EP4132740A1 - Laser turning system, laser turning method, and part obtained by using such a system - Google Patents

Laser turning system, laser turning method, and part obtained by using such a system

Info

Publication number
EP4132740A1
EP4132740A1 EP21718103.1A EP21718103A EP4132740A1 EP 4132740 A1 EP4132740 A1 EP 4132740A1 EP 21718103 A EP21718103 A EP 21718103A EP 4132740 A1 EP4132740 A1 EP 4132740A1
Authority
EP
European Patent Office
Prior art keywords
laser
spindle
bar
component
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21718103.1A
Other languages
German (de)
French (fr)
Inventor
Cédric CHAUTEMPS
Alexandre Oliveira
Matthias PORTELLANO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alphanov Centre Technologique Optique et Lasers
Original Assignee
Alphanov Centre Technologique Optique et Lasers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alphanov Centre Technologique Optique et Lasers filed Critical Alphanov Centre Technologique Optique et Lasers
Publication of EP4132740A1 publication Critical patent/EP4132740A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • a laser turning system, a laser turning process and a component obtained by using such a system A laser turning system, a laser turning process and a component obtained by using such a system.
  • the invention relates to a laser turning system.
  • the invention also relates to a laser turning process.
  • the invention relates to a component obtained by the use of such a system or by the implementation of such a method.
  • WO201 6005133A1 describe different types of equipment for machining using a laser.
  • Nd YAG laser micro-turning process using response surface methodology
  • the aim of the invention is to provide a laser turning system which makes it possible to overcome the aforementioned drawbacks and to improve the laser turning systems known from the prior art.
  • the invention provides a laser turning system which is competitive compared to known turning systems.
  • a turning system according to the invention is defined by claim 1.
  • a turning method according to the invention is defined by claim 12.
  • a component according to the invention is defined by claim 13.
  • Figure 1 is a schematic view of one embodiment of a turning system according to the invention.
  • Figure 2 is a schematic view of the path of the laser beam according to the invention.
  • FIG. 1 An embodiment of a turning system 1 for producing components is described below with reference to FIG. 1.
  • the system includes:
  • a galvanometric scanner 12 capable of directing a femto second laser beam along a path scanning the generator profile of the workpiece in the bar of material.
  • the scanning is carried out tangentially to the bar 50 of material or at a tangential incidence to the bar 50 of material.
  • the system comprises a module 2 for setting the material bar in motion, in particular for setting the material bar in rotation along a first axis X.
  • This module for setting the material bar in motion comprises the rotating spindle 3 according to the first axis X.
  • the spindle 3 can rotate at more than 20 ⁇ 00 rpm, or even at more than 50 ⁇ 00 rpm, or even at more than 100 ⁇ 00 rpm.
  • pin 3 is an electrospindle.
  • the spindle 3 is equipped with a gripping clamp, in particular pneumatic.
  • the module 2 for setting in motion preferably further comprises a rotary counter-spindle 4.
  • This counter-spindle 4 makes it possible to carry out recoveries on the parts when they are detached from the spindle 3.
  • the counter-spindle 4 allows the setting in rotation along the first axis X.
  • the counter-spindle 4 can rotate at more than 20 ⁇ 00 t / min, or even more than 50 ⁇ 00 t / min, or even more than 10O'OOO t / min.
  • the counter spindle 4 is an electrospindle.
  • the counter-spindle 4 is equipped with a gripping clamp, in particular pneumatic.
  • the counter-spindle 4 is movable in translation along the first axis X relative to the spindle 3.
  • a counter-spindle makes it possible to perform parting-off machining of the component in order to detach it from the bar.
  • the face section of the component systematically presents a burr when it is detached from the bar.
  • the module 2 for setting in motion also comprises an element 5 allowing the movement of the spindle 3 and the counter-spindle 4 in an X-Y plane containing the first X axis and a second Y axis perpendicular to the first X axis.
  • the system includes an element 29 for generating a laser beam.
  • the laser beam used to perform the machining is a laser beam composed of light pulses with a pulse duration between 10Ofs and 10ps. It can have a frequency greater than 50 kHz, that is to say that pulses or shots are emitted at a frequency greater than 50 kHz.
  • the scanner 12 is disposed between the output of the laser beam generating element 29 and the workpiece, in the path of the laser beam.
  • the galvanometric scanner 12 is an electromechanical device integrating 1 to 3 axes of rotation and possibly translation axes, on which optical elements of the mirror or lens type are mounted. Voltage-controlled actuators control the movement of these axes and make it possible to move the laser beam along 2 or 3 axes extremely quickly and precisely.
  • the galvanometric scanner 12 comprises a focusing device making it possible to concentrate the laser on a focal point. An advanced management of the synchronization between the movement of the optical elements and the triggering of the laser shots makes it possible to produce a generator of the machined part of revolution.
  • a galvanometric scanner is different from a polygon mirror scanner, which allows scanning in a single direction.
  • the scanner 12 is arranged and / or configured to move the focal point of the laser at a speed of more than 0.5 m / s, or even more than 10 m / s, or even more than 20 m / s.
  • the scanner 12 is arranged and / or configured to move the focal point of the laser with accelerations of more than 5 m / s 2 , or even more than 500 m / s 2 , or even more than 500 m / s 2 , or even of more than 50 ⁇ 00 m / s 2 .
  • the scanner 12 is mounted mobile in translation along a third Z axis orthogonal to the first and second X and Y axes.
  • the scanner is mounted on a translation axis orthogonal to the first X axis.
  • the galvanometric scanner makes it possible to position the focal point of the laser beam at the desired locations, in particular on a tangent located on the horizontal median plane of the machined bar of material.
  • the system advantageously comprises an automation module 6 making it possible to control the machining process or the operating process of the system.
  • the automation module 6 comprises an element 7 for real-time measurement of at least one dimension, in particular of a diameter of the component. Its contribution is decisive for the production of components comprising diameters of a few tens of micrometers, within tolerances of the order of one micrometer. Indeed, the diameter of a focused femtosecond laser beam is typically of the order of twenty micrometers and the depth of field of the same order. On laser beam machining processes with radial incidence, the laser shot impacts the layer of material located below the directly ablated layer. This is due to the incompressible depth of field of the laser beam. This physical limitation results in the impossibility of producing parts of revolution with a diametrical precision less than the order of magnitude of the size of the beam, namely twenty micrometers.
  • the ablation is performed using only the edge of the Gaussian profile of the laser beam.
  • the successive laser shots do not lead to additional ablation. Consequently, the precision of the diametrical dimension is defined by the precision of the positioning of the laser beam and not by its size.
  • the positioning precision of the laser beam is itself defined by the positioning precision of the scanner 12 and of the element 5 for moving the spindle 3 along the Y axis and is of the order of one micrometer.
  • the automation module 6 further advantageously comprises a servo module 8 of the parameters of the laser and / or of the displacement of the laser beam as a function of the measurement carried out by the measuring element 7.
  • the automation module 6 controls many actuators of the system, including pin 3 and / or counter-spindle 4 and / or element 29 for generating the laser beam. This control can be carried out in particular as a function of measurements of the dimensions of the machined part.
  • the control module 8 can control the speed of rotation of the spindle 3 or the counter-spindle 4 to the size of the workpiece, in particular the diameter of the workpiece. It is thus possible to vary the speeds of the spindles and counter-spindles as a function of the theoretical value of the diameter to be machined, for example in order to have the same rate of lateral overlap of the impacts of the laser (depending on the speed of rotation of spindle, machined diameter and laser frequency).
  • the measuring element 7 may be an optical micrometer.
  • the automation module 6 including the measuring element 7 makes it possible to monitor production in order to rectify any deviations from the machining process. Thanks to the data acquisition by the measuring element 7, it is possible to improve the repeatability of the machining of the components. Thanks to the data acquisition by the measuring element 7, it is possible to reach the final dimensions of the component with a very high precision which would not be attainable without this control, in particular because of drifts during machining and / or the very high speed of rotation of the spindle.
  • the automation module 6 advantageously comprises a rotary encoder 9 configured so as to constantly know the angular position of the spindle, in particular the absolute angular position of the spindle.
  • the automation module 6 advantageously comprises a synchronization module 10 configured so as to synchronize the pulses of the laser to the angular position of the spindle.
  • the system advantageously comprises a bar feeder 11.
  • the feeder integrated into the system makes it possible to automate the insertion of the material bar in the spindle in a simple way, without having to rotate the counter spindle.
  • the bar of material is then inserted into the space between the spindle and the counter spindle, then pushed by the counter spindle into the spindle clamp.
  • the method makes it possible to obtain a component from a bar of material.
  • the method includes use of a laser turning system described above.
  • the movements of the laser beam L are controlled by the activation of the galvanometric scanner 12. This allows very rapid movements of the laser beam. Therefore, the coverage rate of the impacts of the laser beam on the workpiece is reduced and the machining quality is higher.
  • the recovery rate is defined as the ratio between (i) the area of the intersection surface of two successive impacts of the laser beam on the workpiece and (ii) the area of the surface of an impact of the laser beam on the room.
  • the laser beam is preferably focused on the horizontal median plane X-Y of the part, corresponding to the horizontal plane passing through the first axis X of rotation of the spindle.
  • the beam is also oriented with a tangential or substantially tangential incidence relative to the rotating bar, that is to say oriented along the third Z axis or substantially along the third Z axis and moved along a trajectory T following the desired final contour. for the component, as shown in figure 2.
  • the ablated material is ejected in a direction opposite to the beam and does not come up into the beam and disturb it as in the case of a radial incidence.
  • This configuration allows perfect control of the machining passes.
  • the edge of the Gaussian beam profile is in contact with the surface of the workpiece. The energy supplied to the surface of the part is less than the ablation threshold, and the surface of the part thus undergoes the equivalent of a finishing pass, with a smoothing of the residual material.
  • a line generating the profile of the part to be machined is created by the system 6.
  • This line constitutes a profile according to which the focal point of the laser beam moves along the path T in the XY plane by the action of the scanner 12 galvanometric during the machining of the part.
  • the part is rotated around the first X axis and the generating line is gradually brought closer to the first X axis by moving it in the XY plane, in particular along the second Y axis, in particular by using element 5 of module 2 for setting in motion.
  • the different paths of the generating line by the laser beam each constitute a machining pass.
  • the component has a diameter of less than 10 mm and / or a length of less than 250 mm.
  • the cutting force is negligible and the bar does not vibrate. Indeed, the frequency of the laser firing can be slaved so that, as the machining progresses, the evolving natural modes of the machined part are never excited.
  • bar preferably designates the bar of material 50 before the start of its laser machining and at the start of its laser machining.
  • the term “part” preferably designates the bar or the component during laser machining.
  • the term “component” preferably designates component 60 at the end of its laser machining and after its laser machining.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed is a laser turning system (1) for producing a part (60) having a length of less than 250 mm and/or a diameter of less than 10 mm, the system comprising a rotating spindle (3) for moving a rod of material and a galvanometric scanner (12) capable of emitting a femtosecond laser beam scanning a generating profile of the part to be machined in the bar of material.

Description

Système de tournage laser, procédé de tournage laser et composant obtenu par l’utilisation d’un tel système. A laser turning system, a laser turning process and a component obtained by using such a system.
L’invention concerne un système de tournage laser. L’invention concerne aussi un procédé de tournage laser. L’invention concerne enfin un composant obtenu par l’utilisation d’un tel système ou par la mise en oeuvre d’un tel procédé. The invention relates to a laser turning system. The invention also relates to a laser turning process. Finally, the invention relates to a component obtained by the use of such a system or by the implementation of such a method.
Afin de réaliser des composants comprenant une ou plusieurs formes de révolution, il est connu de mettre en oeuvre un procédé d’usinage par enlèvement de matière de type tournage. De manière classique, l’enlèvement de matière est réalisé à l’aide d’un outil coupant agissant sur un barreau de matière mis en rotation et à partir duquel on souhaite obtenir le composant. In order to produce components comprising one or more forms of revolution, it is known practice to implement a machining process by removing material of the turning type. Conventionally, material removal is carried out using a cutting tool acting on a rotating bar of material from which it is desired to obtain the component.
La réalisation de composants de révolution de petites dimensions avec une grande précision, comme des pièces de révolution micromécaniques, est généralement effectuée par tournage, en particulier par décolletage des composants en série dans une barre métallique. Ceci permet des cadences de production industrielles, mais présente quelques inconvénients liés à la nature des matériaux à usiner. The production of components of revolution of small dimensions with great precision, such as parts of micromechanical revolution, is generally carried out by turning, in particular by turning the components in series in a metal bar. This allows industrial production rates, but has some drawbacks linked to the nature of the materials to be machined.
Alors qu’il est relativement aisé de décolleter des matières spécifiquement adaptées à cette technique, comme les aciers de décolletage contenant un élément brise-copeaux tel que le soufre, le décolletage de pièces en céramique, mais également en métaux durs, induit une forte usure des outils, qui rend cette technique peu productive en comparaison de son application à des matériaux plus adaptés. De plus, le décolletage de matériaux durs induit généralement une vibration de la barre et ne permet pas d’atteindre les rugosités requises. Le tournage laser effectué avec des sources laser continues (par exemple laser C02) a été largement développé dans l’industrie, mais il ne permet d’atteindre que des précisions de l’ordre de quelques dixièmes de millimètres, ce qui peut s’avérer insuffisant pour certaines applications et son impact thermique sur les composants obtenus peut générer des trempes locales néfastes à la microstructure de la matière, ou pire encore, des déformations thermiques qui affectent les dimensions de la pièce, notamment dans le cas de composants de faible volume. Il n’a, de ce fait, pas été retenu comme une alternative avantageuse au tournage conventionnel pour des pièces de dimensions moyennes, encore moins pour des pièces de taille micrométrique. While it is relatively easy to turn materials specifically adapted to this technique, such as free-cutting steels containing a chip-breaking element such as sulfur, the turning of ceramic parts, but also of hard metals, induces high wear. tools, which makes this technique unproductive compared to its application to more suitable materials. In addition, bar turning of hard materials generally induces a vibration of the bar and does not make it possible to achieve the required roughness. Laser turning carried out with continuous laser sources (for example C02 laser) has been widely developed in industry, but it only makes it possible to achieve precision of the order of a few tenths of a millimeter, which can prove to be insufficient for certain applications and its thermal impact on the components obtained can generate local hardening which is harmful to the microstructure of the material, or even worse, thermal deformations which affect the dimensions of the part, in particular in the case of low volume components. It was therefore not retained as an advantageous alternative to conventional turning for medium-sized parts, even less for micrometric-sized parts.
Les documents EP2314412A2, EP2374569A2, EP2489458A1 etThe documents EP2314412A2, EP2374569A2, EP2489458A1 and
WO201 6005133A1 décrivent différents types d’équipements permettant d’usiner à l’aide d’un laser. WO201 6005133A1 describe different types of equipment for machining using a laser.
Plusieurs études portant sur la texturation par laser femto-seconde ont été publiées. Several studies on femtosecond laser texturing have been published.
Dans l’étude « Development of laser turning using femtosecond laser ablation » (Yokotani, A., Kawahara, K., Kurogi, Y., Matsuo, N., Sawada, H. and Kurosawa, K. (2002), Proceedings of SPIE, Vol. 4426, pp.90-93), il est démontré qu’une technique laser permettait d’atteindre des niveaux de rugosité bas ou volontairement hauts sur des surfaces planes. In the study “Development of laser turning using femtosecond laser ablation” (Yokotani, A., Kawahara, K., Kurogi, Y., Matsuo, N., Sawada, H. and Kurosawa, K. (2002), Proceedings of SPIE, Vol. 4426, pp.90-93), it has been shown that a laser technique made it possible to achieve low or deliberately high levels of roughness on flat surfaces.
Dans l’étude « Optimisation of Nd:YAG laser micro-turning process using response surface methodology » (Kibria, G., Doloi, B., Bhattacharyya, B. (2012), Int. J. Précision Technology, Vol.3, No.1 ), un laser Nd:YAG percute radialement une pièce céramique cylindrique tournante en oxyde d’aluminium pour observer l’effet des paramètres de vitesse et énergie par impulsion sur la rugosité. Dans ce dispositif, la trépanation n’est pas utilisée et le taux de recouvrement est uniquement piloté par la vitesse de rotation de la pièce qui n’excède pas 600 t/min. La pièce est percutée radialement par des impulsions nanoseconde. In the study “Optimization of Nd: YAG laser micro-turning process using response surface methodology” (Kibria, G., Doloi, B., Bhattacharyya, B. (2012), Int. J. Precision Technology, Vol.3, No. 1), an Nd: YAG laser radially strikes a rotating cylindrical ceramic part made of aluminum oxide to observe the effect of speed and energy per pulse parameters on roughness. In this device, trepanation is not used and the recovery rate is only controlled by the speed of rotation of the part which does not exceed 600 rpm. The part is struck radially by nanosecond pulses.
Le but de l’invention est de fournir un système de tournage laser permettant de remédier aux inconvénients mentionnés précédemment et d’améliorer les systèmes de tournage laser connus de l’art antérieur. En particulier, l’invention propose un système de tournage laser qui soit compétitif comparativement aux systèmes de tournage connus. The aim of the invention is to provide a laser turning system which makes it possible to overcome the aforementioned drawbacks and to improve the laser turning systems known from the prior art. In particular, the invention provides a laser turning system which is competitive compared to known turning systems.
Un système de tournage selon l’invention est défini par la revendication 1 . A turning system according to the invention is defined by claim 1.
Différents modes de réalisation du système sont définis par les revendications 2 à 11 . Different embodiments of the system are defined by claims 2 to 11.
Un procédé de tournage selon l’invention est défini par la revendication 12. A turning method according to the invention is defined by claim 12.
Un composant selon l’invention est défini par la revendication 13. A component according to the invention is defined by claim 13.
Le dessin annexé représente, à titre d’exemple, un mode de réalisation d’un système de tournage selon l’invention. The accompanying drawing shows, by way of example, an embodiment of a turning system according to the invention.
La figure 1 est une vue schématique d’un mode de réalisation d’un système de tournage selon l’invention. Figure 1 is a schematic view of one embodiment of a turning system according to the invention.
La figure 2 est une vue schématique de la trajectoire du faisceau laser selon l’invention. Figure 2 is a schematic view of the path of the laser beam according to the invention.
Un mode de réalisation d’un système 1 de tournage pour la réalisation de composants est décrit ci-après en référence à la figure 1 . Le système comprend : An embodiment of a turning system 1 for producing components is described below with reference to FIG. 1. The system includes:
- une broche rotative 3 de mise en mouvement d’un barreau 50 de matière, et - a rotary spindle 3 for setting in motion a bar 50 of material, and
- un scanner 12 galvanométrique apte à diriger un faisceau laser femto seconde selon une trajectoire balayant le profil générateur de la pièce à usiner dans le barreau de matière. De préférence, le balayage est réalisé de manière tangentielle au barreau 50 de matière ou selon une incidence tangentielle au barreau 50 de matière. a galvanometric scanner 12 capable of directing a femto second laser beam along a path scanning the generator profile of the workpiece in the bar of material. Preferably, the scanning is carried out tangentially to the bar 50 of material or at a tangential incidence to the bar 50 of material.
Plus généralement, le système comprend un module 2 de mise en mouvement du barreau de matière, en particulier de mise en rotation du barreau de matière selon un premier axe X. Ce module de mise en mouvement du barreau de matière comprend la broche 3 rotative selon le premier axe X. De préférence, la broche 3 peut tourner à plus de 20Ό00 t/min, voire à plus de 50Ό00 t/min, voire à plus de 100Ό00 t/min. Par exemple, la broche 3 est une électrobroche. De préférence, la broche 3 est équipée d’une pince de préhension, notamment pneumatique. More generally, the system comprises a module 2 for setting the material bar in motion, in particular for setting the material bar in rotation along a first axis X. This module for setting the material bar in motion comprises the rotating spindle 3 according to the first axis X. Preferably, the spindle 3 can rotate at more than 20Ό00 rpm, or even at more than 50Ό00 rpm, or even at more than 100Ό00 rpm. For example, pin 3 is an electrospindle. Preferably, the spindle 3 is equipped with a gripping clamp, in particular pneumatic.
Le module 2 de mise en mouvement comprend de préférence en outre une contre-broche 4 rotative. Cette contre-broche 4 permet de réaliser des reprises sur les pièces lorsqu’elles sont détachées de la broche 3. La contre-broche 4 permet la mise en rotation selon le premier axe X. De préférence, la contre-broche 4 peut tourner à plus de 20Ό00 t/min, voire à plus de 50Ό00 t/min, voire à plus de 10O’OOO t/min. Par exemple, la contre- broche 4 est une électrobroche. De préférence, la contre-broche 4 est équipée d’une pince de préhension, notamment pneumatique. En outre, la contre-broche 4 est mobile en translation selon le premier axe X relativement à la broche 3. Par exemple, une telle contre-broche permet de réaliser un usinage de tronçonnage du composant pour le détacher du barreau. Avec les méthodes traditionnelles de tronçonnage, la face tronçonnée du composant présente systématiquement une bavure lorsqu’il est détaché du barreau. The module 2 for setting in motion preferably further comprises a rotary counter-spindle 4. This counter-spindle 4 makes it possible to carry out recoveries on the parts when they are detached from the spindle 3. The counter-spindle 4 allows the setting in rotation along the first axis X. Preferably, the counter-spindle 4 can rotate at more than 20Ό00 t / min, or even more than 50Ό00 t / min, or even more than 10O'OOO t / min. For example, the counter spindle 4 is an electrospindle. Preferably, the counter-spindle 4 is equipped with a gripping clamp, in particular pneumatic. In addition, the counter-spindle 4 is movable in translation along the first axis X relative to the spindle 3. For example, such a counter-spindle makes it possible to perform parting-off machining of the component in order to detach it from the bar. With traditional cutting methods, the face section of the component systematically presents a burr when it is detached from the bar.
Le module 2 de mise en mouvement comprend également un élément 5 permettant le déplacement de la broche 3 et de la contre-broche 4 dans un plan X-Y contenant le premier axe X et un deuxième axe Y perpendiculaire au premier axe X. The module 2 for setting in motion also comprises an element 5 allowing the movement of the spindle 3 and the counter-spindle 4 in an X-Y plane containing the first X axis and a second Y axis perpendicular to the first X axis.
Le système comprend un élément 29 de génération d’un faisceau laser. Le faisceau laser utilisé pour réaliser l’usinage est un faisceau laser composé d’impulsions lumineuses ayant une durée d’impulsion comprise entre 10Ofs et 10ps. Il peut avoir une fréquence supérieure à 50 kHz, c’est- à-dire que des impulsions ou tirs sont émis à une fréquence supérieure à 50 kHz. The system includes an element 29 for generating a laser beam. The laser beam used to perform the machining is a laser beam composed of light pulses with a pulse duration between 10Ofs and 10ps. It can have a frequency greater than 50 kHz, that is to say that pulses or shots are emitted at a frequency greater than 50 kHz.
Le scanner 12 est disposé entre la sortie de l’élément 29 de génération du faisceau laser et la pièce à usiner, sur le chemin du faisceau laser. The scanner 12 is disposed between the output of the laser beam generating element 29 and the workpiece, in the path of the laser beam.
Le scanner galvanométrique 12 est un dispositif électromécanique intégrant de 1 à 3 axes de rotation et éventuellement des axes de translations, sur lesquels sont montés des éléments optiques de type miroirs ou lentilles. Des actionneurs pilotés en tension commandent le mouvement de ces axes et permettent de réaliser un déplacement du faisceau laser selon 2 ou 3 axes de manière extrêmement rapide et précise. Le scanner galvanométrique 12 comprend un dispositif de focalisation permettant de concentrer le laser sur un point focal. Une gestion avancée de la synchronisation entre le mouvement des éléments optiques et le déclenchement des tirs laser permet de réaliser une génératrice de la pièce de révolution usinée. Un scanner galvanométrique est différent d’un scanner à miroir polygonal, qui permet un balayage selon une unique direction. The galvanometric scanner 12 is an electromechanical device integrating 1 to 3 axes of rotation and possibly translation axes, on which optical elements of the mirror or lens type are mounted. Voltage-controlled actuators control the movement of these axes and make it possible to move the laser beam along 2 or 3 axes extremely quickly and precisely. The galvanometric scanner 12 comprises a focusing device making it possible to concentrate the laser on a focal point. An advanced management of the synchronization between the movement of the optical elements and the triggering of the laser shots makes it possible to produce a generator of the machined part of revolution. A galvanometric scanner is different from a polygon mirror scanner, which allows scanning in a single direction.
De préférence, le scanner 12 est agencé et/ou configuré pour déplacer le point de focalisation du laser à une vitesse de plus de 0.5 m/s, voir de plus de 10 m/s, voire de plus de 20 m/s. Le scanner 12 est agencé et/ou configuré pour déplacer le point de focalisation du laser avec des accélérations de plus de 5 m/s2, voire de plus de 500 m/s2, voire de plus de 5Ό00 m/s2, voire de plus de 50Ό00 m/s2. Preferably, the scanner 12 is arranged and / or configured to move the focal point of the laser at a speed of more than 0.5 m / s, or even more than 10 m / s, or even more than 20 m / s. The scanner 12 is arranged and / or configured to move the focal point of the laser with accelerations of more than 5 m / s 2 , or even more than 500 m / s 2 , or even more than 500 m / s 2 , or even of more than 50Ό00 m / s 2 .
Avantageusement, le scanner 12 est monté mobile en translation selon un troisième axe Z orthogonal aux premier et deuxième axes X et Y. Autrement dit, le scanner est monté sur un axe de translation orthogonal au premier axe X. Ainsi, le scanner galvanométrique permet de positionner aux endroits souhaités le point de focalisation du faisceau laser, notamment sur une tangente située sur le plan médian horizontal du barreau de matière usiné. Advantageously, the scanner 12 is mounted mobile in translation along a third Z axis orthogonal to the first and second X and Y axes. In other words, the scanner is mounted on a translation axis orthogonal to the first X axis. Thus, the galvanometric scanner makes it possible to position the focal point of the laser beam at the desired locations, in particular on a tangent located on the horizontal median plane of the machined bar of material.
Le système comprend avantageusement un module 6 d’automatisation permettant de commander le procédé d’usinage ou le procédé de fonctionnement du système. The system advantageously comprises an automation module 6 making it possible to control the machining process or the operating process of the system.
Le module 6 d’automatisation comprend un élément 7 de mesure en temps réel d’au moins une dimension, notamment d’un diamètre du composant. Son apport est décisif pour la réalisation de composants comprenant des diamètres de quelques dizaines de micromètres, dans des tolérances de l’ordre du micromètre. En effet, le diamètre d'un faisceau laser femtoseconde focalisé est typiquement de l'ordre de vingt micromètres et la profondeur de champ du même ordre. Sur des procédés d'usinage par faisceau laser avec incidence radiale, le tir laser impacte la couche de matière se trouvant en dessous de la couche directement ablatée. Cela est dû à la profondeur de champ incompressible du faisceau laser. Cette limitation physique a pour conséquence l'impossibilité de réaliser des pièces de révolution avec une précision diamétrale inférieure à l'ordre de grandeur de la taille du faisceau, à savoir vingt micromètres. The automation module 6 comprises an element 7 for real-time measurement of at least one dimension, in particular of a diameter of the component. Its contribution is decisive for the production of components comprising diameters of a few tens of micrometers, within tolerances of the order of one micrometer. Indeed, the diameter of a focused femtosecond laser beam is typically of the order of twenty micrometers and the depth of field of the same order. On laser beam machining processes with radial incidence, the laser shot impacts the layer of material located below the directly ablated layer. This is due to the incompressible depth of field of the laser beam. This physical limitation results in the impossibility of producing parts of revolution with a diametrical precision less than the order of magnitude of the size of the beam, namely twenty micrometers.
Cette limitation est outrepassée avec l'utilisation d'un faisceau laser incident tangentiel. L'ablation est réalisée en utilisant uniquement le bord du profil gaussien du faisceau laser. Dans ce cas de figure, les tirs laser successifs ne conduisent pas à une ablation supplémentaire. En conséquence, la précision de la cote diamétrale est définie par la précision du positionnement du faisceau laser et non par sa taille. La précision du positionnement du faisceau laser est elle-même définie par la précision de positionnement du scanner 12 et de l'élément 5 de déplacement de la broche 3 selon l'axe Y et est de l’ordre d’un micromètre. This limitation is overcome with the use of a tangential incident laser beam. The ablation is performed using only the edge of the Gaussian profile of the laser beam. In this case, the successive laser shots do not lead to additional ablation. Consequently, the precision of the diametrical dimension is defined by the precision of the positioning of the laser beam and not by its size. The positioning precision of the laser beam is itself defined by the positioning precision of the scanner 12 and of the element 5 for moving the spindle 3 along the Y axis and is of the order of one micrometer.
Un asservissement de la cote diamétrale par l'élément de mesure 7, dont la précision sur la mesure est de l'ordre du micromètre, combiné avec un procédé d'ablation par faisceau tangentiel, permet de réaliser des pièces de tournage avec une précision sur la génératrice du profil de ce même ordre, à savoir un micromètre. Le module 6 d’automatisation comprend en outre avantageusement un module d’asservissement 8 des paramètres du laser et/ou du déplacement du faisceau laser en fonction de la mesure effectuée par l‘élément 7 de mesure. A servo-control of the diametrical dimension by the measuring element 7, the measurement precision of which is of the order of a micrometer, combined with a tangential beam ablation process, makes it possible to produce turning parts with precision on the generator of the profile of the same order, namely a micrometer. The automation module 6 further advantageously comprises a servo module 8 of the parameters of the laser and / or of the displacement of the laser beam as a function of the measurement carried out by the measuring element 7.
Le module 6 d’automatisation pilote de nombreux actionneurs du système, parmi lesquels la broche 3 et/ou la contre-broche 4 et/ou l’élément 29 de génération du faisceau laser. Ce pilotage peut être réalisé en particulier en fonction de mesures de dimensions de la pièce usinée. Par exemple, le module 8 d’asservissement peut asservir la vitesse de rotation de la broche 3 ou de la contre-broche 4 à la dimension de la pièce à usiner, notamment au diamètre de la pièce à usiner. Il est ainsi possible de faire varier les vitesses des broche et contre-broche en fonction de la valeur théorique du diamètre à usiner, par exemple afin d’avoir le même taux de recouvrement latéral des impacts du laser (fonction de la vitesse de rotation de la broche, du diamètre usiné et de la fréquence du laser). De façon plus générale, il est possible de faire varier les vitesses des broche et contre-broche pour obtenir un taux de recouvrement variable ou constant en fonction du diamètre et/ou de la partie du composant, par exemple afin d’obtenir un état de surface donné, par exemple un état de surface différent sur différentes parties du composant. The automation module 6 controls many actuators of the system, including pin 3 and / or counter-spindle 4 and / or element 29 for generating the laser beam. This control can be carried out in particular as a function of measurements of the dimensions of the machined part. For example, the control module 8 can control the speed of rotation of the spindle 3 or the counter-spindle 4 to the size of the workpiece, in particular the diameter of the workpiece. It is thus possible to vary the speeds of the spindles and counter-spindles as a function of the theoretical value of the diameter to be machined, for example in order to have the same rate of lateral overlap of the impacts of the laser (depending on the speed of rotation of spindle, machined diameter and laser frequency). More generally, it is possible to vary the speeds of the spindle and counter-spindle in order to obtain a variable or constant recovery rate as a function of the diameter and / or of the part of the component, for example in order to obtain a state of given surface, for example a different surface finish on different parts of the component.
L’élément 7 de mesure peut être un micromètre optique. The measuring element 7 may be an optical micrometer.
De plus, le module 6 d’automatisation incluant l’élément 7 de mesure permet de faire un suivi de production afin de rectifier toutes dérives du procédé d’usinage. Grâce à l’acquisition des données par l’élément 7 de mesure, il est possible d’améliorer la répétabilité de l’usinage des composants. Grâce à l’acquisition des données par l’élément 7 de mesure, il est possible d’atteindre les cotes finales du composant avec une très haute précision qui ne serait pas atteignable sans cet asservissement, notamment à cause des dérives lors de l’usinage et/ou de la vitesse de rotation très élevée de la broche. In addition, the automation module 6 including the measuring element 7 makes it possible to monitor production in order to rectify any deviations from the machining process. Thanks to the data acquisition by the measuring element 7, it is possible to improve the repeatability of the machining of the components. Thanks to the data acquisition by the measuring element 7, it is possible to reach the final dimensions of the component with a very high precision which would not be attainable without this control, in particular because of drifts during machining and / or the very high speed of rotation of the spindle.
Le module 6 d’automatisation comprend avantageusement un encodeur rotatif 9 configuré de sorte à connaître en permanence la position angulaire de la broche, notamment la position angulaire absolue de la broche. The automation module 6 advantageously comprises a rotary encoder 9 configured so as to constantly know the angular position of the spindle, in particular the absolute angular position of the spindle.
En outre, le module 6 d’automatisation comprend avantageusement un module 10 de synchronisation configuré de sorte à synchroniser les impulsions du laser à la position angulaire de la broche. In addition, the automation module 6 advantageously comprises a synchronization module 10 configured so as to synchronize the pulses of the laser to the angular position of the spindle.
Ainsi, il est possible de synchroniser cette position angulaire et le balayage du scanner. Il devient ainsi possible d’envisager la réalisation de pièces comportant des surfaces n’étant pas de révolution selon le premier axe, comme des surfaces de pas de vis, de dentures, de perçages radiaux, de méplats, de rainures, de surfaces de section non circulaires, etc. Thus, it is possible to synchronize this angular position and the scanning of the scanner. It thus becomes possible to envisage the production of parts comprising surfaces which are not of revolution along the first axis, such as surfaces of screw threads, toothings, radial bores, flats, grooves, section surfaces. non-circular, etc.
Le système comprend avantageusement un ravitailleur 11 . Le ravitailleur intégré au système permet d’automatiser l’insertion du barreau de matière dans la broche de manière simple, sans effectuer de rotation de la contre- broche. Le barreau de matière est alors inséré dans l’espace entre la broche et la contre-broche, puis poussé par la contre-broche dans la pince de la broche. The system advantageously comprises a bar feeder 11. The feeder integrated into the system makes it possible to automate the insertion of the material bar in the spindle in a simple way, without having to rotate the counter spindle. The bar of material is then inserted into the space between the spindle and the counter spindle, then pushed by the counter spindle into the spindle clamp.
Un mode d’exécution d’un procédé de tournage laser, notamment de décolletage laser, est décrit ci-après. An embodiment of a laser turning process, in particular laser bar turning, is described below.
Le procédé permet d’obtenir un composant à partir d’un barreau de matière. Le procédé comprend une utilisation d’un système de tournage laser décrit précédemment. Les déplacements du faisceau laser L sont pilotés par l’activation du scanner 12 galvanométrique. Ceci permet des déplacements très rapides du faisceau laser. Par conséquent, le taux de recouvrement des impacts du faisceau laser sur la pièce à usiner est réduit et la qualité d’usinage est supérieure. Le taux de recouvrement est défini comme le rapport entre (i) l’aire de la surface d’intersection de deux impacts successifs du faisceau laser sur la pièce et (ii) l’aire de la surface d’un impact du faisceau laser sur la pièce. The method makes it possible to obtain a component from a bar of material. The method includes use of a laser turning system described above. The movements of the laser beam L are controlled by the activation of the galvanometric scanner 12. This allows very rapid movements of the laser beam. Therefore, the coverage rate of the impacts of the laser beam on the workpiece is reduced and the machining quality is higher. The recovery rate is defined as the ratio between (i) the area of the intersection surface of two successive impacts of the laser beam on the workpiece and (ii) the area of the surface of an impact of the laser beam on the room.
Le faisceau laser est de préférence focalisé sur le plan médian horizontal X-Y de la pièce, correspondant au plan horizontal passant par le premier axe X de rotation de la broche. Le faisceau est encore orienté avec une incidence tangentielle ou sensiblement tangentielle relativement au barreau en rotation, c’est-à-dire orienté selon le troisième axe Z ou sensiblement selon le troisième axe Z et déplacé selon une trajectoire T venant suivre le contour final souhaité pour le composant, comme illustré en figure 2. The laser beam is preferably focused on the horizontal median plane X-Y of the part, corresponding to the horizontal plane passing through the first axis X of rotation of the spindle. The beam is also oriented with a tangential or substantially tangential incidence relative to the rotating bar, that is to say oriented along the third Z axis or substantially along the third Z axis and moved along a trajectory T following the desired final contour. for the component, as shown in figure 2.
De cette manière, la matière du rayon concerné de la pièce à usiner est entièrement ablatée, sans ablation supplémentaire si les tirs de laser sont poursuivis. Ce ne serait pas le cas si l’incidence du laser n’était pas tangentielle, en particulier si l’incidence du faisceau laser était radiale. En effet, dans cette hypothèse, des tirs supplémentaires conduiraient à des ablations supplémentaires. In this way, the material of the relevant radius of the workpiece is completely ablated, without additional ablation if the laser shots are continued. This would not be the case if the incidence of the laser was not tangential, especially if the incidence of the laser beam was radial. Indeed, in this hypothesis, additional shots would lead to additional ablations.
En outre, avec une incidence tangentielle du faisceau laser, la matière ablatée est éjectée dans une direction opposée au faisceau et ne vient pas remonter dans le faisceau et le perturber comme dans le cas d’une incidence radiale. Cette configuration permet une maîtrise parfaite des passes d’usinage. De plus, le bord du profil gaussien du faisceau est en contact avec la surface de la pièce à usiner. L’énergie apportée à la surface de la pièce est inférieure au seuil d’ablation, et la surface de la pièce subit ainsi l’équivalent d’une passe de finition, avec un lissage de la matière résiduelle. In addition, with a tangential incidence of the laser beam, the ablated material is ejected in a direction opposite to the beam and does not come up into the beam and disturb it as in the case of a radial incidence. This configuration allows perfect control of the machining passes. In addition, the edge of the Gaussian beam profile is in contact with the surface of the workpiece. The energy supplied to the surface of the part is less than the ablation threshold, and the surface of the part thus undergoes the equivalent of a finishing pass, with a smoothing of the residual material.
Avantageusement, une ligne génératrice de profil de la pièce à usiner est créée par le système 6. Cette ligne constitue un profil selon lequel le point de focalisation du faisceau laser se déplace selon la trajectoire T dans le plan X-Y par l’action du scanner 12 galvanométrique lors de l’usinage de la pièce. En outre, pour réaliser l’usinage de la pièce, on met la pièce en rotation autour du premier axe X et on rapproche progressivement la ligne génératrice du premier axe X en la déplaçant dans le plan X-Y, en particulier selon le deuxième axe Y, notamment en utilisant l’élément 5 du module 2 de mise en mouvement. Les différents parcours de la ligne génératrice par le faisceau laser constituent chacun une passe d’usinage. Advantageously, a line generating the profile of the part to be machined is created by the system 6. This line constitutes a profile according to which the focal point of the laser beam moves along the path T in the XY plane by the action of the scanner 12 galvanometric during the machining of the part. In addition, to perform the machining of the part, the part is rotated around the first X axis and the generating line is gradually brought closer to the first X axis by moving it in the XY plane, in particular along the second Y axis, in particular by using element 5 of module 2 for setting in motion. The different paths of the generating line by the laser beam each constitute a machining pass.
La mise en oeuvre du procédé décrit précédemment permet d’obtenir un mode de réalisation d’un composant. De préférence, le composant présente un diamètre inférieur à 10 mm et/ou une longueur inférieure à 250 mm. The implementation of the method described above makes it possible to obtain an embodiment of a component. Preferably, the component has a diameter of less than 10 mm and / or a length of less than 250 mm.
Les technologies d’usinage par laser permettent de s’affranchir de l’usure des outils mentionnée plus haut, mais présentent également les avantages suivants : Laser machining technologies eliminate the tool wear mentioned above, but also have the following advantages:
- La gamme des matériaux usinables est sensiblement élargie, car il n’y a plus besoin de tenir compte du comportement des copeaux (notamment par rapport aux aciers de décolletage contenant traditionnellement du soufre comme brise-copeaux). - The range of machinable materials is significantly extended, because there is no longer any need to take into account the behavior of the chips (especially compared to free-cutting steels traditionally containing sulfur as chipbreakers).
- L’effort de coupe est négligeable et la barre ne vibre pas. En effet, la fréquence du tir laser peut être asservie de façon à ce que, au fur et à mesure de l’usinage, les modes propres évolutifs de la pièce usinée ne soient jamais excités. - The cutting force is negligible and the bar does not vibrate. Indeed, the frequency of the laser firing can be slaved so that, as the machining progresses, the evolving natural modes of the machined part are never excited.
- Aucun lubrifiant n’est nécessaire, l’usinage par laser femto-seconde étant athermique. - No lubricant is necessary, since femtosecond laser machining is athermal.
- Un durcissement de la surface et/ou une texturation de la surface sont possibles, de manière simultanée à l’usinage. - Surface hardening and / or surface texturing are possible, simultaneously with machining.
Dans tout ce document, les termes « barreau », « pièce » et « composant » sont utilisés pour désigner le composant à différents stades de sa réalisation. Le terme « barreau » désigne de préférence le barreau de matière 50 avant le début de son usinage laser et au début de son usinage laser. Le terme « pièce » désigne de préférence le barreau ou le composant lors de l’usinage laser. Le terme « composant » désigne de préférence le composant 60 à la fin de son usinage laser et après son usinage laser. Throughout this document, the terms “bar”, “part” and “component” are used to designate the component at different stages of its production. The term “bar” preferably designates the bar of material 50 before the start of its laser machining and at the start of its laser machining. The term "part" preferably designates the bar or the component during laser machining. The term “component” preferably designates component 60 at the end of its laser machining and after its laser machining.

Claims

Revendications : Claims:
1. Système (1) de tournage laser pour la réalisation d’un composant (60) d’une longueur inférieure à 250 mm et/ou d’un diamètre inférieur à 10 mm, le système comprenant une broche rotative (3) de mise en mouvement d’un barreau de matière et un scanner galvanométrique (12) apte à émettre un faisceau laser femto seconde balayant, notamment balayant avec une incidence tangentielle à un barreau de matière, un profil générateur du composant à usiner dans le barreau de matière. 1. Laser turning system (1) for producing a component (60) with a length less than 250 mm and / or a diameter less than 10 mm, the system comprising a rotating spindle (3) for setting. moving a bar of material and a galvanometric scanner (12) capable of emitting a femto-second laser beam scanning, in particular scanning with an incidence tangential to a bar of material, a generator profile of the component to be machined in the bar of material.
2. Système selon la revendication précédente, caractérisé en ce que le scanner est configuré pour déplacer le point de focalisation du laser à une vitesse de plus de 0.5 m/s, voire de plus de 10 m/s, voire de plus de 20 m/s et/ou avec des accélérations de plus de 5 m/s2, voire de plus de 500 m/s2, voire de plus de 5Ό00 m/s2, voire de plus de 50Ό00 m/s2. 2. System according to the preceding claim, characterized in that the scanner is configured to move the focal point of the laser at a speed of more than 0.5 m / s, or even more than 10 m / s, or even more than 20 m / s and / or with accelerations of more than 5 m / s 2 , or even more than 500 m / s 2 , or even more than 5Ό00 m / s 2 , or even more than 50Ό00 m / s 2 .
3. Système selon l’une des revendications précédentes, caractérisé en ce que le scanner est monté sur un axe (Z) de translation orthogonal à l’axe (X) de la broche (3). 3. System according to one of the preceding claims, characterized in that the scanner is mounted on an axis (Z) of translation orthogonal to the axis (X) of the spindle (3).
4. Système selon l’une des revendications précédentes, caractérisé en ce que la broche est apte à tourner à plus de 20Ό00 t/min, voire à plus de 50Ό00 t/min, voire à plus de 100Ό00 t/min. 4. System according to one of the preceding claims, characterized in that the spindle is capable of rotating at more than 20,000 rpm, or even more than 50,000 rpm, or even more than 100,000 rpm.
5. Système selon l’une des revendications précédentes, caractérisé en ce que le faisceau laser a une fréquence supérieure à 50 kHz. 5. System according to one of the preceding claims, characterized in that the laser beam has a frequency greater than 50 kHz.
6. Système selon l’une des revendications précédentes, caractérisé en ce qu’il comprend un module (6) d’automatisation comprenant un élément (7) de mesure d’au moins une dimension du composant en temps réel. 6. System according to one of the preceding claims, characterized in that it comprises an automation module (6) comprising a element (7) for measuring at least one dimension of the component in real time.
7. Système selon la revendication 6, caractérisé en ce qu’il comprend un module (8) d’asservissement des paramètres du laser et/ou du déplacement du faisceau laser en fonction de la mesure effectuée par l‘élément de mesure. 7. System according to claim 6, characterized in that it comprises a module (8) for controlling the parameters of the laser and / or the displacement of the laser beam as a function of the measurement carried out by the measuring element.
8. Système selon l’une des revendications précédentes, caractérisé en ce qu’il comprend un encodeur rotatif (9) configuré de sorte à connaître en permanence la position angulaire de la broche, notamment la position angulaire absolue de la broche. 8. System according to one of the preceding claims, characterized in that it comprises a rotary encoder (9) configured so as to constantly know the angular position of the spindle, in particular the absolute angular position of the spindle.
9. Système selon la revendication précédente, caractérisé en ce qu’il comprend un module de synchronisation (10) configuré de sorte à synchroniser les impulsions du laser à la position angulaire de la broche. 9. System according to the preceding claim, characterized in that it comprises a synchronization module (10) configured so as to synchronize the pulses of the laser to the angular position of the spindle.
10. Système selon l’une des revendications précédentes, caractérisé en ce qu’il comprend une contre broche. 10. System according to one of the preceding claims, characterized in that it comprises a counter spindle.
11. Système selon l’une des revendications précédentes, caractérisé en ce qu’il comprend un ravitailleur (11 ). 11. System according to one of the preceding claims, characterized in that it comprises a bar feeder (11).
12. Procédé de tournage laser, notamment de décolletage, d’un composant à partir d’un barreau de matière, le procédé comprenant une utilisation d’un système selon l’une des revendications précédentes. 12. A method of laser turning, in particular bar turning, of a component from a bar of material, the method comprising the use of a system according to one of the preceding claims.
13. Composant (60) obtenu par la mise en oeuvre du procédé selon la revendication précédente. 13. Component (60) obtained by implementing the method according to the preceding claim.
EP21718103.1A 2020-04-10 2021-04-09 Laser turning system, laser turning method, and part obtained by using such a system Pending EP4132740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20315152 2020-04-10
PCT/EP2021/059359 WO2021205031A1 (en) 2020-04-10 2021-04-09 Laser turning system, laser turning method, and part obtained by using such a system

Publications (1)

Publication Number Publication Date
EP4132740A1 true EP4132740A1 (en) 2023-02-15

Family

ID=71266533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21718103.1A Pending EP4132740A1 (en) 2020-04-10 2021-04-09 Laser turning system, laser turning method, and part obtained by using such a system

Country Status (6)

Country Link
US (1) US20230136690A1 (en)
EP (1) EP4132740A1 (en)
JP (1) JP2023520812A (en)
KR (1) KR20220164058A (en)
CN (1) CN115427185A (en)
WO (1) WO2021205031A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489589B1 (en) * 1994-02-07 2002-12-03 Board Of Regents, University Of Nebraska-Lincoln Femtosecond laser utilization methods and apparatus and method for producing nanoparticles
DE102009044316B4 (en) 2009-10-22 2015-04-30 Ewag Ag Method for producing a surface and / or edge on a blank and laser processing device for carrying out the method
DE102010011508B4 (en) 2010-03-15 2015-12-10 Ewag Ag Method for producing at least one flute and at least one cutting edge and laser processing device
DE102011000768B4 (en) 2011-02-16 2016-08-18 Ewag Ag Laser processing method and laser processing apparatus with switchable laser arrangement
DE102013212652B4 (en) * 2013-06-28 2016-12-15 Continental Automotive Gmbh Device for operating a machine tool and machine tool
DE102014109613A1 (en) 2014-07-09 2014-09-04 Ewag Ag Producing workpiece surface at workpiece using processing machine (10) comprising laser with laser head and machine drive device, comprises e.g. positioning and/or aligning the workpiece relative to the laser head
EP3613388A1 (en) * 2018-08-24 2020-02-26 Biotronik Ag Method and installation for laser cutting, in particular for laser cutting of stents

Also Published As

Publication number Publication date
CN115427185A (en) 2022-12-02
JP2023520812A (en) 2023-05-19
US20230136690A1 (en) 2023-05-04
WO2021205031A1 (en) 2021-10-14
KR20220164058A (en) 2022-12-12

Similar Documents

Publication Publication Date Title
Ashkenasi et al. Laser trepanning for industrial applications
CA2946973C (en) Laser augmented diamond drilling apparatus and method
EP3352974B1 (en) System and method for additively manufacturing by laser melting of a powder bed
WO2014132503A1 (en) Machining device and machining method
JP5627760B1 (en) Laser processing apparatus and laser processing method
US11117221B2 (en) Laser machining device and laser machining method
CN101856772A (en) Light beam-rotating galvanometer-scanning focused processing system
JP2020104167A (en) Laser processing device and beam rotator unit
JP5873978B2 (en) Laser processing method and nozzle manufacturing method
EP4132740A1 (en) Laser turning system, laser turning method, and part obtained by using such a system
WO2021205030A1 (en) Laser turning system, laser turning method using such a system, and part obtained by such a method
KR20100032650A (en) Processing method of forming groove using laser and cutting tool
He et al. Helical drilling of three-dimensional conical converging-diverging nozzle in steel using ultrashort laser pulses
CH718688A2 (en) Machine for machining a micromechanical part and method of machining implemented by said machine.
EP0168374A2 (en) Method for marking a cylindrical metal object, such as a roll of a rolling mill
CN106312331A (en) Laser small-hole punching device based on Dove prism and method
FR3057795A1 (en) HOLES DRILLING METHOD, DEVICE AND TOOL FOR PERFORMING THE SAME
EP4348363A1 (en) Machine tool for machining a micromechanical component, and machining method implemented by said machine tool
EP4101569B1 (en) Threading method
EP4046817B1 (en) Method for laser treatment of a timepiece component intended to darken at least one portion
Ashkenasi et al. A novel laser trepanning system for research and production
Ashkenasi et al. Rotating optics for laser taper-drilling in research and production
JP7452901B2 (en) laser processing equipment
Geoffray et al. Sinusoidal ripples micromachining on CHx ablator for hydrodynamics growth experiments
GB2355222A (en) Improvements in laser machining

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240301