EP4160323A1 - Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée - Google Patents

Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée Download PDF

Info

Publication number
EP4160323A1
EP4160323A1 EP21200709.0A EP21200709A EP4160323A1 EP 4160323 A1 EP4160323 A1 EP 4160323A1 EP 21200709 A EP21200709 A EP 21200709A EP 4160323 A1 EP4160323 A1 EP 4160323A1
Authority
EP
European Patent Office
Prior art keywords
escapement
fork
phase
rest
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21200709.0A
Other languages
German (de)
English (en)
Inventor
Olivier LEASSER
Gregory Musy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Priority to EP21200709.0A priority Critical patent/EP4160323A1/fr
Priority to US17/937,808 priority patent/US20230106693A1/en
Publication of EP4160323A1 publication Critical patent/EP4160323A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/02Regulator or adjustment devices; Indexing devices, e.g. raquettes

Definitions

  • the present invention relates to the field of watchmaking, more specifically, the present invention relates to a mechanical watch regulator comprising an escapement and an oscillator.
  • a clock regulator mechanism typically includes an escapement as illustrated in figure 1 .
  • Such an escapement 10 typically comprises an escape wheel 11 provided with teeth 112 configured to cooperate with pallets 121 of an anchor 12.
  • the anchor 12 comprises a fork 122 cooperating with a pin 130 of a plate 131.
  • the plate 131 is rigidly linked to an oscillator (or regulator member) not shown.
  • the purpose of the escapement is to maintain and count the oscillations of the oscillator.
  • a mechanical oscillator comprises an inertial element, a guide and an elastic return element.
  • the mechanical oscillator can comprise a hairspring balance in which the balance wheel constitutes the inertial element, the guide corresponds to the balance shaft and to the stones of the plate and bridge, and the hairspring constitutes the elastic return element.
  • FIG 2a shows a diagram showing different oscillation angles of the balance wheel of a spiral balance oscillator, cooperating with an escapement as described above.
  • the balance wheel having an amplitude Ao of the order of 300°, can be characterized by a portion of free oscillation ⁇ LI and a portion of oscillation corresponding to the angle of lift ⁇ LE , of the order of 50°, where the release of the escape wheel and the impulse from the escapement to the inertial element occur.
  • the amplitude Ao is the maximum angular position, with respect to the line of centers, that takes the inertial element during an oscillation (or alternation).
  • the line of centers ⁇ 0 is defined as the angular position of the inertial element at equilibrium without the escapement (when the elastic return element is completely relaxed).
  • a horological oscillator on flexible guidance, or with a flexible pivot is an oscillator whose inertial element (which may include a balance wheel) is guided in rotation by an arrangement of elastic parts and not by a physical axis of rotation rotating in conventional bearings (eg: ruby bearing), as in the case of a balance spring.
  • the flexible pivot exerts an elastic return torque on the balance like the hairspring of a hairspring balance oscillator.
  • FIG. 2b shows a diagram plotting different oscillation angles of an oscillator on flexible guidance (for example, such as that shown in figure 19 ) cooperating with an escapement as described above.
  • the inertial element having an amplitude Ao typically comprised between 10° and 50°, is characterized by a portion of free oscillation ⁇ LI typically of the order of 10° to 20°, and by an angle of lifting ⁇ LE , of the order of 6° maximum.
  • ⁇ LI free oscillation
  • ⁇ LE angle of lifting
  • an oscillator on flexible guidance is distinguished by greater rigidity of the elastic return element and by lower amplitudes of oscillations Ao.
  • the lift half-angle ⁇ LE /2 of an oscillator corresponds to the angle between the line of the centers of the inertial element ⁇ 0 and its angular position at the end of the pulse ⁇ IM .
  • minimizing the lift angle ⁇ LE amounts to bringing the end-of-pulse angular position ⁇ IM closer to the line of centers ⁇ 0 and therefore to reducing the elastic restoring torque of the oscillator at the end of the pulse, this which facilitates self-starting.
  • Self-starting is the property of an escapement that starts only thanks to the torque supplied by the escape wheel following winding of the barrel in its working area. Self-starting guarantees start-up of the oscillator without outside help during the barrel winding phase, for example after the watch has been stored for a long time. Self-starting is an advantageous property of any wristwatch escapement because it is regularly subject to shocks, which causes the balance wheel to brake against its shock absorbers. This braking can lead to momentary stops of the balance. If the escapement is not self-starting, the balance wheel will remain blocked until the intervention of the user or a watchmaker. Thus an escapement which is not self-starting poses reliability problems in the context of the wristwatch.
  • a system is self-starting when the torque at the escape wheel is sufficient to, among other things, complete the pulse phase.
  • the elastic return torque of the oscillator (this elastic return torque is directly proportional to the stiffness of the return spring and to the end-of-pulse angular position ⁇ FI ) is then counterbalanced by the torque at the escape wheel .
  • Increasing the torque at the escape wheel to ensure the self-starting of an oscillator on flexible guidance amounts to increasing its energy consumption, which is not a satisfactory solution given that the energy available in a watch bracelet is limited.
  • the document CH715589A1 describes a rubbing rest escapement which is adapted to an oscillator on a flexible guide.
  • the advantage of a rubbing rest escapement is that it can be sized to be compatible with a lift angle ⁇ LE on the balance arm of less than 6°, which is advantageous for self-starting.
  • the disadvantage is that the balance wheel is linked to the lever (elastically in this specific case) which implies a permanent rotation of the lever during the oscillation of the balance wheel and therefore a permanent rubbing contact between the escape wheel and the 'anchor.
  • the loss of energy resulting from this rubbing contact is substantial, which de facto limits the operating amplitudes of the oscillator to low values, of the order of 6 to 8°.
  • the Swiss lever escapement is a free escapement because it only comes into contact with the oscillator during the lift angle to perform the release and impulse phases.
  • the present invention relates to a watchmaking mechanical regulator comprising an escapement cooperating with a watchmaking mechanical oscillator provided with an inertial element oscillating in an oscillation plane thanks to an elastic return element.
  • the exhaust comprises a pin rigidly linked to the inertial element, an anchor and an escape wheel.
  • the anchor comprises a fork configured to cooperate with the peg, an input pallet and an output pallet, each of the pallets being configured to cooperate with the teeth of the escape wheel.
  • the escapement is configured so that, during a release phase, the peg pushes the fork in order to release the escape wheel from one of the pallets and, during an impulse phase, the fork pushes the peg in order to transmitting to the inertial element the torque of the escape wheel which is in contact with one of the pallets.
  • the regulator is configured so that the release phase is preceded by a first frictional rest phase, itself preceded by a first free oscillation phase, and the pulse phase is followed by a second frictional rest phase. , itself followed by a second phase of free oscillation.
  • the inertial element oscillates freely without contact between the pin and the fork; and during the first and second frictional rest phase, the pin is in contact with the fork so as to push it, a tooth of the escape wheel being in frictional contact with one of the pallets.
  • the escapement is at rest rubbing during a given portion of oscillation, but is free outside this portion of oscillation.
  • the oscillation portions in frictional rest make it possible to guarantee the self-starting of the oscillator because, thanks to them, it is possible to build a fork-peg mechanism with a very low angle of lift as well as reasonable games and safeties.
  • the lift angle can be at least twice as small as what is attainable with the escapements proposed in the state of the art, ie typically between 2° and 6°.
  • the escapement thus makes it possible to recover the self-starting property of the oscillator, even in the case where the operating amplitude of the oscillator is low and its rigidity high.
  • the regulator according to the invention also allows a portion of oscillation of the inertial element to be largely free and there is therefore no frictional contact between the escape wheel and the lever during a large part of the oscillation of the inertial element. This makes it possible to minimize the energy loss of the regulator and therefore to obtain a higher amplitude of the inertial element. This makes it possible to guarantee the isochronism of a flexible-guided oscillator (for most flexible-guided oscillators and escapements, isochronism faults are generally critical below 10° of amplitude) and makes the element inertial less disturbed by shocks against stops.
  • the regulator described here can be applied to any type of escapement whose wheel and lever form a double impulse escapement.
  • the principle can easily be applied in the case of a free lever escapement.
  • the regulator proposed here greatly simplifies the design of the oscillator compared to the solution proposed in the document CH714361 .
  • the anchor of the present invention does not need a dart to cooperate with such an oscillator.
  • the anchor and the wheel can therefore be parts produced on one level.
  • the regulator described here is simple in its implementation and makes it possible to ensure low energy consumption and the self-starting of an oscillator on flexible guidance.
  • the escapement 10 comprises an escapement wheel 11 provided with teeth 112 configured to cooperate with an entry pallet 121 and an exit pallet 127 of an anchor 12.
  • the anchor 12 pivotally mounted on an axis, comprises a fork 122 cooperating with an impulse cam 130 (here a pin) of a plate 131.
  • the escapement 10 cooperates with an oscillator (not shown) comprising an inertial element 21 (for example a pendulum or other) capable of oscillating around of an oscillator axis 23 thanks to an elastic return element.
  • the plate 131 is intended to cooperate with the oscillator.
  • the plate 131 can be arranged concentric with the oscillator so as to pivot with an inertial element, as in a conventional clockwork regulator mechanism.
  • FIG 4a shows a detail of the input palette 121
  • the figure 4b shows a detail of the output pallet 127
  • the figure 4c shows a detail of a tooth 112 comprising a tooth nose 112a and a tooth heel 112b.
  • Each of the input pallet 121 and the output pallet 127 is provided with a pallet rubbing rest plane P RF , a pallet release plane P DE , and a pallet impulse plane P IM .
  • the pallet release plane P DE corresponds to a rest plane, that is to say, the plane on which a tooth 112 of the escape wheel presses at the time of its release.
  • the P IM vane impulse plane has three sections with variable curvature, continuous and tangent.
  • the vane impulse plane P IM can also be formed from a single or multiple curved or planar sections.
  • the vane rubbing rest plane P RF and the vane clearance plane P DE are also shown as two continuous sections of different curvatures but these two planes could also be realized as a single flat surface.
  • the pallet rubbing rest plane P RF is pull-type and the pallet release plane P DE may or may not be pull-type.
  • the pallets 121, 127 of the anchor 12 of the escapement 10 therefore comprise an additional resting plane, the pallet rubbing resting plane P RF , configured to block the escapement wheel 11 during the rubbing rests of the escapement .
  • THE figures 5a and 5b show a diagram reporting different angles of oscillation of an inertial element of an oscillator on flexible guide cooperating with the escapement 10, when the oscillator oscillates counterclockwise ( figure 5a ) and schedule ( figure 5b ).
  • the exhaust 10 has two different operating regimes.
  • the escapement 10 functions as an escapement at rest rubbing, that is to say that the amplitude of oscillation of the inertial element is greater than the half-angle of lift ⁇ LE /2 and less than half -friction angle of repose ⁇ RF /2.
  • the angle of lift ⁇ LE corresponds to the portion of oscillation of the inertial element from the start angular position of release ⁇ DE to the end angular position of the pulse ⁇ IM .
  • the angle of frictional rest ⁇ RF corresponds to the portion of oscillation from the angular position of the inertial element from the start of the first frictional rest ⁇ RF1 to the end angular position of the second frictional rest ⁇ RF2 .
  • the oscillator At greater amplitude of oscillation of the inertial element, greater than the half-angle of rest rubbing at ⁇ RF /2, the oscillator also has a portion of free oscillation (angle of free oscillation ⁇ LI ).
  • THE figures 6 to 15 show the escapement 10 during the different phases of its operation.
  • the diagram of the figure 5 is also reproduced: the angle of oscillator 2 corresponding to the phase illustrated is indicated there by an arrow.
  • a drop or fork clearance compensation
  • a drop occurs as a transition between two escapement operating phases and is not considered as an escapement phase.
  • the fall is added in the construction of the escapement in order to avoid the blocking of the mechanism which would be caused by a double contact between two escapement parts (safeties of the escapement).
  • the chute is dimensioned according to the assembly and manufacturing tolerances of the system. It must be minimized because it causes a loss of energy that does not contribute to the accuracy of the system's time base.
  • FIG. 6 shows the escapement 10 at the start of a first phase of rubbing rest, when the oscillator oscillates in the anti-clockwise direction.
  • the first phase of frictional rest occurs following a first phase of free oscillation during which the inertial element 21 oscillates freely without contact between the pin 130 and the fork 122 .
  • the first phase of rubbing rest occurs before a release phase of the escapement 10.
  • the escapement wheel 11 is blocked by the anchor 12 and cannot move forward.
  • the pin 130 (for example arranged coaxial with an axis of the inertial element) rotates counter-clockwise and meets a fork first plane 122a of the fork 122.
  • the anchor 12 then pivots clockwise (around its pivot axis 126). Under the action of pin 130 on fork 122, pallet 121 will cause escape wheel 11 to move back slightly. A tooth 112 of the escape wheel is in frictional contact on the frictional rest plane of the pallet P RF of the input palette 121.
  • lever 12 rotates while escape wheel 11 is almost stationary. There is therefore a frictional contact between a tooth 112 and the input pallet 121 (on the pallet frictional rest plane P RF ) of the anchor 12.
  • the inertial element oscillates from the angular position of the start of the first rubbing rest ⁇ RF1 to the angular position of the start of disengagement ⁇ DE .
  • FIG. 7 shows the escapement 10 at the start of a release phase, corresponding to the end of the first rubbing rest.
  • the balance pin 130 continues to rotate counter-clockwise and to push on the first fork plane 122a of the fork 122.
  • the escapement wheel 11 is stationary, or recoils slightly, and the anchor 12 continues to turn clockwise.
  • a tooth 112 of the escape wheel 11 leaves the pallet rubbing rest plane P RF to join the pallet release plane P DE of the input pallet 121.
  • the angular position of the inertial element is that of start of release ⁇ DE .
  • FIG 8 shows the escapement 10 at the start of the backlash adjustment of the fork 122 occurring at the end of the release phase.
  • the beginning of the backlash of the fork 122 is identical to that of a classic lever escapement.
  • Pin 130 continues to rotate counter-clockwise.
  • a tooth 112 of the escape wheel 11 leaves the pallet clearance plane P DE to join the pallet impulse plane P IM of the entry pallet 121.
  • the escape wheel 11 will then actuate the anchor 12 which will allow the second plane of the fork 122b to catch up with the pin 130 and strike it at the end of the backlash of the fork 122.
  • the elastic return torque of the oscillator must at least be sized to be able to bring back, without momentum, the escapement 10 in the position of the figure 8 . Otherwise the escapement 10 is not self-starting.
  • FIG. 9 shows the escapement 10 at the start of a pulse phase occurring at the end of the first fork drop and corresponds to the start of the input pallet pulse 121.
  • This first pulse phase is identical to that of a classic lever escapement.
  • Pin 130 continues to rotate counter-clockwise.
  • the second fork plane 122b of fork 122 has joined pin 130 and is beginning to push pin 130 counterclockwise.
  • the escapement wheel 11 continues to rotate clockwise and actuates the pin 130 via the lever 12.
  • the tooth nose 112a of the tooth 112 of the escapement wheel 11 pushes on the plane of pallet pulse P IM from the input pallet 121.
  • FIG 10 shows the escapement 10 during the pulse phase, at the transition between the pulse of the tooth nose 112a on the pallet plane and the tooth plane pulse on the pallet nose.
  • Pin 130 continues to rotate counterclockwise and second fork plane 122b continues to push pin 130 counterclockwise.
  • the escape wheel 11 also continues to rotate clockwise and actuates the peg 130 through the anchor 12.
  • FIG. 11 shows escapement 10 during a first drop of escape wheel 11 and a second drop of fork 122 occurring at the end of the impulse phase.
  • This transition is identical to that of a conventional lever escapement for the drop of the escapement wheel 11.
  • pin 130 continues to rotate counterclockwise.
  • the peg 130 leaves the second fork plane 122b because the lever 12 is no longer actuated by the escapement wheel 11.
  • a tooth 112 of the escapement wheel 11 separates from the end of the impulse plane of pallet P IM of the input pallet 121.
  • the escapement wheel 11 drops, that is to say rotates in a vacuum, and will join the rubbing rest plane of the pallet P RF of the output pallet 127.
  • the angular position of the inertial element corresponds approximately to the end of pulse angular position ⁇ IM with respect to the reference position of the line of centers ⁇ 0 (this corresponds to the half-angle of lift ⁇ LE /2).
  • the exhaust 10 is characterized by a lift angle ⁇ LE typically of at most 6°.
  • FIG 12 shows the escapement 10 at the start of a second rubbing rest phase occurring after the impulse phase, at the end of the fall of the escape wheel 11 and of the second fall of the fork 122.
  • This second phase of rubbing rest does not exist in a conventional lever escapement.
  • Pin 130 continues to rotate counter-clockwise, joins first fork plane 122a and pushes fork 122 out.
  • the escape wheel 11 is blocked by the anchor 12 but pivots very slightly clockwise due to the pull.
  • the anchor 12 still pivots clockwise under the action of the pin 130.
  • the tooth beak 112a of the tooth 112 of the escapement wheel 11 will therefore rub against the rubbing rest plane of the pallet P RF of the exit pallet 127. There is therefore a frictional contact between the escapement wheel 11 and the pallet 12 and between the pallet 12 and the peg 130.
  • the expression “frictional contact” means that at the point of contact between the tooth 112 and the frictional resting plane of the paddle P RF and between the pin 130 and the first fork plane 122a, there is a regular relative displacement between these exhaust parts during the first and the second rubbing rest phase.
  • the angular position of the inertial element goes from the angular position of the end of the pulse ⁇ IM to the angular position of the end of the second frictional rest ⁇ RF2 .
  • FIG 13 shows the escapement 10 at the end of the second rubbing rest phase.
  • the peg 130 has finished pushing the first fork plane 122a and is freed from it.
  • the anchor 12 has not yet joined the exit stop 125b, the draw is therefore not finished.
  • a tooth 112 of the escapement wheel 11 rests on the rubbing resting plane of the pallet P RF of the output pallet 127.
  • the escapement wheel 11 transmits a torque to the anchor 12 which allows it to always pivot clockwise to reach the exit stop 125b and its rest position.
  • the angular position of the inertial element is slightly greater than the angular position at the end of the second rubbing rest ⁇ RF2 . Similar to falls, we do not consider, in this document, the draw as a phase of the escapement strictly speaking.
  • FIG 14 shows the escapement 10 during a second phase of free oscillation occurring after the second phase of rubbing rest.
  • the ankle 130 is free and will remain so until the next rubbing rest phase.
  • Fork 122 of anchor 12 has joined exit stop 125b.
  • the escape wheel 11 is blocked by the anchor 12 and both are stationary.
  • Contact between pin 130 and fork 122 occurs during the second phase of frictional rest.
  • the angular position of the inertial element is greater than the angular position at the end of the second frictional rest ⁇ RF2 .
  • FIG. 15 shows the escapement 10 at the start of the first rubbing rest phase, when the oscillator oscillates clockwise.
  • This phase does not exist in a classic lever escapement.
  • Pin 130 which rotates clockwise, meets second fork plane 122b of anchor 12, which is about to rotate counter-clockwise. In this position, if the system were stopped, it is the elastic torque of the oscillator which would cause the escapement 10 to rotate.
  • the escapement wheel 11 is blocked by the lever 12 and cannot move forward.
  • the lever 12 rotates, under the action of the pin 130 on the second fork plane 122b of the fork 122, the escapement wheel 11 will move back slightly, pushed back by the rubbing rest plane of the pallet P RF of the output pallet 127.
  • the inertial element pivots from the angular position of the start of the first frictional rest ⁇ RF1 to the angular position of the start of disengagement ⁇ DE .
  • Pin 130 is therefore configured to push fork 122 during the first frictional rest phase and the second frictional rest phase. During these phases, a tooth 112 of the escapement wheel 11 is in frictional contact against the frictional rest plane of the pallet P RF of the input pallet 121 or of the output pallet 127. The pin 130 is not in contact with the fork 122 on the free oscillation portions of the inertial element, preceding the first frictional rest phase and following the second frictional rest phase.
  • the self-starting of the escapement 10 does not depend on the angle of rest rubbing ⁇ RF but only on the angle of lift ⁇ LE .
  • the proposed escapement considerably facilitates the self-starting of the oscillator.
  • the presence of the first phase of rubbing rest and of the first phase of free oscillation makes it possible to characterize the escapement 10 as a semi-free escapement.
  • the escapement 10 is also self-starting.
  • the escapement 10 can be configured so that the frictional rest angle ⁇ RF , corresponding to the portion of oscillation from the angular position of the inertial element from the start of the first frictional rest ⁇ RF1 to the end angular position of the second rubbing rest ⁇ RF2 , ie at most 12°.
  • the escapement must be configured so that the pin 130 is in contact with the fork 122 so as to push it when the angular position of the inertial element with respect to the line of centers ⁇ 0 is smaller than the half-angle of rest rubbing ⁇ RF /2 and greater than the half-angle of lift ⁇ LE /2. More particularly, the first fork plane 122a and the second fork plane 122b must be dimensioned so that they can be engaged with the pin 130 in this angular range.
  • the escapement 10 When oscillator 2 starts up or in operation at amplitudes less than or equal to the half-angle of friction rest ⁇ RF /2, the escapement 10 functions as a friction rest escapement. In this mode, the anti-rollover devices are useless since the pin does not leave the fork. If the escapement 10 can push the inertial element 21 to the limit of the half-angle of lift ⁇ LE /2 (corresponding to the angular position of end of pulse ⁇ IM ), then the system is self-starting.
  • the kinematics of the escapement 10 at the start of the oscillator or in operation at amplitudes less than or equal to a half-angle of rest rubbing at ⁇ RF /2 is illustrated in figures 16a-16c when the oscillator swings clockwise and at figures 16d to 16f when the oscillator swings counterclockwise.
  • a tooth 112 bears against the anchor output rest plane 127a of the output pallet 127.
  • the second fork plane 122b of the fork 122 is in contact with the pin 130 and follows the inertial element 21 in its swing. If the oscillation is large enough, then the escapement wheel 11 outlines a slight movement due to the pulling of the anchor exit rest plane 127a.
  • the inertial element 21 has entered the lift angle ⁇ LE and has completed the disengagement.
  • the fork has caught up and is pushing peg 130 with the fork foreground.
  • Tooth 112 provides its impulse to output pallet 127, via anchor output impulse plane 127b.
  • the inertial element 21 reaches the limit of the lift angle ⁇ LE .
  • another tooth 112' drops onto the anchor entry rest 121a of the entry pallet 121.
  • the pin 130 still engaged in the fork 122, carrying the latter with it.
  • THE figures 16d-16f illustrate the same phases as the figures 16a-16c , respectively.
  • a tooth 112 comes into contact with the anchor entry rest plane 121a of the entry pallet 121 ( figures 16a and 16b ).
  • the inertial element 21 and the anchor 12 rotate in the opposite direction to the direction illustrated in figures 16a-16c .
  • the balance 21 reaches the limit of the angle of lift ⁇ LE ( figure 16f )
  • another tooth 112' falls on the anchor exit rest plane 127a of the exit pallet 127.
  • the fork-pin mechanism of the escapement 10 must be equipped with sufficient securities and safeties to prevent the escapement from being brought into a blocking position.
  • the securities and sureties in question are distances between the pin 130 and the fork 122 in particular positions of the exhaust 10 and must be dimensioned according to the inaccuracies of manufacture and assembly of the exhaust parts.
  • FIG 17a illustrates the play E and the penetration P of the peg 130 into the fork 122 in a position of start of impulse (corresponds to the position of the escapement at the figure 9 ).
  • the play E serves to prevent the ankle from getting stuck in the fork and the penetration P to ensure that the second plane of the fork 122b pushes the ankle during the impulse.
  • FIG 17b illustrates the free movement D of the ankle 130 in the fork 122 in a position at the end of the second rubbing rest (corresponds to the position of the figure 13 , to the nearest draw).
  • the release action D serves to guarantee that the peg 130 can come out of the fork 122. It is these three distances (E, P and D) which become too small when constructing a traditional free lever escapement (without rest rubbing) for lift angles less than approximately 10°.
  • the pin 130 comes out of the fork 122.
  • the anchor 12 is then at rest, resting against the entry stop 125a ( picture 18a ) or the exit stop 125b ( figure 18b ), and escape wheel 11 remains stationary.
  • the escapement 10 must then include a device preventing overturning, that is to say preventing the rocking of the lever 12 which would cause the plate pin 130 to meet the lug 123.
  • a device preventing the overturning may comprise a stinger 124 and/or a pair of horns 123.
  • THE figures 19a-19f illustrate different positions of the fork 122 and of a tooth 112 with respect to the pallets 121, 127, for amplitudes of oscillation of the inertial element 21 beyond the half-angle of rest rubbing ⁇ RF /2.
  • the inertial element 21 freely traverses its additional arc. Thanks to the pulling of the tooth 112 on the pallet rubbing rest plane P RF of the output pallet 127, the fork 122 is wedged against the output stop 125b or against any other limiting device.
  • the rest position is such that on the return of the inertial element 21, the pin 130 enters freely into the fork 122.
  • the dart 124 has entered the notch 132a of the small plate 132.
  • the dart 124 is inactive and unable to retain the anchor 12. It is then the horn 123, blocked by the pin 130, which prevents overturning in the event of an impact.
  • the tooth beak 112a of the tooth 112 is still engaged on the rubbing rest plane of the pallet P RF of the output pallet 127. Once the shock has passed, the anchor 12 returns to its equilibrium position thanks to the pull.
  • the escapement 10 according to the invention can be made of silicon using the usual etching techniques.
  • This material has many advantages: it does not undergo fatigue failure, is non-magnetic and has no plastic domain.
  • silicon makes it possible to manufacture parts in series with high machining precision, while offering great design freedom.
  • the exhaust 10 can be made of a material selected from the group of materials comprising a ceramic, a glass, an alloy or a metallic glass.
  • the material selected may include silicon nitride, silicon carbide, steel, gold or one of its alloys, nickel, nickel-phosphorus, brass, steel, an amorphous alloy , a copper alloy, copper-beryllium, or nickel silver.
  • the escapement 10 can be configured so that the angle of rest rubbing ⁇ RF is at most 12°, and the lugs 123 can prevent any overturning of the anchor up to an amplitude of 36°, thus the anchor 12 may not include dart 124. It is then possible to manufacture anchor 12 on a single level, that is to say that anchor 12 may be included in a single plane, without dart 124 fixed at a level above (or below) the level of the anchor 12 and the fork 122.
  • the regulator 1 described here is particularly suitable for an oscillator 2 on flexible guidance.
  • An example of integration of the escapement 10 with a CR3 type oscillator as described in the patent EP3299905B1 by the present applicant is illustrated in figure 20 .
  • There figure 21 shows a detail of the escapement 10.
  • the pin 130 which interacts with the anchor 12, as well as the stops 125a, 125b, are directly integrated into the inertial element 21 of the oscillator 2.
  • the oscillator 2 comprises an elastic return element comprising a flexible pivot comprising flexible blades 22.
  • the flexible pivot 22 performs both the role of elastic return and of guiding in rotation of the inertial element 21.
  • the flexible pivot 22 is of one side fixed to a plate (not shown) and the other linked to the inertial element 21.
  • Oscillator 2 typically has 20° amplitude.
  • the horns 123 can prevent any overturning of the anchor 12 up to an amplitude of 36°, so a dart is unnecessary in this example.
  • the frictional angle of repose ⁇ RF is about 10° and the lift angle ⁇ LE is about 5°.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Dampers (AREA)
  • Micromachines (AREA)

Abstract

La présente invention concerne un régulateur mécanique horloger (1) comprenant un échappement (10) coopérant avec un oscillateur pourvu d'un élément inertiel (21) oscillant dans un plan d'oscillation grâce à un élément de rappel (22). L'échappement comprend une cheville (130) rigidement liée à l'élément inertiel (21), une ancre (12) comportant une fourchette (122) coopérant avec la cheville (130), et deux palettes (121, 127) coopérant avec des dents (112) d'une roue d'échappement (11). Le régulateur est configuré de sorte que, pendant une première phase de repos frottant se produisant avant une phase de dégagement, et pendant une seconde phase de repos frottant se produisant après une phase d'impulsion, la cheville (130) est en contact avec la fourchette (122) de manière à la pousser, et une dent (112) de la roue d'échappement (11) est en contact frottant avec l'une des palettes (121, 127).

Description

    Domaine technique
  • La présente invention concerne le domaine de l'horlogerie, plus précisément, la présente invention concerne un régulateur mécanique horloger comprenant un échappement et un oscillateur.
  • Etat de la technique
  • Un mécanisme régulateur d'horlogerie comprend typiquement un échappement tel qu'illustré à la figure 1 . Un tel échappement 10 comprend typiquement une roue d'échappement 11 munie de dents 112 configurées pour coopérer avec des palettes 121 d'une ancre 12. L'ancre 12 comporte une fourchette 122 coopérant avec une cheville 130 d'un plateau 131. Le plateau 131 est lié rigidement à un oscillateur (ou organe régulateur) non représenté. L'échappement a pour but d'entretenir et de compter les oscillations de l'oscillateur. Un oscillateur mécanique comporte un élément inertiel, un guidage et un élément de rappel élastique. Par exemple, l'oscillateur mécanique peut comprendre un balancier spiral dans lequel le balancier constitue l'élément inertiel, le guidage correspond à l'axe de balancier et aux pierres de platine et pont, et le spiral constitue l'élément de rappel élastique.
  • La figure 2a montre un diagramme reportant différents angles d'oscillation du balancier d'un oscillateur balancier spiral, coopérant avec un échappement tel que décrit ci-dessus. Le balancier, ayant une amplitude Ao de l'ordre 300°, peut être caractérisé par une portion d'oscillation libre ΘLI et une portion d'oscillation correspondant à l'angle de levée ΘLE, de l'ordre de 50°, où le dégagement de la roue d'échappement et l'impulsion de l'échappement à l'élément inertiel se produisent. L'amplitude Ao est la position angulaire maximale, par rapport à la ligne des centres, que prend l'élément inertiel durant une oscillation (ou alternance). La ligne des centres θ0 est définie comme la position angulaire de l'élément inertiel à l'équilibre sans l'échappement (lorsque l'élément de rappel élastique est complètement détendu).
  • Un oscillateur horloger sur guidage flexible, ou à pivot flexible, est un oscillateur dont l'élément inertiel (pouvant comprendre un balancier) est guidé en rotation par un agencement de parties élastiques et non pas par un axe de rotation physique tournant dans des paliers classiques (ex : palier rubis), comme dans le cas d'un balancier spiral. En plus de sa fonction de guidage en rotation, le pivot flexible exerce un couple de rappel élastique sur le balancier à l'instar du spiral d'un oscillateur balancier spiral. La figure 2b montre un diagramme reportant différents angles d'oscillation d'un oscillateur sur guidage flexible (par exemple, tel que celui représenté en figure 19) coopérant avec un échappement tel que décrit ci-dessus. Dans cette configuration, l'élément inertiel, ayant une amplitude Ao typiquement comprise entre 10° et 50°, est caractérisé par une portion d'oscillation libre ΘLI typiquement de l'ordre de 10° à 20°, et par un angle de levée ΘLE, de l'ordre de 6° maximum. Par rapport à un oscillateur de type balancier spiral, un oscillateur sur guidage flexible se démarque par une rigidité plus importante de l'élément de rappel élastique et par des amplitudes d'oscillations Ao plus faibles.
  • Le demi-angle de levée ΘLE/2 d'un oscillateur correspond à l'angle entre la ligne des centres de l'élément inertiel θ0 et sa position angulaire en fin d'impulsion θIM. Ainsi, minimiser l'angle de levée ΘLE revient à rapprocher la position angulaire de fin d'impulsion θIM de la ligne des centres θ0 et donc de diminuer le couple de rappel élastique de l'oscillateur en fin d'impulsion, ce qui facilite l'auto-démarrage.
  • Dans le cas d'un échappement 10 traditionnel à ancre suisse coopérant avec un oscillateur sur guidage flexible, il n'est pas possible de redimensionner la fourchette pour rendre cette dernière compatible avec un angle de levée ΘLE au balancier de 6° ou moins. En effet, dans ce cas, les jeux et sécurités entre la fourchette et la cheville de plateau seraient irréalisables en pratique. Par ailleurs, du fait de la rigidité plus élevée de l'élément de rappel élastique d'un oscillateur sur guidage flexible par rapport à un balancier spiral, il est alors difficile d'assurer l'auto-démarrage d'un oscillateur sur guidage flexible.
  • L'auto-démarrage est la propriété d'un échappement qui démarre uniquement grâce au couple fourni par la roue d'échappement suite au remontage du barillet dans sa zone de travail. L'auto-démarrage garantit le démarrage de l'oscillateur sans aide extérieure pendant la phase de remontage du barillet, par exemple après une longue période de stockage de la montre. L'auto-démarrage est une propriété avantageuse à tout échappement d'une montre bracelet car celle-ci est régulièrement sujette à des chocs ce qui provoque des freinages du balancier contre ses antichocs. Ces freinages peuvent mener à des arrêts momentanés du balancier. Si l'échappement n'est pas auto-démarrant, le balancier restera bloqué jusqu'à l'intervention de l'utilisateur ou d'un horloger. Ainsi un échappement qui n'est pas auto-démarrant pose des problèmes de fiabilité dans le contexte de la montre bracelet.
  • Un système est auto-démarrant lorsque le couple à la roue d'échappement est suffisant pour, entre autres, achever la phase d'impulsion. Le couple de rappel élastique de l'oscillateur (ce couple de rappel élastique est directement proportionnel à la raideur du ressort de rappel et à la position angulaire de fin d'impulsion θFI) est alors contrebalancé par le couple à la roue d'échappement. Augmenter le couple à la roue d'échappement pour assurer l'auto-démarrage d'un oscillateur sur guidage flexible revient à en augmenter la consommation énergétique, ce qui n'est pas une solution satisfaisante étant donné que l'énergie disponible dans une montre bracelet est limitée.
  • Le document CH715589A1 décrit un échappement à repos frottant qui est adapté à un oscillateur sur guidage flexible. L'avantage d'un échappement à repos frottant est qu'il peut être dimensionné pour être compatible avec un angle de levée ΘLE au balancier inférieur à 6°, ce qui est avantageux pour l'auto-démarrage. L'inconvénient est que le balancier est lié à l'ancre (élastiquement dans ce cas précis) ce qui implique une rotation permanente de l'ancre durant l'oscillation du balancier et donc un contact frottant permanent entre la roue d'échappement et l'ancre. La perte d'énergie consécutive à ce contact frottant est substantielle, ce qui limite de facto les amplitudes de fonctionnement de l'oscillateur à de faibles valeurs, de l'ordre de 6 à 8°. Par opposition, l'échappement à ancre suisse est un échappement libre car il n'entre en contact avec l'oscillateur que pendant l'angle de levée pour effectuer les phases de dégagement et d'impulsion.
  • Un exemple d'échappement libre qui a été adapté pour un oscillateur sur guidage flexible est présenté dans le document CH714361 . Ce document décrit un régulateur avec résonateur à pivot flexible muni d'un échappement libre à ancre avec fourchette élargie par rapport à celle d'une ancre suisse classique. L'échappement est particulièrement adapté au pivot flexible présenté dans le document EP3035126 et va de pair avec le mécanisme de résonateur sur guidage flexible dévoilé dans le document EP3545365 . Ce dernier document décrit un échappement libre à ancre avec un angle de levée ΘLE de 10°, avec des éléments inertiels aux propriétés spécifiques. Cet échappement a une cinématique traditionnelle avec une phase d'oscillation libre, puis un dégagement suivi d'une phase d'impulsion. Du fait de son angle de levée trop grand (10°), l'échappement en question ne peut pas être à la fois auto-démarrant et avoir un couple à la roue d'échappement suffisamment petit pour avoir une consommation énergétique raisonnable.
  • Bref résumé de l'invention
  • La présente invention concerne un régulateur mécanique horloger comprenant un échappement coopérant avec un oscillateur mécanique horloger pourvu d'un élément inertiel oscillant dans un plan d'oscillation grâce à un élément de rappel élastique. L'échappement comprend une cheville liée rigidement à l'élément inertiel, une ancre et une roue d'échappement. L'ancre comporte une fourchette configurée pour coopérer avec la cheville, une palette d'entrée et une palette de sortie, chacune des palettes étant configurée pour coopérer avec des dents de la roue d'échappement. L'échappement est configuré de sorte que, pendant une phase de dégagement, la cheville pousse la fourchette afin de libérer la roue d'échappement de l'une des palettes et, pendant une phase d'impulsion, la fourchette pousse la cheville afin de transmettre à l'élément inertiel le couple de la roue d'échappement qui est en contact avec l'une des palettes. Le régulateur est configuré de sorte que la phase de dégagement est précédée d'une première phase de repos frottant, elle-même précédée par une première phase d'oscillation libre, et la phase d'impulsion est suivie par une seconde phase de repos frottant, elle-même suivie d'une seconde phase d'oscillation libre. Pendant chacune des phases d'oscillation libre, l'élément inertiel oscille librement sans contact entre la cheville et la fourchette; et pendant la première et seconde phase de repos frottant, la cheville est en contact avec la fourchette de manière à la pousser, une dent de la roue d'échappement étant en contact frottant avec l'une des palettes.
  • L'échappement est à repos frottant pendant une portion d'oscillation donnée, mais est libre en dehors de cette portion d'oscillation. Les portions d'oscillation en repos frottant permettent de garantir l'auto-démarrage de l'oscillateur car, grâce à elles, il est possible de construire un mécanisme fourchette-cheville avec un très faible angle de levée ainsi que des jeux et sécurités raisonnables. Par exemple, l'angle de levée peut être au moins deux fois plus petit que ce qui est atteignable avec les échappements proposés dans l'état de la technique, soit typiquement entre 2° et 6°. L'échappement permet ainsi de récupérer la propriété d'auto-démarrage de l'oscillateur, même dans le cas où l'amplitude de fonctionnement de l'oscillateur est faible et sa rigidité importante.
  • Le régulateur selon l'invention permet également une portion d'oscillation de l'élément inertiel en grande partie libre et il n'y a donc pas de contact frottant entre la roue d'échappement et l'ancre durant une grande partie de l'oscillation de l'élément inertiel. Cela permet de minimiser la perte d'énergie du régulateur et donc d'obtenir une amplitude de l'élément inertiel plus élevée. Cela permet de garantir l'isochronisme d'un oscillateur à guidage flexible (pour la plupart des oscillateurs à guidage flexible et des échappements, les défauts d'isochronisme sont en général critiques en dessous de 10° d'amplitude) et rend l'élément inertiel moins perturbable par des chocs contre des butées.
  • Le régulateur décrit ici peut être appliqué à tout type d'échappement dont la roue et l'ancre forment un échappement à double impulsion. Par exemple, le principe peut être facilement appliqué dans le cas d'un échappement libre à ancre. Le régulateur proposé ici simplifie grandement la conception de l'oscillateur par rapport à la solution proposée dans le document CH714361 . Par exemple, étant donné les faibles amplitudes caractérisant les oscillateurs sur guidages flexibles, l'ancre de la présente invention n'a pas besoin de dard pour coopérer avec un tel oscillateur. L'ancre et la roue peuvent donc être des pièces produites sur un seul niveau.
  • Le régulateur décrit ici est simple dans sa mise en oeuvre et permet d'assurer une faible consommation énergétique et l'auto-démarrage d'un oscillateur sur guidage flexible.
  • Brève description des figures
  • Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
    • la figure 1 illustre un régulateur classique d'horlogerie;
    • les figures 2a et 2b montrent l'amplitude d'oscillation et l'angle de levée pour un oscillateur de type balancier spiral (figure 2a) et pour un oscillateur sur guidage flexible (figure 2b) ;
    • la figure 3 montre un régulateur dont l'échappement comprend une cheville, une fourchette et une roue d'échappement, selon un mode de réalisation;
    • les figures 4a-4c montrent un détail de la palette d'entrée (figure 4a), de la palette de sortie (figure 4b) de la fourchette et d'une dent de la roue d'échappement (figure 4c);
    • Les figures 5a et 5b montrent un diagramme reportant différents angles d'oscillation d'un élément inertiel d'un oscillateur sur guidage flexible coopérant avec l'échappement 10, lorsque l'oscillateur oscille dans le sens anti-horaire (figure 5a) et horaire (figures 5b);
    • la figure 6 montre l'échappement au début d'une première phase de repos frottant lorsque l'oscillateur oscille dans le sens anti-horaire;
    • la figure 7 montre l'échappement au début d'une phase de dégagement;
    • la figure 8 montre l'échappement pendant un premier rattrapage de jeu de fourchette;
    • la figure 9 montre l'échappement au début d'une phase d'impulsion;
    • la figure 10 montre l'échappement pendant la phase d'impulsion;
    • la figure 11 montre l'échappement au début d'une première chute de la roue d'échappement;
    • la figure 12 montre l'échappement au début d'une seconde phase de repos frottant après un deuxième rattrapage de jeu de fourchette;
    • la figure 13 montre l'échappement à la fin d'une seconde phase de repos frottant;
    • la figure 14 montre l'échappement pendant une phase d'oscillation libre;
    • la figure 15 montre l'échappement pendant la première phase de repos frottant, lorsque l'oscillateur oscille dans le sens horaire;
    • les figures 16a-16f montrent des phases de l'échappement aux faibles amplitudes de l'oscillateur;
    • Les figures 17a-17b illustrent l'ébat et la pénétration (figure 17a) de la cheville dans la fourchette dans une position de début d'impulsion et l'ébat de dégagement (figure 17b) de la cheville dans la fourchette dans une position de fin de second repos frottant;
    • les figures 18a-18b montrent des phases de l'échappement pour des amplitudes d'oscillation au-delà du demi-angle de repos frottant;
    • les figures 19a-19f illustrent différentes positions de la fourchette et d'une dent par rapport aux palettes, pour des amplitudes d'oscillation de l'élément inertiel au-delà du demi-angle de repos frottant;
    • la figure 20 montre l'échappement coopérant avec oscillateur sur guidage flexible, selon un premier exemple; et
    • la figure 21 montre un détail de l'échappement de la figure 20.
    Exemple(s) de mode de réalisation de l'invention
  • La figure 3 montre un régulateur 1 comportant un échappement 10, selon un mode de réalisation. L'échappement 10 comprend une roue d'échappement 11 munie de dents 112 configurées pour coopérer avec une palette d'entrée 121 et une palette de sortie 127 d'une ancre 12. L'ancre 12, montée pivotante sur un axe, comporte une fourchette 122 coopérant avec une came d'impulsion 130 (ici une cheville) d'un plateau 131. L'échappement 10 coopère avec un oscillateur (non représenté) comportant un élément inertiel 21 (par exemple un balancier ou autre) apte à osciller autour d'un axe d'oscillateur 23 grâce à un élément de rappel élastique. Le plateau 131 est destiné à coopérer avec l'oscillateur. Par exemple, le plateau 131 peut être arrangé concentrique avec l'oscillateur de manière à pivoter avec élément inertiel, comme dans un mécanisme régulateur d'horlogerie conventionnel.
  • La figure 4a montre un détail de la palette d'entrée 121, la figure 4b montre un détail de la palette de sortie 127 et la figure 4c montre un détail d'une dent 112 compotant un bec de dent 112a et un talon de dent 112b. Chacune de la palette d'entrée 121 et la palette de sortie 127 est dotée d'un plan de repos frottant de palette PRF, un plan de dégagement de palette PDE, et un plan d'impulsion de palette PIM. Ici, le plan de dégagement de palette PDE correspond à un plan de repos, c'est-à-dire, le plan sur lequel appuie une dent 112 de la roue d'échappement au moment de son dégagement.
  • Dans l'exemple des figures 4a-4b, le plan d'impulsion de palette PIM comporte trois sections à courbure variable, continues et tangentes. Cependant, le plan d'impulsion de palette PIM peut également être formé d'une seule ou de plusieurs sections courbes ou planes.. Le plan de repos frottant de palette PRF et le plan de dégagement de palette PDE sont également représentés comme deux sections continues de courbures différentes mais ces deux plans pourraient également être réalisés comme une seule surface plane . Préférablement, le plan de repos frottant de palette PRF est à tirage et le plan de dégagement de palette PDE peuvent être ou non à tirage. Le tirage signifie que ces deux plans de palette peuvent être orientés de telle sorte que la force exercée par le bec de dent 112a de la dent 112 contre l'un de ces plans de palette engendre un couple à l'ancre 12 provoquant la rotation de cette dernière contre l'une de ses butées 125a, 125b. Le tirage permet de s'assurer que l'ancre s'arrête dans une position bien déterminée, définie par ses butées 125, durant l'oscillation libre de l'élément inertiel 21. Pendant la première phase d'oscillation libre il n'y a pas de contact entre la cheville 130 et la fourchette 122. Un contact entre la cheville 130 et la fourchette 122 se produit pendant la première phase de repos frottant.
  • Les palettes 121, 127 de l'ancre 12 de l'échappement 10 comportent donc un plan de repos additionnel, le plan de repos frottant de palette PRF, configuré pour bloquer la roue d'échappement 11 lors des repos frottant de l'échappement.
  • Les figures 5a et 5b montrent un diagramme reportant différents angles d'oscillation d'un élément inertiel d'un oscillateur sur guidage flexible coopérant avec l'échappement 10, lorsque l'oscillateur oscille dans le sens antihoraire (figure 5a) et horaire (figures 5b). L'échappement 10 possède deux régimes différents de fonctionnement. Au démarrage, l'échappement 10 fonctionne comme un échappement à repos frottant, c'est-à-dire que l'amplitude d'oscillation de l'élément inertiel est supérieure au demi-angle de levée ΘLE/2 et inférieure au demi-angle de repos frottant ΘRF/2. L'angle de levée ΘLE correspond à la portion d'oscillation de l'élément inertiel depuis la position angulaire de début de dégagement θDE jusqu'à la position angulaire de fin de l'impulsion θIM. L'angle de repos frottant ΘRF correspond à la portion d'oscillation depuis la position angulaire de l'élément inertiel du début du premier repos frottant θRF1 jusqu'à la position angulaire de fin du second repos frottant θRF2.
  • A plus grande amplitude d'oscillation de l'élément inertiel, supérieure au demi-angle de repos frottant à ΘRF/2, l'oscillateur a également une portion d'oscillation libre (angle d'oscillation libre ΘLI).
  • Les figures 6 à 15 montrent l'échappement 10 pendant les différentes phases de son fonctionnement. Le diagramme de la figure 5 est également reproduit : l'angle de l'oscillateur 2 correspondant à la phase illustrée y est indiqué par une flèche. Notons qu'une chute (ou rattrapage de jeu de fourchette) intervient comme une transition entre deux phases de fonctionnement de l'échappement et n'est pas considérée comme une phase de l'échappement. A noter que, pour faciliter l'analyse et la compréhension d'un échappement, il est d'usage de faire l'approximation que l'élément inertiel ne pivote pas pendant une chute. La chute est ajoutée dans la construction de l'échappement afin d'éviter le blocage du mécanisme qui serait provoqué par un double contact entre deux pièces d'échappement (sécurités de l'échappement). La chute est dimensionnée en fonction des tolérances d'assemblage et de fabrication du système. Elle doit être minimisée car elle occasionne une perte d'énergie non-contributive à la précision de la base de temps du système.
  • Fonctionnement normal (à grande amplitude)
  • La figure 6 montre l'échappement 10 au début d'une première phase de repos frottant, lorsque l'oscillateur oscille dans le sens anti-horaire. La première phase de repos frottant se produit à la suite d'une première phase d'oscillation libre pendant laquelle l'élément inertiel 21 oscille librement sans contact entre la cheville 130 et la fourchette 122 . La première phase de repos frottant se produit avant une phase de dégagement de l'échappement 10. Dans la première phase de repos frottant, qui n'existe pas dans un échappement libre à ancre conventionnel, la roue d'échappement 11 est bloquée par l'ancre 12 et ne peut pas avancer. La cheville 130 (par exemple arrangée coaxiale avec un axe de l'élément inertiel) tourne dans le sens anti-horaire et rencontre un premier plan de fourchette 122a de la fourchette 122. L'ancre 12 pivote alors dans le sens horaire (autour de son axe de pivotement 126). Sous l'action de la cheville 130 sur la fourchette 122, la palette 121 va faire légèrement reculer la roue d'échappement 11. Une dent 112 de la roue d'échappement est en contact frottant sur le plan de repos frottant de palette PRF de la palette d'entrée 121.
  • Pendant la première phase de repos frottant d'entrée, l'ancre 12 tourne tandis que la roue d'échappement 11 est presque immobile. Il existe donc un contact frottant entre une dent 112 et la palette d'entrée 121 (sur le plan de repos frottant de palette PRF) de l'ancre 12. Pendant la première phase de repos frottant, l'élément inertiel oscille depuis la position angulaire de début du premier repos frottant θRF1 à la position angulaire de début de dégagement θDE.
  • La figure 7 montre l'échappement 10 au début d'une phase de dégagement, correspondant à la fin du premier repos frottant. Pendant la phase de dégagement, la cheville 130 de balancier continue à tourner dans le sens anti-horaire et à pousser sur le premier plan de fourchette 122a de la fourchette 122. La roue d'échappement 11 est immobile, ou recule légèrement, et l'ancre 12 continue à tourner dans le sens horaire. Une dent 112 de la roue d'échappement 11 quitte le plan de repos frottant de palette PRF pour rejoindre le plan de dégagement de palette PDE de la palette d'entrée 121. Au début de la phase de dégagement, la position angulaire de l'élément inertiel est celle de début de dégagement θDE.
  • La figure 8 montre l'échappement 10 au début du rattrapage de jeu de la fourchette 122 se produisant à la fin de la phase de dégagement. Le début du rattrapage de jeu de la fourchette 122 est identique à celle d'un échappement à ancre classique. La cheville 130 continue à tourner dans le sens anti-horaire. Une dent 112 de la roue d'échappement 11 quitte le plan de dégagement de palette PDE pour rejoindre le plan d'impulsion de palette PIM de la palette d'entrée 121. La roue d'échappement 11 va alors actionner l'ancre 12 ce qui va permettre au second plan de fourchette 122b de rattraper la cheville 130 et la percuter à la fin du rattrapage de jeu de la fourchette 122. Le couple de rappel élastique de l'oscillateur doit au moins être dimensionné pour pouvoir ramener, sans élan, l'échappement 10 dans la position de la figure 8. Dans le cas contraire l'échappement 10 n'est pas auto-démarrant.
  • La figure 9 montre l'échappement 10 au début d'une phase d'impulsion se produisant à la fin de la première chute de fourchette et correspond au début de l'impulsion de la palette d'entrée 121. Cette première phase d'impulsion est identique à celle d'un échappement à ancre classique. La cheville 130 continue à tourner dans le sens anti-horaire. Le second plan de fourchette 122b de la fourchette 122 a rejoint la cheville 130 et commence à pousser la cheville 130 dans le sens anti-horaire. La roue d'échappement 11 continue à tourner dans le sens horaire et actionne la cheville 130 par l'intermédiaire de l'ancre 12. Le bec de dent 112a de la dent 112 de la roue d'échappement 11 pousse sur le plan d'impulsion de palette PIM de la palette d'entrée 121.
  • La figure 10 montre l'échappement 10 en cours de phase d'impulsion, à la transition entre l'impulsion du bec de dent 112a sur le plan de palette et l'impulsion de plan de dent sur bec de palette. La cheville 130 continue à tourner dans le sens anti-horaire et le second plan de fourchette 122b continue à pousser la cheville 130 dans le sens anti-horaire. La roue d'échappement 11 continue également à tourner dans le sens horaire et actionne la cheville 130 par l'intermédiaire de l'ancre 12. La seconde partie de phase d'impulsion, et avec elle la première impulsion, se termine lorsque le bec de palette 128 rejoint le talon de dent 112b de la roue d'échappement 11 (voir aussi la figure 4a).
  • La figure 11 montre l'échappement 10 pendant une première chute de la roue d'échappement 11 et une seconde chute de fourchette 122 se produisant à la fin de la phase d'impulsion. Cette transition est identique à celle d'un échappement à ancre conventionnel pour la chute de la roue d'échappement 11. Cependant, dans un échappement conventionnel, il n'y a pas de seconde chute de fourchette 122 car la cheville 130 quitte la fourchette 122 à la fin de l'impulsion sans rejoindre le premier plan de fourchette 122a. Dans la présente transition, la cheville 130 continue à tourner dans le sens anti-horaire. La cheville 130 quitte le second plan de fourchette 122b car l'ancre 12 n'est plus actionnée par la roue d'échappement 11. Une dent 112 de la roue d'échappement 11 se sépare de l'extrémité du plan d'impulsion de palette PIM de la palette d'entrée 121. La roue d'échappement 11 chute, c'est-à-dire tourne dans le vide, et va rejoindre le plan de repos frottant de palette PRF de la palette de sortie 127.
  • Durant cette transition correspondant à la chute de la roue d'échappement et de la seconde chute de fourchette, la position angulaire de l'élément inertiel correspond approximativement à la position angulaire de fin d'impulsion θIM par rapport à la position de référence de la ligne des centres θ0 (cela correspond au demi-angle de levée ΘLE/2). A la différence d'un échappement conventionnel, l'échappement 10 est caractérisé par un angle de levée ΘLE typiquement d'au plus 6°.
  • La figure 12 montre l'échappement 10 au début d'une seconde phase de repos frottant se produisant après la phase d'impulsion, à la fin de la chute de la roue d'échappement 11 et de la seconde chute de fourchette 122. Cette seconde phase de repos frottant n'existe pas dans un échappement à ancre classique. La cheville 130 continue à tourner dans le sens anti-horaire, rejoint le premier plan de fourchette 122a et pousse la fourchette 122 pour s'en dégager. La roue d'échappement 11 est bloquée par l'ancre 12 mais pivote très légèrement dans le sens horaire du fait du tirage. L'ancre 12 pivote toujours dans le sens horaire sous l'action de la cheville 130. Le bec de dent 112a de la dent 112 de la roue d'échappement 11 va donc frotter contre le plan de repos frottant de palette PRF de la palette de sortie 127. Il y a donc un contact frottant entre la roue d'échappement 11 et l'ancre 12 et entre l'ancre 12 et la cheville 130.
  • Ici, l'expression "contact frottant" signifie qu'au point de contact entre la dent 112 et le plan de repos frottant de palette PRF et entre la cheville 130 et le premier plan de fourchette 122a, il y a un déplacement relatif régulier entre ces pièces d'échappement pendant la première et la seconde phase de repos frottant.
  • Pendant la seconde phase de repos frottant, la position angulaire de l'élément inertiel va de la position angulaire de fin d'impulsion θIM jusqu'à la position angulaire de fin du second repos frottant θRF2.
  • La figure 13 montre l'échappement 10 à la fin de la seconde phase de repos frottant. La cheville 130 a terminé de pousser le premier plan de fourchette 122a et s'en libère. L'ancre 12 n'a pas encore rejoint la butée de sortie 125b, le tirage n'est donc pas terminé. Une dent 112 de la roue d'échappement 11 est en appui sur le plan de repos frottant de palette PRF de la palette de sortie 127. La roue d'échappement 11 transmet un couple à l'ancre 12 qui lui permet de pivoter toujours dans le sens horaire pour rejoindre la butée de sortie 125b et sa position de repos.
  • Pendant le tirage, la position angulaire de l'élément inertiel est légèrement supérieure à la position angulaire de fin du second repos frottant θRF2. Similairement aux chutes, on ne considère pas, dans ce document, le tirage comme une phase de l'échappement à proprement parlé.
  • La figure 14 montre l'échappement 10 pendant une seconde phase d'oscillation libre se produisant après la seconde phase de repos frottant. La cheville 130 est libre et va le rester jusqu'à la prochaine phase de repos frottant. La fourchette 122 de l'ancre 12 a rejoint la butée de sortie 125b. La roue d'échappement 11 est bloquée par l'ancre 12 et sont tous deux à l'arrêt. Pendant la seconde phase d'oscillation libre il n'y a pas de contact entre la cheville 130 et la fourchette 122. Un contact entre la cheville 130 et la fourchette 122 se produit pendant la seconde phase de repos frottant.
  • Pendant la seconde phase d'oscillation libre, la position angulaire de l'élément inertiel est supérieure à la position angulaire de fin du second repos frottant θRF2.
  • La figure 15 montre l'échappement 10 au début de la première phase de repos frottant, lorsque l'oscillateur oscille dans le sens horaire. Cette phase n'existe pas dans un échappement à ancre classique. La cheville 130, qui tourne dans le sens horaire, rencontre le second plan de fourchette 122b de l'ancre 12 qui s'apprête à tourner dans le sens anti-horaire. Dans cette position, si le système était à l'arrêt, c'est le couple élastique de l'oscillateur qui ferait tourner l'échappement 10. La roue d'échappement 11 est bloquée par l'ancre 12 et ne peut pas avancer. Lorsque l'ancre 12 tourne, sous l'action de la cheville 130 sur le second plan de fourchette 122b de la fourchette 122, la roue d'échappement 11 va reculer légèrement, repoussée par le plan de repos frottant de palette PRF de la palette de sortie 127.
  • Pendant la première phase de repos frottant, l'élément inertiel pivote depuis la position angulaire de début du premier repos frottant θRF1 à la position angulaire de début de dégagement θDE.
  • La cheville 130 est donc configurée pour pousser la fourchette 122 durant la première phase de repos frottant et la seconde phase de repos frottant. Pendant ces phases, une dent 112 de la roue d'échappement 11 est en contact frottant contre le plan de repos frottant de palette PRF de la palette d'entrée 121 ou de la palette de sortie 127. La cheville 130 n'est pas en contact avec la fourchette 122 sur les portions d'oscillations libres de l'élément inertiel, précédant la première phase de repos frottant et suivant la seconde phase de repos frottant.
  • Il faut noter que l'auto-démarrage de l'échappement 10 ne dépend pas de l'angle de repos frottant ΘRF mais uniquement de l'angle de levée ΘLE. Ainsi comme l'ajout de ces phases de repos frottant permet de réduire l'angle de levée ΘLE, l'échappement proposé facilite considérablement l'auto-démarrage de l'oscillateur. La présence de la première phase de repos frottant et de la première phase d'oscillation libre permet de caractériser l'échappement 10 comme un échappement semi-libre. L'échappement 10 est également auto-démarrant.
  • L'échappement 10 peut être configuré pour que l'angle de repos frottant ΘRF, correspondant à la portion d'oscillation depuis la position angulaire de l'élément inertiel du début du premier repos frottant θRF1 jusqu'à la position angulaire de fin du second repos frottant θRF2, soit d'au plus 12°.
  • Les mêmes phases que celles décrites ci-dessus se reproduisent lorsque l'oscillateur oscille dans le sens horaire.
  • On notera que pour que la première et la seconde phase de repos frottant puissent se produire, l'échappement doit être configuré pour que la cheville 130 soit en contact avec la fourchette 122 de manière à la pousser lorsque la position angulaire de l'élément inertiel par rapport à la ligne des centre θ0 est plus petite que le demi-angle de repos frottant ΘRF/2 et plus grand que le demi-angle de levée ΘLE/2. Plus particulièrement, le premier plan de fourchette 122a et le second plan de fourchette 122b doivent être dimensionnés pour qu'ils puissent être engagés avec la cheville 130 dans cette plage angulaire.
  • Démarrage et faibles amplitudes
  • Au démarrage de l'oscillateur 2 ou en fonctionnement à amplitudes inférieures ou égales au demi-angle de repos frottant ΘRF/2, l'échappement 10 fonctionne comme un échappement à repos frottant. Dans ce mode, les organes anti-renversement sont inutiles puisque la cheville ne quitte pas la fourchette. Si l'échappement 10 peut pousser l'élément inertiel 21 jusqu'à la limite du demi-angle de levée ΘLE/2 (correspondant à la position angulaire de fin d'impulsion θIM), alors le système est auto-démarrant. La cinématique de l'échappement 10 au démarrage de l'oscillateur ou en fonctionnement à amplitudes inférieures ou égales à un demi-angle de repos frottant à ΘRF/2 est illustré aux figures 16a-16c lorsque l'oscillateur oscille dans le sens horaire et aux figures 16d à 16f lorsque l'oscillateur oscille dans le sens antihoraire.
  • A la figure 16a, une dent 112 est en appui contre le plan de repos de sortie d'ancre 127a de la palette de sortie 127. Le second plan de fourchette 122b de la fourchette 122 est en contact avec la cheville 130 et suit l'élément inertiel 21 dans son oscillation. Si l'oscillation est suffisamment grande, alors la roue d'échappement 11 esquisse un léger mouvement dû au tirage du plan de repos de sortie d'ancre 127a.
  • A la figure 16b, l'élément inertiel 21 est entré dans l'angle de levée ΘLE et a terminé le dégagement. La fourchette a rattrapé son jeu et pousse la cheville 130 avec le premier plan de fourchette. La dent 112 fournit son impulsion sur la palette de sortie 127, via le plan d'impulsion de sortie d'ancre 127b.
  • A la figure 16c, l'élément inertiel 21 atteint la limite de l'angle de levée ΘLE. A la fin de l'impulsion sur le plan d'impulsion de sortie d'ancre 127b de la palette de sortie 127, une autre dent 112' chute sur le plan de repos d'entrée d'ancre 121a de la palette d'entrée 121. La cheville 130, toujours engagée dans la fourchette 122, entraînant cette dernière avec elle.
  • Les figures 16d-16f illustrent les mêmes phases que les figures 16a-16c, respectivement. Une dent 112 vient en contact avec le plan de repos d'entrée d'ancre 121a de la palette d'entrée 121 (figures 16a et 16b). L'élément inertiel 21 et l'ancre 12 tournent dans le sens contraire au sens illustré aux figures 16a-16c. Lorsque le balancier 21 atteint la limite de l'angle de levée ΘLE (figure 16f), une autre dent 112' chute sur le plan de repos de sortie d'ancre 127a de la palette de sortie 127.
  • Sécurité et suretés
  • Le mécanisme fourchette-cheville de l'échappement 10 doit être doté de sécurités et suretés suffisantes afin d'éviter que l'échappement ne puisse être amené dans une position de blocage. Concrètement, les sécurités et suretés en question sont des distances entre la cheville 130 et la fourchette 122 dans des positions particulières de l'échappement 10 et doivent être dimensionnées en fonction des imprécisions de fabrication et d'assemblage des pièces d'échappement. La figure 17a illustre l'ébat E et la pénétration P de la cheville 130 dans la fourchette 122 dans une position de début d'impulsion (correspond à la position de l'échappement à la figure 9). L'ébat E sert à éviter que la cheville ne se coince dans la fourchette et la pénétration P à garantir que le second plan de fourchette 122b pousse la cheville lors de l'impulsion. La figure 17b illustre l'ébat de dégagement D de la cheville 130 dans la fourchette 122 dans une position de fin de second repos frottant (correspond à la position de la figure 13, au tirage près). L'ébat de dégagement D sert à garantir que la cheville 130 puisse sortir de la fourchette 122. Ce sont ces trois distance (E, P et D) qui deviennent trop petite lorsque l'on construit un échappement à ancre libre traditionnel (sans repos frottant) pour des angles de levée inférieur à 10° environ.
  • Comme montré aux figures 18a et18b , pour des amplitudes d'oscillation de l'élément inertiel 21 au-delà du demi-angle de repos frottant ΘRF/2, la cheville 130 sort de la fourchette 122. L'ancre 12 est alors au repos, en appui contre la butée d'entrée 125a (figure 18a) ou la butée de sortie 125b (figure 18b), et la roue d'échappement 11 reste à l'arrêt. L'échappement 10 doit alors comprendre un organe empêchant le renversement, c'est-à-dire empêchant le basculement de l'ancre 12 qui provoquerait la rencontre entre la cheville 130 de plateau et la corne 123. Un organe empêchant le renversement peut comprendre un dard 124 et/ou une paire de cornes 123. Dans le cas d'un oscillateur 2 destiné à l'échappement 1 décrit ici, ses oscillation ont des amplitudes typiquement faibles : Le dard 124 peut alors se révéler inutile et la paire de cornes 123, ou tout système équivalent, peut suffire. Dans le cas où la fourchette (ou la cheville) est suffisamment large il n'y également pas besoin de dard.
  • Les figures 19a-19f illustrent différentes positions de la fourchette 122 et d'une dent 112 par rapport aux palettes 121, 127, pour des amplitudes d'oscillation de l'élément inertiel 21 au-delà du demi-angle de repos frottant ΘRF/2. En se référant aux figures 19a et 19d, l'élément inertiel 21 parcourt librement son arc supplémentaire. Grâce au tirage de la dent 112 sur le plan de repos frottant de palette PRF de la palette de sortie 127, la fourchette 122 est calée contre la butée de sortie 125b ou contre tout autre organe de limitation. La position de repos est telle qu'au retour de l'élément inertiel 21, la cheville 130 entre librement dans la fourchette 122.
  • En se référant aux figures 19b et 19e, à la suite d'un choc, la fourchette 122 quitte sa position de repos. Le dard 124 et le petit plateau 132 remplissent leur rôle d'organes anti-renversement. La pointe du dard 124 entre en contact avec le petit plateau 132, empêchant l'ancre 12 de passer du mauvais côté. Le bec de dent 112a est toujours en prise avec le plan de repos frottant de palette PRF de la palette de sortie 127. Une fois le choc passé, l'ancre 12 est remise en position de repos grâce au tirage. La cheville 130 passe librement devant la corne 123.
  • En se référant aux figures 19c et 19f, le dard 124 est entré dans l'encoche 132a du petit plateau 132. Dans cette configuration, le dard 124 est inactif et incapable de retenir l'ancre 12. C'est alors la corne 123, bloquée par la cheville 130, qui empêche le renversement en cas de choc. Le bec de dent 112a de la dent 112 est toujours engagée sur le plan de repos frottant de palette PRF de la palette de sortie 127. Une fois le choc passé, l'ancre 12 retrouve sa position d'équilibre grâce au tirage.
  • Autres aspects
  • L'échappement 10 selon l'invention, c'est-à-dire l'ancre 12, la cheville 130, et/ou la roue d'échappement 11, peut être réalisé en silicium en utilisant les techniques de gravure habituelles. Ce matériau possède de nombreux atouts : il ne subit pas de rupture en fatigue, est amagnétique et ne comporte pas de domaine plastique. En outre, le silicium permet de fabriquer des pièces en série avec une grande précision d'usinage, tout en offrant une grande liberté de conception. Alternativement, l'échappement 10 peut être fabriqué en un matériau sélectionné à partir du groupe de matériaux comprenant une céramique, un verre, un alliage ou verre métallique. Par exemple le matériau sélectionné peut comprendre le nitrure de silicium, le carbure de silicium, l'acier, l'or ou l'un de ses alliages, le nickel, le nickel-phosphore, le laiton, l'acier, un alliage amorphe, un alliage cuivreux, le cuivre-béryllium, ou le maillechort.
  • Comme l'échappement 10 peut être configuré pour que l'angle de repos frottant ΘRF soit d'au plus 12°, et que les cornes 123 peuvent empêcher tout renversement de l'ancre jusqu'à une amplitude de 36°, ainsi l'ancre 12 peut ne pas comprendre le dard 124. Il est alors possible de fabriquer l'ancre 12 sur un seul niveau, c'est-à-dire que l'ancre 12 peut être comprise dans un seul plan, sans le dard 124 fixé sur un niveau au-dessus (ou au-dessous) du niveau de l'ancre 12 et de la fourchette 122.
  • Exemples d'implémentation
  • Le régulateur 1 décrit ici est particulièrement adapté à un oscillateur 2 sur guidage flexible. Un exemple d'intégration de l'échappement 10 à un oscillateur de type CR3 tel que décrit dans le brevet EP3299905B1 par la présente demanderesse est illustré à la figure 20 . La figure 21 montre un détail de l'échappement 10.
  • Dans cet exemple, la cheville 130 qui interagit avec l'ancre 12, ainsi que les butées 125a, 125b, sont directement intégrées dans l'élément inertiel 21 de l'oscillateur 2. Outre la cheville 130 interagissant avec l'ancre 12, l'oscillateur 2 comprend un élément de rappel élastique comprenant un pivot flexible comportant des lames flexibles 22. Le pivot flexible 22 assure à la fois le rôle de rappel élastique et de guidage en rotation de l'élément inertiel 21. Le pivot flexible 22 est d'un côté fixé à une platine (non-représentée) et de l'autre lié à l'élément inertiel 21.
  • L'oscillateur 2 a typiquement 20° d'amplitude. Les cornes 123 peuvent empêcher tout renversement de l'ancre 12 jusqu'à une amplitude de 36°, ainsi un dard est inutile dans cet exemple. L'angle de repos frottant ΘRF est d'environ 10° et l'angle de levée ΘLE est d'environ 5°.
  • Il est possible de substituer l'oscillateur de type CR3 par un oscillateur de type Wittrick tel que décrit dans le brevet EP3299905B1 par la présente demanderesse.
  • Bien sûr, ces deux exemples ne sont pas limitatifs et, par sa conception, le présent échappement n'est pas limité à une famille spécifique d'oscillateurs sur guidages flexibles.
  • Numéros de référence employés sur les figures
  • 1
    régulateur mécanique horloger
    10
    échappement
    11
    roue d'échappement
    112, 112'
    dent
    112a
    bec de dent
    112b
    talon de dent
    12
    ancre
    121
    palette d'entrée
    122
    fourchette
    122a
    premier plan de fourchette
    122b
    second plan de fourchette
    123
    corne
    124
    dard
    125
    butée
    125a
    butée d'entrée
    125b
    butée de sortie
    126
    axe de pivotement de l'ancre
    127
    palette de sortie
    128
    bec d'impulsion de la palette
    130
    came d'impulsion, cheville
    131
    plateau
    132
    petit plateau
    132a
    encoche du petit plateau
    2
    oscillateur
    21
    élément inertiel, balancier
    22
    élément de rappel élastique, lame flexible
    23
    axe d'oscillateur
    θDE
    position angulaire de début de dégagement
    θIM
    position angulaire de fin d'impulsion
    θRF1
    position angulaire de début du premier repos frottant
    θRF2
    position angulaire de fin du second repos frottant
    ΘLE
    angle de levée
    ΘLI
    angle d'oscillation libre
    ΘRF
    angle de repos frottant
    Ao
    amplitude d'oscillation
    M
    couple
    PDE
    plan de dégagement de palette
    PIM
    plan d'impulsion de palette
    PRF
    plan de repos frottant de palette
    E
    ébat entre la fourchette et la cheville
    P
    pénétration de la cheville dans la fourchette
    D
    ébat de dégagement de la cheville

Claims (10)

  1. Régulateur mécanique horloger (1) comprenant un échappement (10) coopérant avec un oscillateur pourvu d'un élément inertiel (21) oscillant dans un plan d'oscillation grâce à un élément de rappel élastique (22);
    l'échappement (10) comprenant une cheville (130) liée rigidement à l'élément inertiel (21), une ancre (12) et une roue d'échappement (11); l'ancre (12) comportant une fourchette (122) configurée pour coopérer avec la cheville (130), une palette d'entrée (121) et une palette de sortie (127), chacune des palettes (121, 127) étant configurées pour coopérer avec des dents (112) de la roue d'échappement (11);
    l'échappement étant configuré de sorte que, pendant une phase de dégagement, la cheville (130) pousse la fourchette (122) afin de libérer la roue d'échappement (11) de l'une des palettes (121, 127) et, pendant une phase d'impulsion, la fourchette (122) pousse la cheville (130) afin de transmettre à l'élément inertiel (21) le couple de la roue d'échappement (11) qui est en contact avec l'une des palettes (121, 127);
    caractérisé en ce que
    le régulateur est configuré de sorte que la phase de dégagement est précédée d'une première phase de repos frottant, elle-même précédée par une première phase d'oscillation libre, et la phase d'impulsion est suivie par une seconde phase de repos frottant, elle-même suivie d'une seconde phase d'oscillation libre;
    pendant chacune des phases d'oscillation libre, l'élément inertiel (21) oscille librement sans contact entre la cheville (130) et la fourchette (122); et pendant la première et seconde phase de repos frottant, la cheville (130) est en contact avec la fourchette (122) de manière à la pousser, une dent (112) de la roue d'échappement (11) étant en contact frottant avec l'une des palettes (121, 127).
  2. Le régulateur (1) selon la revendication 1,
    dans lequel la fourchette (122) comporte un plan de fourchette (122a, 122b) qui est dimensionné pour qu'il puisse être engagé avec la cheville (130) pendant la première et seconde phase de repos frottant.
  3. Le régulateur (1) selon la revendication 1 ou 2,
    configuré de manière à ce que la cheville n'est pas en contact avec la fourchette pendant les phases d'oscillation libre.
  4. Le régulateur (1) selon l'une des revendications 1 à 3,
    dans lequel chaque palette (121, 127) est dotée d'un plan de dégagement (PDE) venant en contact avec une dent (112) pendant la phase de dégagement, et d'un plan d'impulsion (PIM) venant en contact avec une dent (112) pendant la phase d'impulsion; et
    dans lequel chacune des palettes (121, 127) est en outre dotée d'un plan de repos frottant (PRF) configuré pour venir en contact frottant avec une dent (112) pendant la première et seconde phase de repos frottant.
  5. Le régulateur (1) selon la revendication 4,
    dans lequel le plan de repos frottant de palette (PRF) est configuré pour bloquer la roue d'échappement (11) lorsque la cheville (130) est en contact avec la fourchette (122).
  6. Le régulateur (1) selon la revendication 4 ou 5,
    dans lequel le plan de repos frottant de palette (PRF) est à tirage.
  7. Le régulateur (1) selon l'une des revendications 1 à 6,
    dans lequel un angle de levée (ΘLE), correspondant à la portion d'oscillation de l'élément inertiel (21) où le dégagement de la roue d'échappement et l'impulsion de l'échappement à l'élément inertiel se produisent, est d'au plus 6°.
  8. Le régulateur (1) selon l'une des revendications 1 à 7,
    dans lequel un angle de repos frottant (ΘRF) correspondant à la portion d'oscillation de l'élément inertiel (21) du début du premier repos frottant jusqu'à la fin du second repos frottant, est d'au plus 12°.
  9. Le régulateur (1) selon l'une des revendications 1 à 8,
    dans lequel au moins l'un de l'ancre (12), la cheville (130), et la roue d'échappement (11) est fabriqué en silicium.
  10. Le régulateur selon l'une des revendications 1 à 9,
    dans lequel l'oscillateur (2) comprend un oscillateur sur guidage flexible.
EP21200709.0A 2021-10-04 2021-10-04 Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée Pending EP4160323A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21200709.0A EP4160323A1 (fr) 2021-10-04 2021-10-04 Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée
US17/937,808 US20230106693A1 (en) 2021-10-04 2022-10-04 Mechanical regulator for horology comprising a semi-detached self-starting escapement with low lift angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21200709.0A EP4160323A1 (fr) 2021-10-04 2021-10-04 Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée

Publications (1)

Publication Number Publication Date
EP4160323A1 true EP4160323A1 (fr) 2023-04-05

Family

ID=78078062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21200709.0A Pending EP4160323A1 (fr) 2021-10-04 2021-10-04 Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée

Country Status (2)

Country Link
US (1) US20230106693A1 (fr)
EP (1) EP4160323A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035126A1 (fr) 2014-12-18 2016-06-22 The Swatch Group Research and Development Ltd. Résonateur d'horlogerie à lames croisées
CH714361A2 (fr) 2017-11-22 2019-05-31 Eta Sa Mft Horlogere Suisse Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre.
EP3545365A1 (fr) 2016-11-23 2019-10-02 ETA SA Manufacture Horlogère Suisse Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre
EP3299905B1 (fr) 2016-09-27 2020-01-08 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Oscillateur mécanique pour un mouvement d'horloge
CH715589A1 (fr) 2018-11-27 2020-05-29 Lvmh Swiss Mft Sa Echappement à repos frottant.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035126A1 (fr) 2014-12-18 2016-06-22 The Swatch Group Research and Development Ltd. Résonateur d'horlogerie à lames croisées
EP3299905B1 (fr) 2016-09-27 2020-01-08 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Oscillateur mécanique pour un mouvement d'horloge
EP3545365A1 (fr) 2016-11-23 2019-10-02 ETA SA Manufacture Horlogère Suisse Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre
CH714361A2 (fr) 2017-11-22 2019-05-31 Eta Sa Mft Horlogere Suisse Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre.
CH715589A1 (fr) 2018-11-27 2020-05-29 Lvmh Swiss Mft Sa Echappement à repos frottant.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORLOGERIE-SUISSE.COM: "Les angles parcourus par l'échappement", 25 February 2014 (2014-02-25), pages 1 - 9, XP055899871, Retrieved from the Internet <URL:https://www.horlogerie-suisse.com/technique/cours-d-echappement/les-angles-parcourus-par-l-echappement#:~:text=L%27angle%20de%20lev%C3%A9e%20virtuel%20de%20l%27ancre%20(th%C3%AAta,11%C2%B0%20et%2013%C2%B0.> [retrieved on 20220310] *

Also Published As

Publication number Publication date
US20230106693A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
EP2553533B2 (fr) Dispositif de blocage pour roue dentée
EP2105806B1 (fr) Mécanisme d&#39;échappement
EP2224292B1 (fr) Echappement à impulsion directe, notamment à détente, pour mouvement d&#39;horlogerie
EP1708046B1 (fr) Echappement à détente pour pièce d&#39;horlogerie
WO2018095997A9 (fr) Resonateur rotatif a guidage flexible entretenu par un echappement libre a ancre
CH709328B1 (fr) Echappement, mouvement de pièce d&#39;horlogerie et pièce d&#39;horlogerie.
EP3153935B1 (fr) Mecanisme d&#39;echappement a detente d&#39;horlogerie a force constante
EP3686693B1 (fr) Regulateur horloger mecanique
CH713530A2 (fr) Echappement, mouvement de pièce d&#39;horlogerie et pièce d&#39;horlogerie.
EP3584641B1 (fr) Échappement à détente auto-démarrant et sécurisé pour pièce d&#39;horlogerie
EP4160323A1 (fr) Régulateur mécanique horloger comprenant un échappement semi-libre auto-démarrant à faible angle de levée
CH710925B1 (fr) Mécanisme d&#39;échappement.
CH714361A2 (fr) Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre.
EP3781993B1 (fr) Mécanisme d&#39;échappement direct libre pour piece d&#39;horlogerie
EP2660661B1 (fr) Mécanisme d&#39;échappement libre pour mouvement d&#39;horloger, mouvement et/ou pièce d&#39;horlogerie comportant ce mécanisme d&#39;échappement
CH712288B1 (fr) Dard bi-fonctionnel, dispositif de verrouillage et de sécurisation pour pièce d&#39;horlogerie, et échappement horloger.
EP3475765B1 (fr) Echappement d&#39;horlogerie
CH712084B1 (fr) Détente pour un mécanisme d&#39;échappement libre d&#39;un mouvement d&#39;horlogerie.
CH713531A2 (fr) Echappement, mouvement de pièce d&#39;horlogerie et pièce d&#39;horlogerie.
EP3475763B1 (fr) Echappement d&#39;horlogerie
EP4286959A1 (fr) Oscillateur horloger à pivot flexible
EP3492996A1 (fr) Echappement d&#39;horlogerie a lame bistable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231004

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR