EP4150023A1 - Verfahren zum strukturellen verbinden von elektrisch leitfähigen kunststoffsubstraten mit hitzehärtenden klebstoffen, insbesondere in kombination mit metallischen substraten - Google Patents

Verfahren zum strukturellen verbinden von elektrisch leitfähigen kunststoffsubstraten mit hitzehärtenden klebstoffen, insbesondere in kombination mit metallischen substraten

Info

Publication number
EP4150023A1
EP4150023A1 EP21724681.8A EP21724681A EP4150023A1 EP 4150023 A1 EP4150023 A1 EP 4150023A1 EP 21724681 A EP21724681 A EP 21724681A EP 4150023 A1 EP4150023 A1 EP 4150023A1
Authority
EP
European Patent Office
Prior art keywords
substrate
electrically conductive
substrates
adhesive composition
conductive plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21724681.8A
Other languages
English (en)
French (fr)
Inventor
Dusko PARIPOVIC
Ilona SIMON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sika Technology AG
Original Assignee
Sika Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Technology AG filed Critical Sika Technology AG
Publication of EP4150023A1 publication Critical patent/EP4150023A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3416Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/344Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a woven or non-woven fabric or being a mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3492Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/782Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined
    • B29C65/7823Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined by using distance pieces, i.e. by using spacers positioned between the parts to be joined and forming a part of the joint
    • B29C65/7826Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined by using distance pieces, i.e. by using spacers positioned between the parts to be joined and forming a part of the joint said distance pieces being non-integral with the parts to be joined, e.g. particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/524Joining profiled elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73111Thermal expansion coefficient
    • B29C66/73112Thermal expansion coefficient of different thermal expansion coefficient, i.e. the thermal expansion coefficient of one of the parts to be joined being different from the thermal expansion coefficient of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/354Applications of adhesives in processes or use of adhesives in the form of films or foils for automotive applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the invention relates to the field of thermosetting adhesive compositions, especially for connecting substrates with different thermal expansion coefficients, especially in the shell of Trans port means or white goods.
  • thermosetting adhesive compositions have long been known. An important area of application of heat-curing adhesive compositions is found in vehicle construction, especially when bonding in the shell construction of means of transport or white goods. In both cases, after the application of the adhesive compositions, the bonded object is heated in an oven, as a result of which the thermosetting adhesive composition is also cured.
  • the heating of the bonded objects is connected with a considerable energy consumption and large investment costs for suitable shell ovens.
  • the curing step in the oven at temperatures of 120 - 220 ° C causes the two substrates to expand to different lengths.
  • the cured adhesive composition especially in the case of adhesive compositions based on epoxy resin, creates a high tension, which either leads to failure of the adhesive connection, deformation of the substrates or what is known as “freezing” of the tension in the adhesive connection leads.
  • Such “freezing” causes the adhesive bond to react significantly during its service life more sensitive to static, dynamic and shock loads, which can lead to a weakening of the adhesive bond.
  • the object of the present invention is therefore to provide a curing process with lower energy consumption and lower investment costs, which in particular allows structural bonding by means of heat-curing the adhesive compositions of substrates with different thermal coefficients of linear expansion and enables reduced stress in the cured adhesive compositions.
  • the present invention relates to a method for bonding heat-stable substrates, which comprises the steps: i) applying a thermosetting adhesive composition KL to the surface of a first substrate S1, ii) contacting the applied thermosetting adhesive composition KL with the surface of a second substrate S2 - kind that the applied thermosetting adhesive composition KL is arranged between the two substrates S1 and S2, one or both substrates, in particular only one substrate, being an electrically conductive plastic substrate KS, and the thickness of the applied thermosetting adhesive composition KL after step ii) is> 0.1 mm, preferably> 0.3 mm, preferably> 0.5 mm, in particular> 1 mm; iii) heating the at least one electrically conductive plastic substrate KS by resistance heating.
  • a “toughness improver” is understood to mean an additive to an epoxy resin matrix which results in a significant increase in toughness even with small additions of> 5% by weight, in particular> 10% by weight, based on the total weight of the epoxy resin compositions acts and is therefore able to withstand higher bending, tensile, impact or shock loads before the matrix tears or breaks.
  • molecular weight means the molar mass (in grams per mole) of a molecule.
  • Average molecular weight is the number-average molecular weight M n of an oligomeric or polymeric mixture of molecules, which is usually determined using GPC against polystyrene as the standard.
  • a “primary hydroxyl group” is an OH group that is bonded to a carbon atom with two hydrogens.
  • the term “primary amino group” refers to an NH2 group that is bonded to an organic radical
  • the term “secondary amino group” refers to an NH group attached to two organic radicals which can also be part of a ring together , is bound. Accordingly, an amine which has a primary amino group is referred to as a “primary amine”, an amine with a secondary amino group is correspondingly referred to as a “secondary amine” and one with a tertiary amino group is referred to as a “tertiary amine”.
  • room temperature a temperature of 23 ° C is referred to as “room temperature”.
  • Heat-stable materials are understood to mean, in particular, materials which are dimensionally stable at a curing temperature of 100-220 ° C., preferably 120-200 ° C., at least during the curing time.
  • the curing step in the oven at temperatures of 120 - 220 ° C leads to this that the two substrates expand to different lengths.
  • a high level of tension arises in the cured adhesive composition, which either leads to failure of the adhesive bond, deformation of the substrates or what is known as “freezing” of the tension in the adhesive bond.
  • One or both substrates S1 and S2, in particular only one substrate, are an electrically conductive plastic substrate KS.
  • Electrically conductive fiber-reinforced plastics are particularly preferred as electrically conductive plastic substrates KS.
  • thermosetting resins in particular thermosetting epoxy resins
  • thermosetting epoxy resins of less than 5% by weight, preferably less than 1% by weight, preferably less than 0.1% by weight .-%, in particular less than 0.01% by weight, based on the total weight of the conductive plastic substrate KS.
  • thermosetting resins in particular thermosetting epoxy resins
  • Such plastic substrates containing resins in the uncured state are disadvantageous in that they have lower structural properties and are more difficult to handle because of their stickiness.
  • These electrically conductive fiber-reinforced plastics preferably consist of a flat carrier material, in particular fleeces or mats, made of fibers embedded in a plastic matrix. It is preferably an already hardened plastic matrix.
  • the flat carrier material made of fibers and / or the plastic matrix can be electrically conductive.
  • Electrically conductive flat carrier materials made of fibers are preferably metal fibers, carbon fibers and conductive textile fibers (in particular textile fibers coated with metal), in particular carbon fibers.
  • Electrically conductive plastic matrices in particular thermosets or thermoplastics, in particular thermosets, preferably contain electrically conductive polymers and / or electrically conductive particles, in particular -electrically conductive particles based on metal, particularly preferably based on copper, and / or
  • -electrically conductive particles based on glass, plastic, ceramics, metal ceramics, alloys, minerals and rocks, which either themselves are electrically conductive or are made conductive by a suitable coating of noble metals or non-noble metals, in particular electrically conductive carbon black or graphene.
  • They are preferably electrically conductive fiber-reinforced plastics selected from the list consisting of glass fiber, aramid fiber, Ba salt fiber and carbon fiber reinforced plastics, carbon fiber reinforced plastics are particularly preferred.
  • These carbon fiber-reinforced plastics preferably consist of the electrically conductive carbon fibers and a conductive or non-conductive plastic matrix, in particular a non-conductive plastic matrix, particularly preferably an epoxy resin matrix.
  • the electrically conductive plastic substrate KS is preferably a material which can be heated by resistance heating at 20 ° C. by more than 30 Kelvin, in particular more than 50 Kelvin.
  • the electrically conductive plastic substrate KS is preferably a material with a specific electrical resistance of 1-150, 5-100, in particular 10-75 W mm 2 / m.
  • the specific electrical resistance is preferably the specific electrical resistance at 20 ° C.
  • the metallic substrate MS is preferably a metal selected from the list consisting of steel, in particular electrolytically galvanized, hot-dip galvanized, oiled steel, Bonazink-coated steel and subsequently phosphated steel, and aluminum, in particular aluminum.
  • the difference in the coefficient of thermal expansion (AO) between the two substrates S1 and S2 is preferably 8-30 * 10 -6 [K _1 ], especially especially 10-25 * 10 6 [K _1 ], 15-25 * 10 -6 [K 1 ], particularly preferably 20-25 * 10 6 [K 1 ].
  • the previously mentioned coefficients of linear expansion (AO) are preferably coefficients of linear expansion
  • the coefficient of thermal expansion ( ⁇ a) is preferably determined using a dilatometer.
  • thermosetting adhesive composition KL is preferably a thermosetting adhesive composition KL selected from the group consisting of acrylate adhesive compositions, polyurethane adhesive compositions and epoxy adhesive compositions, preferably polyurethane adhesive compositions and epoxy adhesive compositions, in particular epoxy adhesive compositions.
  • Possible heat-curing polyurethane adhesive compositions are, for example, one-component polyurethane adhesive compositions comprising surface-deactivated polyisocyanates and at least one isocyanate-reactive component, one component preferably being of a polymeric nature.
  • a surface-inactivated polyisocyanate can be a polyisocyanate inactivated by the formation of a polyadduct with H-active compounds, by inclusion in cage components (molecular sieves) or by encapsulation.
  • thermosetting adhesive composition KL is preferably a thermosetting epoxy adhesive composition, particularly preferably a one-component thermosetting epoxy resin composition comprising: a) at least one epoxy resin A with an average of more than one epoxy group per molecule; and b) at least one latent hardener for epoxy resins B.
  • the epoxy resin A with an average of more than one epoxy group per mole is preferably a liquid epoxy resin or a solid epoxy resin.
  • the loading griff “solid epoxy resin” is well known to the epoxy specialist and is used in contrast to “liquid epoxy resins”.
  • the glass transition temperature of solid resins is above room temperature, ie they can be comminuted into free-flowing powders at room temperature.
  • Preferred epoxy resins have the formula (II)
  • the substituents R 'and R' stand independently of one another either for Fl or CFh.
  • the index s stands for a value of> 1.5, in particular from 2 to 12.
  • Such solid epoxy resins are commercially available, for example from Dow or Fluntsman or Flexion.
  • the index s stands for a value of less than 1.
  • Be preferably s stands for a value of less than 0.2.
  • DGEBA diglycidyl ethers of bisphenol-A
  • Such liquid resins are available, for example, as Araldite® GY 250, Araldite® PY 304, Araldite® GY 282 (Fluntsman) or D.E.R. TM 331 or D.E.R. TM 330 (Dow) or Epikote 828 (Flexion).
  • epoxy novolaks are also suitable as epoxy resin A.
  • the epoxy resin A is preferably a liquid epoxy resin of the formula (II).
  • the thermosetting epoxy resin composition contains both at least one liquid epoxy resin of the formula (II) with s ⁇ 1, in particular less than 0.2, and at least one Solid epoxy resin of the formula (II) with s> 1.5, in particular from 2 to 12.
  • the proportion of epoxy resin A is preferably 10-60% by weight, in particular 30-50% by weight, based on the total weight of the epoxy resin composition.
  • the epoxy resin A is an aforementioned liquid epoxy resin. It is also advantageous if 0-40% by weight, in particular 20-40% by weight, of the epoxy resin A is an aforementioned solid epoxy resin.
  • the thermosetting epoxy resin composition contains at least one latent hardener B for epoxy resins. This is activated by an elevated temperature, preferably at temperatures of 70 ° C. or more.
  • This is preferably a hardener which is selected from the group consisting of dicyandiamide; Guanidines; Anhydrides of polybasic carboxylic acids; Dihydrazides and aminoguanidines.
  • the hardener B dicyandiamide, is particularly preferred.
  • the amount of latent hardener B for epoxy resins is advantageously 0.1-30% by weight, in particular 0.2-10% by weight, preferably 1-10% by weight, especially preferably 5-10% by weight, based on the weight of the epoxy A.
  • the thermosetting epoxy resin composition preferably additionally contains at least one accelerator C for epoxy resins.
  • accelerator C for epoxy resins are preferably substituted ureas, such as 3- (3-chloro-4-methylphenyl) -1, 1-dimethylurea (chlorotoluron) or phenyl-dimethylureas, especially p-chlorophenyl-N, N-dimethylurea (Monuron ), 3-phenyl-1,1-dimethylurea (fenuron) or 3,4-dichlorophenyl-N, N-dimethylurea (diuron).
  • 3--3-chloro-4-methylphenyl) -1, 1-dimethylurea (chlorotoluron) or phenyl-dimethylureas especially p-chlorophenyl-N, N-dimethylurea (Monuron ), 3-phenyl-1,1-dimethylurea (fenuron) or 3,4-dichloroph
  • the accelerator C for epoxy resins is preferably selected from the list consisting of substituted ureas, imidazoles, imidazolines and amine complexes.
  • the accelerator C for epoxy resins is particularly preferably selected from the list consisting of substituted ureas and amine complexes, in particular when the latent hardener B is a guanidine, in particular special dicyandiamide.
  • the one-component heat-curing epoxy resin composition preferably contains at least one toughness improver D.
  • the toughness improver D can be solid or liquid.
  • the toughness improver D is selected from the group consisting of terminally blocked polyurethane polymers D1, liquid rubbers D2 and core-shell polymers D3.
  • the toughness ratio is preferred better D is selected from the group consisting of terminally blocked polyurethane polymers D1 and liquid rubbers D2. Particularly before given it is a terminally blocked polyurethane polymer D1.
  • the toughness improver D is a terminally blocked polyurethane polymer D1, it is preferably a terminally blocked polyurethane prepolymer of the formula (I).
  • R 1 stands for a p-valent radical of a linear or branched polyurethane prepolymer terminated with isocyanate groups after the terminal isocyanate groups have been removed, and p stands for a value of 2 to 8.
  • R 2 independently of one another stand for a substituent which is selected from the group consisting of
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl or cycloalkyl or aralkyl or arylalkyl group, or R 5 forms together with R 6 , or R 7 together with R 8 , form part of a 4- to 7-membered ring which is optionally substituted.
  • R 9 ' and R 10 each independently stand for an alkyl or aralkyl or arylalkyl group or for an alkyloxy or aryloxy or aralkyloxy group and R 11 for an alkyl group.
  • R 12 , R 13 and R 14 each independently represent an alkylene group having 2 to 5 carbon atoms, which optionally has double bonds or is substituted, or a phenylene group or a hydrogenated phenylene group.
  • R 15 , R 16 and R 17 each independently represent H or an alkyl group or an aryl group or an aralkyl group and R 18 represents an aralkyl group or a mononuclear or polynuclear substituted or unsubstituted aromatic group, which may be an aromatic hydroxyl group having pen.
  • R 4 stands for a radical of an aliphatic, cycloaliphatic, aromatic or araliphatic epoxide containing a primary or secondary hydroxyl group after the removal of the hydroxyl and epoxide groups
  • m stands for a value of 1, 2 or 3.
  • phenols or polyphenols, in particular bisphenols are to be considered in particular after removal of a hydroxyl group.
  • Preferred examples of such phenols and bisphenols are in particular phenol, creole, resorcinol, pyrocatechol, cardanol (3-pentadecenylphenol (from cashew nut shell oil)), nonylphenol, phenols reacted with styrene or dicyclopentadiene, bis-phenol- A, bis-phenol-F and 2,2'-diallyl-bisphenol-A.
  • hydroxybenzyl alcohol and benzyl alcohol after removal of a hydroxyl group are to be considered as R 18.
  • R 5 , R 6 , R 7 , R 8 , R 9 , R 9 ' , R 10 , R 11 , R 15 , R 16 or R 17 is an alkyl group, this is in particular a linear or branched Ci-C2o- Alkyl group. If R 5 , R 6 , R 7 , R 8 , R 9 , R 9 ' , R 10 , R 15 , R 16 , R 17 or R 18 stand for an aralkyl group, this grouping is in particular an aromatic group bonded via methylene, especially a benzyl group.
  • R 5 , R 6 , R 7 , R 8 , R 9 , R 9 ' or R 10 stands for an alkylaryl group, this is in particular a C1 to C2o alkyl group bonded via phenylene, such as, for example, tolyl or xylyl.
  • radicals R 2 are preferably the substituents of the formulas
  • radicals R 2 are radicals which are selected from the group consisting of and
  • the radical Y here stands for a saturated, aromatic or olefinically unsaturated hydrocarbon radical with 1 to 20 carbon atoms, in particular with 1 to 15 carbon atoms.
  • Y are in particular allyl, methyl, nonyl, dodecyl, Phenyl, alkyl ethers, carboxylic acid esters or an unsaturated cis-alkyl radical with 1 to 3 double bonds are preferred.
  • R 2 is ⁇ - R.
  • the terminally blocked polyurethane prepolymer of the formula (I) is prepared from the isocyanate-terminated linear or branched polyurethane prepolymer with one or more isocyanate-reactive compounds R 2 H. If several such isocyanate-reactive compounds are used, the reaction can be sequential or with a mixture of these compounds.
  • the reaction is preferably carried out in such a way that the one or more isocyanate-reactive compounds R 2 H are used stoichiometrically or in a stoichiometric excess in order to ensure that all of the NCO groups have converted.
  • the polyurethane prepolymer with isocyanate end groups, on which R 1 is based, can be prepared from at least one diisocyanate or triisocyanate and from a polymer QPM with terminal amino, thiol or hydroxyl groups and / or from an optionally substituted polyphenol Qpp.
  • Suitable diisocyanates are aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanates, in particular commercially available products such as methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), tolidine diisocyanate (TM), diisocyanate IP-diisocyanate (TODI), isophorone diisocyanate (TODI), isophorone diisocyanate (TODI), isophorone diisocyanate (TODI), isophorone diisocyanate (TODI) ), 2,5- or 2,6-bis- (isocyanatomethyl) - bicyclo [2.2.1] heptane, 1,5-naphthalene diisocyanate (NDI), dicyclohexylmethyl diisocyanate (H12MDI), p-phenylene diisocyanate (PPDI
  • Suitable triisocyanates are trimers or biurets of aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanates, in particular the isocyanurates and biurets described in the previous paragraph. benen diisocyanates. Suitable mixtures of di- or triisocyanates can of course also be used.
  • Particularly suitable polymers QPM with terminal amino, thiol or hydroxyl groups are polymers QPM with two or three terminal amino, thiol or hydroxyl groups.
  • the polymers QPM advantageously have an equivalent weight of 300-6000, in particular 600-4000, preferably 700-2200 g / equivalent of NCO-reactive groups.
  • Preferred polymers QPM are polyols with average molecular weights between 600 and 6000 Daltons selected from the group consisting of polyethylene glycols, polypropylene glycols, polyethylene glycol-polypropylene glycol block polymers, polybutylene glycols, hydroxyl-terminated polybutadienes, hydroxyl-terminated butadiene-acrylonitrile copolymers and mixtures thereof.
  • Particularly preferred polymers QPM are ⁇ , w-dihydroxypolyalkylene glycols with C2-C6-alkylene groups or with mixed C2-C6-alkylene groups which are terminated with amino, thiol or, preferably, hydroxyl groups.
  • Polypropylene glycols or polybutylene glycols are particularly preferred.
  • Also particularly preferred are hydroxyl group-terminated polyoxybutylenes.
  • Bis-, tris- and tetraphenols are particularly suitable as the polyphenol Qpp.
  • This is understood to mean not only pure phenols, but also, if appropriate, substituted phenols.
  • the type of substitution can be very diverse. In particular, this is understood to mean a substitution directly on the aromatic nucleus to which the phenolic OH group is attached.
  • Phenols are also understood to mean not only mononuclear aromatics, but also polynuclear or condensed aromatics or heteroaromatics which have the phenolic OH group directly on the aromatic or heteroaroma.
  • the polyurethane prepolymer is produced from at least one diisocyanate or triisocyanate and from a polymer QPM with terminal amino, thiol or hydroxyl groups.
  • the polyurethane prepolymer is produced in a manner known to the person skilled in the polyurethane, in particular by adding the diisocyanate or triisocyanate is used in a stoichiometric excess with respect to the amino, thiol or hydroxyl groups of the polymer QPM.
  • the polyurethane prepolymer with isocyanate end groups preferably has elastic character. It preferably shows a glass transition temperature Tg of less than 0 ° C.
  • the toughness improver D can be a liquid rubber D2. This can be a carboxyl or epoxy terminated polymer, for example.
  • this liquid rubber can be a carboxyl- or epoxy-terminated acrylonitrile / butadiene copolymer or a derivative thereof.
  • Such liquid rubbers are commercially available, for example, under the names Hypro / Hypox® CTBN and CTBNX and ETBN from Emerald Performance Materials.
  • As derivatives are in particular elastomer-modified prepolymers containing epoxy groups, such as those under the Struktol® product line, in particular from the Polydis®, Polycavit®, Polyvertec® product line, from the Struktol® company (Schill + Seilacher Group, Germany) or under the product line Albipox (Evonik, Germany) are commercially available, suitable.
  • this liquid rubber can be a polyacrylate liquid rubber which is completely miscible with liquid epoxy resins and only separates into microdroplets when the epoxy resin matrix cures.
  • polyacrylate liquid rubbers are available, for example, under the designation 20208-XPA from Dow.
  • liquid rubbers in particular mixtures of carboxyl- or epoxy-terminated acrylonitrile / butadiene copolymers or of derivatives thereof.
  • the toughness improver D can be a core-shell polymer D3.
  • Core-shell polymers consist of an elastic core polymer and a rigid shell polymer.
  • Particularly suitable core-shell polymers consist of a core (core) made of elastic acrylate or butadiene polymer, which is a rigid shell (shell) of a rigid thermoplastic see Polymers enveloped.
  • This core-shell structure is either formed spontaneously through the segregation of a block copolymer or is specified by the polymerization process as latex or suspension polymerization with subsequent grafting.
  • Preferred core-shell polymers are so-called MBS polymers, which are commercially available under the trade name KaneAce TM from Kaneka, Clearstrength TM from Arkema, Paraloid TM from Dow or F-351 TM from Zeon.
  • the proportion of toughness improver D is preferably 5-50% by weight, 10-40% by weight, particularly preferably 15-30% by weight, based on the total weight of the epoxy resin composition.
  • the composition additionally contains at least one filler F.
  • This is preferably mica, talc, kaolin, wollastonite, feldspar, syenite, chlorite, bentonite, montmorillonite, calcium carbonate (precipitated or ground), dolomite, quartz , Silica (pyrogenic or precipitated), cristobalite, calcium oxide, aluminum hydroxide, magnesium oxide, hollow ceramic spheres, hollow glass spheres, organic hollow spheres, glass spheres, color pigments.
  • the total proportion of the total filler F is advantageously 5-40% by weight, preferably 10-30% by weight, based on the total weight of the epoxy resin composition.
  • a particularly preferred one-component epoxy resin composition comprises:
  • At least one latent hardener for epoxy resins B preferably selected from dicyandiamide, guanidines, anhydrides of polybasic carboxylic acids, dihydrazides, and aminoguanidines, and their derivatives, dicyandiamide being preferred;
  • At least one accelerator C selected from the list consisting of substituted ureas, imidazoles, imidazolines and amine complexes, in particular selected from the list consisting of substituted ureas and amine complexes, especially preferably substituted ureas;
  • At least one aforementioned toughness improver D preference being given to those which were previously described as preferred toughness improver D, preferably the proportion of toughness improver D is 20-60% by weight, 25-55% by weight, particularly preferably 30 -50% by weight, based on the total weight of the epoxy resin composition;
  • a filler F selected, preferably from the group consisting of wollastonite, calcium carbonate, calcium oxide, colored pigments, especially carbon black, and pyrogens Silicas, in particular calcium carbonate, calcium oxide and pyrogenic silicas;
  • the preferred thermosetting epoxy resin composition is more than 80% by weight, preferably more than 90% by weight, in particular more than 95% by weight, particularly preferably more than 98% by weight, most preferably more than 99% by weight, based on the total weight of the epoxy resin composition, consists of the aforementioned components.
  • thermosetting epoxy resin composition has a viscosity at 25 ° C. of 100-10,000 Pa * s, in particular 500-5000 Pa * s, preferably 1000-3000 Pa * s. This is advantageous in that it ensures good applicability.
  • the viscosity measurement is preferably carried out on a rheometer of the type MCR 101 from the manufacturer Anton Paar in an oscillatory manner using a plate-plate geometry at a temperature of 25 ° C with the following parameters: 5 Hz, 1 mm gap, plate-plate distance 25 mm, 1 % Deformation.
  • thermosetting epoxy resin compositions KL which in the cured state:
  • -a tensile shear strength especially measured according to DIN EN 1465, of more than 10 MPa, more than 15 MPa, more than 20 MPa, and / or -a tensile strength, especially measured according to DIN EN ISO 527, of more than 10 MPa, more than 15 MPa, more than 20 MPa, and / or an elongation at break, in particular measured according to DIN EN ISO 527, of more than 10%, more than 20%, more than 30%, in particular 30-200%, especially preferably 30-150%, and / or
  • an impact peel strength in particular measured according to ISO 11343, of more than 30 N / mm, more than 40 N / mm, more than 60 N / mm at 23 ° C, and / or
  • angle peel strength in particular measured according to DIN 53281, of more than 5 N / mm, more than 8 N / mm, more than 10 N / mm.
  • the thermosetting adhesive composition KL is preferably applied to the surface of a first substrate S1 in the form of adhesive beads with a thickness of 5 - 50 mm, in particular 7.5 - 30 mm, preferably 10 - 20 mm and a length of 5 - 500 cm, in particular 10-200 cm, preferably 20-100 cm.
  • the heat-curing adhesive composition KL is preferably applied in an automated process, in particular by an application robot. This is for example An advantage over a circular or square application that this leads to a reduction in the contact area between the two substrates S1 and S2 by means of the applied thermosetting adhesive composition KL.
  • this reduces the area of thermal bridges due to the adhesive composition KL, which allow a heat transfer, which can lead to a greater difference in the length expansion of the two subsections S1 and S2. On the other hand, this reduces the amount of hardened adhesive composition and thus the amount of potentially "frozen" stress in the adhesive bond.
  • the thickness of the applied thermosetting adhesive composition KL after step ii) and / or step iii) is> 0.3 mm, preferably> 0.5 mm, preferably> 1 mm, in particular> 1.5 mm.
  • the thickness is preferably ⁇ 5 mm, preferably ⁇ 4 mm, preferably ⁇ 3 mm, in particular ⁇ 2.5 mm.
  • the thickness is preferably determined on the basis of the cross section which runs through the bond of the two substrates with the adhesive composition. The thickness preferably corresponds to the average distance between the two substrates S1 and S2 in contact with the thermosetting adhesive composition.
  • the thermosetting adhesive composition KL is preferably applied to less than 30% of the total surface of a first substrate S1, in particular to less than 20%, less than 10%, less than 5%, in particular less than 3% Total surface of a first substrate S1.
  • This is advantageous in that it leads to a reduction in the contact area between the two substrates S1 and S2 by means of the applied thermosetting adhesive composition KL.
  • this reduces the area of thermal bridges due to the adhesive composition KL, which allow a heat transfer, which can lead to a greater difference in the length expansion of the two substrates S1 and S2.
  • this reduces the amount of cured adhesive composition and thus the amount of potentially “frozen” stress in the adhesive bond.
  • step i) the application of the heat-curing adhesive composition KL to more than 0.01% of the total surface of a first substrate S1, in particular to more than 0.1%, more than 0.5%, more than 1%, in particular more than 2% of the total surface of a first substrate S1 takes place.
  • each of the two substrates S1 and S2 in particular at the point of contact with the applied heat-curing adhesive compositions, has a thickness of> 0.5 mm, preferably> 0.75 mm, in particular> 1 mm, preferably the thickness is ⁇ 5 mm, preferably ⁇ 4 mm, especially ⁇ 3 mm.
  • the thickness is preferably determined on the basis of the cross section which runs through the composite of the two substrates with the adhesive composition.
  • the method according to the invention is preferably a method for vehicle construction and sandwich panel construction, in particular for vehicle construction, particularly preferably automobile construction, most preferably in the body shell of automobiles.
  • step iii) the at least one electrically conductive plastic substrate KS is heated by resistance heating.
  • the at least one electrically conductive plastic substrate KS is heated to a temperature of 100-220 ° C, in particular 120-200 ° C, preferably between 140 and 200 ° C, particularly preferably between 150 and 190 ° C.
  • the electrically conductive plastic substrate KS for 5 minutes to 6 hours, preferably 10 minutes to 2 hours, preferably 10 minutes to 60 minutes, preferably 10 minutes to 30 minutes, particularly preferably 10 minutes to 20 minutes aforementioned temperature is left.
  • the samples produced by means of electrical resistance heating have higher tensile shear strength values, in particular when the adhesive layer is thicker.
  • the curing time was at the Resistance hardening takes less than half as long as flitz hardening in the oven, which is a huge time saver. This can be seen, for example, in the results of the tensile shear strength measurement in Table 2.
  • FIGS. 1 and 2 schematic cross-sections of the structure of the mixed composite structures made of an aluminum profile and a CFRP plate are shown, which will be mentioned in the following experimental part. They show:
  • a bonded article results from such a method mentioned above.
  • Such an article is preferably a vehicle or part of a vehicle.
  • a further aspect of the present invention therefore relates to a bonded article obtained from the aforementioned method.
  • sealing compounds can also be realized with an aforementioned composition in addition to heat-curing adhesives.
  • the method according to the invention is not only suitable for automobile construction but also for other areas of application. Particularly noteworthy are related applications in the construction of means of transport such as ships, trucks, buses or rail vehicles or in the construction of consumer goods such as washing machines.
  • the materials bonded by means of an aforementioned composition occur at temperatures between typically 120 ° C and -40 ° C, preferably between 100 ° C and -40 ° C, in particular between 80 ° C and -40 ° C.
  • the fixed maximum input current for the individual phase is: 6A, 10A, 16A.
  • FIGS. 1 and 2 To visualize the Da tension, as shown in FIGS. 1 and 2, a simplified composite construction was assembled from an aforementioned aluminum profile (1) and an aforementioned CFRP plate (2) and either in an oven (FIG. 1) or cured by means of Sika Carbo Hea ter 2 ( Figure 2).
  • the length of the CFRP plate in the structure in FIG. 1 was 600 mm, in the structure in FIG. 2800 mm (additional space for attaching the electrodes).
  • the spacers (4) thickness 1 mm
  • the screws (3) used and the fixing clamp (6) are materials that are insulated from the flow of heat and current.
  • CFRP-1 On a CFRP plate, close to the adhesive CFRP-2: On a CFRP plate, close to the gap CFRP-3: On a CFRP plate, close to the screws AI-1: On an aluminum profile, close to the adhesive AI-2 : On aluminum profile, near the gap AI-3: On aluminum profile, near the screws
  • a test sheet made of steel (DC04) (50 mm x 10 mm x 3 mm) was placed on an adhesive surface of 25 x 10 mm (with glass spheres as spacers) with a layer thickness of 0.3 mm or 3.0 mm, using the adhesive composition according to Table 1 glued to a CFRP plate (CARBODUR S626) (50 mm x 10 mm x 3.2 mm) and cured under the specified curing conditions.
  • the samples produced by means of electrical resistance heating have higher tensile shear strength values, in particular when the adhesive layer is thicker.
  • the hardening time for resistance hardening was less than half as long as for heat hardening in the oven, which represents a major time saver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Verklebung von hitzestabilen Substraten, welches die Schritte umfasst: i) Applizieren einer hitzehärtenden Klebstoffzusammensetzung KL auf die Oberfläche eines ersten Substrates S1, ii) Kontaktieren der applizierten hitzehärtenden Klebstoffzusammensetzung KL mit der Oberfläche eines zweiten Substrates S2, wobei es sich bei einem oder beiden Substraten, insbesondere bei nur einem Substrat, um ein elektrisch leitfähiges Kunststoffsubstrat KS handelt; iii) Erhitzen des mindestens einen elektrisch leitfähigen Kunststoffsubstrates KS durch Widerstandsheizen. Die Erfindung stellt ein Aushärtungsverfahren mit geringerem Energieverbrauch und tieferen Investitionskosten zur Verfügung, welches insbesondere ein strukturelles Verbinden mittels hitzehärtender Klebstoffzusammensetzungen von Substraten mit unterschiedlichen thermischen Längenausdehnungskoeffizienten erlaubt und verringerte Spannung in den ausgehärteten Klebstoffzusammensetzungen ermöglicht.

Description

VERFAHREN ZUM STRUKTURELLEN VERBINDEN VON ELEKTRISCH LEITFÄHIGEN KUNSTSTOFFSUBSTRATEN MIT HITZEHÄRTENDEN KLEBSTOFFEN, INSBESONDERE IN KOMBINATION MIT METALLISCHEN
SUBSTRATEN
Technisches Gebiet
Die Erfindung betrifft das Gebiet der hitzehärtenden Klebstoffzusammenset zungen, insbesondere für das Verbinden von Substraten mit unterschiedlichen thermischen Ausdehnungskoeffizienten, insbesondere im Rohbau von Trans portmitteln oder Weisswaren.
Stand der Technik
Hitzehärtende Klebstoffzusammensetzungen sind seit langem bekannt. Ein wichtiges Einsatzgebiet von hitzehärtenden Klebstoffzusammensetzungen fin det sich im Fahrzeugbau, insbesondere beim Verkleben im Rohbau von Transportmitteln oder Weisswaren. In beiden Fällen wird nach der Applikation der Klebstoffzusammensetzungen der verklebte Gegenstand in einem Ofen erhitzt, wodurch auch die hitzehärtende Klebstoffzusammensetzungen ausge härtet wird.
Die Erhitzung der verklebten Gegenstände ist mit einem beträchtlichen Ener gieverbrauch und grossen Investitionskosten für geeignete Rohbauöfen ver bunden. Ein weiteres Problem stellt sich insbesondere, wenn zwei Substrate mit unterschiedlichen thermischen Längenausdehnungskoeffizienten durch strukturelle Verklebung miteinander verbunden werden. Dabei führt der Aus härtungsschritt im Ofen bei Temperaturen von 120 - 220°C dazu, dass sich die beiden Substrate auf unterschiedliche Längen ausdehnen. Bei der nachfolgen den Abkühlung entsteht dadurch in der ausgehärteten Klebstoffzusammenset zungen, insbesondere bei Klebstoffzusammensetzungen basierend auf Epo xidharz, eine hohe Spannung, welche entweder zum Versagen der Klebstoff verbindung, zu einer Verformung der Substrate oder zu einem sogenannten „Einfrieren“ der Spannung in der Klebverbindung führt. Durch ein solches „Ein frieren“ reagiert die Klebverbindung während der Lebensdauer wesentlich empfindlicher auf statische, dynamische und Stoßbelastungen, was zu einer Schwächung der Klebverbindung führen kann.
Es besteht deshalb ein Bedürfnis nach Aushärtungsverfahren, welche mit ge ringerem Energieverbrauch und tieferen Investitionskosten auskommen. Es besteht zudem ein Bedürfnis nach Verfahren zum strukturellen Verbinden von Substraten mit unterschiedlichen thermischen Längenausdehnungskoeffizien ten mittels hitzehärtender Klebstoffzusammensetzungen, welche einerseits ausreichende mechanische Eigenschaften für strukturelles Verbinden sicher stellen und andererseits zu Verbunden führen, welche die bei der klassischen Hitzehärtung in Öfen auftretenden hohen Spannungen reduzieren.
Darstellung der Erfindung
Aufgabe der vorliegenden Erfindung ist es daher, ein Aushärtungsverfahren mit geringerem Energieverbrauch und tieferen Investitionskosten zur Verfügung zu stellen, welches insbesondere ein strukturelles Verbinden mittels hitzehärten der Klebstoffzusammensetzungen von Substraten mit unterschiedlichen ther mischen Längenausdehnungskoeffizienten erlaubt und verringerte Spannung in den ausgehärteten Klebstoffzusammensetzungen ermöglicht.
Diese Aufgabe konnte überraschenderweise durch ein erfindungsgemässes Verfahren gemäss Anspruch 1 gelöst werden.
Weitere Aspekte der Erfindung sind Gegenstand weiterer unabhängiger An sprüche. Besonders bevorzugte Ausführungsformen der Erfindung sind Ge genstand der abhängigen Ansprüche.
Wege zur Ausführung der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren zur Verklebung von hitzestabi len Substraten, welches die Schritte umfasst: i) Applizieren einer hitzehärtenden Klebstoffzusammensetzung KL auf die Oberfläche eines ersten Substrates S1, ii) Kontaktieren der applizierten hitzehärtenden Klebstoffzusam mensetzung KL mit der Oberfläche eines zweiten Substrates S2 der- art, dass die applizierte hitzehärtende Klebstoffzusammensetzung KL zwischen den beiden Substraten S1 und S2 angeordnet ist, wobei es sich bei einem oder beiden Substraten, insbesondere bei nur einem Substrat, um ein elektrisch leitfähiges Kunststoffsubstrat KS handelt, und wobei die Dicke der applizierten hitzehärtenden Klebstoffzusam mensetzung KL nach dem Schritt ii) > 0.1 mm, vorzugsweise > 0.3 mm, vorzugsweise > 0.5 mm, insbesondere > 1 mm, beträgt; iii) Erhitzen des mindestens einen elektrisch leitfähigen Kunst stoffsubstrates KS durch Widerstandsheizen.
In diesem Dokument ist die Verwendung des Terms „unabhängig voneinander“ in Zusammenhang mit Substituenten, Reste oder Gruppen dahin gehend aus zulegen, dass in demselben Molekül die gleich bezeichneten Substituenten, Resten oder Gruppen gleichzeitig mit unterschiedlicher Bedeutung auftreten können.
Unter einem „Zähigkeitsverbesserer“ wird in diesem Dokument ein Zusatz zu einer Epoxidharzmatrix verstanden, der bereits bei geringen Zuschlägen von > 5 Gew.-%, insbesondere > 10 Gew.-%, bezogen auf das Gesamtgewicht der Epoxidharzzusammensetzungen, eine deutliche Zunahme der Zähigkeit be wirkt und somit in der Lage ist, höhere Biege-, Zug-, Schlag- oder Stossbean- spruchung aufzunehmen, bevor die Matrix einreisst oder bricht.
Die Vorsilbe „Poly“ in Substanzbezeichnungen wie „Polyol“, „Polyisocyanat“, „Polyether“ oder „Polyamin“ weist im vorliegenden Dokument darauf hin, dass die jeweilige Substanz formal mehr als eine der in ihrer Bezeichnung vorkom menden funktionellen Gruppe pro Molekül enthält.
Unter „Molekulargewicht“ versteht man im vorliegenden Dokument die molare Masse (in Gramm pro Mol) eines Moleküls. Als „mittleres Molekulargewicht“ wird das zahlenmittlere Molekulargewicht Mn einer oligomeren oder polymeren Mischung von Molekülen bezeichnet, welches üblicherweise mittels GPC ge gen Polystyrol als Standard bestimmt wird.
Als „primäre Hydroxylgruppe“ wird eine OH-Gruppe bezeichnet, welche an ein C-Atom mit zwei Wasserstoffen gebunden ist. Der Begriff „primäre Aminogruppe“ bezeichnet im vorliegenden Dokument eine NH2-Gruppe, die an einen organischen Rest gebunden ist, während der Begriff „sekundäre Aminogruppe“ eine NH-Gruppe bezeichnet, die an zwei organische Reste, welche auch gemeinsam Teil eines Rings sein können, gebunden ist. Demzufolge wird ein Amin, welches eine primäre Aminogruppe aufweist, als „primäres Amin“ bezeichnet, ein solches mit einer sekundären Aminogruppe wird entsprechend als „sekundäres Amin“ und ein solches mit einer tertiären Aminogruppe als „tertiäres Amin“ bezeichnet.
Als „Raumtemperatur“ wird im vorliegenden Dokument eine Temperatur von 23°C bezeichnet.
Unter «hitzestabilen Materialien» werden insbesondere Materialien verstanden, welche bei einer Aushärtetemperatur von 100 - 220°C, vorzugsweise 120 - 200°C zumindest während der Aushärtezeit formstabil sind.
Werden zwei Substrate, beispielsweiser Metalle oder faserverstärkte Kunst stoffe, mit unterschiedlichen thermischen Längenausdehnungskoeffizienten { ) durch strukturelle Verklebung, insbesondere im Karosserierohbau, mitei nander verbunden, führt der Aushärtungsschritt im Ofen bei Temperaturen von 120 - 220°C, beispielsweise beim Durchlaufen eines Konvektionsofens, dazu, dass sich die beiden Substrate auf unterschiedliche Längen ausdehnen. Bei der nachfolgenden Abkühlung, beispielsweise beim Durchlaufen von Abkühl zonen, entsteht dadurch in der ausgehärteten Klebstoffzusammensetzungen eine hohe Spannung, welche entweder zum Versagen der Klebstoffverbin dung, zu einer Verformung der Substrate oder zu einem sogenannten „Einfrie ren“ der Spannung in der Klebverbindung führt.
Beim Widerstandsheizen wird die Wärme erzeugt, indem ein leitfähiges Mate rial durch Anlegen einer Spannung von Strom durchflossen wird und sich durch die Joulesche Wärme erhitzt. Je höher der spezifische Widerstand des ver wendeten Materials, desto kürzere Heizleiter können eingesetzt werden. Es handelt sich bei einem oder beiden Substraten S1 und S2, insbesondere bei nur einem Substrat, um ein elektrisch leitfähiges Kunststoffsubstrat KS.
Als elektrisch leitfähige Kunststoffsubstrate KS sind insbesondere elektrisch leitfähige faserverstärkte Kunststoffe bevorzugt.
Vorzugsweise handelt es sich um leitfähige Kunststoffsubstrate KS, welche zum Zeitpunkt von Schritt i) einen Anteil von hitzehärtenden Harzen, insbeson dere hitzehärtenden Epoxidharzen, von weniger als 5 Gew.-%, vorzugsweise weniger als 1 Gew.-%, vorzugsweise weniger als 0.1 Gew.-%, insbesondere weniger als 0.01 Gew.-%, bezogen auf das Gesamtgewicht des leitfähigen Kunststoffsubstrates KS, aufweist. Solche Kunststoffsubstrate enthaltend Har ze im unausgehärteten Zustand sind dahingehend von Nachteil, dass sie ge ringere strukturelle Eigenschaften aufweisen und aufgrund ihrer Klebrigkeit aufwändiger zu handhaben sind.
Diese elektrisch leitfähigen faserverstärkten Kunststoffe bestehend vorzugs weise aus einem flächigen Trägermaterial, insbesondere Vliese oder Matten, aus Fasern eingebettet in eine Kunststoffmatrix. Vorzugsweise handelt es sich um eine bereits ausgehärtete Kunststoffmatrix.
Dabei kann das flächige Trägermaterial aus Fasern und/oder die Kunststoff matrix elektrisch leitfähig sein.
Elektrisch leitfähige flächige Trägermaterialien aus Fasern sind vorzugsweise Metallfasern, Kohlestofffasern und leitfähige textile Fasern (insbesondere mit Metall beschichtete textile Fasern), insbesondere Kohlestofffasern.
Elektrisch leitfähige Kunststoffmatrizes, insbesondere Duroplaste oder Ther moplaste, insbesondere Duroplaste, enthalten vorzugsweise elektrisch leitfähi ge Polymere und/oder elektrisch leitfähige Partikel, insbesondere -elektrisch leitfähige Partikel auf Metallbasis, besonders bevorzugt auf Kupfer basis, und/oder
-elektrisch leitfähige Partikel auf der Basis von Glas, Kunststoff, Keramik, Me tallkeramik, Legierungen, Mineralen und Gesteinen, die entweder selbst elektrisch leitend sind oder durch eine geeignete Beschichtung aus Edelmetal len oder Nichtedelmetallen leitfähig werden, insbesondere elektrisch leitfähige Russe oder Graphen.
Vorzugsweise handelt es sich um elektrisch leitfähige faserverstärkte Kunst stoffe ausgewählt aus der Liste bestehend aus Glasfaser-, Aramidfaser-, Ba saltfaser- und Kohlestofffaserverstärkten Kunststoffen, besondere bevorzugt sind Kohlestofffaserverstärkte Kunststoffe.
Diese Kohlenstofffaserverstärkte Kunststoffe bestehen vorzugsweise aus den elektrisch leitfähigen Kohlenstofffasern und einer leitfähigen oder nicht leitfähigen Kunststoffmatrix, insbesondere einer nicht-leitfähigen Kunststoff matrix, besonders bevorzugt einer Epoxidharzmatrix.
Vorzugsweise handelt es sich bei dem elektrisch leitfähigen Kunststoffsubstrat KS um ein Material, welches durch Widerstandsheizen bei 20 °C um mehr als 30 Kelvin, insbesondere mehr als 50 Kelvin, erwärmt werden kann.
Vorzugsweise handelt es sich bei dem elektrisch leitfähigen Kunststoffsubstrat KS um ein Material mit einem spezifischen elektrischen Widerstand von 1 - 150, 5 - 100, insbesondere 10 - 75 W mm2/m. Vorzugsweise handelt es sich bei dem spezifischen elektrischen Widerstand um den spezifischen elektri schen Widerstand bei 20°C.
Bei dem metallischen Substrat MS handelt es sich vorzugsweise um Metalle ausgewählt aus der Liste bestehend aus Stahl, insbesondere elektrolytisch verzinkter, feuerverzinkter, beölter Stahl, Bonazink-beschichteter Stahl und nachträglich phosphatierter Stahl, und Aluminium, insbesondere um Alumini um.
Der Unterschied im thermischen Längenausdehnungskoeffizient (AO) zwischen den beiden Substraten S1 und S2 beträgt vorzugsweise 8 - 30 * 10-6 [K_1], ins- besondere 10 - 25 * 106 [K_1], 15 - 25 * 10-6 [K 1], besonders bevorzugt 20 - 25 * 106 [K 1]. Vorzugsweise handelt es sich bei den vorgehend genannten Längenausdehnungskoeffizienten (AO) um Längenausdehnungskoeffizienten
(Da) bei 20°C. Die Bestimmung der thermischen Längenausdehnungskoeffi zienten (ώa) erfolgt vorzugsweise mit Hilfe eines Dilatometers.
Bei der hitzehärtenden Klebstoffzusammensetzung KL handelt es sich vor zugsweise um eine hitzehärtende Klebstoffzusammensetzung KL ausgewählt aus der Gruppe bestehend aus Acrylat- Klebstoffzusammensetzungen, Po lyurethan-Klebstoffzusammensetzungen und Epoxy- Klebstoffzusammensetzungen, bevorzugt Polyurethan- Klebstoffzusammensetzungen und Epoxy-Klebstoffzusammensetzungen, ins besondere Epoxy-Klebstoffzusammensetzungen.
Mögliche hitzehärtende Polyurethan-Klebstoffzusammensetzungen sind bei spielsweise einkomponentige Polyurethan-Klebstoffzusammensetzungen umfassend oberflächendesaktivierte Polyisocyanate und mindestens eine iso- cyanatreaktive Komponente, wobei bevorzugt eine Komponente polymerer Natur ist. Ein oberflächeninaktiviertes Polyisocyanat kann sowohl ein durch Bildung eines Polyadduktes mit H-aktiven Verbindungen, ein durch Einschluss in Käfigkomponenten (Molsiebe) oder ein durch Verkapselung inaktiviertes Po lyisocyanat sein.
Vorzugsweise handelt es sich bei der hitzehärtenden Klebstoffzusammenset zung KL um eine hitzehärtende Epoxy-Klebstoffzusammensetzungen, beson ders bevorzugt um eine einkomponentige hitzehärtende Epoxidharzzusam mensetzung umfassend: a) mindestens ein Epoxidharz A mit durchschnittlich mehr als einer Epo xidgruppe pro Molekül; und b) mindestens einen latenten Härter für Epoxidharze B.
Das Epoxidharz A mit durchschnittlich mehr als einer Epoxidgruppe pro Mole kül ist vorzugsweise ein Epoxid-Flüssigharz oder ein Epoxid-Festharz. Der Be- griff „Epoxid-Festharz“ ist dem Epoxid-Fachmann bestens bekannt und wird im Gegensatz zu „Epoxid-Flüssigharzen“ verwendet. Die Glastemperatur von Festharzen liegt über Raumtemperatur, d.h. sie lassen sich bei Raumtempe ratur zu schüttfähigen Pulvern zerkleinern. Bevorzugte Epoxidharze weisen die Formel (II) auf
Hierbei stehen die Substituenten R’ und R” unabhängig voneinander entweder für Fl oder CFh.
Bei Epoxid-Festharzen steht der Index s für einen Wert von > 1.5, insbesonde re von 2 bis 12. Derartige Epoxid-Festharze sind kommerziell erhältlich beispielsweise von Dow oder Fluntsman oder Flexion.
Verbindungen der Formel (II) mit einem Index s von 1 bis 1.5 werden vom Fachmann als Semisolid-Epoxidharze bezeichnet. Für die hier vorliegende Er findung werden sie ebenfalls als Festharze betrachtet. Bevorzugt als Epoxid- Festharze sind jedoch Epoxidharze im engeren Sinn, d.h. wo der Index s einen Wert von > 1.5 aufweist.
Bei Epoxid-Flüssigharze steht der Index s für einen Wert von kleiner als 1. Be vorzugt steht s für einen Wert von kleiner als 0.2.
Es handelt sich somit vorzugsweise um Diglycidylether von Bisphenol-A (DGEBA), von Bisphenol-F sowie von Bisphenol-A/F. Solche Flüssigharze sind beispielsweise als Araldite® GY 250, Araldite® PY 304, Araldite® GY 282 (Fluntsman) oder D.E.R.™ 331 oder D.E.R.™ 330 (Dow) oder Epikote 828 (Flexion) erhältlich.
Weiterhin geeignet als Epoxidharz A sind sogenannte Epoxid-Novolake. Diese weisen insbesondere die folgende Formel auf: oder CH2, R1 =
H oder Methyl und z = 0 bis 7.
Insbesondere handelt es sich hierbei um Phenol- oder Kresol-Epoxid-Novolake (R2 = CH2). Solche Epoxidharze sind unter dem Handelnamen EPN oder ECN sowie Tac- tix® von Huntsman oder unter der Produktereihe D.E.N.™ von Dow Chemical kommerziell erhältlich.
Bevorzugt stellt das Epoxidharz A ein Epoxid-Flüssigharz der Formel (II) dar. In einer besonders bevorzugten Ausführungsform enthält die hitzehärtende Epoxidharzzusammensetzung sowohl mindestens ein Epoxid-Flüssigharz der Formel (II) mit s < 1 , insbesondere kleiner als 0.2, als auch mindestens ein Epoxid-Festharz der Formel (II) mit s > 1.5, insbesondere von 2 bis 12.
Der Anteil von Epoxidharzes A beträgt vorzugsweise 10 - 60 Gew.-%, insbe- sondere 30 - 50 Gew.-%, bezogen auf das Gesamtgewicht der Epoxidharzzu sammensetzung.
Weiter ist es vorteilhaft, wenn es sich bei 60-100 Gew.-%, insbesondere 60-80 Gew.-%, des Epoxidharzes A um ein vorgenanntes Epoxid-Flüssigharz han delt. Weiter ist es vorteilhaft, wenn es sich bei 0-40 Gew.-%, insbesondere 20-40 Gew.-%, des Epoxidharzes A um ein vorgenanntes Epoxid-Festharz handelt.
Die hitzehärtende Epoxidharzzusammensetzung enthält mindestens einen la tenten Härter B für Epoxidharze. Dieser wird durch erhöhte Temperatur akti- viert, vorzugsweise bei Temperaturen von 70°C oder mehr. Es handelt sich hierbei vorzugsweise um einen Härter, welcher ausgewählt ist aus der Gruppe bestehend aus Dicyandiamid; Guanidine; Anhydride von mehrwertigen Carbonsäuren; Dihydrazide und Aminoguanidine.
Besonders bevorzugt ist der Härter B Dicyandiamid.
Die Menge des latenten Härter B für Epoxidharze, beträgt vorteilhaft 0.1 - 30 Gew.-%, insbesondere 0.2 - 10 Gew.-%, bevorzugt 1 - 10 Gew.-%, insbeson dere bevorzugt 5 - 10 Gew.-%, bezogen auf das Gewicht des Epoxidharzes A.
Vorzugsweise enthält die hitzehärtende Epoxidharzzusammensetzung zusätz lich mindestens einen Beschleuniger C für Epoxidharze. Solche beschleuni gend wirksame Härter sind vorzugsweise substituierte Harnstoffe, wie bei spielsweise 3-(3-Chlor-4-methylphenyl)-1 ,1-dimethylharnstoff (Chlortoluron) oder Phenyl-Dimethylharnstoffe, insbesondere p-Chlorphenyl-N,N- dimethylharnstoff (Monuron), 3-Phenyl-1,1-dimethylharnstoff (Fenuron) oder 3,4-Dichlorphenyl-N,N-dimethylharnstoff (Diuron). Weiterhin können Verbin dungen der Klasse der Imidazole, wie 2-lsopropylimidazol oder 2-Hydroxy-N- (2-(2-(2-hydroxyphenyl)-4,5-dihydroimidazol-1-yl)ethyl)benzamid, Imidazoline und Amin-Komplexe eingesetzt werden.
Vorzugsweise ist der Beschleuniger C für Epoxidharze ausgewählt aus der Liste bestehend aus substituierten Harnstoffen, Imidazolen, Imidazolinen und Amin-Komplexen.
Besonders bevorzugt ist der Beschleuniger C für Epoxidharze ausgewählt aus der Liste bestehend aus substituierten Harnstoffen und Amin-Komplexen, ins besondere wenn es sich bei dem latenten Härter B um ein Guanidin, insbe sondere Dicyandiamid, handelt.
Die einkomponentige hitzehärtende Epoxidharzzusammensetzung enthält vor zugsweise mindestens einen Zähigkeitsverbesserer D. Die Zähigkeitsver besserer D können fest oder flüssig sein.
Insbesondere ist der Zähigkeitsverbesserer D ausgewählt ist aus der Gruppe bestehend aus endständig blockierten Polyurethanpolymeren D1, Flüssigkaut schuken D2 und Core-Shell-Polymeren D3. Bevorzugt ist der Zähigkeitsver- besserer D ausgewählt ist aus der Gruppe bestehend aus endständig blockier ten Polyurethanpolymeren D1 und Flüssigkautschuken D2. Besonders bevor zugt handelt es sich um ein endständig blockiertes Polyurethanpolymer D1. Handelt es sich bei dem Zähigkeitsverbesserer D um ein endständig blockier tes Polyurethanpolymer D1, handelt es sich vorzugsweise um ein endständig blockiertes Polyurethanprepolymer der Formel (I).
Hierbei steht R1 für einen p-wertigen Rest eines mit Isocyanatgruppen ter minierten linearen oder verzweigten Polyurethanprepolymers nach dem Ent- fernen der endständigen Isocyanatgruppen und p für einen Wert von 2 bis 8. Weiterhin stehen R2 unabhängig voneinander für einen Substituenten, welcher ausgewählt ist aus der Gruppe bestehend aus
1 und
Hierbei steht R5, R6, R7 und R8 je unabhängig voneinander für eine Alkyl- oder Cycloalkyl- oder Aralkyl- oder Arylalkyl-Gruppe, oder R5 bildet zusammen mit R6, oder R7 zusammen mit R8, einen Teil eines 4- bis 7-gliedrigen Rings bilden, welcher gegebenenfalls substituiert ist.
Weiterhin stehen R9’ und R10 je unabhängig voneinander für eine Alkyl- oder Aralkyl- oder Arylalkyl-Gruppe oder für eine Alkyloxy- oder Aryloxy- oder Aral- kyloxy-Gruppe und R11 für eine Alkylgruppe.
R12, R13 und R14 stehen je unabhängig voneinander für eine Alkylengruppe mit 2 bis 5 C-Atomen, welche gegebenenfalls Doppelbindungen aufweist oder substituiert ist, oder für eine Phenylengruppe oder für eine hydrierte Phenylen gruppe.
R15, R16 und R17 stehen je unabhängig voneinander für H oder für eine Alkyl gruppe oder für eine Arylgruppe oder eine Aralkylgruppe und R18 steht für eine Aralkylgruppe oder für eine ein- oder mehrkernige substituierte oder unsub stituierte Aromatengruppe, welche gegebenenfalls aromatische Hydroxylgrup pen aufweist.
Schliesslich steht R4für einen Rest eines eine primäre oder sekundäre Hydro xylgruppe enthaltenden aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Epoxids nach dem Entfernen der Hydroxy- und Epoxidgruppen und m für einen Wert von 1 , 2 oder 3.
Als R18 sind insbesondere einerseits Phenole oder Polyphenole, insbesondere Bisphenole, nach Entfernung einer Hydroxylgruppe zu betrachten. Bevorzugte Bespiele für derartige Phenole und Bisphenole sind insbesondere Phenol, Kre- sol, Resorcinol, Brenzkatechin, Cardanol (3-Pentadecenylphenol (aus Ca- shewnuss-Schalen-ÖI)), Nonylphenol, mit Styrol oder Dicyclopentadien umge setzte Phenole, Bis-Phenol-A, Bis-Phenol-F und 2,2’-Diallyl-bisphenol-A. Als R18 sind andererseits insbesondere Hydroxybenzylalkohol und Benzylalkohol nach Entfernung einer Hydroxylgruppe zu betrachten.
Falls R5, R6, R7, R8, R9, R9’, R10, R11, R15, R16 oder R17 für eine Alkylgruppe steht, ist diese insbesondere eine lineare oder verzweigte Ci-C2o-Alkylgruppe. Falls R5, R6, R7, R8, R9, R9’, R10, R15, R16, R17 oder R18 für eine Aralkylgruppe steht, ist diese Gruppierung insbesondere eine über Methylen gebundene aromatische Gruppe, insbesondere eine Benzylgruppe. Falls R5, R6, R7, R8, R9, R9’oder R10 für eine Alkylarylgruppe steht, ist diese insbesondere eine über Phenylen gebundene Ci- bis C2o-Alkylgruppe, wie bei spielsweise Tolyl oder Xylyl.
Die Reste R2 sind vorzugsweise die Substituenten der Formeln
Als Substituent der Formel ist e-Caprolactam nach Entfernung des NH-Protons bevorzugt.
_ v_ pIO
Als Substituent der Formel ^ ^ sind Monophenole oder Polyphenole, insbesondere Bisphenole, nach Entfernung eines phenolischen Wasserstoff atoms bevorzugt. Besonders bevorzugte Bespiele für derartigen Reste R2 sind Reste, welche ausgewählt sind aus der Gruppe bestehend aus und
Der Rest Y steht hierbei für einen gesättigten, aromatischen oder olefinisch ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere mit 1 bis 15 C-Atomen. Als Y sind insbesondere Allyl, Methyl, Nonyl, Dodecyl, Phenyl, Alkylether, Carbonsäureester oder ein ungesättigter Cis-Alkylrest mit 1 bis 3 Doppelbindungen bevorzugt.
Meist bevorzugt steht R2 für Ό- R .
Die Herstellung des endständig blockierten Polyurethanprepolymers der For mel (I) erfolgt aus dem Isocyanatgruppen terminierten linearen oder verzweig ten Polyurethanprepolymer mit einer oder mehreren Isocyanat-reaktiven Ver bindungen R2H. Falls mehrere derartige Isocyanat-reaktive Verbindungen ein gesetzt werden, kann die Reaktion sequentiell oder mit einer Mischung dieser Verbindungen erfolgen.
Die Umsetzung erfolgt bevorzugt so, dass die eine oder die mehreren Isocya nat-reaktiven Verbindungen R2H stöchiometrisch oder im stöchiometrischen Überschuss eingesetzt werden, um zu gewährleisten, dass alle NCO-Gruppen umgesetzt sind.
Das Polyurethanprepolymer mit Isocyanat-Endgruppen, auf dem R1 basiert, lässt sich aus mindestens einem Diisocyanat oder Triisocyanat sowie aus ei nem Polymeren QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen und/oder aus einem, gegebenenfalls substituierten, Polyphenol Qpp hersteilen. Geeignete Diisocyanate sind aliphatische, cycloaliphatische, aromatische oder araliphatische Diisocyanate, insbesondere handelsübliche Produkte wie Methy- lendiphenyldiisocyanat (MDI), Hexamethylendiisocyanat (HDI), Toluoldiisocya- nat (TDI), Tolidindiisocyanat (TODI), Isophorondiisocyanat (IPDI), Trimethylhe- xamethylendiisocyanat (TMDI), 2,5- oder 2,6-Bis-(isocyanatomethyl)- bicyclo[2.2.1]heptan, 1 ,5-Naphthalindiisocyanat (NDI), Dicyclo- hexylmethyldiisocyanat (H12MDI), p-Phenylendiisocyanat (PPDI), m-Tetra- methylxylylen diisocyanat (TMXDI), etc. sowie deren Dimere. Bevorzugt sind HDI, IPDI, MDI oder TDI.
Geeignete Triisocyanate sind Trimere oder Biurete von aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Diisocyanaten, ins besondere die Isocyanurate und Biurete der im vorherigen Absatz beschrie- benen Diisocyanate. Selbstverständlich können auch geeignete Mischungen von Di- oder Triisocyanaten eingesetzt werden.
Als Polymere QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen sind insbesondere geeignet Polymere QPM mit zwei oder drei endständigen Amino-, Thiol- oder Hydroxylgruppen.
Die Polymere QPM weisen vorteilhaft ein Equivalenzgewicht von 300 - 6000, insbesondere von 600 - 4000, bevorzugt von 700 - 2200 g/Equivalent NCO- reaktiver Gruppen auf.
Als Polymere QPM bevorzugt sind Polyole mit mittleren Molekulargewichten zwischen 600 und 6000 Dalton ausgewählt aus der Gruppe bestehend aus Polyethylenglykolen, Polypropylenglykolen, Polyethylenglykol-Polypropylengly- kol-Blockpolymeren, Polybutylenglykolen, hydroxylterminierte Polybutadiene, hydroxylterminierte Butadien-Acrylnitril-Copolymere sowie deren Gemische.
Als Polymere QPM sind insbesondere bevorzugt a,w-Dihydroxypolyalkylen- glykole mit C2-C6-Alkylengruppen oder mit gemischten C2-C6-Alkylengruppen, die mit Amino-, Thiol- oder, bevorzugt, Hydroxylgruppen terminiert sind. Be sonders bevorzugt sind Polypropylenglykole oder Polybutylenglykole. Weiter hin besonders bevorzugt sind Hydroxylgruppen-terminierte Polyoxybutylene.
Als Polyphenol Qpp sind insbesondere geeignet Bis-, Tris- und Tetraphenole. Hierunter werden nicht nur reine Phenole, sondern gegebenenfalls auch sub stituierte Phenole verstanden. Die Art der Substitution kann sehr vielfältig sein. Insbesondere wird hierunter eine Substitution direkt am aromatischen Kern, an den die phenolische OH-Gruppe gebunden ist, verstanden. Unter Phenolen werden weiterhin nicht nur einkernige Aromaten, sondern auch mehrkernige oder kondensierte Aromaten oder Heteroaromaten verstanden, welche die phenolische OH-Gruppe direkt am Aromaten beziehungsweise Heteroaroma ten aufweisen.
In einer bevorzugten Ausführungsform wird das Polyurethanprepolymer aus mindestens einem Diisocyanat oder Triisocyanat sowie aus einem Polymeren QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen hergestellt. Die Herstellung des Polyurethanprepolymers erfolgt in einer dem Polyurethan- Fachmann bekannten Art und Weise, insbesondere, indem das Diisocyanat oder Triisocyanat in einem stöchiometrischen Überschuss in Bezug auf die Amino-, Thiol- oder Hydroxylgruppen des Polymeren QPM eingesetzt wird.
Das Polyurethanprepolymer mit Isocyanatendgruppen weist bevorzugt elasti schen Charakter auf. Es zeigt bevorzugt eine Glasumwandlungstemperatur Tg von kleiner als 0°C.
Bei dem Zähigkeitsverbesserer D kann es sich um einen Flüssigkautschuk D2 handeln. Hierbei kann es sich z.B. um ein carboxyl- oder epoxidterminiertes Polymer handeln.
In einer ersten Ausführungsform kann dieser Flüssigkautschuk ein carboxyl- oder epoxidterminiertes Acrylnitril/Butadien-Copolymer oder ein Derivat davon sein. Derartige Flüssigkautschuke sind z.B. unter dem Namen Hypro / Hypox® CTBN und CTBNX und ETBN von Emerald Performance Materials, kommerziell erhältlich. Als Derivate sind insbesondere Epoxidgruppen aufweisende Elastomer-modifizierte Prepolymere, wie sie unter der Produktlinie Struktol®, insbesondere aus der Produktelinie Polydis®, Polycavit®, Polyvertec®, von der Firma Struktol® (Schill+Seilacher Gruppe, Deutschland) oder unter der Pro duktlinie Albipox (Evonik, Deutschland) kommerziell vertrieben werden, geeig net.
In einer zweiten Ausführungsform kann dieser Flüssigkautschuk ein Poly- acrylatflüssigkautschuk sein, der mit flüssigen Epoxidharzen vollständig misch bar ist und sich erst beim Aushärten der Epoxidharzmatrix zu Mikrotröpfchen entmischt. Derartige Polyacrylatflüssigkautschuke sind z.B. unter der Bezeich nung 20208-XPA von Dow erhältlich.
Es können natürlich auch Mischungen von Flüssigkautschuken verwendet werden, insbesondere Mischungen von carboxyl- oder epoxidterminierten Ac- rylnitril/Butadien-Copolymeren oder von Derivaten davon.
Der Zähigkeitsverbesserer D kann in einer dritten Ausführungsform ein Core- Shell Polymer D3 sein. Core-Shell-Polymere bestehen aus einem elastischen Kernpolymer und einem starren Schalen-Polymer. Besonders geeignete Core- Shell-Polymere bestehen aus einem Kern (Core) aus elastischem Acrylat- oder Butadien-Polymer, den eine starre Schale (Shell) eines starren thermoplasti- sehen Polymers umhüllt. Diese Core-Shell Struktur bildet sich entweder spon tan durch Entmischen eines Blockcopolymeren oder ist durch die Polymerisati onsführung als Latex oder Suspensions-polymerisation mit nachfolgender Pfropfung vorgegeben. Bevorzugte Core-Shell-Polymere sind sogenannte MBS Polymere, welche kommerziell unter dem Handelsnamen KaneAce™ von Kaneka, Clearstrength™ von Arkema, Paraloid™ von Dow oder F-351 ™ von Zeon erhältlich sind.
Vorzugsweise beträgt der Anteil an Zähigkeitsverbesserer D von 5 - 50 Gew.- %, 10 - 40 Gew.-%, besonders bevorzugt 15 - 30 Gew.-%, bezogen auf das Gesamtgewicht der Epoxidharzzusammensetzung.
In einer weiteren bevorzugten Ausführungsform enthält die Zusammensetzung zusätzlich mindestens einen Füllstoff F. Bevorzugt handelt es sich hierbei um Glimmer, Talk, Kaolin, Wollastonit, Feldspat, Syenith, Chlorit, Bentonit, Mont- morillonit, Calciumcarbonat (gefällt oder gemahlen), Dolomit, Quarz, Kieselsäu ren (pyrogen oder gefällt), Cristobalit, Calciumoxid, Aluminiumhydroxid, Mag nesiumoxid, Keramikhohlkugeln, Glashohlkugeln, organische Hohlkugeln, Glaskugeln, Farbpigmente.
Vorteilhaft beträgt der Gesamtanteil des gesamten Füllstoffs F 5 - 40 Ge- wichts-%, vorzugsweise 10 - 30 Gewichts-%, bezogen auf das Gesamtgewicht der Epoxidharzzusammensetzung.
Eine besonders bevorzugte einkomponentige Epoxidharzzusammensetzung umfasst:
-10 - 60 Gew.-%, insbesondere 20 - 50 Gew.-%, bezogen auf das Ge samtgewicht der Epoxidharzzusammensetzung, Epoxidharz A mit durchschnittlich mehr als einer Epoxidgruppe pro Molekül; vorzugswei se handelt es sich bei 60-100 Gew.-%, insbesondere 60-80 Gew.-%, des Epoxidharzes A um ein Epoxid-Flüssigharz und bei 0-40 Gew.-%, insbesondere 20-40 Gew.-%, des Epoxidharzes A um ein Epoxid- Festharz;. -mindestens einen latenten Härter für Epoxidharze B, vorzugsweise aus gewählt aus Dicyandiamid, Guanidinen, Anhydriden von mehrwertigen Carbonsäuren, Dihydraziden, und Aminoguanidinen, sowie deren Deri vaten, wobei Dicyandiamid bevorzugt ist;
-vorzugsweise mindestens einen Beschleuniger C, ausgewählt aus der Liste bestehend aus substituierten Harnstoffen, Imidazolen, Imidazoli nen und Amin-Komplexen, insbesondere ausgewählt ist aus der Liste bestehend aus substituierten Harnstoffen und Amin-Komplexen, insbe sondere bevorzugt substituierten Harnstoffen;
-mindestens einen vorgenannten Zähigkeitsverbesserer D, wobei jene bevorzugt sind, welche vorgehend als bevorzugte Zähigkeitsverbes serer D beschrieben wurden, vorzugsweise beträgt dabei der Anteil an Zähigkeitsverbesserer D 20 -60 Gew.-%, 25 -55 Gew.-%, beson ders bevorzugt 30 -50 Gew.-%, bezogen auf das Gesamtgewicht der Epoxidharzzusammensetzung;
-vorzugsweise 5 - 40 Gewichts-%, vorzugsweise 10 - 30 Gewichts-%, bezogen auf das Gesamtgewicht der Epoxidharzzusammensetzung, von einem Füllstoffe F ausgewählt vorzugsweise aus der Gruppe be stehend aus Wollastonit, Calciumcarbonat, Calciumoxid, Farbpigmen ten, insbesondere Russ, und pyrogene Kieselsäuren, insbesondere Calciumcarbonat, Calciumoxid und pyrogene Kieselsäuren;
Weiter kann es vorteilhaft sein, wenn die bevorzugte hitzehärtende Epoxid harzzusammensetzung zu mehr als 80 Gewichts-%, vorzugsweise mehr als 90 Gewichts-%, insbesondere mehr als 95 Gewichts-%, insbesondere bevorzugt mehr als 98 Gewichts-%, am meisten bevorzugt mehr als 99 Gewichts-%, be zogen auf das Gesamtgewicht der Epoxidharzzusammensetzung, aus den vorgenannten Bestandteilen besteht.
Ein Beispiel einer besonders bevorzugten Zusammensetzung ist beispielswei se die Zusammensetzung in Tabelle 1. Es ist vorteilhaft, wenn die hitzehärtende Epoxidharzzusammensetzung eine Viskosität bei 25°C von 100 - 10000 Pa*s, insbesondere 500 - 5000 Pa*s, vor zugsweise 1000 - 3000 Pa*s, aufweist. Dies ist dahingehend von Vorteil, dass dadurch eine gute Applizierbarkeit gewährleistet ist. Vorzugsweise erfolgt die Viskositätsmessung auf einem Rheometer vom Typ MCR 101 des Herstellers Anton Paar oszillatorisch unter Verwendung einer Platten-Platten Geometrie bei einer Temperatur von 25°C mit folgenden Parametern: 5 Hz, 1 mm Spalt, Platte-Platte-Abstand 25 mm, 1% Deformation.
Besonders bevorzugt handelt es sich um hitzehärtende Epoxidharzzusammen setzungen KL, welche im ausgehärteten Zustand:
-eine Zugscherfestigkeit, insbesondere gemessen nach DIN EN 1465, von mehr als 10 MPa, mehr als 15 MPa, mehr als 20 MPa, aufweisen, und/oder -eine Zugfestigkeit, insbesondere gemessen nach DIN EN ISO 527, von mehr als 10 MPa, mehr als 15 MPa, mehr als 20 MPa, aufweisen, und/oder -eine Bruchdehnung, insbesondere gemessen nach DIN EN ISO 527, von mehr als 10%, mehr als 20%, mehr als 30%, insbesondere 30 - 200%, beson ders bevorzugt 30 - 150%, aufweisen, und/oder
-ein E-Modul insbesondere gemessen nach DIN EN ISO 527, von 300 - 1000 MPa, insbesondere von 500 - 800 MPa, aufweisen.
-eine Schlagschälfestigkeit, insbesondere gemessen nach ISO 11343, von mehr als 30 N/mm, mehr als 40 N/mm, mehr als 60 N/mm bei 23°C, aufweisen, und/oder
-eine Winkelschälfestigkeit, insbesondere gemessen nach DIN 53281, von mehr als 5 N/mm, mehr als 8 N/mm, mehr als 10 N/mm, aufweisen.
Vorzugsweise erfolgt in Schritt i) das Applizieren der hitzehärtenden Klebstoff zusammensetzung KL auf die Oberfläche eines ersten Substrates S1 in Form von Klebstoffraupen mit einer Dicke von 5 - 50 mm, insbesondere 7.5 - 30 mm, bevorzugt 10 - 20 mm und einer Länge von 5 - 500 cm, insbesondere 10 - 200 cm , bevorzugt 20 - 100 cm. Vorzugsweise erfolgt das Applizieren der hitzehärtenden Klebstoffzusammensetzung KL in einem automatisierten Pro zess, insbesondere durch einen Applikationsroboter. Dies ist beispielsweise gegenüber einer kreisflächigen oder quadratflächigen Applikation von Vorteil, dass dies zu einer Reduktion der Kontaktfläche zwischen den beiden Substra ten S1 und S2 mittels der applizierten hitzehärtenden Klebstoffzusammenset zung KL führt. Dies reduziert einerseits die Fläche an Wärmebrücken durch die Klebstoffzusammensetzung KL, die einen Wärmetransfer erlauben, welcher zu einem stärkeren Unterschied in der Längenausdehnung von den beiden Subs traten S1 und S2 führen kann. Andererseits reduziert dies die Menge an aus gehärteter Klebstoffzusammensetzung und somit die Menge an potenziell „ein gefrorener“ Spannung in der Klebverbindung.
Weiter ist es bevorzugt, wenn die Dicke der applizierten hitzehärtenden Kleb stoffzusammensetzung KL nach dem Schritt ii) und/oder Schritt iii) > 0.3 mm, vorzugsweise > 0.5 mm, vorzugsweise > 1 mm, insbesondere > 1.5 mm be trägt. Vorzugsweise beträgt die Dicke < 5 mm, vorzugsweise < 4 mm, vor zugsweise < 3 mm, insbesondere < 2.5 mm. Vorzugsweise wird die Dicke an hand des Querschnitts bestimmt, der durch den Verbund der beiden Substrate mit der Klebstoffzusammensetzung verläuft. Vorzugsweise entspricht die Dicke dem durchschnittlichen Abstand der beiden Substrate S1 und S2 in Kontaktbe reich mit der hitzehärtenden Klebstoffzusammensetzung.
Vorzugsweise erfolgt in Schritt i) das Applizieren der hitzehärtenden Klebstoff zusammensetzung KL auf weniger als 30% der Gesamtoberfläche eines ers ten Substrates S1, insbesondere auf weniger als 20%, weniger als 10%, we niger als 5%, insbesondere weniger als 3% der Gesamtoberfläche eines ers ten Substrates S1. Dies ist dahingehend von Vorteil, dass dies zu einer Reduk tion der Kontaktfläche zwischen den beiden Substraten S1 und S2 mittels der applizierten hitzehärtenden Klebstoffzusammensetzung KL führt. Dies redu ziert einerseits die Fläche an Wärmebrücken durch die Klebstoffzusammenset zung KL, die einen Wärmetransfer erlauben, welcher zu einem stärkeren Un terschied in der Längenausdehnung von den beiden Substraten S1 und S2 führen kann. Andererseits reduziert dies die Menge an ausgehärteter Kleb stoffzusammensetzung und somit die Menge an potenziell „eingefrorener“ Spannung in der Klebverbindung. Es kann weiter vorteilhaft sein, wenn in Schritt i) das Applizieren der hitzehär tenden Klebstoffzusammensetzung KL auf mehr als 0.01 % der Gesamtober fläche eines ersten Substrates S1, insbesondere auf mehr als 0.1 %, mehr als 0.5 %, mehr als 1 %, insbesondere mehr als 2 % der Gesamtoberfläche eines ersten Substrates S1 , erfolgt.
Vorzugsweise weist jedes der beiden Substrate S1 und S2, insbesondere am Ort des Kontakts mit der applizierten hitzehärtenden Klebstoffzusammenset zungen, eine Dicke von > 0.5 mm, vorzugsweise > 0.75 mm, insbesondere > 1 mm auf, vorzugsweise beträgt die Dicke < 5 mm, vorzugsweise < 4 mm, insbe sondere < 3 mm. Vorzugsweise wird die Dicke anhand des Querschnitts be stimmt, der durch den Verbund der beiden Substrate mit der Klebstoffzusam mensetzung verläuft.
Bei dem erfindungsgemässen Verfahren handelt es sich vorzugsweise um ein Verfahren für den Fahrzeugbau und Sandwichpanelbau, insbesondere für den Fahrzeugbau, besonders bevorzugt den Automobilbau, am meisten bevorzugt im Rohbau von Automobilen.
In Schritt iii) erfolgt das Erhitzen des mindestens einen elektrisch leitfähigen Kunststoffsubstrates KS durch Widerstandsheizen.
Vorzugsweise wird in dem Schritt iii) das mindestens eine elektrisch leitfähige Kunststoffsubstrat KS auf eine Temperatur von 100 - 220°C, insbesondere von 120 - 200°C, bevorzugt zwischen 140 und 200°C besonders bevorzugt zwischen 150 und 190°C erhitzt.
Es ist weiter bevorzugt, wenn das elektrisch leitfähige Kunststoffsubstrat KS für 5 min - 6 h, vorzugsweise 10 min -2 h, vorzugsweise 10 min - 60 min, vor zugsweise 10 min - 30 min, besonders bevorzugt 10 min - 20 min, bei der vorgenannten Temperatur belassen wird. Überraschenderweise wurde gefun den, dass die mittels elektrischer Widerstandsheizung hergestellten Proben höhere Zugscherfestigkeitswerte aufweisen, insbesondere bei höheren Schichtdicken der Klebstoffschicht. Insbesondere war die Aushärtezeit bei der Widerstandshärtung weniger als halb so lange wie bei der Flitzehärtung im Ofen, was eine grosse Zeitersparnis darstellt. Dies ist beispielsweise in den Resultaten der Zugscherfestigkeitsmessung in Tabelle 2 ersichtlich. Bezugszeichenliste
In den Figuren 1 und 2 sind schematische Querschnitte des Aufbaus der Mischverbundkonstruktionen aus einem Aluminiumprofil und einer CFK-Platte dargestellt, welche im nachfolgenden experimentellen Teil erwähnt werde. Sie zeigen:
1 Aluminium Profil
2 CFR-Platte
3 Isolierte Schraube
4 Abstandhalter (1 mm)
5 Klebstoff
6 Fixierklammer (isoliert)
7 Spalt
8 Elektroden Aus einem derartigen vorgehend genannten Verfahren resultiert ein verklebter Artikel. Ein derartiger Artikel ist vorzugsweise ein Fahrzeug oder ein Teil eines Fahrzeugs. Einen weiteren Aspekt der vorliegenden Erfindung betrifft daher ein verklebter Artikel erhalten aus dem vorgenannten Verfahren. Selbstverständ lich können mit einer vorgenannten Zusammensetzung neben hitzehärtenden Klebstoffen auch Dichtmassen realisiert werden. Ferner eignet sich das erfin- dungsgemässe Verfahren nicht nur für den Automobilbau sondern auch für andere Anwendungsgebiete. Besonders zu erwähnen sind verwandte Anwen dungen im Transportmittelbau wie Schiffe, Lastwagen, Busse oder Schienen fahrzeuge oder im Bau von Gebrauchsgütern wie beispielsweise Waschma- schinen.
Die mittels einer vorgenannten Zusammensetzung verklebten Materialien kommen bei Temperaturen zwischen typischerweise 120°C und -40°C, vor- zugsweise zwischen 100°C und -40°C, insbesondere zwischen 80°C und -40°C zum Einsatz.
Beispiele Im Folgenden werden einige Beispiele aufgeführt, welche die Erfindung weiter veranschaulichen, den Umfang der Erfindung aber in keiner Weise beschrän ken sollen. Bestimmung der Da-Spannunq.
Um die Auswirkung der Da-Spannung mit höchstmöglichem Da (unterschiedli che thermische Dehnung) zu simulieren wurden CFK- und Aluminium- Substrate miteinander verklebt. Als Klebstoff wurde eine hitzehärtende ein- komponentige Epoxidharzzusammensetzung gemäss Tabelle 1 verwendet.
Tabelle 1 CFK-Platte Typ: Sika CARBODUR S626, Breite 60 mm x Länge 600 mm
(respektive 800 mm), Dicke 2,6 mm
-Thermischer Dilatationskoeffizient: a=0.2*106 1 -Wärmeleitfähigkeit der Kohlefaser: 17 W/ (m * K) -Spezifischer elektrischer Widerstand der Kohlefaser: 66 W * mm2 / m
Alu-Profil Breite 60 mm x Tiefe 80 mm x Länge 600 mm. Dicke: 3 mm
Thermischer Dilatationskoeffizient: a=23.8*106 K1 Wärmeleitfähigkeit: 205 W/ (m * K)
Spezifischer elektrischer Widerstand: 0,027 W * mm2 / m
Als Heizquelle wurde verwendet:
Sika Carbo Heater 2 (CH), Sika Services Schweiz -Maximale Ausgangsleistung: 6 kW
-Eingangsstrom: Für die einzelne Phase beträgt der feste maximale Eingangs strom: 6A, 10A, 16A.
-Programmierbare Parameter: Zieltemperaturprofil, Heizzeit, maximaler Aus gangsstrom (verwendet wurden 10A).
Testmethoden
Zur Visualisierung der Da-Spannung wurde, wie in Figur 1 und 2 dargestellt, eine vereinfachte Mischverbundkonstruktion aus einem vorgehend genannten Aluminiumprofil (1) und einer vorgehend genannten CFK-Platte (2) zusam- mengebaut und entweder in einem Ofen (Figur 1 ) oder mittels Sika Carbo Hea ter 2 (Figur 2) ausgehärtet. Die dem Aufbau in Figur 1 betrug die Länge der CFK-Platte 600 mm, bei dem Aufbau in Figur 2800 mm (zusätzlicher Platz zur Anbringung der Elektroden).
Bei den Abstandhaltern (4) (Dicke 1 mm), den verwendeten Schrauben (3) und der Fixierklammer (6) handelt es sich um gegenüber Wärme- und Stromfluss isolierte Materialien.
Die Aushärtung im Ofen erfolgte bei einer Ofentemperatur von 175 ° C für 35 min. Die Aushärtung mittels Sika Carbo Heater 2 erfolgte bei folgenden Einstellun gen:
-Heizzeit 22 min (Temperaturverlauf gemäss Figur 3), Ausgangsstrom 10A.
Bei den beiden Mischverbundkonstruktionen wurde nach dem Härtungsschritt die Biegung der CFK-Platte aufgrund des Spaltzuwachs vergleichen. Die Aus härtung des Klebstoffs friert die Anordnung der beiden Substrate im erhitzen Zustand ein, was sich im abgekühlten Zustand in einer Verformung der CFK- Platte zeigt. Je stärker die Verformung/Spaltzuwachs, desto höher die die ein- gefrohrene/aufgebaute Spannung im ausgehärteten Klebstoff.
Der Temperaturverlauf der Erwärmung des Aluminiumprofils und der CFK- Platte während der Aushärtung mittels Sika Carbo Heater 2 wurde mit Tempe ratursonden aufgezeichnet, wie in Figur 3 ersichtlich ist.
Es wurden auf beiden Substraten je 3 Temperatursonden aufgebracht:
CFRP-1 : Auf CFK-Platte, nahe beim Klebstoff CFRP-2: Auf CFK-Platte, nahe beim Spalt CFRP-3: Auf CFK-Platte, nahe bei den Schrauben AI-1: Auf Aluminiumprofil, nahe beim Klebstoff AI-2: Auf Aluminiumprofil, nahe beim Spalt AI-3: Auf Aluminiumprofil, nahe bei den Schrauben
Aufgrund der Temperaturmessung in Figur 3 wurde gefunden, dass eine Wär meübertragung über den Klebebereich auf das Aluminiumsubstrat stattfand und das Aluminiumsubstrat ebenfalls erhitzt wurde, jedoch nur bis zu ca. 95°C.
Die nachfolgende Berechnung zeigt den theoretischen Unterschied im Län genzuwachs des Aluminiumprofils bei einer Härtung bei 175°C gegenüber 95°C.
Aufgrund der nachfolgenden Formel kann theoretisch der Unterschied im Län genausdehnungskoeffizienten (ÄL) bei den beiden Aushärtungstemperaturen berechnet werden. AL = Lo * a * DT
Lo = 600 mm
AL Aiu oven = 600 mm * 23.8 * IO^K 1 * 150K = 2.14 mm AL Aiu Carbo Heater = 600 mm * 23.8 * 106K_1 * 70K = 1.0 mm
Überraschenderweise wurde gefunden, dass aufgrund der geringeren Erwär mung des Aluminiums die resultierende Verformung (Spaltzuwachs) nach dem Aushärten und Abkühlen bei Verwendung von durch Elektrizität induzierter Wärme zum Aushärten des Klebstoffs von 5.5 mm (ofengehärtet) auf nur 1,5 mm reduziert werden, was einer Verbesserung von ca. 72% entspricht. Die Spaltenbreite vor dem Aushärten betrug 2.5 mm, aufgrund der Fixierung der Substrate mittels Schrauben (3), trotz Verwendung der Abstandhalter (4) mit einer Dicke von 1.0 mm.
Zuqscherfestiqkeitsmessunq
Danach wurden Zugscherfestigkeitsproben unter Verwendung von Stahl (DC04) und CFK (Carbodur) hergestellt.
Zuoscherfestiakeit (ZSF1 (DIN EN 14651
Ein Prüfblech aus Stahl (DC04) (50 mm x 10 mm x 3 mm) wurde auf einer Klebfläche von 25 x 10 mm (mit Glaskugeln als Abstandshaltern) mit einer Schichtdicke von 0.3 mm, respektive 3.0 mm, mittels der Klebstoffzusammen setzung nach Tabelle 1 mit einer CFK-Platte (CARBODUR S626) (50 mm x 10 mm x 3.2 mm) verklebt und unter den angegebenen Flärtungsbedingungen ausgehärtet.
Härtungsbedingungen:
-35 min bei 175°C Ofentemperatur «Hitzehärtung im Ofen (35min/ 175°)“ -Elektrische Härtung mittels Carbo Heater 2 bei folgenden Einstellungen: Heiz zeit 15 min, Ausgangsstrom 10A „Elektrische Härtung (15min/10A))“ Die Zugscherfestigkeit wurde auf einer Zugmaschine bei einer Zuggeschwin digkeit von 10 mm/min in einer 3-fach Bestimmung gemäss DIN EN 1465 be stimmt. Die Messwerte sind in Tabelle 2 dargestellt. Tabelle 2
Überraschenderweise wurde gefunden, dass die mittels elektrischer Wider standsheizung hergestellten Proben höhere Zugscherfestigkeitswerte aufwei sen, insbesondere bei höheren Schichtdicken der Klebstoffschicht. Insbeson- dere war die Aushärtezeit bei der Widerstandshärtung weniger als halb so lan ge wie bei der Hitzehärtung im Ofen, was eine grosse Zeitersparnis darstellt.

Claims

Patentansprüche
1. Verfahren zur Verklebung von hitzestabilen Substraten, welches die Schritte umfasst: i) Applizieren einer hitzehärtenden Klebstoffzusammensetzung KL auf die Oberfläche eines ersten Substrates S1, ii) Kontaktieren der applizierten hitzehärtenden Klebstoffzusam mensetzung KL mit der Oberfläche eines zweiten Substrates S2 der art, dass die applizierte hitzehärtende Klebstoffzusammensetzung KL zwischen den beiden Substraten S1 und S2 angeordnet ist, wobei es sich bei einem oder beiden Substraten, insbesondere bei nur einem Substrat, um ein elektrisch leitfähiges Kunststoffsubstrat KS handelt, und wobei die Dicke der applizierten hitzehärtenden Klebstoffzusam mensetzung KL nach dem Schritt ii) > 0.1 mm, vorzugsweise > 0.3 mm, vorzugsweise > 0.5 mm, insbesondere > 1 mm, beträgt; iii) Erhitzen des mindestens einen elektrisch leitfähigen Kunst stoffsubstrates KS durch Widerstandsheizen.
2. Verfahren nach Anspruch 1 , wobei es sich bei den beiden Substraten S1 und S2 um ein elektrisch leitfähiges Kunststoffsubstrat KS handelt.
3. Verfahren nach Anspruch 1 , wobei es sich nur bei einen der beiden Sub strate S1 und S2 um ein elektrisch leitfähiges Kunststoffsubstrat KS han delt und bei dem anderen Substrat um ein metallisches Substrat MS, ins besondere ein Substrat ausgewählt aus der Liste bestehend aus Stahl oder Aluminium, insbesondere Aluminium, handelt.
4. Verfahren nach einem der vorgehenden Ansprüche, wobei es sich bei dem elektrisch leitfähigen Kunststoffsubstrat KS um elektrisch leitfähige faserverstärkte Kunststoffe handelt, insbesondere ausgewählt aus der Liste bestehend aus Glasfaser-, Aramidfaser-, Basaltfaser- und Koh- lestofffaserverstärkten Kunststoffen, besondere bevorzugt sind Koh lestofffaserverstärkte Kunststoffe.
Verfahren nach einem der vorgehenden Ansprüche, wobei der Unter schied im thermischen Längenausdehnungskoeffizient { ) zwischen den beiden Substraten S1 und S2 8 - 30 * IO6 [K1], insbesondere 10 - 25 * 10-6 [K-1], 15 - 25 * 10-6 [K-1], bevorzugt 20 - 25 * 106 [K1] beträgt.
Verfahren nach einem der vorgehenden Ansprüche, wobei es sich bei dem elektrisch leitfähigen Kunststoffsubstrat KS um ein Material mit ei nem spezifischen elektrischen Widerstand von 1 - 150, 5 - 100, insbe sondere 10 - 75 W mm2/m, handelt.
Verfahren nach einem der vorgehenden Ansprüche, wobei es sich bei der hitzehärtenden Klebstoffzusammensetzung KL um eine hitzehärtende Epoxy-Klebstoffzusammensetzungen, besonders bevorzugt um eine ein- komponentige hitzehärtende Epoxidharzzusammensetzung, handelt, um fassend: a) mindestens ein Epoxidharz A mit durchschnittlich mehr als einer Epoxidgruppe pro Molekül; und b) mindestens einen latenten Härter für Epoxidharze B.
Verfahren nach Anspruch 7, wobei die einkomponentige hitzehärtende Epoxidharzzusammensetzung mindestens einen Zähigkeitsverbesserer D ausgewählt ist aus der Gruppe bestehend aus endständig blockierten Po lyurethanpolymeren D1, Flüssigkautschuken D2 und Core-Shell- Polymeren D3, aufweist, bevorzugt ist der Zähigkeitsverbesserer D aus gewählt ist aus der Gruppe bestehend aus endständig blockierten Po lyurethanpolymeren D1 und Flüssigkautschuken D2, besonders bevor zugt handelt es sich um ein endständig blockiertes Polyurethanpolymer D1.
9. Verfahren nach einem der vorgehenden Ansprüche, wobei die hitzehär tende Klebstoffzusammensetzung KL im ausgehärteten Zustand:
-eine Zugscherfestigkeit, insbesondere gemessen nach DIN EN 1465, besonders bevorzugt wie in dem Beispielteil beschrieben, von mehr als 10 MPa, mehr als 15 MPa, mehr als 20 MPa, aufweisen, und/oder -eine Zugfestigkeit, insbesondere gemessen nach DIN EN ISO 527, von mehr als 10 MPa, mehr als 15 MPa, mehr als 20 MPa, aufweisen, und/oder
-eine Bruchdehnung, insbesondere gemessen nach DIN EN ISO 527, von mehr als 10%, mehr als 20%, mehr als 30%, insbesondere 30 - 200%, besonders bevorzugt 30 - 150%, aufweisen, und/oder -ein E-Modul insbesondere gemessen nach DIN EN ISO 527, von 300 - 1000 MPa, insbesondere von 500 - 800 MPa, aufweisen.
-eine Schlagschälfestigkeit, insbesondere gemessen nach ISO 11343, von mehr als 30 N/mm, mehr als 40 N/mm, mehr als 60 N/mm bei 23°C, aufweisen, und/oder
-eine Winkelschälfestigkeit, insbesondere gemessen nach DIN 53281, von mehr als 5 N/mm, mehr als 8 N/mm, mehr als 10 N/mm, aufwei sen.
10. Verfahren nach einem der vorgehenden Ansprüche, wobei in Schritt i) das Applizieren der hitzehärtenden Klebstoffzusammensetzung KL auf die Oberfläche eines ersten Substrates S1 in Form von Klebstoffraupen mit einer Dicke von 5 - 50 mm, insbesondere 7.5 - 30 mm, bevorzugt 10 - 20 mm und einer Länge von 5 - 500 cm, insbesondere 10 - 200 cm , bevorzugt 20 - 100 cm, erfolgt.
11. Verfahren nach einem der vorgehenden Ansprüche, wobei die Dicke der applizierten hitzehärtenden Klebstoffzusammensetzung KL nach dem Schritt ii) und/oder Schritt iii) > 0.3 mm, vorzugsweise > 0.5 mm, vor zugsweise > 1 mm, vorzugsweise > 1.5 mm beträgt, vorzugsweise be trägt die Dicke < 5 mm, vorzugsweise < 4 mm, vorzugsweise < 3 mm, insbesondere < 2.5 mm.
12. Verfahren nach einem der vorgehenden Ansprüche, wobei in Schritt i) das Applizieren der hitzehärtenden Klebstoffzusammensetzung KL auf weniger als 30% der Gesamtoberfläche eines ersten Substrates S1, ins besondere auf weniger als 20%, weniger als 10%, weniger als 5%, ins besondere weniger als 3% der Gesamtoberfläche eines ersten Substra tes S1 erfolgt.
13. Verfahren nach einem der vorgehenden Ansprüche, wobei jedes der bei den Substrate S1 und S2, insbesondere am Ort des Kontakts mit der ap plizierten hitzehärtenden Klebstoffzusammensetzungen, eine Dicke von > 0.5 mm, vorzugsweise > 0.75 mm, vorzugsweise > 1 mm beträgt, vor zugsweise beträgt die Dicke < 5 mm, vorzugsweise < 4 mm, insbesonde re < 3 mm.
14. Verfahren nach einem der vorgehenden Ansprüche, wobei in dem Schritt iii) das mindestens eine elektrisch leitfähige Kunststoffsubstrat KS auf ei ne Temperatur von 100 - 220°C, insbesondere von 120 - 200°C, bevor zugt zwischen 140 und 200°C besonders bevorzugt zwischen 150 und 190°C erhitzt wird, vorzugsweise wird das elektrisch leitfähige Kunst stoffsubstrat KS für 5 min - 6 h, vorzugsweise 10 min - 2 h, vorzugswei se 10 min - 60 min, vorzugsweise 10 min - 30 min, besonders bevorzugt 10 min - 20 min, bei der vorgenannten Temperatur belassen.
15. Verfahren nach einem der vorgehenden Ansprüche, wobei es sich um ein Verfahren für den Fahrzeugbau und Sandwichpanelbau handelt, insbe sondere für den Fahrzeugbau, besonders bevorzugt den Automobilbau.
EP21724681.8A 2020-05-14 2021-05-10 Verfahren zum strukturellen verbinden von elektrisch leitfähigen kunststoffsubstraten mit hitzehärtenden klebstoffen, insbesondere in kombination mit metallischen substraten Pending EP4150023A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20174798 2020-05-14
PCT/EP2021/062368 WO2021228785A1 (de) 2020-05-14 2021-05-10 Verfahren zum strukturellen verbinden von elektrisch leitfähigen kunststoffsubstraten mit hitzehärtenden klebstoffen, insbesondere in kombination mit metallischen substraten

Publications (1)

Publication Number Publication Date
EP4150023A1 true EP4150023A1 (de) 2023-03-22

Family

ID=70977710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21724681.8A Pending EP4150023A1 (de) 2020-05-14 2021-05-10 Verfahren zum strukturellen verbinden von elektrisch leitfähigen kunststoffsubstraten mit hitzehärtenden klebstoffen, insbesondere in kombination mit metallischen substraten

Country Status (3)

Country Link
EP (1) EP4150023A1 (de)
CN (1) CN115551963A (de)
WO (1) WO2021228785A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023106692A1 (de) 2023-03-17 2024-09-19 Thyssenkrupp Steel Europe Ag Bauteilgruppe mit strukturellen Verklebungen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560428A (en) * 1984-08-20 1985-12-24 Rockwell International Corporation System and method for producing cured composites
EP3460018A1 (de) * 2017-09-25 2019-03-27 Sika Technology Ag Einkomponentiger hitzehärtender epoxidklebstoff mit verbesserter haftung

Also Published As

Publication number Publication date
CN115551963A (zh) 2022-12-30
WO2021228785A1 (de) 2021-11-18

Similar Documents

Publication Publication Date Title
EP1155082B1 (de) Schlagfeste epoxidharz-zusammensetzungen
EP2182025B1 (de) Hitzehärtende Epoxidharzzusammensetzungen einsetzbar als Rohbauklebstoff oder Strukturschaum
WO2003055957A1 (de) Mehrphasige strukturklebstoffe
WO2001094492A1 (de) Schlagfeste epoxidharz-zusammensetzungen
EP3460019B1 (de) Einkomponentiger hitzehärtender epoxidklebstoff mit verbesserter haftung
WO2021228785A1 (de) Verfahren zum strukturellen verbinden von elektrisch leitfähigen kunststoffsubstraten mit hitzehärtenden klebstoffen, insbesondere in kombination mit metallischen substraten
EP3677611B1 (de) Hitzehärtende epoxidharzzusammensetzung mit tiefer aushärtungstemperatur und guter lagerstabilität
EP3700958B1 (de) Hitzehärtende epoxidharzzusammensetzung mit hoher lagerstabilität
EP3728370B1 (de) Verfahren zum strukturellen verbinden von substraten mit unterschiedlichen thermischen längenausdehnungs-koeffizienten
WO2022128967A1 (de) Verfahren zur bördelfalzverklebung
EP3728374B1 (de) Verwendung von zähigkeitsverbesserern zur erhöhung der maximalen längenausdehnung von einkomponentigen hitzehärtenden epoxidharzzusammensetzungen
EP3837294A1 (de) Einkomponentige hitzehärtende epoxidharzzusammensetzungen
EP3652047B1 (de) Einkomponentiger hitzehärtender epoxidklebstoff mit hoher auswaschbeständigkeit
EP3559076B1 (de) Hitzehärtende epoxidharzzusammensetzung enthaltend einen beschleuniger
WO2022207411A2 (de) Hitzehärtende epoxidharzzusammensetzung geeignet für vorhärtungsverfahren ohne zusätzliche metallverbindungstechniken
EP3642257B1 (de) Verfahren zur verbindung von formkörpern durch injektion einer einkomponentigen hitzehärtenden epoxidharzzusammensetzung in hohlräume
JP2024533330A (ja) 接着性が向上した膨張性一成分型熱硬化性エポキシ接着剤
US20240010889A1 (en) One-component thermosetting epoxy adhesive with improved adhesion at high temperatures

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)