAAGACAGATGTGA
AATCCCCGGGCTCAACCTGGGAACTGCATTTGTGACTGCACGGCTAGAGTGCGGCAGAAATCCCCGGGCTCAACCTGGGAACTGCATTTGTGACTGCACGGCTAGAGTGCGGCAGA
GGGAGATGGAATTCCGCGTGTAGCAGTGAAATGCGTAGATATGCGGAGGAACACCGATGGGAGATGGAATTCCGCGTGTAGCAGTGAAATGCGTAGATATGCGGAGGAACACCGAT
GGCGAAGGCAATCTCCTGGGCCTGCACTGACGCTCATGCACGAAAGCGTGGGGAGCAAGGCGAAGGCAATCTCCTGGGCCTGCACTGACGCTCATGCACGAAAGCGTGGGGAGCAA
ACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGTTGTTGGACGGACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGTTGTTGGACGG
CTTGCTGTTCAGTAACGTAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGCCGCCTTGCTGTTCAGTAACGTAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGCCGC
AAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGTTTAAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGTTT
AATTCGATGCAACGCGAAAAACCTTACCTACCCTTGACATGCCAGGAATCCTGCAGAGAT GTGGGAGTGCTCGAAAGAGAACCTGGACACAGGTGCTGCATGGCCGTCGTCAGCTCGTAATTCGATGCAACGCGAAAAACCTTACCTACCCTTGACATGCCAGGAATCCTGCAGAGAT GTGGGAGTGCTCGAAAGAGAACCTGGACACAGGTGCTGCATGGCCGTCGTCAGCTCGT
GTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACGGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACG
AAAGGGCACTCTAATGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAAGGGCACTCTAATGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTC
AGGTCATCATGGCCCTTATGGGTAGGGCTACACACGTCATACAATGGCCGGTACAGAGAGGTCATCATGGCCCTTATGGGTAGGGCTACACACGTCATACAATGGCCGGTACAGAG
GGCTGCCAACCCGCGAGGGGGAGCTAATCCCAGAAAACCGGTCGTAGTCCGGATCGCAGGCTGCCAACCCGCGAGGGGGAGCTAATCCCAGAAAACCGGTCGTAGTCCGGATCGCA
GTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGTCGCGGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGTCGCG
GTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCATGGGAGCGGGTTCTGCGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCATGGGAGCGGGTTCTGC
CAGAAGTGGGTAGCCTAACCGCAAGGAGGGCGCTTACCACGGCAGGGTTCGTGACTGGCAGAAGTGGGTAGCCTAACCGCAAGGAGGGCGCTTACCACGGCAGGGTTCGTGACTGG
GGTGAAGTCGT GGTGAAGTCGT
>N4 Sequence(ADNr 16S)> N4 Sequence (16S rDNA)
CTCAGGACGAACGCTGTCGGCGTGCTTAACACATGCAAGTCGAACGATGAACCACTTCGCTCAGGACGAACGCTGTCGGCGTGCTTAACACATGCAAGTCGAACGATGAACCACTTCG
GTGGGGATTAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTGGGGTGGGGATTAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTGGG
ACAAGCCCTGGAAACGGGGTCTAATACCGGATACTGAGGTCCGCAGGCATCTGTGGTTCACAAGCCCTGGAAACGGGGTCTAATACCGGATACTGAGGTCCGCAGGCATCTGTGGTTC
TCGAAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGAGGTAATCGAAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGAGGTAA
CGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGCGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGG
ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGG
CGAAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTC
TTTCAGCAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACTTTCAGCAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTAC
GTGCCAGCAGCCGCGGTAATACGTAGGGCGCGAGCGTTGTCCGGAATTATTGGGCGTAGTGCCAGCAGCCGCGGTAATACGTAGGGCGCGAGCGTTGTCCGGAATTATTGGGCGTA
AAGAGCTCGTAGGCGGCTTGTCGCGTCGGTTGTGAAAGCCCGGGGCTTAACCCCGGGTAAGAGCTCGTAGGCGGCTTGTCGCGTCGGTTGTGAAAGCCCGGGGCTTAACCCCGGGT
CTGCAGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAATTCCTGGTGTAGCTGCAGTCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGATCGGAATTCCTGGTGTAG
CGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCC
GATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTA
GTCCACGCCGTAAACGGTGGGCACTAGGTGTGGGCGACATTCCACGTCGTCCGTGCCGGTCCACGCCGTAAACGGTGGGCACTAGGTGTGGGCGACATTCCACGTCGTCCGTGCCG
CAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGCAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAG
GAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGCTTAATTCGACGCAACGCGAGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGCTTAATTCGACGCAACGCGA
AGAACCTTACCAAGGCTTGACATACACCGGAAACGTCTGGAGACAGGCGCCCCCTTGTGAGAACCTTACCAAGGCTTGACATACACCGGAAACGTCTGGAGACAGGCGCCCCCTTGTG
GTCGGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCGGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
GTCCCGCAACGAGCGCAACCCTTGTCCCGTGTTGCCAGCAAGCCCTTCGGGGTGTTGGGGTCCCGCAACGAGCGCAACCCTTGTCCCGTGTTGCCAGCAAGCCCTTCGGGGTGTTGGG
GACTCACGGGAGACCGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAGTCAGACTCACGGGAGACCGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAGTCA
TCATGCCCCTTATGTCTTGGGCTGCACACGTGCTACAATGGCCGGTACAATGAGCTGCGTCATGCCCCTTATGTCTTGGGCTGCACACGTGCTACAATGGCCGGTACAATGAGCTGCG
ATACCGCGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAATACCGCGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCA
ACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAAT
ACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAGACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAG
CCGGTGGCCCAACCCCTTGTGGGAGGGAGCTGTCGAAGGTGGGACTGGCGATTGGGACCGGTGGCCCAACCCCTTGTGGGAGGGAGCTGTCGAAGGTGGGACTGGCGATTGGGA
CGAAGTC CGAAGTC

Claims

REVENDICATIONS
1. Méthode d’isolement de Souches de bactéries déposées au CCMM sous N° CCMM PI, CCMM P2 et CCMMP 3 caractérisées par les séquences Seq NI, SeqN4, & SeqN3 1. Method for the isolation of bacterial strains deposited at the CCMM under No. CCMM PI, CCMM P2 and CCMMP 3 characterized by the sequences Seq NI, SeqN4, & SeqN3
2. Utilisation des souches selon de la revendication 1 ou des souches mutantes, pour inoculer les particules de perlite ou les roches potassiques ou graines et l’obtention des biostimulants. 2. Use of the strains according to claim 1 or mutant strains, for inoculating perlite particles or potassium rocks or seeds and obtaining biostimulants.
3. Utilisation des souches de la revendication 1 ou des particules de la roche potassique, particule de perlite ou graines inoculées obtenues selon la revendication 2, pour la dégradation des cires et la solubiliser du potassium pour booster la résistance des plantes au stress hydrique et osmotique. 3. Use of the strains of claim 1 or of potassium rock particles, perlite particle or inoculated seeds obtained according to claim 2, for the degradation of waxes and the solubilization of potassium to boost the resistance of plants to water and osmotic stress. .
4. Utilisation des souches de la revendication 1 ou des souches mutantes, pour l’obtention de composés actifs par fermentation dans un milieu liquide des lesdites souches après centrifugation, filtration et purification. 4. Use of the strains of claim 1 or mutant strains, for obtaining active compounds by fermentation in a liquid medium of said strains after centrifugation, filtration and purification.
5. Utilisation des souches de la revendication 1 ou des souches mutantes, ou d’un filtrat des cultures obtenues selon la revendication 4 ou d’un composé actif obtenu selon la revendication 4. 5. Use of the strains of claim 1 or mutant strains, or of a filtrate of cultures obtained according to claim 4 or of an active compound obtained according to claim 4.
6. Utilisation des souches de la revendication 1, ou d’un filtrat des cultures ou composés actifs obtenus selon la revendication 4 ou d’un composé actif obtenu selon la revendication 5 6. Use of the strains of claim 1, or of a filtrate of cultures or active compounds obtained according to claim 4 or of an active compound obtained according to claim 5
7. Utilisation des souches de la revendication 1 ou des souches mutantes, ou d’un filtrat des cultures obtenues selon la revendication 4 ou d’un composé actif obtenu selon la revendication 6, pour stimuler la croissance des plantes. 7. Use of the strains of claim 1 or mutant strains, or of a filtrate of cultures obtained according to claim 4 or of an active compound obtained according to claim 6, for stimulating the growth of plants.
EP21740260.1A 2020-06-22 2021-06-18 Biostimulant based on bacteria for better adaptation of plants to hydric and osmotic stresses Pending EP4168532A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA50114A MA50114B1 (en) 2020-06-22 2020-06-22 Bacteria-based biostimulant for better adaptation of ?Plants to water and osmotic stress?
PCT/MA2021/000012 WO2021261984A1 (en) 2020-06-22 2021-06-18 Biostimulant based on bacteria for better adaptation of plants to hydric and osmotic stresses

Publications (1)

Publication Number Publication Date
EP4168532A1 true EP4168532A1 (en) 2023-04-26

Family

ID=76859690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740260.1A Pending EP4168532A1 (en) 2020-06-22 2021-06-18 Biostimulant based on bacteria for better adaptation of plants to hydric and osmotic stresses

Country Status (8)

Country Link
EP (1) EP4168532A1 (en)
KR (1) KR20240010707A (en)
CN (1) CN116133525A (en)
AU (1) AU2021296688A1 (en)
CA (1) CA3189825A1 (en)
MA (1) MA50114B1 (en)
WO (1) WO2021261984A1 (en)
ZA (1) ZA202300601B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016274683B2 (en) * 2015-06-08 2021-06-24 Indigo Ag, Inc. Streptomyces endophyte compositions and methods for improved agronomic traits in plants

Also Published As

Publication number Publication date
CN116133525A (en) 2023-05-16
MA50114B1 (en) 2022-04-29
ZA202300601B (en) 2024-06-26
MA50114A1 (en) 2021-12-31
KR20240010707A (en) 2024-01-24
AU2021296688A1 (en) 2023-02-23
CA3189825A1 (en) 2021-12-30
WO2021261984A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
Bacilio et al. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum
KR101086367B1 (en) Bacillus aryabhattai LS9 promoting the growth of plants and use thereof
EP1713333B1 (en) Modulators of the development of mychorrizal fungi with arbuscules, and uses thereof
KR101200235B1 (en) New Rhodobacter sphaeroides DAA2 and uses thereof
EP3883364B1 (en) Method for producing a mycorrhiza inoculum and inoculum obtained
Abdel-Monaim et al. Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato
US20230225330A1 (en) Compositions and methods for plant growth promotion
CN116622581B (en) Bacillus bailii HM-3 and application thereof
CN111763643A (en) Compound flora for preventing and treating peanut root rot and application thereof
Nacoon et al. Promoting growth and production of sunchoke (Helianthus tuberosus) by co-inoculation with phosphate solubilizing bacteria and arbuscular mycorrhizal fungi under drought
CN113699068B (en) Burkholderia pyrrocinia strain and application thereof
JPH09508274A (en) Microorganisms for biological control of plant diseases
CN110892805A (en) Preparation and application method of biological stimulin for improving salt tolerance of corn seed germination
JP5374260B2 (en) Agricultural materials
CN106244480B (en) One plant of false Grignon anthropi and its application for preventing and treating plant nematode
Sharma et al. Symbiotic effectiveness of arbuscular mycorrhizal technology and Azotobacterization in citrus nursery production under soil disinfestation and moisture conservation practices
WO2021261984A1 (en) Biostimulant based on bacteria for better adaptation of plants to hydric and osmotic stresses
CA1200390A (en) Soils treatment method
CN111705016B (en) Biological agent and preparation method and application thereof
RU2699518C2 (en) Glomus iranicum variety tenuihypharum variety novum strain and its use as biomethacid
US20230240304A1 (en) Aspergillus terreus strain and composition for controlling bacterial plant diseases using strain or culture filtrate thereof
WO2005045004A1 (en) Controlling agent and controlling method for diesease damage on brassicaceous plants
KR102437555B1 (en) ALLEVIATION OF DROUGHT STRESS IN PUMPKIN PLANTS BY Kushneria konosiri H05E-12 AND USES THEREOF
KR102175138B1 (en) Chryseobacterium indologenes strain possessing antifungal activity against pathogenic bacteria Pseudomonas syringae and use thereof
EP2227931A1 (en) Seeds inoculated with microorganisms of Azotobacter for biofertilisation of soil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)