EP4127257B1 - Litho strip having flat topography and printing plate produced therefrom - Google Patents

Litho strip having flat topography and printing plate produced therefrom Download PDF

Info

Publication number
EP4127257B1
EP4127257B1 EP21713984.9A EP21713984A EP4127257B1 EP 4127257 B1 EP4127257 B1 EP 4127257B1 EP 21713984 A EP21713984 A EP 21713984A EP 4127257 B1 EP4127257 B1 EP 4127257B1
Authority
EP
European Patent Office
Prior art keywords
printing plate
filter
aluminium alloy
alloy strip
mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21713984.9A
Other languages
German (de)
French (fr)
Other versions
EP4127257A1 (en
EP4127257C0 (en
Inventor
Oliver Bauer
Gernot NITZSCHE
Volkan BARISIK
Vera Bartosinski
Jasmin DAHMEN
Klaus WEICHBRODT
Jan Hendrik HOLTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Speira GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Speira GmbH filed Critical Speira GmbH
Publication of EP4127257A1 publication Critical patent/EP4127257A1/en
Application granted granted Critical
Publication of EP4127257B1 publication Critical patent/EP4127257B1/en
Publication of EP4127257C0 publication Critical patent/EP4127257C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to the use of an aluminum alloy strip for producing lithographic printing plates or for producing printing plates for waterless offset printing, an aluminum alloy strip for lithographic printing plate supports, which has a rolled surface topography on at least one strip surface, a method for producing the aluminum alloy strip and a printing plate for lithographic printing or waterless offset printing having a printing plate carrier made of an aluminum alloy.
  • lithographic tapes ie aluminum alloy tapes for lithographic printing plate supports.
  • Litho tapes are usually subjected to an electrochemical roughening step, which should result in a comprehensive roughening and a homogeneous appearance.
  • the roughened structure is important for the imaging layer of the printing plate supports made from the lithographic tapes.
  • a particularly flat surface of the lithographic strips is required.
  • the topography of the litho strip surface is essentially a replica of the roll topography of the last cold rolling pass. Elevations and depressions in the roller surface lead to grooves or ridges in the lithographic strip surface, which can be partially retained in the further manufacturing steps for producing the printing plate carriers.
  • the quality of the litho belt surface and thus the printing plate carrier is determined by the quality of the roller surface and thus, on the one hand, by the grinding practice during the surface treatment of the rollers and, on the other hand, by the ongoing wear of the rollers.
  • the strip surface is processed using a pickling process with a specific pickling removal and then has a topography whose maximum peak height Rp and/or Sp is a maximum of 1.4 ⁇ m, preferably a maximum of 1.2 ⁇ m, in particular a maximum of 1.0 ⁇ m, amounts.
  • the litho strips are pickled after rolling in order to remove disturbing oxide islands on the surface of the strips and thereby improve the subsequent electrochemical roughening.
  • the EP 0 778 158 A1 discloses printing plate carriers with a roughened and anodized surface, which have a maximum tip height Rp of up to 4 ⁇ m.
  • the Japanese patent application JP 2015 004095 A discloses an aluminum alloy sheet for a can body of a beverage can and its production.
  • the use of aluminum alloy tapes for lithographic printing plate supports is not disclosed.
  • the Chinese patent application CN 110102580 A also relates only to a method for producing an aluminum alloy strip from the aluminum alloy of type 1100 in the H14 condition for the production of high-quality cosmetic bottle caps and therefore not to lithographic printing plate carriers or lithographic printing plates themselves.
  • the Japanese patent application JP 2002 224710 A relates to the production of an aluminum alloy foil.
  • the only mention of these films is their use as packaging material for chemicals and food.
  • US patent application US 2019/0076897 A1 relates to the production of an aluminum foil for ultraviolet reflective materials.
  • the use of aluminum alloy tapes for lithographic printing plate supports is also not disclosed in the cited US patent application.
  • EP 1 172 228 A2 are known printing plate carriers for lithographic printing plates.
  • the aforementioned European patent application only discloses the surface properties of roughened aluminum alloy printing plates coated with a photosensitive coating.
  • the aluminum alloy strip is usually electrochemically roughened to produce the printing plate supports.
  • a reduction in the charge carrier input required to uniformly roughen the surface of the printing plate support facing the imaging coating would also be desirable.
  • the height of the largest profile peak of the roughness profile Rp (short: peak height), the depth of the largest profile valley Rv (short: trough depth) and the peak number RPc are defined in DIN EN ISO 4287 and DIN EN 10049 as well as the bearing fraction Smr (c) and the aspect ratio of the surface texture Str defined in DIN EN ISO 25178.
  • the surface parameters Ra, Rp, Rv, RPc, Smr (c) and Str mentioned here refer to optical surface measurements with a measuring area of at least 4.5 mm x 4.5 mm, which are carried out with a confocal microscope (lateral measuring point distance 1.6 ⁇ m or smaller) are measured and determined using analysis software. For this purpose, optical surface measurements of the parameters were carried out on three measuring surfaces of the specified size and the arithmetic mean of the respective parameters was determined.
  • the profile parameters Ra, Rp, Rv and RPc are calculated for each measuring surface perpendicular to the rolling direction as arithmetic mean values from the available profile sections of the areal measurement.
  • the measurement data is prepared by one Shape compensation with a second-order polynomial (F filter).
  • the isotropy of the roughening of the printing plate support can be specified by the aspect ratio of the surface texture Str according to DIN EN ISO 25178.
  • the Str value the number of measuring points on the measuring surface is scaled to a power of 2.
  • the scaled numerical values are calculated using a resampling operation.
  • the average peak number RPc measured perpendicular to the rolling direction, typically indicates the number of protruding areas on the aluminum alloy strip that are present as rolling webs
  • the arithmetic average roughness value Ra and the average peak height Rp provide information about the height of these elevations in the topography of the aluminum alloy strip or the printing plate carrier.
  • This means that the area proportion of the protruding areas of the surface, for example, the surface portions oriented in the rolling direction, indicated above the cutting line c +0.25 ⁇ m in the material proportion curve of the aluminum alloy strip or the printing plate carrier.
  • the ratio of the mean peak height Rp and the mean trough depth Rv provides information about whether the surface topography is dominated by troughs (values ⁇ 1) or peaks (values > 1).
  • the ratio Rp/Rv is almost independent of the charge carrier input during electrochemical roughening.
  • the object of the present invention is therefore to propose a use of an aluminum alloy strip for lithographic printing plates as well as for printing plates for waterless offset printing and an aluminum alloy strip for lithographic printing plate supports, which, despite decreasing thickness of the imaging coating, provides a long service life in the printing process and can be roughened with less charge carrier entry .
  • the invention is intended to provide a method for producing the aluminum alloy strips with the desired properties and to provide printing plates, in particular "development-on-press" printing plates or printing plates for waterless offset printing with a long service life.
  • the aluminum strips according to the invention are therefore particularly preferably used as printing plate supports for “development on press” printing plates and for printing plates for waterless offset printing.
  • the surface of the aluminum alloy strip also has an average peak height Rp of a maximum of 1.1 ⁇ m, preferably 0.45 ⁇ m to 1.1 ⁇ m.
  • the also reduced average center height Rp further ensures that rolling webs, if they are present, are reduced in height and contribute to improving service life.
  • an optical surface roughness measurement is carried out.
  • the height data is available in the form of a matrix a with the dimension NxM.
  • the matrix is transformed using a discrete Fast Fourier Transformation (FFT) into the frequency space in which the surface components that extend in the rolling direction and perpendicular to the rolling direction can be separated.
  • FFT Fast Fourier Transformation
  • the thickness of the aluminum alloy strip is preferably 0.10 mm to 0.5 mm, preferably 0.10 mm to 0.4 mm.
  • aluminum strips with thicknesses of 0.10 mm to 0.4 mm are used for lithographic printing plate supports.
  • Special formats also use thicknesses between 0.4 mm and 0.5 mm.
  • An Si content of 0.02% by weight to 0.50% by weight also influences the appearance of electrochemically roughened printing plate supports. If the Si content is less than 0.02% by weight, electrochemical roughening results in too many depressions that are too small in the aluminum strip. If the Si content is too high, above 0.50% by weight, the number of depressions in the roughened aluminum strip is too small and the distribution is inhomogeneous.
  • An Si content of 0.02% by weight ⁇ Si ⁇ 0.25% by weight is preferably used.
  • the Cu content is ⁇ 0.05% by weight, preferably ⁇ 0.01% by weight.
  • Iron contributes to the mechanical and thermal strength of the aluminum alloy strips, so 0.2% to 1% by weight of iron is permissible. If the content is further increased, the roughening behavior during electrochemical roughening deteriorates.
  • a preferred Fe content is between 0.2% by weight to 0.6% by weight or 0.4% by weight to 0.6% by weight.
  • the aluminum alloy therefore has a Mg content of 0.05% by weight ⁇ Mg ⁇ 0.6% by weight. In the preferred range of 0.1% by weight ⁇ Mg ⁇ 0.4% by weight or 0.25 to 0.4% by weight, strips with high strength in the rolled-hard state and reliable roughening behavior can be provided.
  • Manganese increases the thermal strength of the aluminum alloy strip, it also increases the charge carrier input necessary for the electrochemical roughening of the printing plate carrier made from the aluminum alloy strip. Manganese is therefore limited to 0.3% by weight, preferably ⁇ 0.1% by weight, particularly preferably ⁇ 0.05% by weight.
  • Cr, Zn and Ti are also limited.
  • the contents are Cr ⁇ 0.01% by weight, Zn ⁇ 0.1% by weight, preferably ⁇ 0.05% by weight and Ti ⁇ 0.05% by weight.
  • the aluminum alloy strip is in the hard-rolled state.
  • This achieves improved handling in the production of printing plate carriers. Due to the magnesium content, the aluminum alloy strips have relatively high strength in these states, so that good processing during electrochemical roughening and during the application of the imaging layer in the strip-shaped state is possible.
  • hard-rolled states for example, state H18 produced by cold rolling with intermediate annealing or H19 produced by cold rolling without intermediate annealing are preferably used.
  • a method for producing an aluminum alloy strip according to the invention in which a Rolling ingots are cast from an aluminum alloy for lithographic printing plate supports, the rolling ingots are optionally preheated or homogenized before hot rolling, the rolling ingots are hot-rolled into a hot strip and the hot strip is then cold-rolled to the final thickness with or without intermediate annealing, a work roll being used in the last cold-rolling pass, which has an average roughness Ra of less than 0.18 ⁇ m, preferably less than 0.17 ⁇ m or preferably a maximum of 0.15 ⁇ m.
  • the surface topography of a litho strip is essentially determined by the surface topography of the work roll in the last cold rolling pass.
  • the method according to the invention can be used to produce an aluminum alloy strip which can be further processed into printing plate supports with improved service life in printing.
  • the long service lives in printing are also achieved with “development-on-press” printing plates or with printing plates for waterless offset printing, which have particularly thin imaging coatings.
  • the average roughness Ra of the work rolls is determined according to DIN EN ISO 4287, with the roll surfaces according to the invention at least parallel to the longitudinal axis of the work roll having an average roughness Ra of less than 0.18 ⁇ m, preferably less than 0.17 ⁇ m or preferably a maximum of 0.15 ⁇ m exhibit.
  • the work roll in the last cold rolling pass has a roll surface with an average trough depth Rv measured parallel to the longitudinal axis of the work roll of a maximum of 1.2 ⁇ m.
  • a work roll is used in the last cold rolling pass which has an average roughness Ra of at least 0.07 ⁇ m, preferably at least 0.10 ⁇ m, then, contrary to previous assumptions, slippage between the roll and the litho strip can be reliably avoided and a stable production process can be provided become.
  • the degree of rolling in the last cold rolling pass is at least 20%, preferably at least 30%, in order to achieve sufficient imprinting of the surface topography of the roll surface in the last cold rolling pass.
  • the degree of rolling in the last cold rolling pass is a maximum of 65%, preferably a maximum of 60%.
  • At least the surface of the printing plate support facing the imaging layer has a ratio of the average after the electrochemical roughening of the printing plate support Peak height to mean trough depth Rp/Rv of a maximum of 0.45, preferably a maximum of 0.4.
  • the specified ratio of mean peak height to mean trough depth defines a topography of the surface of the printing plate support facing the imaging coating, in which the mean peak height is lower by more than a factor of 2 in relation to the mean trough depth.
  • the topography of the printing plate carrier is therefore dominated by troughs and is very flat in the direction of the imaging coating, which significantly improves the service life of thin coatings in printing, for example coatings of "development-on-press" printing plates or printing plates for waterless offset printing .
  • At least the side of the printing plate support facing the imaging layer preferably has an average peak height Rp of less than 1.2 ⁇ m, preferably a maximum of 1.1 ⁇ m or preferably a maximum of 1 ⁇ m.
  • the printing plate carriers can additionally be roughened homogeneously or isotropically with less charge carrier input.
  • Aluminum alloy strips according to the invention showed high aspect ratios of the surface texture Str even with low charge carrier input.
  • at least the surface of the printing plate support facing the imaging layer after electrochemical roughening with a charge carrier input of at least 500 C/dm 2 has an aspect ratio of the surface texture Str according to DIN EN ISO 25178 of at least 50%.
  • the aspect ratio Str of the surface texture is a measure of the uniformity of the Surface texture. With a value of 100% or 1, the surface texture is isotropic, i.e. independent of direction.
  • the printing plate carriers according to the invention therefore provide a high aspect ratio Str of the surface texture even with low charge carrier input, so that the effort for electrochemical roughening can be reduced.
  • the printing plate can thus be produced at lower costs.
  • a printing plate for waterless offset printing has a printing plate carrier made from an aluminum alloy strip according to the invention.
  • the imaging coatings of printing plates for waterless offset printing also have particularly small thicknesses, so that the service life of the printing plates for waterless offset printing benefits particularly from the surface topography of the aluminum alloy strip.
  • printing plate supports for printing plates for waterless offset printing are not electrochemically roughened before they are image-coated.
  • the production was carried out by casting a rolling billet, homogenizing the rolling billet at 450 to 610 ° C for at least 1 hour, hot rolling the rolling billet into a hot strip with a thickness of approximately 2 - 7 mm and cold rolling the hot strip with or without intermediate annealing to the final thickness.
  • the lithographic strips according to the invention were Fig. 5 - 8 a work roll is used whose surface topography has an arithmetic average roughness Ra according to DIN ISO 4287 of less than 0.18 ⁇ m, preferably had a maximum of 0.17 ⁇ m or a maximum of 0.15 ⁇ m.
  • the average trough depth Rv of the surface of the work rolls of the exemplary embodiments according to the invention was a maximum of 1.2 ⁇ m.
  • the comparison lithobes in Fig. 1 - 4 On the other hand, they were cold rolled with a work roll in the last cold rolling pass, which had an arithmetic average roughness value Ra of 0.22 ⁇ m - 0.25 ⁇ m. The average trough depth Rv was also higher at a maximum of 1.6 ⁇ m than in the work rolls to be used according to the invention.
  • the sheets produced in this way were roughened electrochemically in HCl as an electrolyte with different charge carrier inputs from 400 C/dm 2 to 800 C/dm 2 .
  • the height values of the optically measured measuring surfaces are in the Fig. 1-8 shown in false colors, with depressions assigned gray to black tones and elevations assigned light gray to white gray tones. With the human eye, differences can be seen on the measuring surfaces shown in this way even when they are not roughened.
  • the litho strips according to the invention therefore have a surface that is significantly less structured in the rolling direction. This effect becomes stronger as the roughening increases.
  • All measured values Rp, RPc, Rv, Ra, Smr and Str of the exemplary embodiments and comparative examples were measured optically on three measuring surfaces measuring 4.5 mm x 4.5 mm with a confocal microscope and determined using analysis software (Digital Surf MountainsMap® ) .
  • the measuring surfaces were randomly arranged on the belts and the printing plate supports in a DIN A4 area. The corresponding areas of the bands were free of surface damage.
  • the arithmetic mean of the three measuring surfaces was calculated for each parameter, with the profile parameters within the measuring surfaces perpendicular to the Rolling direction Rp, RPc, Rv, Ra were calculated as arithmetic mean values.
  • the measurement data was prepared using shape compensation with a second-order polynomial (F filter).
  • the litho strips a, b, c, d and m were manufactured identically by the above process starting with casting a rolling ingot, homogenizing the rolling ingot, hot rolling the rolling ingot and cold rolling the hot strip to final thickness with intermediate annealing (H18) and without intermediate annealing (H19). .
  • the resulting thicknesses, the material conditions and the arithmetic average roughness values Ra of the surfaces of the resulting lithobes are given in Table 1.
  • the different roll topographies used in the final cold rolling pass can be seen in Table 7.
  • the litho strips according to the invention were therefore cold rolled in the last cold rolling pass with a work roll with a roll surface which, according to Table 7, had an arithmetic mean roughness Ra of 0.11 ⁇ m to 0.17 ⁇ m, with the specified rolling degrees.
  • the average trough depth Rv was measured to be less than 1.2 ⁇ m.
  • the degree of rolling was in the inventive range of at least 20%. Furthermore, the degree of rolling at a maximum of 55% was also below 60% or even below 65%, so that as a result good surface properties were achieved with the lowest possible number of stitches.
  • the arithmetic mean roughness value Ra of the roll surface of the work roll in the last cold rolling pass of the comparison strips was between 0.22 ⁇ m and 0.25 ⁇ m.
  • the average trough depth Rv was also significantly higher at a maximum of 1.6 ⁇ m than in the work rolls used according to the invention.
  • the production of the exemplary embodiments according to the invention showed a stable production process, without any disruptions occurring during cold rolling due to slippage between the cold roll and the litho strip being rolled.
  • the aluminum strips a, b, c, d and m according to the invention also showed mean peak numbers RPc measured perpendicular to the rolling direction of significantly less than 50 cm -1 .
  • mean peak numbers RPc measured perpendicular to the rolling direction of significantly less than 50 cm -1 .
  • the comparison strips were, however, significantly higher than the results of the aluminum strips according to the invention.
  • the average peak height Rp for the aluminum alloy strips according to the invention was also significantly below the average peak heights Rp of the comparison strips, which had at least 0.88 ⁇ m as the average peak height Rp, the low average peak height Rp being due to the lower trough depth Rv of the roll surface is returned.
  • Fig. 9 shows an example of how the load-bearing fraction Smr (c) can be determined from a material fraction curve in the form of an Abbott curve for a value c.
  • the c value is read on the Z axis, which corresponds to a height value of the surface topography.
  • the optical measurement results of a roughness measurement are subjected to a Fourier transformation and only the surface portions oriented in the rolling direction are transformed back.
  • the printing plate supports made from aluminum strips according to the invention showed a significantly improved service life in printing when using “development-on-press” coatings compared to the comparative examples. This is attributed to the differences in surface topography. It is assumed that the same applies to printing plates for waterless offset printing.
  • the properties of the aluminum strips during electrochemical roughening were checked with HCl as electrolyte, using different charge carrier inputs.
  • concentration of the electrolyte was 6g HCl per liter and 1g/L Al 3+ in the form of AlCh at 25 to 30 °C with a current density of 20 A/dm 2 and alternating current.
  • the electrochemical roughening also has an impact on other surface parameters of the aluminum alloy strip surface facing the imaging coating of the printing plate.
  • the aluminum strips according to the invention also showed a ratio Rp/Rv of a maximum of 0.45, with most values being below 0.41. As expected, there was very little dependence on the charge carrier input during electrochemical roughening. The comparison examples were significantly above these values. Only in comparative example f could a value of 0.43 be measured at 400 C/dm 2 and 500 C/dm 2 charge carrier entry.
  • the printing plate carriers according to the invention made from the test tapes a, b, c, d and m had a ratio Rp/Rv of 0.40 to 0.34 from 600 C/dm 2 and thus a significantly lower Rp/Rv ratio than the comparison bands.
  • the surface topographies of the printing plate carriers according to the invention were therefore even flatter than with printing plate carriers made from the comparison tapes.
  • the investigations into the aspect ratio of the surface texture Str after electrochemical roughening revealed significant differences.
  • the aspect ratio Str is a measure of the isotropy of the roughened surface.
  • the value Str reaches 100% with a completely isotropic surface.
  • the printing plate supports a, b, c, d and m produced from test tapes according to the invention can provide an aspect ratio of the surface texture Str of at least 20% at 400 C/dm 2 or at least 50% at 500 C/dm 2
  • the comparison tapes only show this at 700 C/dm 2 an aspect ratio of the surface texture Str of at least 20%.
  • the aluminum strips according to the invention can provide isotropically roughened surfaces with less charge carrier input and can therefore be processed more economically into printing plates.
  • the printing plates according to the invention also provide a longer service life, even for printing plates with very thin imaging coatings.
  • Table 1 Composition of the test strips in% by weight, balance Al, unavoidable impurities individually maximum 0.05% by weight, in total maximum 0.15% by weight, arithmetic average roughness Ra defined in DIN EN 10049 perpendicular to the rolling direction, condition H18 with Intermediate annealing, condition H19 without intermediate annealing during cold rolling.

Description

Die Erfindung betrifft die Verwendung eines Aluminiumlegierungsbands zur Herstellung lithografischer Druckplatten oder zur Herstellung von Druckplatten für den wasserlosen Offsetdruck, ein Aluminiumlegierungsband für lithografische Druckplattenträger, welches auf mindestens einer Bandoberfläche eine eingewalzte Oberflächentopographie aufweist, ein Verfahren zur Herstellung des Aluminiumlegierungsbands und eine Druckplatte für den lithografischen Druck oder den wasserlosen Offsetdruck aufweisend einen Druckplattenträger aus einer Aluminiumlegierung.The invention relates to the use of an aluminum alloy strip for producing lithographic printing plates or for producing printing plates for waterless offset printing, an aluminum alloy strip for lithographic printing plate supports, which has a rolled surface topography on at least one strip surface, a method for producing the aluminum alloy strip and a printing plate for lithographic printing or waterless offset printing having a printing plate carrier made of an aluminum alloy.

An die Oberflächenbeschaffenheit von Lithobändern, d.h. von Aluminiumlegierungsbändern für lithografische Druckplattenträger, werden sehr hohe Anforderungen gestellt. Lithobänder werden üblicherweise einem elektrochemischen Aufrauschritt unterzogen, welcher eine flächendeckende Aufrauung und ein homogenes Aussehen zur Folge haben sollte. Die aufgeraute Struktur ist wichtig für die bildgebende Schicht der aus den Lithobändern hergestellten Druckplattenträger. Um gleichmäßig aufgeraute Oberflächen herstellen zu können, ist daher eine besonders ebene Oberfläche der Lithobänder erforderlich. Die Topografie der Lithobandoberfläche ist im Wesentlichen ein Abdruck der Walzentopografie des letzten Kaltwalzstichs. Erhebungen und Vertiefungen in der Walzenoberfläche führen zu Riefen bzw. Stegen in der Lithobandoberfläche, welche bei den weiteren Fertigungsschritten zur Herstellung der Druckplattenträger teilweise erhalten bleiben können. Die Qualität der Lithobandoberfläche und damit der Druckplattenträger wird durch die Qualität der Walzenoberfläche und somit einerseits durch die Schleifpraxis bei der Oberflächenbehandlung der Walzen und andererseits durch den laufenden Verschleiß der Walzen bestimmt.Very high demands are placed on the surface quality of lithographic tapes, ie aluminum alloy tapes for lithographic printing plate supports. Litho tapes are usually subjected to an electrochemical roughening step, which should result in a comprehensive roughening and a homogeneous appearance. The roughened structure is important for the imaging layer of the printing plate supports made from the lithographic tapes. In order to be able to produce evenly roughened surfaces, a particularly flat surface of the lithographic strips is required. The topography of the litho strip surface is essentially a replica of the roll topography of the last cold rolling pass. Elevations and depressions in the roller surface lead to grooves or ridges in the lithographic strip surface, which can be partially retained in the further manufacturing steps for producing the printing plate carriers. The quality of the litho belt surface and thus the printing plate carrier is determined by the quality of the roller surface and thus, on the one hand, by the grinding practice during the surface treatment of the rollers and, on the other hand, by the ongoing wear of the rollers.

Gemäß der auf die Anmelderin zurückgehende veröffentlichte europäische Patentanmeldung EP 2 444 254 A2 ging man bisher davon aus, dass bei der Herstellung von Aluminiumlegierungsbändern für lithografische Druckplattenträger bereits optimal geschliffene Walzen verwendet werden, da bei zu glatten Walzenoberflächen aufgrund geringer Reibkraft auf die Lithobandoberfläche Schlupf zwischen der Walze und dem Lithoband und damit Störungen des Walzprozesses oder Beschädigungen der Aluminiumbänder befürchtet wurden. Zu raue Walzen ergeben aber höhere oder zu hohe Rauheiten auf dem Aluminiumlegierungsband, so dass das Aluminiumlegierungsband für die Herstellung von Druckplattenträgern nicht mehr geeignet ist. Die bisher erzielten mittleren Rauheitswerte Ra von ca. 0,15 µm bis 0,25 µm auf den Oberflächen der Aluminiumlegierungsbänder wurden deshalb für viele Anwendungsbereiche als ausreichend angesehen. In der EP 2 444 254 A2 wird deshalb vorgeschlagen, dass die Bandoberfläche durch ein Beizverfahren mit einem spezifischen Beizabtrag bearbeitet wird und anschließend eine Topografie aufweist, deren maximale Spitzenhöhe Rp und/oder Sp maximal 1,4 µm, bevorzugt maximal 1,2 µm, insbesondere maximal 1,0 µm, beträgt.According to the published European patent application belonging to the applicant EP 2 444 254 A2 It was previously assumed that optimally ground rollers were already used in the production of aluminum alloy strips for lithographic printing plate carriers, since if the roller surfaces were too smooth, there was a risk of slippage between the roller and the litho strip due to the low friction force on the litho strip surface and thus disruptions to the rolling process or damage to the aluminum strips became. However, rollers that are too rough result in higher or too high roughness on the aluminum alloy strip, so that the aluminum alloy strip is no longer suitable for the production of printing plate carriers. The average roughness values Ra of approx. 0.15 µm to 0.25 µm achieved so far on the surfaces of the aluminum alloy strips were therefore considered sufficient for many areas of application. In the EP 2 444 254 A2 It is therefore proposed that the strip surface is processed using a pickling process with a specific pickling removal and then has a topography whose maximum peak height Rp and/or Sp is a maximum of 1.4 µm, preferably a maximum of 1.2 µm, in particular a maximum of 1.0 µm, amounts.

Bei anderen, aus dem Stand der Technik bekannten Verfahren, beispielsweise der aus WO 2006/1228 52 A1 und der aus WO 2007/14 1300 A1 bekannten Verfahren, werden die Lithobänder nach dem Walzen gebeizt, um störende Oxidinseln auf der Oberfläche der Bänder zu entfernen und dadurch die nachfolgende elektrochemische Aufrauung zu verbessern.In other methods known from the prior art, for example from WO 2006/1228 52 A1 and the one out WO 2007/14 1300 A1 According to a known method, the litho strips are pickled after rolling in order to remove disturbing oxide islands on the surface of the strips and thereby improve the subsequent electrochemical roughening.

Die EP 0 778 158 A1 offenbart Druckplattenträger mit aufgerauter und anodisierter Oberfläche, welche eine maximale Spitzenhöhe Rp bis 4 µm aufweisen.The EP 0 778 158 A1 discloses printing plate carriers with a roughened and anodized surface, which have a maximum tip height Rp of up to 4 µm.

Die japanische Patentanmeldung JP 2015 004095 A offenbart ein Aluminiumlegierungsblech für einen Dosenkörper einer Getränkedose und dessen Produktion. Die Verwendung von Aluminiumlegierungsbändern für lithografische Druckplattenträger wird nicht offenbart.The Japanese patent application JP 2015 004095 A discloses an aluminum alloy sheet for a can body of a beverage can and its production. The use of aluminum alloy tapes for lithographic printing plate supports is not disclosed.

Dies gilt auch für die europäische Patentanmeldung EP 3 254 772 A1 , die eine Aluminiumfolie für elektronische Vorrichtungen sowie ein Verfahren zu deren Herstellung offenbart. Als elektronische Vorrichtungen werden beispielsweise LCD-Displays, OLED-Displays oder elektronische Zeitungen etc. genannt.This also applies to the European patent application EP 3 254 772 A1 , which discloses an aluminum foil for electronic devices and a method for producing the same. Examples of electronic devices mentioned are LCD displays, OLED displays or electronic newspapers, etc.

Die chinesische Patentanmeldung CN 110102580 A betrifft ebenso lediglich ein Verfahren zur Herstellung eines Aluminiumlegierungsbands aus der Aluminiumlegierung vom Typ 1100 im Zustand H14 zur Herstellung von hochwertigen kosmetischen Flaschenverschlüssen und damit keine lithografischen Druckplattenträger oder lithografische Druckplatten selbst.The Chinese patent application CN 110102580 A also relates only to a method for producing an aluminum alloy strip from the aluminum alloy of type 1100 in the H14 condition for the production of high-quality cosmetic bottle caps and therefore not to lithographic printing plate carriers or lithographic printing plates themselves.

Die japanische Patentanmeldung JP 2002 224710 A betrifft die Herstellung einer Aluminiumlegierungsfolie. Für diese Folien wird lediglich die Anwendung als Verpackungsmaterial für Chemikalien und Nahrungsmittel erwähnt.The Japanese patent application JP 2002 224710 A relates to the production of an aluminum alloy foil. The only mention of these films is their use as packaging material for chemicals and food.

Die US Patentanmeldung US 2019/0076897 A1 betrifft die Herstellung einer Aluminiumfolie für ultraviolettreflektierende Materialien. Die Verwendung von Aluminiumlegierungsbändern für lithografische Druckplattenträger wird auch in der genannten US-Patentanmeldung nicht offenbart.The US patent application US 2019/0076897 A1 relates to the production of an aluminum foil for ultraviolet reflective materials. The use of aluminum alloy tapes for lithographic printing plate supports is also not disclosed in the cited US patent application.

Aus der europäischen Patentanmeldung EP 1 172 228 A2 sind Druckplattenträger für lithografische Druckplatten bekannt. Jedoch offenbart die zuvor genannte europäische Patentanmeldung nur die Oberflächeneigenschaften aufgerauter und mit einer fotoempfindlichen Beschichtung beschichteter Druckplatten aus einer Aluminiumlegierung.From the European patent application EP 1 172 228 A2 are known printing plate carriers for lithographic printing plates. However, the aforementioned European patent application only discloses the surface properties of roughened aluminum alloy printing plates coated with a photosensitive coating.

Bei aktuellen Druckplattenträgern, insbesondere bei neuartigen "Development-on-Press" Druckplattenträgern, wird die Dicke der bildgebenden Beschichtung kontinuierlich abgesenkt, um Entwicklungszeiten zu verringern und Kosten bei der Herstellung einzusparen. Zudem werden auch weichere bildgebende Beschichtungen eingesetzt, die ebenfalls Kosten in der Produktion der Druckplattenträger einsparen sollen, aber während des Druckbetriebes an Dicke abnehmen. Auf diese zusätzlichen Herausforderungen sind die bisher produzierten Aluminiumlegierungsbänder für lithografische Druckplattenträger nicht optimal angepasst. Es zeigte sich zudem, dass durch ein chemisches Beizen dieses Problem nicht gelöst werden konnte. Die aus den bekannten Aluminiumlegierungsbändern hergestellten Druckplattenträger neigen daher zu geringeren Standzeiten im Druckprozess mit den neuartigen Druckplattenträgern.With current printing plate carriers, especially with new "development-on-press" printing plate carriers, the thickness of the imaging coating is continuously reduced in order to reduce development times and save costs in production. In addition, softer imaging coatings are also used, which also save costs in the production of the printing plate supports should, but decrease in thickness during printing. The aluminum alloy strips produced so far for lithographic printing plate carriers are not optimally adapted to these additional challenges. It also became apparent that chemical pickling could not solve this problem. The printing plate carriers made from the known aluminum alloy strips therefore tend to have shorter service lives in the printing process with the new printing plate carriers.

Schließlich wird das Aluminiumlegierungsband zur Herstellung der Druckplattenträger in der Regel elektrochemisch aufgeraut. Eine Reduzierung des notwendigen Ladungsträgereintrags zur gleichmäßigen Aufrauung der der bildgebenden Beschichtung zugewandten Oberfläche des Druckplattenträgers wäre zudem wünschenswert.Finally, the aluminum alloy strip is usually electrochemically roughened to produce the printing plate supports. A reduction in the charge carrier input required to uniformly roughen the surface of the printing plate support facing the imaging coating would also be desirable.

Wichtig für die Bestimmung der Oberflächenqualität des Lithobandes und des elektrochemisch aufgerauten Druckplattenträgers sind neben dem arithmetischen Mittenrauwert Ra die Höhe der größten Profilspitze des Rauheitsprofils Rp (kurz: Spitzenhöhe), die Tiefe des größten Profiltales Rv (kurz: Muldentiefe) und die Spitzenzahl RPc definiert in DIN EN ISO 4287 und DIN EN 10049 sowie der Traganteil Smr (c) und das Seitenverhältnis der Oberflächentextur Str definiert in DIN EN ISO 25178.In addition to the arithmetic average roughness value Ra, the height of the largest profile peak of the roughness profile Rp (short: peak height), the depth of the largest profile valley Rv (short: trough depth) and the peak number RPc are defined in DIN EN ISO 4287 and DIN EN 10049 as well as the bearing fraction Smr (c) and the aspect ratio of the surface texture Str defined in DIN EN ISO 25178.

Die hier genannten Oberflächenkenngrößen Ra, Rp, Rv, RPc, Smr (c) und Str beziehen sich auf optisch flächenhafte Messungen mit einer Messfläche von mindestens 4,5 mm x 4,5 mm, die mit einem Konfokalmikroskop (lateraler Messpunktabstand 1,6 µm oder kleiner) gemessen und mit einer Analysesoftware ermittelt sind. Hierzu wurden an drei Messflächen der genannten Größe optisch flächenhafte Messungen der Parameter vorgenommen und das arithmetische Mittel der jeweiligen Parameter bestimmt. Die Profilparameter Ra, Rp, Rv und RPc werden pro Messfläche senkrecht zur Walzrichtung als arithmetische Mittelwerte aus den verfügbaren Profilschnitten der flächenhaften Messung berechnet. Die Messdatenaufbereitung erfolgt durch einen Formausgleich mit einem Polynom zweiter Ordnung (F-Filter). Als Welligkeitsfilter kommt ein Gaußfilter mit λc = 250 µm zum Einsatz. Es erfolgt keine Filterung der Feinstrauheit. Für Rp, Rv, RPc und Smr (c) werden die so ermittelten Werte als mittlere Spitzenhöhe Rp, mittlere Muldentiefe Rv, mittlere Spitzenzahl RPc und mittlerer Traganteil Smr (c=+0,25 µm) bezeichnet.The surface parameters Ra, Rp, Rv, RPc, Smr (c) and Str mentioned here refer to optical surface measurements with a measuring area of at least 4.5 mm x 4.5 mm, which are carried out with a confocal microscope (lateral measuring point distance 1.6 µm or smaller) are measured and determined using analysis software. For this purpose, optical surface measurements of the parameters were carried out on three measuring surfaces of the specified size and the arithmetic mean of the respective parameters was determined. The profile parameters Ra, Rp, Rv and RPc are calculated for each measuring surface perpendicular to the rolling direction as arithmetic mean values from the available profile sections of the areal measurement. The measurement data is prepared by one Shape compensation with a second-order polynomial (F filter). A Gaussian filter with λc = 250 µm is used as the ripple filter. There is no filtering of the fineness. For Rp, Rv, RPc and Smr (c) the values determined in this way are referred to as the mean peak height Rp, mean trough depth Rv, mean number of peaks RPc and mean load ratio Smr (c=+0.25 µm).

Bei dem Traganteil Smr (c) der Oberfläche ist von besonderer Bedeutung der Anteil der in Walzrichtung orientierten Oberfläche, insbesondere in diese Richtung orientierte Riefen und Stege, welche durch das Walzen erzeugt werden und durch ein elektrochemisches Aufrauen in der Regel nicht beseitigt werden. Diese können aber dadurch erfasst werden, dass nach einer Fouriertransformation der gemessenen Oberfläche die Anteile in Walzrichtung separiert und zurücktransformiert werden und anschließend aus den zurücktransformierten Oberflächenanteilen der Traganteil Smr (c=+0,25 µm) dieser Strukturen ermittelt wird.When it comes to the bearing portion Smr (c) of the surface, what is particularly important is the portion of the surface oriented in the rolling direction, in particular grooves and webs oriented in this direction, which are generated by rolling and are generally not eliminated by electrochemical roughening. However, these can be recorded by separating and re-transforming the parts in the rolling direction after a Fourier transformation of the measured surface and then determining the supporting portion Smr (c=+0.25 µm) of these structures from the back-transformed surface parts.

Die Isotropie der Aufrauung des Druckplattenträgers kann durch das Seitenverhältnis der Oberflächentextur Str nach DIN EN ISO 25178 angegeben werden. Für die Berechnung des Str-Wertes wird die Anzahl der Messpunkte der Messfläche in eine 2er-Potenz-Größe skaliert. Die skalierten Zahlenwerte sind dazu mit einer Resampling-Operation berechnet.The isotropy of the roughening of the printing plate support can be specified by the aspect ratio of the surface texture Str according to DIN EN ISO 25178. To calculate the Str value, the number of measuring points on the measuring surface is scaled to a power of 2. The scaled numerical values are calculated using a resampling operation.

Während die mittlere Spitzenzahl RPc gemessen senkrecht zur Walzrichtung typischerweise die Anzahl der als Walzstege vorhandenen, hervorstehenden Bereiche auf dem Aluminiumlegierungsband angibt, geben der arithmetische Mittenrauwert Ra und die mittlere Spitzenhöhe Rp Auskunft über die Höhe dieser Erhebungen in der Topographie des Aluminiumlegierungsbands oder des Druckplattenträgers.While the average peak number RPc, measured perpendicular to the rolling direction, typically indicates the number of protruding areas on the aluminum alloy strip that are present as rolling webs, the arithmetic average roughness value Ra and the average peak height Rp provide information about the height of these elevations in the topography of the aluminum alloy strip or the printing plate carrier.

Der mittlere Traganteil Smr (c=+0,25 µm) gibt Auskunft über den Flächenanteil der untersuchten Oberfläche, die oberhalb einer bestimmten Schnittlinie mit der Materialanteilskurve (Abbott-Kurve), die hier mit c = +0,25 µm gewählt wurde, liegt. Damit wird der Flächenanteil der hervorstehenden Bereiche der Oberfläche, beispielsweise der in Walzrichtung orientierten Oberflächenanteile, oberhalb der Schnittlinie c = +0,25 µm in der Materialanteilskurve des Aluminiumlegierungsbandes oder des Druckplattenträgers angegeben.The average bearing fraction Smr (c=+0.25 µm) provides information about the area fraction of the examined surface that lies above a certain intersection line with the material fraction curve (Abbott curve), which was chosen here with c = +0.25 µm . This means that the area proportion of the protruding areas of the surface, for example, the surface portions oriented in the rolling direction, indicated above the cutting line c = +0.25 µm in the material proportion curve of the aluminum alloy strip or the printing plate carrier.

Das Verhältnis aus mittlerer Spitzenhöhe Rp und mittlerer Muldentiefe Rv gibt Auskunft darüber, ob die Oberflächentopographie eher von Mulden (Werte < 1) oder Spitzen (Werte > 1) dominiert wird. Das Verhältnis Rp/Rv ist dabei nahezu unabhängig vom Ladungsträgereintrag bei der elektrochemischen Aufrauung.The ratio of the mean peak height Rp and the mean trough depth Rv provides information about whether the surface topography is dominated by troughs (values < 1) or peaks (values > 1). The ratio Rp/Rv is almost independent of the charge carrier input during electrochemical roughening.

Aufgabe der vorliegenden Erfindung ist es daher, eine Verwendung eines Aluminiumlegierungsband für lithografische Druckplatten sowie für Druckplatten für den wasserlosen Offsetdruck und ein Aluminiumlegierungsband für lithografische Druckplattenträger vorzuschlagen, welches trotz abnehmender Dicke der bildgebenden Beschichtung eine hohe Standzeit im Druckprozess bereitstellt und mit weniger Ladungsträgereintrag aufgeraut werden kann. Ferner soll die Erfindung ein Verfahren zur Herstellung der Aluminiumlegierungsbänder mit den gewünschten Eigenschaften bereitstellen sowie Druckplatten, insbesondere "Development-on-Press"-Druckplatten oder Druckplatten für den wasserlosen Offsetdruck mit hoher Standzeit zur Verfügung stellen.The object of the present invention is therefore to propose a use of an aluminum alloy strip for lithographic printing plates as well as for printing plates for waterless offset printing and an aluminum alloy strip for lithographic printing plate supports, which, despite decreasing thickness of the imaging coating, provides a long service life in the printing process and can be roughened with less charge carrier entry . Furthermore, the invention is intended to provide a method for producing the aluminum alloy strips with the desired properties and to provide printing plates, in particular "development-on-press" printing plates or printing plates for waterless offset printing with a long service life.

Gelöst wird diese Aufgabe mit den Gegenständen der Patentansprüche 1 bis 16.This task is solved with the subjects of claims 1 to 16.

Gemäß einer ersten Lehre der Erfindung weist die Oberfläche des Aluminiumlegierungsbands eine mittlere Spitzenzahl RPc gemessen senkrecht zur Walzrichtung des Aluminiumlegierungsbandes von ≤ 50 cm-1, bevorzugt ≤ 45 cm-1 oder besonders bevorzugt ≤ 40 cm-1 auf, wobei als Schnittlinien für die RPc-Messung c1 = + 0,25 µm und c2 = - 0,25 µm gewählt wurden. Es hat sich gezeigt, dass Aluminiumlegierungsbänder durch die Optimierung der im letzten Kaltwalzstich eingewalzten Oberflächentopographie bezüglich ihrer Eignung zur Herstellung von Druckplattenträgern noch einmal verbessert werden konnten, da die Standzeiten bei sehr dünnen bildgebenden Beschichtungen mit den erfindungsgemäßen Aluminiumlegierungsbändern gesteigert werden konnten.According to a first teaching of the invention, the surface of the aluminum alloy strip has an average peak number RPc, measured perpendicular to the rolling direction of the aluminum alloy strip, of ≤ 50 cm -1 , preferably ≤ 45 cm -1 or particularly preferably ≤ 40 cm -1 , with cutting lines for the RPc -Measurement c1 = + 0.25 µm and c2 = - 0.25 µm were chosen. It has been shown that aluminum alloy strips could be further improved in terms of their suitability for the production of printing plate carriers by optimizing the surface topography rolled in in the last cold rolling pass, since the service life is very thin imaging coatings could be increased with the aluminum alloy strips according to the invention.

Es wird davon ausgegangen, dass die verringerte mittlere Spitzenzahl RPc die vergrößerte Standzeit ermöglicht, da deutlich weniger erhabene Bereiche auf dem Band senkrecht zur Walzrichtung vorhanden sind. Damit werden die erfindungsgemäßen Aluminiumbänder besonders bevorzugt als Druckplattenträger von "Development on Press"-Druckplatten und von Druckplatten für den wasserlosen Offsetdruck verwendet.It is believed that the reduced average peak number RPc enables the increased tool life because there are significantly fewer raised areas on the strip perpendicular to the rolling direction. The aluminum strips according to the invention are therefore particularly preferably used as printing plate supports for “development on press” printing plates and for printing plates for waterless offset printing.

In einer ersten Ausgestaltung des Aluminiumlegierungsbandes weist die Oberfläche des Aluminiumlegierungsbandes zudem eine mittlere Spitzenhöhe Rp von maximal 1,1 µm, vorzugsweise 0,45 µm bis 1,1 µm auf. Die ebenfalls verringerte mittlere Spitzenhöhe Rp sorgt weiter dafür, dass Walzstege, sofern sie vorhanden sind, in der Höhe verringert sind und zur Verbesserung der Standzeiten beitragen.In a first embodiment of the aluminum alloy strip, the surface of the aluminum alloy strip also has an average peak height Rp of a maximum of 1.1 μm, preferably 0.45 μm to 1.1 μm. The also reduced average center height Rp further ensures that rolling webs, if they are present, are reduced in height and contribute to improving service life.

Dies gilt auch für eine weitere Ausgestaltung des Aluminiumlegierungsbandes, gemäß welcher der mittlere Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile der Oberfläche des Aluminiumlegierungsbandes in % maximal 5 %, maximal 4 %, oder maximal 3,5 % beträgt, wobei nur die Oberflächenanteile berücksichtigt werden, die sich nach einer Fouriertransformation der Oberfläche in Walzrichtung ergeben. Die Verringerung des mittleren Traganteils Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile der Aluminiumlegierungsbänder führt zu in der Länge und Breite verringerten Walzstegen auf dem Aluminiumlegierungsband. In Länge und Breite verringerte Walzstege verbessern, nach den Erkenntnissen der vorliegenden Erfindung ebenfalls die Standzeit von aus den erfindungsgemäßen Aluminiumlegierungsbändern hergestellten Druckplatten.This also applies to a further embodiment of the aluminum alloy strip, according to which the average load fraction Smr (c=+0.25 µm) of the surface portions of the surface of the aluminum alloy strip oriented in the rolling direction in % is a maximum of 5%, a maximum of 4%, or a maximum of 3.5% is, whereby only the surface portions that result from a Fourier transformation of the surface in the rolling direction are taken into account. The reduction in the average bearing portion Smr (c=+0.25 µm) of the surface portions of the aluminum alloy strips oriented in the rolling direction leads to rolled webs on the aluminum alloy strip that are reduced in length and width. According to the findings of the present invention, roll webs that are reduced in length and width also improve the service life of printing plates made from the aluminum alloy strips according to the invention.

Zur Untersuchung der Walzstege wird optisch eine flächenhafte Oberflächenrauheitsmessung durchgeführt. Nach einem Polynomausgleich (2. Ordnung) der Rohdaten und dem Entfernen der Welligkeitsanteile mit Hilfe eines Gaußfilters (Grenzwellenlänge 250 µm) liegen die Höhendaten in Form einer Matrix a der Dimension NxM vor. Die Matrix wird mit einer diskreten Fast-FourierTransformation (FFT) in den Frequenzraum transformiert, in dem die Oberflächenanteile, die sich in Walzrichtung und senkrecht zur Walzrichtung erstrecken, separieren lassen. c jk = n = 1 N m = 1 M a nm e 2 πi j 1 n 1 / N e 2 πi k 1 m 1 / M

Figure imgb0001
To examine the rolling webs, an optical surface roughness measurement is carried out. After a polynomial adjustment (2nd order) of the raw data and removing the ripple components using a Gaussian filter (cut-off wavelength 250 µm), the height data is available in the form of a matrix a with the dimension NxM. The matrix is transformed using a discrete Fast Fourier Transformation (FFT) into the frequency space in which the surface components that extend in the rolling direction and perpendicular to the rolling direction can be separated. c jk = n = 1 N m = 1 M a nm e 2 πi j 1 n 1 / N e 2 πi k 1 m 1 / M
Figure imgb0001

Nur die Fourierkomponenten cjk der in Walzrichtung orientierten Oberflächenanteile werden in den Ortsraum zurücktransformiert. a jk = n = 1 N m = 1 M c nm e 2 πi j 1 n 1 / N e 2 πi k 1 m 1 / M

Figure imgb0002
Only the Fourier components c jk of the surface parts oriented in the rolling direction are transformed back into the spatial space. a jk = n = 1 N m = 1 M c nm e 2 πi j 1 n 1 / N e 2 πi k 1 m 1 / M
Figure imgb0002

Der mittlere Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile wird dann durch Auswertung der zurücktransformierten Oberflächenanteile ermittelt. Hierzu wird eine Materialanteilskurve in Form einer Abbot-Kurve aus den zurücktransfomierten Daten erzeugt und der Traganteil Smr (c=+0,25 µm) als Schnittpunkt der Materialanteilskurve mit einer Geraden bei c = +0,25 µm bestimmt.The average contact portion Smr (c=+0.25 µm) of the surface portions oriented in the rolling direction is then determined by evaluating the back-transformed surface portions. For this purpose, a material proportion curve in the form of an Abbot curve is generated from the back-transformed data and the bearing proportion Smr (c = +0.25 µm) is determined as the intersection of the material proportion curve with a straight line at c = +0.25 µm.

Vorzugsweise beträgt die Dicke des Aluminiumlegierungsbandes gemäß einer weiteren Ausgestaltung 0,10 mm bis 0,5 mm, vorzugsweise 0,10 mm bis 0,4 mm. Insbesondere Aluminiumbänder mit Dicken von 0,10 mm bis 0,4 mm werden für lithografische Druckplattenträger eingesetzt. Sonderformate verwenden auch Dicken zwischen 0,4 mm und 0,5 mm.According to a further embodiment, the thickness of the aluminum alloy strip is preferably 0.10 mm to 0.5 mm, preferably 0.10 mm to 0.4 mm. In particular, aluminum strips with thicknesses of 0.10 mm to 0.4 mm are used for lithographic printing plate supports. Special formats also use thicknesses between 0.4 mm and 0.5 mm.

Erfindungsgemäß weist das Aluminiumlegierungsband die folgende Zusammensetzung auf:

  • 0,02 Gew.-% ≤ Si ≤ 0,50 Gew.-%, bevorzugt 0,02 Gew.-% ≤ Si ≤ 0,25 Gew.-%,
  • 0,2 Gew.-% ≤ Fe ≤ 1,0 Gew.%, bevorzugt 0,2 Gew.-% ≤ Fe ≤ 0,6 Gew.%,
  • Cu ≤ 0,05 Gew.-%, bevorzugt ≤ 0,01 Gew.-%,
  • Mn ≤ 0,3 Gew.-%, bevorzugt < 0,1 Gew.-%, besonders bevorzugt ≤ 0,05 Gew.-%,
  • 0,05 Gew.-% ≤Mg ≤ 0,6 Gew.-%, bevorzugt 0,1 Gew.-% ≤Mg ≤ 0,4 Gew.-%,
  • Cr ≤ 0,01 Gew.-%,
  • Zn ≤ 0,1 Gew.-%, bevorzugt ≤0,05 Gew.-%,
  • Ti ≤ 0,05 Gew.-%,
  • Rest Al sowie Verunreinigungen einzeln maximal 0,05 Gew.-% in Summe maximal 0,15 Gew.-%.
According to the invention, the aluminum alloy strip has the following composition:
  • 0.02% by weight ≤ Si ≤ 0.50% by weight, preferably 0.02% by weight ≤ Si ≤ 0.25% by weight,
  • 0.2% by weight ≤ Fe ≤ 1.0% by weight, preferably 0.2% by weight ≤ Fe ≤ 0.6% by weight,
  • Cu ≤ 0.05% by weight, preferably ≤ 0.01% by weight,
  • Mn ≤ 0.3% by weight, preferably <0.1% by weight, particularly preferably ≤ 0.05% by weight,
  • 0.05% by weight ≤Mg ≤ 0.6% by weight, preferably 0.1% by weight ≤Mg ≤ 0.4% by weight,
  • Cr ≤ 0.01% by weight,
  • Zn ≤ 0.1% by weight, preferably ≤ 0.05% by weight,
  • Ti ≤ 0.05% by weight,
  • Rest Al and impurities individually maximum 0.05% by weight in total maximum 0.15% by weight.

Ein Si-Gehalt von 0,02 Gew.-% bis 0,50 Gew.-% beeinflusst ebenfalls das Erscheinungsbild elektrochemisch aufgerauter Druckplattenträger. Ist der Si-Gehalt kleiner als 0,02 Gew.-%, entsteht beim elektrochemischen Aufrauen eine zu hohe Anzahl an zu kleinen Vertiefungen im Aluminiumband. Bei einem zu großen Si-Gehalt oberhalb von 0,50 Gew.-% ist die Anzahl der Vertiefungen im aufgerauten Aluminiumband zu gering und die Verteilung inhomogen. Bevorzugt wird ein Si-Gehalt von 0,02 Gew.-% ≤ Si ≤ 0,25 Gew.-% verwendet.An Si content of 0.02% by weight to 0.50% by weight also influences the appearance of electrochemically roughened printing plate supports. If the Si content is less than 0.02% by weight, electrochemical roughening results in too many depressions that are too small in the aluminum strip. If the Si content is too high, above 0.50% by weight, the number of depressions in the roughened aluminum strip is too small and the distribution is inhomogeneous. An Si content of 0.02% by weight ≤ Si ≤ 0.25% by weight is preferably used.

Kupfer beeinträchtigt das elektrochemische Aufrauen bereits bei geringen Gehalten negativ. Daher beträgt der Cu-Gehalt ≤ 0,05 Gew.-%, bevorzugt ≤ 0,01 Gew.-%.Copper has a negative impact on electrochemical roughening even at low levels. Therefore, the Cu content is ≤ 0.05% by weight, preferably ≤ 0.01% by weight.

Eisen trägt zur mechanischen und thermischen Festigkeit der Aluminiumlegierungsbänder bei, so dass 0,2 Gew.-% bis 1 % Gew.-% Eisen zulässig sind. Bei weiter erhöhten Gehalten verschlechtert sich das Aufrauverhalten beim elektrochemischen Aufrauen. Ein bevorzugter Fe-Gehalt liegt zwischen 0,2 Gew.-% bis 0,6 Gew.-% oder 0,4 Gew.-% bis 0,6 Gew.-%.Iron contributes to the mechanical and thermal strength of the aluminum alloy strips, so 0.2% to 1% by weight of iron is permissible. If the content is further increased, the roughening behavior during electrochemical roughening deteriorates. A preferred Fe content is between 0.2% by weight to 0.6% by weight or 0.4% by weight to 0.6% by weight.

Magnesium sorgt für eine Steigerung der Festigkeit, insbesondere im walzharten Zustand des Druckplattenträgers. Gleichzeitig kann zu viel Magnesium die Weiterverarbeitung durch zu hohe Festigkeiten und in Bezug auf die Eigenschaften beim elektrochemischen Aufrauen negativ beeinflussen. Erfindungsgemäß weist die Aluminiumlegierung daher einen Mg-Gehalt von 0,05 Gew.-% ≤Mg ≤ 0,6 Gew.-% auf. Im bevorzugten Bereich von 0,1 Gew.-% ≤Mg ≤ 0,4 Gew.-% oder 0,25 bis 0,4 Gew.-% können Bänder mit hohe Festigkeiten im walzharten Zustand und einem prozesssicheren Aufrauverhalten bereitgestellt werden.Magnesium ensures an increase in strength, especially in the hard-rolled state of the printing plate carrier. At the same time, too much magnesium can have a negative impact on further processing due to excessive strength and properties during electrochemical roughening. According to the invention, the aluminum alloy therefore has a Mg content of 0.05% by weight ≤Mg ≤ 0.6% by weight. In the preferred range of 0.1% by weight ≤Mg ≤ 0.4% by weight or 0.25 to 0.4% by weight, strips with high strength in the rolled-hard state and reliable roughening behavior can be provided.

Mangan erhöht zwar die thermische Festigkeit des Aluminiumlegierungsbandes, aber auch den notwendigen Ladungsträgereintrag zur elektrochemischen Aufrauung des aus dem Aluminiumlegierungsband hergestellten Druckplattenträgers. Daher wird Mangan auf 0,3 Gew.-%, bevorzugt < 0,1 Gew.-%, besonders bevorzugt ≤ 0,05 Gew.-% beschränkt.Although manganese increases the thermal strength of the aluminum alloy strip, it also increases the charge carrier input necessary for the electrochemical roughening of the printing plate carrier made from the aluminum alloy strip. Manganese is therefore limited to 0.3% by weight, preferably <0.1% by weight, particularly preferably ≤ 0.05% by weight.

Um ein gutes Aufrauverhalten zu erreichen, werden zudem Cr, Zn und Ti begrenzt. Die Gehalte betragen Cr ≤ 0,01 Gew.-%, Zn ≤ 0,1 Gew.-%, bevorzugt ≤0,05 Gew.-% und Ti ≤ 0,05 Gew.-%.In order to achieve good roughening behavior, Cr, Zn and Ti are also limited. The contents are Cr ≤ 0.01% by weight, Zn ≤ 0.1% by weight, preferably ≤ 0.05% by weight and Ti ≤ 0.05% by weight.

Schließlich weist das Aluminiumlegierungsband gemäß einer nächsten Ausgestaltung den Zustand walzhart auf. Hierdurch wird ein verbessertes Handling bei der Produktion von Druckplattenträgern erreicht. Die Aluminiumlegierungsbänder weisen aufgrund des Magnesiumanteils relativ hohe Festigkeiten in diesen Zuständen auf, so dass eine gute Verarbeitung während des elektrochemischen Aufrauens und während des Aufbringens der bildgebenden Schicht im bandförmigen Zustand ermöglich wird. Als walzharte Zustände werden zum Beispiel der Zustand H18 hergestellt durch Kaltwalzen mit einer Zwischenglühung oder H19 hergestellt durch Kaltwalzen ohne Zwischenglühung bevorzugt verwendet.Finally, according to a next embodiment, the aluminum alloy strip is in the hard-rolled state. This achieves improved handling in the production of printing plate carriers. Due to the magnesium content, the aluminum alloy strips have relatively high strength in these states, so that good processing during electrochemical roughening and during the application of the imaging layer in the strip-shaped state is possible. As hard-rolled states, for example, state H18 produced by cold rolling with intermediate annealing or H19 produced by cold rolling without intermediate annealing are preferably used.

Gemäß einer weiteren Lehre der Erfindung wird ein Verfahren zur Herstellung eines erfindungsgemäßen Aluminiumlegierungsbands bereitgestellt, bei welchem ein Walzbarren aus einer Aluminiumlegierung für lithografische Druckplattenträger gegossen wird, vor dem Warmwalzen der Walzbarren optional vorgewärmt oder homogenisiert wird, der Walzbarren zu einem Warmband warmgewalzt wird und das Warmband anschließend mit oder ohne Zwischenglühung auf Enddicke kaltgewalzt wird, wobei im letzten Kaltwalzstich eine Arbeitswalze eingesetzt wird, welche eine mittlere Rauheit Ra von weniger als 0,18 µm, vorzugsweise weniger als 0,17 µm oder bevorzugt maximal 0,15 µm aufweist. Die Oberflächentopografie eines Lithobands wird im Wesentlichen durch die Oberflächentopografie der Arbeitswalze im letzten Kaltwalzstich bestimmt. Es hat sich gezeigt, dass mit dem erfindungsgemäßen Verfahren ein Aluminiumlegierungsband hergestellt werden kann, welches zu Druckplattenträgern mit verbesserter Standzeit im Druck weiterverarbeitet werden kann. Die hohen Standzeiten im Druck werden dabei auch mit "Development-on-Press" Druckplatten oder mit Druckplatten für den wasserlosen Offsetdruck erreicht, die besonders dünne bildgebenden Beschichtungen aufweisen.According to a further teaching of the invention, a method for producing an aluminum alloy strip according to the invention is provided, in which a Rolling ingots are cast from an aluminum alloy for lithographic printing plate supports, the rolling ingots are optionally preheated or homogenized before hot rolling, the rolling ingots are hot-rolled into a hot strip and the hot strip is then cold-rolled to the final thickness with or without intermediate annealing, a work roll being used in the last cold-rolling pass, which has an average roughness Ra of less than 0.18 µm, preferably less than 0.17 µm or preferably a maximum of 0.15 µm. The surface topography of a litho strip is essentially determined by the surface topography of the work roll in the last cold rolling pass. It has been shown that the method according to the invention can be used to produce an aluminum alloy strip which can be further processed into printing plate supports with improved service life in printing. The long service lives in printing are also achieved with “development-on-press” printing plates or with printing plates for waterless offset printing, which have particularly thin imaging coatings.

Die mittlere Rauheit Ra der Arbeitswalzen wird nach DIN EN ISO 4287 bestimmt, wobei die erfindungsgemäßen Walzenoberflächen zumindest parallel zur Längsachse der Arbeitswalze eine mittlere Rauheit Ra von weniger als 0,18 µm, vorzugsweise weniger als 0,17 µm oder bevorzugt maximal 0,15 µm aufweisen.The average roughness Ra of the work rolls is determined according to DIN EN ISO 4287, with the roll surfaces according to the invention at least parallel to the longitudinal axis of the work roll having an average roughness Ra of less than 0.18 µm, preferably less than 0.17 µm or preferably a maximum of 0.15 µm exhibit.

Es hat sich zudem gezeigt, dass gemäß einer bevorzugten Ausführungsform des Verfahrens die Arbeitswalze im letzten Kaltwalzstich eine Walzenoberfläche mit einer mittleren Muldentiefe Rv gemessen parallel zur Längsachse der Arbeitswalze von maximal 1,2 µm aufweist. Hierdurch wurden besonders gute Ergebnisse bei der Bereitstellung der erfindungsgemäßen Aluminiumbandtopografien erzielt.It has also been shown that, according to a preferred embodiment of the method, the work roll in the last cold rolling pass has a roll surface with an average trough depth Rv measured parallel to the longitudinal axis of the work roll of a maximum of 1.2 μm. As a result, particularly good results were achieved in providing the aluminum strip topographies according to the invention.

Wird im letzten Kaltwalzstich eine Arbeitswalze eingesetzt, welche eine mittlere Rauheit Ra von mindestens 0,07 µm, vorzugsweise mindestens 0,10 µm, aufweist, so kann entgegen der bisherigen Annahme ein Schlupf zwischen der Walze und dem Lithoband sicher vermieden und ein stabiler Produktionsprozess bereitgestellt werden.If a work roll is used in the last cold rolling pass which has an average roughness Ra of at least 0.07 µm, preferably at least 0.10 µm, then, contrary to previous assumptions, slippage between the roll and the litho strip can be reliably avoided and a stable production process can be provided become.

Gemäß einer nächsten Ausgestaltung des Verfahrens beträgt der Abwalzgrad im letzten Kaltwalzstich mindestens 20 %, bevorzugt mindestens 30%, um eine ausreichende Abprägung der Oberflächentopografie der Walzenoberfläche im letzten Kaltwalzstich zu erreichen.According to a next embodiment of the method, the degree of rolling in the last cold rolling pass is at least 20%, preferably at least 30%, in order to achieve sufficient imprinting of the surface topography of the roll surface in the last cold rolling pass.

Um eine möglichst störungsfreie Oberfläche zur Verfügung zu stellen und gleichzeitig eine möglichst wirtschaftliche Fertigung der Aluminiumlegierungsbänder zu ermöglichen, beträgt der Abwalzgrad im letzten Kaltwalzstich maximal 65 %, bevorzugt maximal 60%.In order to provide a surface that is as trouble-free as possible and at the same time to enable the most economical production of the aluminum alloy strips, the degree of rolling in the last cold rolling pass is a maximum of 65%, preferably a maximum of 60%.

Gemäß einer weiteren Lehre der Erfindung wird eine Druckplatte für den lithografischen Druck aufweisend einen Druckplattenträger aus einer Aluminiumlegierung, insbesondere hergestellt aus einem erfindungsgemäßen Aluminiumlegierungsband dadurch bereitgestellt, dass zumindest die der bildgebenden Schicht zugewandte Oberfläche des Druckplattenträgers nach dem elektrochemischen Aufrauen des Druckplattenträgers einen Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile kleiner als 5 %, bevorzugt kleiner als 4,5 % oder maximal 4 % aufweist. Es zeigte sich, dass durch den verringerten Traganteil Smr (c=+0,25 µm) die Standzeit der Druckplatte im Druck wesentlich verbessert werden konnte.According to a further teaching of the invention, a printing plate for lithographic printing having a printing plate carrier made of an aluminum alloy, in particular made from an aluminum alloy strip according to the invention, is provided in that at least the surface of the printing plate carrier facing the imaging layer has a supporting portion Smr (c =+0.25 µm) of the surface portions oriented in the rolling direction is less than 5%, preferably less than 4.5% or a maximum of 4%. It was shown that the service life of the printing plate during printing could be significantly improved due to the reduced contact area Smr (c=+0.25 µm).

Insbesondere nach der elektrochemischen Aufrauung zeigte sich bei Verwendung des erfindungsgemäßen Aluminiumlegierungsbands eine weitere Verringerung des mittleren Traganteils Smr (c=+0,25 µm) auf deutlich weniger als 5 %, respektive weniger als 4,5 % oder maximal 4 %, was eine weitere Verbesserung der Standzeit der Druckplatte im Druck verursacht.In particular, after electrochemical roughening, when using the aluminum alloy strip according to the invention, there was a further reduction in the average load-carrying fraction Smr (c=+0.25 µm) to significantly less than 5%, respectively less than 4.5% or a maximum of 4%, which is a further Improvement in the service life of the printing plate during printing.

Gemäß einer weiteren Ausgestaltung der Druckplatte weist zumindest die der bildgebenden Schicht zugewandte Oberfläche des Druckplattenträgers nach dem elektrochemischen Aufrauen des Druckplattenträgers ein Verhältnis der mittleren Spitzenhöhe zur mittleren Muldentiefe Rp/Rv von maximal 0,45, vorzugsweise maximal 0,4 auf. Unabhängig von dem Ladungsträgereintrag beim elektrochemischen Aufrauen wird durch das angegebene Verhältnis von mittlerer Spitzenhöhe zur mittleren Muldentiefe eine Topografie der zur bildgebenden Beschichtung weisenden Oberfläche des Druckplattenträgers definiert, bei welcher die mittlere Spitzenhöhe im Verhältnis zur mittleren Muldentiefe um mehr als den Faktor 2 geringer ist. Die Topografie des Druckplattenträgers ist also von Mulden dominiert und sehr flach in Richtung der bildgebenden Beschichtung ausgebildet, welches die Standzeiten von dünnen Beschichtungen im Druck, beispielsweise von Beschichtungen von "Development-on-Press"-Druckplatten oder Druckplatten für den wasserlosen Offsetdruck, deutlich verbessert.According to a further embodiment of the printing plate, at least the surface of the printing plate support facing the imaging layer has a ratio of the average after the electrochemical roughening of the printing plate support Peak height to mean trough depth Rp/Rv of a maximum of 0.45, preferably a maximum of 0.4. Regardless of the charge carrier input during electrochemical roughening, the specified ratio of mean peak height to mean trough depth defines a topography of the surface of the printing plate support facing the imaging coating, in which the mean peak height is lower by more than a factor of 2 in relation to the mean trough depth. The topography of the printing plate carrier is therefore dominated by troughs and is very flat in the direction of the imaging coating, which significantly improves the service life of thin coatings in printing, for example coatings of "development-on-press" printing plates or printing plates for waterless offset printing .

Bevorzugt weist zumindest die der bildgebenden Schicht zugewandte Seite des Druckplattenträgers nach dem elektrochemischen Aufrauen eine mittlere Spitzenhöhe Rp von weniger als 1,2 µm, bevorzugt maximal 1,1 µm oder bevorzugt maximal 1µm auf. Durch die Verringerung des absoluten Wertes der mittleren Spitzenhöhen Rp kann ebenfalls eine Verbesserung der Standzeit der Druckplatte von beispielsweise "Developement-on-Press"-Druckplatten oder Druckplatten für den wasserlosen Offsetdruck erreicht werden. Dies gelingt beispielsweise durch die Verwendung eines erfindungsgemäßen Aluminiumlegierungsbandes.After electrochemical roughening, at least the side of the printing plate support facing the imaging layer preferably has an average peak height Rp of less than 1.2 μm, preferably a maximum of 1.1 μm or preferably a maximum of 1 μm. By reducing the absolute value of the average peak heights Rp, an improvement in the service life of the printing plate of, for example, "development-on-press" printing plates or printing plates for waterless offset printing can also be achieved. This is achieved, for example, by using an aluminum alloy strip according to the invention.

Werden Druckplattenträger mit dem erfindungsgemäßen Aluminiumlegierungsband hergestellt, können die Druckplattenträger zusätzlich mit weniger Ladungsträgereintrag homogen, respektive isotrop aufgeraut werden. Erfindungsgemäße Aluminiumlegierungsbänder zeigten bereits bei geringem Ladungsträgereintrag hohe Seitenverhältnisse der Oberflächentextur Str. So weist gemäß einer Ausgestaltung zumindest die der bildgebenden Schicht zugewandte Oberfläche des Druckplattenträgers nach einer elektrochemischen Aufrauung mit einem Ladungsträgereintrag von mindestens 500 C/dm2 ein Seitenverhältnis der Oberflächentextur Str nach DIN EN ISO 25178 von mindestens 50 % auf. Das Seitenverhältnis Str der Oberflächentextur ist ein Maß für die Gleichförmigkeit der Oberflächentextur. Bei einem Wert von 100% oder 1 ist die Oberflächentextur isotrop, also richtungsunabhängig. Die erfindungsgemäßen Druckplattenträger stellen also schon bei geringem Ladungsträgereintrag ein hohes Seitenverhältnis Str der Oberflächentextur bereit, so dass der Aufwand für das elektrochemische Aufrauen verringert werden kann. Die Druckplatte kann so mit geringeren Kosten hergestellt werden.If printing plate carriers are produced with the aluminum alloy strip according to the invention, the printing plate carriers can additionally be roughened homogeneously or isotropically with less charge carrier input. Aluminum alloy strips according to the invention showed high aspect ratios of the surface texture Str even with low charge carrier input. According to one embodiment, at least the surface of the printing plate support facing the imaging layer after electrochemical roughening with a charge carrier input of at least 500 C/dm 2 has an aspect ratio of the surface texture Str according to DIN EN ISO 25178 of at least 50%. The aspect ratio Str of the surface texture is a measure of the uniformity of the Surface texture. With a value of 100% or 1, the surface texture is isotropic, i.e. independent of direction. The printing plate carriers according to the invention therefore provide a high aspect ratio Str of the surface texture even with low charge carrier input, so that the effort for electrochemical roughening can be reduced. The printing plate can thus be produced at lower costs.

Dies gilt auch für eine weitere Ausgestaltung der Druckplatte, bei welcher zumindest die der bildgebenden Schicht zugewandte Oberfläche beschichtete Oberfläche des Druckplattenträgers nach einer elektrochemischen Aufrauung mit einem Ladungsträgereintrag von 400 C/dm2 ein Seitenverhältnis der Oberflächentextur Str nach DIN EN ISO 25178 von mindestens 20 % erreicht.This also applies to a further embodiment of the printing plate, in which at least the coated surface of the printing plate support facing the imaging layer has an aspect ratio of the surface texture Str according to DIN EN ISO 25178 of at least 20% after electrochemical roughening with a charge carrier input of 400 C/dm 2 reached.

Schließlich weist gemäß einer weiteren Ausgestaltung eine Druckplatte für den wasserlosen Offsetdruck erfindungsgemäß einen Druckplattenträger hergestellt aus einem erfindungsgemäßen Aluminiumlegierungsband auf. Die bildgebenden Beschichtungen von Druckplatten für den wasserlosen Offsetdruck weisen ebenfalls besonders geringe Dicken auf, so dass die Standzeiten der Druckplatten für den wasserlosen Offsetdruck in besonderem Maße von der Oberflächentopografie des Aluminiumlegierungsbandes profitieren. Druckplattenträger für Druckplatten für den wasserlosen Offsetdruck werden allerdings nicht elektrochemisch aufgeraut, bevor diese bildgebend beschichtet werden.Finally, according to a further embodiment, a printing plate for waterless offset printing according to the invention has a printing plate carrier made from an aluminum alloy strip according to the invention. The imaging coatings of printing plates for waterless offset printing also have particularly small thicknesses, so that the service life of the printing plates for waterless offset printing benefits particularly from the surface topography of the aluminum alloy strip. However, printing plate supports for printing plates for waterless offset printing are not electrochemically roughened before they are image-coated.

Die Erfindung wird anhand von Ausführungsbeispielen weiter erläutert. Es wird hierzu auf die folgenden Tabellen und die Zeichnung verwiesen. Die Zeichnung zeigt in

Fig. 1- 4
Messflächen optisch vermessener Vergleichslithobänder, welche mit unterschiedlichen Ladungsträgereinträgen elektrochemisch aufgeraut wurden in einer Falschfarbendarstellung der Höhenwerte,
Fig. 5 - 8
Messflächen optisch vermessener erfindungsgemäßer Lithobänder, welche mit unterschiedlichen Ladungsträgereinträgen elektrochemisch aufgeraut wurden in einer Falschfarbendarstellung der Höhenwerte und
Fig. 9
eine Materialanteilskurve in Form einer Abbott-Kurve zur Bestimmung des Traganteils Smr (c).
The invention is further explained using exemplary embodiments. Please refer to the following tables and the drawing. The drawing shows in
Fig. 1-4
Measuring surfaces of optically measured comparison litho tapes, which were electrochemically roughened with different charge carrier entries in a false color representation of the height values,
Fig. 5 - 8
Measuring surfaces of optically measured litho tapes according to the invention, which were electrochemically roughened with different charge carrier entries in a false color representation of the height values and
Fig. 9
a material proportion curve in the form of an Abbott curve to determine the load-bearing proportion Smr (c).

Die Lithobänder, deren Messflächen in Fig. 1- 8 dargestellt sind, wurden aus einem Walzbarren aus einer Aluminiumlegierung mit folgender Zusammensetzung hergestellt:

  • 0,02 Gew.-% ≤ Si ≤ 0,50 Gew.-%, bevorzugt 0,02 Gew.-% ≤ Si ≤ 0,25 Gew.-%,
  • 0,2 Gew.-% ≤ Fe ≤ 1,0 Gew.%, bevorzugt 0,2 Gew.-% ≤ Fe ≤ 0,6 Gew.%,
  • Cu ≤ 0,05 Gew.-%, bevorzugt ≤ 0,01 Gew.-%,
  • Mn ≤ 0,3 Gew.-%, bevorzugt < 0,1 Gew.-%, besonders bevorzugt ≤ 0,05 Gew.-%,
  • 0,05 Gew.-% ≤Mg ≤ 0,6 Gew.-%, bevorzugt 0,1 Gew.-% ≤Mg ≤ 0,4 Gew.-%,
  • Cr ≤ 0,01 Gew.-%,
  • Zn ≤ 0,1 Gew.-%, bevorzugt ≤0,05 Gew.-%,
  • Ti ≤ 0,05 Gew.-%,
  • Rest Al sowie Verunreinigungen einzeln maximal 0,05 Gew.-% in Summe maximal 0,15 Gew.-%.
The litho tapes, whose measuring surfaces are in Fig. 1-8 shown were made from an aluminum alloy roll ingot with the following composition:
  • 0.02% by weight ≤ Si ≤ 0.50% by weight, preferably 0.02% by weight ≤ Si ≤ 0.25% by weight,
  • 0.2% by weight ≤ Fe ≤ 1.0% by weight, preferably 0.2% by weight ≤ Fe ≤ 0.6% by weight,
  • Cu ≤ 0.05% by weight, preferably ≤ 0.01% by weight,
  • Mn ≤ 0.3% by weight, preferably <0.1% by weight, particularly preferably ≤ 0.05% by weight,
  • 0.05% by weight ≤Mg ≤ 0.6% by weight, preferably 0.1% by weight ≤Mg ≤ 0.4% by weight,
  • Cr ≤ 0.01% by weight,
  • Zn ≤ 0.1% by weight, preferably ≤ 0.05% by weight,
  • Ti ≤ 0.05% by weight,
  • Rest Al and impurities individually maximum 0.05% by weight in total maximum 0.15% by weight.

Die Herstellung erfolgte durch Gießen eines Walzbarrens, Homogenisieren des Walzbarrens bei 450 bis 610 °C für mindestens 1 h, Warmwalzen des Walzbarrens zu einem Warmband mit etwa 2 - 7 mm Dicke und Kaltwalzen des Warmbandes mit oder ohne Zwischenglühung auf Enddicke.The production was carried out by casting a rolling billet, homogenizing the rolling billet at 450 to 610 ° C for at least 1 hour, hot rolling the rolling billet into a hot strip with a thickness of approximately 2 - 7 mm and cold rolling the hot strip with or without intermediate annealing to the final thickness.

Beim letzten Kaltwalzstich wurde bei den erfindungsgemäßen Lithobändern der Fig. 5 - 8 eine Arbeitswalze eingesetzt, deren Oberflächentopografie einen arithmetischen Mittenrauwert Ra gemäß DIN ISO 4287 von weniger als 0,18 µm, vorzugsweise maximal 0,17 µm oder maximal 0,15 µm aufwies. Die mittlere Muldentiefe Rv der Oberfläche der Arbeitswalzen der erfindungsgemäßen Ausführungsbeispiele betrug max. 1,2 µm.During the last cold rolling pass, the lithographic strips according to the invention were Fig. 5 - 8 a work roll is used whose surface topography has an arithmetic average roughness Ra according to DIN ISO 4287 of less than 0.18 µm, preferably had a maximum of 0.17 µm or a maximum of 0.15 µm. The average trough depth Rv of the surface of the work rolls of the exemplary embodiments according to the invention was a maximum of 1.2 μm.

Die Vergleichslithobänder in Fig. 1 - 4 wurden dagegen mit einer Arbeitswalze im letzten Kaltwalzstich kaltgewalzt, welche einen arithmetischen Mittenrauwert Ra von 0,22 µm - 0,25 µm aufwies. Auch die mittlere Muldentiefe Rv lag mit maximal 1,6 µm höher als bei den erfindungsgemäß zu verwendenden Arbeitswalzen. Die so hergestellten Bleche wurden elektrochemisch in HCl als Elektrolyten mit verschiedenen Ladungsträgereinträgen von 400 C/dm2 bis 800 C/dm2 aufgeraut.The comparison lithobes in Fig. 1 - 4 On the other hand, they were cold rolled with a work roll in the last cold rolling pass, which had an arithmetic average roughness value Ra of 0.22 µm - 0.25 µm. The average trough depth Rv was also higher at a maximum of 1.6 μm than in the work rolls to be used according to the invention. The sheets produced in this way were roughened electrochemically in HCl as an electrolyte with different charge carrier inputs from 400 C/dm 2 to 800 C/dm 2 .

Die Höhenwerte der optisch vermessenen Messflächen sind in den Fig. 1- 8 in Falschfarben dargestellt, wobei Vertiefungen graue bis schwarze Farbtöne und Erhebungen hellgrau bis weiße Grautöne zugeordnet sind. Mit dem menschlichen Auge lassen sich auf den so dargestellten Messflächen bereits Unterschiede im nicht aufgerauten Zustand erkennen. So zeigen die erfindungsgemäßen Lithobänder eine deutlich weniger in Walzrichtung strukturierte Oberfläche. Dieser Effekt wird mit zunehmender Aufrauung stärker.The height values of the optically measured measuring surfaces are in the Fig. 1-8 shown in false colors, with depressions assigned gray to black tones and elevations assigned light gray to white gray tones. With the human eye, differences can be seen on the measuring surfaces shown in this way even when they are not roughened. The litho strips according to the invention therefore have a surface that is significantly less structured in the rolling direction. This effect becomes stronger as the roughening increases.

Weitere Messungen wurden an Lithobändern der Ausführungsbeispiele a, b, c, d und m sowie der Vergleichsbeispiele f, g, h durchgeführt, welche Aluminiumlegierungszusammensetzungen gemäß Tabelle 1 aufwiesen.Further measurements were carried out on litho strips of exemplary embodiments a, b, c, d and m as well as comparative examples f, g, h, which had aluminum alloy compositions according to Table 1.

Alle Messwerte Rp, RPc, Rv, Ra, Smr und Str der Ausführungsbeispiele und Vergleichsbeispiele wurden optisch an drei Messflächen der Größe 4,5 mm x 4,5 mm mit einem Konfokalmikroskop gemessen und mit einer Analysesoftware (Digital Surf MountainsMap®) ermittelt. Die Messflächen wurden auf den Bändern und den Druckplattenträgern in einer DIN A4 großen Fläche zufällig angeordnet. Die entsprechenden Stellen der Bänder waren frei von Oberflächenbeschädigungen. Es wurde jeweils das arithmetische Mittel aus den drei Messflächen für jeden Parameter berechnet, wobei innerhalb der Messflächen die Profilparameter senkrecht zur Walzrichtung Rp, RPc, Rv, Ra als arithmetische Mittelwerte berechnet wurden. Die Messdatenaufbereitung erfolgte durch einen Formausgleich mit einem Polynom zweiter Ordnung (F-Filter). Als Welligkeitsfilter kam ein Gaußfilter mit λc = 250 µm zum Einsatz. Es erfolgte keine Filterung der Feinstrauheit.All measured values Rp, RPc, Rv, Ra, Smr and Str of the exemplary embodiments and comparative examples were measured optically on three measuring surfaces measuring 4.5 mm x 4.5 mm with a confocal microscope and determined using analysis software (Digital Surf MountainsMap® ) . The measuring surfaces were randomly arranged on the belts and the printing plate supports in a DIN A4 area. The corresponding areas of the bands were free of surface damage. The arithmetic mean of the three measuring surfaces was calculated for each parameter, with the profile parameters within the measuring surfaces perpendicular to the Rolling direction Rp, RPc, Rv, Ra were calculated as arithmetic mean values. The measurement data was prepared using shape compensation with a second-order polynomial (F filter). A Gaussian filter with λc = 250 µm was used as a ripple filter. There was no filtering of the fineness.

Die Lithobänder a, b, c, d und m wurden identisch durch das oben genannte Verfahren beginnend mit dem Gießen eines Walzbarrens, Homogenisieren des Walzbarrens, Warmwalzen des Walzbarrens sowie Kaltwalzen des Warmbandes an Enddicke mit Zwischenglühung (H18) und ohne Zwischenglühung (H19) hergestellt.The litho strips a, b, c, d and m were manufactured identically by the above process starting with casting a rolling ingot, homogenizing the rolling ingot, hot rolling the rolling ingot and cold rolling the hot strip to final thickness with intermediate annealing (H18) and without intermediate annealing (H19). .

Die resultierenden Dicken, die Werkstoffzustände und die arithmetischen Mittenrauwerte Ra der Oberflächen der resultierenden Lithobänder sind in Tabelle 1 angegeben. Die unterschiedlichen Walzentopografien, die beim letzten Kaltwalzstich verwendet wurden, können der Tabelle 7 entnommen werden.The resulting thicknesses, the material conditions and the arithmetic average roughness values Ra of the surfaces of the resulting lithobes are given in Table 1. The different roll topographies used in the final cold rolling pass can be seen in Table 7.

Die erfindungsgemäßen Lithobänder wurden demnach im letzten Kaltwalzstich mit einer Arbeitswalze mit einer Walzenoberfläche, welche gemäß Tabelle 7 einen arithmetischen Mittenrauwert Ra von 0,11 µm bis 0,17 µm aufwies, mit den angegebenen Abwalzgraden kaltgewalzt. Die mittlere Muldentiefe Rv wurde mit weniger als 1,2 µm gemessen. Mit 40 % bis 55 % lag der Abwalzgrad im erfindungsgemäßen Bereich von mindestens 20 %. Ferner lag der Abwalzgrad mit maximal 55 % auch unterhalb von 60 % bzw. auch unter 65 %, so dass im Ergebnis gute Oberflächeneigenschaften bei möglichst geringer Stichanzahl erzielt wurden.The litho strips according to the invention were therefore cold rolled in the last cold rolling pass with a work roll with a roll surface which, according to Table 7, had an arithmetic mean roughness Ra of 0.11 µm to 0.17 µm, with the specified rolling degrees. The average trough depth Rv was measured to be less than 1.2 µm. At 40% to 55%, the degree of rolling was in the inventive range of at least 20%. Furthermore, the degree of rolling at a maximum of 55% was also below 60% or even below 65%, so that as a result good surface properties were achieved with the lowest possible number of stitches.

Der arithmetische Mittenrauwert Ra der Walzenoberfläche der Arbeitswalze im letzten Kaltwalzstich der Vergleichsbänder betrug zwischen 0,22 µm und 0,25 µm. Auch die mittlere Muldentiefe Rv lag mit maximal 1,6 µm deutlich höher als bei den erfindungsgemäß verwendeten Arbeitswalzen.The arithmetic mean roughness value Ra of the roll surface of the work roll in the last cold rolling pass of the comparison strips was between 0.22 µm and 0.25 µm. The average trough depth Rv was also significantly higher at a maximum of 1.6 µm than in the work rolls used according to the invention.

Bei der Herstellung der erfindungsgemäßen Ausführungsbeispiele zeigte sich entgegen der bisherigen Auffassung der Fachwelt ein stabiler Produktionsprozess, ohne dass es beim Kaltwalzen zu Störungen durch Schlupf zwischen der Kaltwalze und dem zu walzenden Lithoband gekommen ist.Contrary to the previous opinion of experts, the production of the exemplary embodiments according to the invention showed a stable production process, without any disruptions occurring during cold rolling due to slippage between the cold roll and the litho strip being rolled.

Erste Unterschiede zwischen den Vergleichsbändern und den erfindungsgemäßen Lithobändern zeigten sich bei den arithmetischen Mittenrauwerten Ra der erfindungsgemäßen Lithobänder a, b, c, d und m. Diese lagen mit 0,09 µm bis 0,11 µm deutlich unter den Werten der Vergleichsbeispiele f, g und h mit etwa 0,19 µm. Diese Werte des arithmetischen Mittenrauwertes Ra senkrecht zur Walzrichtung resultieren aus der Bereitstellung einer Walzenoberfläche, welche einen arithmetischen Mittenrauwert Ra von weniger als 0,18 µm aufweist.The first differences between the comparison tapes and the litho tapes according to the invention became apparent in the arithmetic mean roughness values Ra of the litho tapes a, b, c, d and m according to the invention. At 0.09 µm to 0.11 µm, these were significantly below the values of the comparative examples f, g and h with about 0.19 µm. These values of the arithmetic average roughness Ra perpendicular to the rolling direction result from the provision of a roll surface which has an arithmetic average roughness Ra of less than 0.18 μm.

Die erfindungsgemäßen Aluminiumbänder a, b, c, d und m zeigten, wie in Tabelle 2 dargestellt ist, zudem mittlere Spitzenanzahlen RPc gemessen senkrecht zur Walzrichtung von deutlich weniger als 50 cm-1. Die Vergleichsbänder lagen mit einer mittlere Spitzenzahl RPc von mehr als 68 cm-1 dagegen deutlich über den Ergebnissen der erfindungsgemäßen Aluminiumbänder.As shown in Table 2, the aluminum strips a, b, c, d and m according to the invention also showed mean peak numbers RPc measured perpendicular to the rolling direction of significantly less than 50 cm -1 . With an average peak number RPc of more than 68 cm -1 , the comparison strips were, however, significantly higher than the results of the aluminum strips according to the invention.

Die mittlere Spitzenhöhe Rp lag mit maximal 0,74 µm bei den erfindungsgemäßen Aluminiumlegierungsbändern ebenfalls deutlich unter den mittleren Spitzenhöhen Rp der Vergleichsbänder, die mindestens 0,88 µm als mittlere Spitzenhöhe Rp aufwiesen, wobei die geringe mittlere Spitzenhöhe Rp auf die geringere Muldentiefe Rv der Walzenoberfläche zurückgeführt wird.At a maximum of 0.74 µm, the average peak height Rp for the aluminum alloy strips according to the invention was also significantly below the average peak heights Rp of the comparison strips, which had at least 0.88 µm as the average peak height Rp, the low average peak height Rp being due to the lower trough depth Rv of the roll surface is returned.

Auch der mittlere Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile war deutlich geringer bei den erfindungsgemäßen Ausführungsbeispielen. Fig. 9 zeigt beispielhaft, wie der Traganteil Smr (c) aus einer Materialanteilskurve in Form einer Abbott-Kurve für einen Wert c ermittelt werden kann. Der Wert c= 0 ergibt sich, wie an Fig. 9 erkennbar ist, bei einem Materialanteil von 100 %. Der c-Wert wird auf der Z-Achse, die einem Höhenwert der Oberflächentopographie entspricht, abgelesen. Zur Bestimmung des Traganteils Smr (c) wird der Schnittpunkt der Materialanteilskurve mit der Geraden Z=c bestimmt und der zugehörige Materialanteil auf der X-Achse abgelesen.The average contact portion Smr (c=+0.25 µm) of the surface portions oriented in the rolling direction was also significantly lower in the exemplary embodiments according to the invention. Fig. 9 shows an example of how the load-bearing fraction Smr (c) can be determined from a material fraction curve in the form of an Abbott curve for a value c. The value c= 0 results as follows Fig. 9 can be seen with a material content of 100%. The c value is read on the Z axis, which corresponds to a height value of the surface topography. To determine the load share Smr (c) the intersection of the material proportion curve with the straight line Z=c is determined and the associated material proportion is read off on the X-axis.

Zur Bestimmung des mittleren Traganteils Smr (c=+0,25 µm) werden, wie oben erläutert, die optischen Messergebnisse einer Rauheitsmessung einer Fouriertransformation unterzogen und lediglich die in Walzrichtung orientierten Oberflächenanteile zurücktransformiert. Aus den zurücktransformierten Oberflächendaten wurde eine Materialanteilskurve, wie sie Fig. 9 zeigt, erzeugt und ein Wert für den Traganteil Smr (c=+0,25 µm) ermittelt. Aus den an drei Messflächen ermittelten Traganteilen Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile wurde dann das arithmetische Mittel zur Bestimmung des mittleren Traganteils Smr (c=+0,25 µm) berechnet.To determine the average contact portion Smr (c=+0.25 µm), as explained above, the optical measurement results of a roughness measurement are subjected to a Fourier transformation and only the surface portions oriented in the rolling direction are transformed back. The back-transformed surface data became a material proportion curve like this Fig. 9 shows, generated and a value for the bearing fraction Smr (c=+0.25 µm) is determined. The arithmetic mean for determining the average contact ratio Smr (c=+0.25 µm) was then calculated from the contact parts Smr (c=+0.25 µm) of the surface parts oriented in the rolling direction, which were determined on three measuring surfaces.

Die mittleren Traganteile Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile der erfindungsgemäßen Aluminiumlegierungsbänder lagen mit maximal 3,79 % deutlich unterhalb von 5%. Während der Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile der Vergleichsbänder mit mindestens 8,09 % mehr als doppelt so hoch war als der maximal gemessene mittlere Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile der erfindungsgemäßen Aluminiumbänder.The average contact parts Smr (c=+0.25 µm) of the surface parts of the aluminum alloy strips according to the invention oriented in the rolling direction were at a maximum of 3.79%, well below 5%. While the bearing fraction Smr (c=+0.25 µm) of the surface portions of the comparison strips oriented in the rolling direction was at least 8.09%, more than twice as high as the maximum measured average bearing fraction Smr (c=+0.25 µm) of the in Rolling direction oriented surface portions of the aluminum strips according to the invention.

Die aus erfindungsgemäßen Aluminiumbändern hergestellten Druckplattenträger zeigten im Vergleich zu den Vergleichsbeispielen eine deutlich verbesserte Standzeit im Druck bei Verwendung von "Development-on-Press"-Beschichtungen. Dies wird auf die Unterschiede in der Oberflächentopografie zurückgeführt. Es wird davon ausgegangen, dass Gleiches auch für Druckplatten für den wasserlosen Offsetdruck gilt.The printing plate supports made from aluminum strips according to the invention showed a significantly improved service life in printing when using “development-on-press” coatings compared to the comparative examples. This is attributed to the differences in surface topography. It is assumed that the same applies to printing plates for waterless offset printing.

Die Eigenschaften der Aluminiumbänder bei der elektrochemischen Aufrauung wurden mit HCl als Elektrolyten überprüft, wobei unterschiedliche Ladungsträgereinträge verwendet wurden. Die Konzentration des Elektrolyten lag bei 6g HCl pro Liter und 1g/L Al3+ in Form von AlCh bei 25 bis 30 °C mit einer Stromdichte von 20 A/dm2 und Wechselstrom.The properties of the aluminum strips during electrochemical roughening were checked with HCl as electrolyte, using different charge carrier inputs. The concentration of the electrolyte was 6g HCl per liter and 1g/L Al 3+ in the form of AlCh at 25 to 30 °C with a current density of 20 A/dm 2 and alternating current.

Anhand der Fig. 1 - 8 ist ja bereits sichtbar gemacht, dass der Ladungsträgereintrag kleine, in den Figuren schwarz dargestellte Vertiefungen verursacht, die mit zunehmendem Ladungsträgereintrag in ihrer Anzahl zunehmen.Based on Fig. 1 - 8 It has already been made clear that the charge carrier entry causes small depressions, shown in black in the figures, which increase in number as the charge carrier entry increases.

Gleichzeitig hat das elektrochemische Aufrauen auch Auswirkungen auf weitere Oberflächenparameter der Aluminiumlegierungsbandoberfläche, die der bildgebenden Beschichtung der Druckplatte zugewandt ist.At the same time, the electrochemical roughening also has an impact on other surface parameters of the aluminum alloy strip surface facing the imaging coating of the printing plate.

Aus den elektrochemisch aufgerauten Aluminiumbänder hergestellte Druckplattenträger zeigten deutliche Unterschiede in Bezug auf den mittleren Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile, wie in Tabelle 4 zu erkennen ist. Die erfindungsgemäßen Druckplattenträger wiesen deutlich geringere mittlere Traganteile Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile auf, die insbesondere bei sehr hohem Ladungsträgereintrag bei 700 C/dm2 oder 800 C/dm2 noch weiter abnahmen. Ein ähnliches Verhalten zeigten auch die Vergleichsbänder, wenngleich auf einem sehr viel höheren Niveau. Insgesamt konnte der mittlere Traganteil Smr (c=+0,25 µm) der in Walzrichtung orientierten Oberflächenanteile durch das elektrochemische Aufrauen bei den Vergleichsbänder nicht unter die 4% Grenze gesenkt werden.Printing plate carriers made from the electrochemically roughened aluminum strips showed clear differences in terms of the average bearing portion Smr (c=+0.25 µm) of the surface portions oriented in the rolling direction, as can be seen in Table 4. The printing plate carriers according to the invention had significantly lower average contact parts Smr (c=+0.25 µm) of the surface parts oriented in the rolling direction, which decreased even further, particularly with very high charge carrier input at 700 C/dm 2 or 800 C/dm 2 . The comparison bands also showed similar behavior, although at a much higher level. Overall, the average contact area Smr (c=+0.25 µm) of the surface parts oriented in the rolling direction could not be reduced below the 4% limit due to the electrochemical roughening of the comparison strips.

Die erfindungsgemäßen Aluminiumbänder zeigten zudem ein Verhältnis Rp/Rv von maximal 0,45, wobei die meisten Werte unterhalb von 0,41 lagen. Erwartungsgemäß zeigte sich eine sehr geringe Abhängigkeit vom Ladungsträgereintrag beim elektrochemischen Aufrauen. Die Vergleichsbeispiele lagen deutlich über diesen Werten. Lediglich bei Vergleichsbeispiel f konnte ein Wert von 0,43 bei 400 C/dm2 und 500 C/dm2 Ladungsträgereintrag gemessen werden.The aluminum strips according to the invention also showed a ratio Rp/Rv of a maximum of 0.45, with most values being below 0.41. As expected, there was very little dependence on the charge carrier input during electrochemical roughening. The comparison examples were significantly above these values. Only in comparative example f could a value of 0.43 be measured at 400 C/dm 2 and 500 C/dm 2 charge carrier entry.

Die erfindungsgemäßen Druckplattenträger hergestellt aus den Versuchsbändern a, b, c, d und m wiesen jedoch ab 600 C/dm2 ein Verhältnis Rp/Rv von 0,40 bis 0,34 auf und damit ein deutlich geringeres Rp/Rv-Verhältnis als bei den Vergleichsbändern. Die Oberflächentopografien der erfindungsgemäßen Druckplattenträger waren damit noch flacher ausgebildet als bei Druckplattenträger hergestellt aus den Vergleichsbändern.However, the printing plate carriers according to the invention made from the test tapes a, b, c, d and m had a ratio Rp/Rv of 0.40 to 0.34 from 600 C/dm 2 and thus a significantly lower Rp/Rv ratio than the comparison bands. The surface topographies of the printing plate carriers according to the invention were therefore even flatter than with printing plate carriers made from the comparison tapes.

Deutliche Unterschiede ergaben die Untersuchungen des Seitenverhältnisses der Oberflächentextur Str nach einem elektrochemischen Aufrauen. Das Seitenverhältnis Str ist ein Maß für die Isotropie der aufgerauten Oberfläche. Der Wert Str erreicht bei vollständig isotroper Oberfläche 100 %. Während die aus erfindungsgenmäßen Versuchsbändern hergestellten Druckplattenträger a, b, c, d und m bereits bei 400 C/dm2 ein Seitenverhältnis der Oberflächentextur Str von mindestens 20% oder bei 500 C/dm2 von mindestens 50% bereitstellen können, zeigen die Vergleichsbänder erst bei 700 C/dm2 ein Seitenverhältnis der Oberflächentextur Str von mindestens 20 %.The investigations into the aspect ratio of the surface texture Str after electrochemical roughening revealed significant differences. The aspect ratio Str is a measure of the isotropy of the roughened surface. The value Str reaches 100% with a completely isotropic surface. While the printing plate supports a, b, c, d and m produced from test tapes according to the invention can provide an aspect ratio of the surface texture Str of at least 20% at 400 C/dm 2 or at least 50% at 500 C/dm 2 , the comparison tapes only show this at 700 C/dm 2 an aspect ratio of the surface texture Str of at least 20%.

Hieraus ergibt sich, dass die erfindungsgemäßen Aluminiumbänder bei geringerem Ladungsträgereintrag isotrop aufgeraute Oberflächen bereitstellen können und damit wirtschaftlicher zu Druckplatten verarbeitet werden können. Gleichzeitig stellen die erfindungsgemäßen Druckplatten auch eine höhere Standzeit auch bei Druckplatten mit sehr dünnen bildgebenden Beschichtungen bereit. Tabelle 1: Zusammensetzung der Versuchsbänder in Gew.-%, Rest Al, unvermeidbare Verunreinigungen einzeln maximal 0,05 Gew.-%, in Summe maximal 0,15 Gew.-%, arithmetische Mittenrauwert Ra definiert in DIN EN 10049 senkrecht zur Walzrichtung, Zustand H18 mit Zwischenglühung, Zustand H19 ohne Zwischenglühung während des Kaltwalzens. Zusammensetzung in Gew.-%, Versuchsbänder Zustand Dicke [mm] Ra [µm] Si Fe Cu Mn Mg Cr Zn Ti a Erf. H18 0,37 0,11 0,08 0,37 0,001 0,004 0,20 0,001 0,012 0,005 b Erf. H19 0,37 0,09 0,08 0,43 0,001 0,040 0,28 0,001 0,012 0,006 c Erf. H19 0,275 0,10 0,08 0,43 0,001 0,040 0,27 0,001 0,011 0,005 d Erf. H18 0,274 0,11 0,09 0,45 0,002 0,042 0,28 0,001 0,011 0,006 m Erf. H19 0,37 0,11 0,08 0,43 0,001 0,041 0,28 0,001 0,013 0,007 f Vgl. H18 0,275 0,19 0,09 0,38 0,001 0,002 0,20 0,000 0,014 0,008 g Vgl. H19 0,275 0,19 0,09 0,44 0,001 0,042 0,28 0,001 0,012 0,008 h Vgl. H18 0,275 0,19 0,09 0,43 0,001 0,041 0,28 0,001 0,011 0,008 Tabelle 2: Oberflächenmessungen der Aluminiumlegierungsbänder nach dem Walzen, mittlere Spitzenhöhe Rp, mittlere Spitzenzahl RPc definiert in DIN EN ISO 4287 und DIN EN 10049 mit kalibriertem optischen Rauheitsmesssystem, Smr mit kalibriertem optischen Rauheitsmesssystem definiert in DIN EN ISO 25178. Versuchsbänder Rp [µm] RPc [cm-1] Smr c = +0,25 µm [%] a Erf. 0,65 35,2 3,45 b Erf. 0,65 12,9 2,00 c Erf. 0,69 9,4 1,73 d Erf. 0,73 20,5 2,78 m Erf. 0,74 34,3 3,78 f Vgl. 0,88 68,4 8,09 g Vgl. 1,32 92,3 11,47 h Vgl. 1,06 74,4 9,32 Tabelle 3: Mittlere Spitzenhöhe Rp definiert in DIN EN ISO 4287 am aufgerauten Druckplattenträger abhängig vom Ladungsträgereintrag bei elektrochemischer Aufrauung in HCl. Versuchsbänder Aufrauung in HCl - Ladungsträgereintrag [C/dm2] Nicht aufgeraut 300 400 500 600 700 800 Rp [µm] a Erf. 0,65 0,73 0,77 0,95 0,95 1,01 1,03 b Erf. 0,65 0,65 0,78 0,76 0,82 0,88 0,93 c Erf. 0,69 0,71 0,74 0,86 0,86 0,90 0,97 d Erf. 0,73 - 0,80 0,86 0,92 1,01 1,01 m Erf. 0,74 0,75 0,79 0,86 0,89 0,92 1,06 f Vgl. 0,88 0,89 1,09 1,08 1,19 1,25 1,26 g Vgl. 1,32 1,36 1,37 1,41 1,41 1,49 1,49 h Vgl. 1,06 1,06 1,14 1,23 1,33 1,29 1,32 Tabelle 4: Traganteil Smr bei c = +0,25 µm in % nach DIN EN ISO 25178 am aufgerauten Druckplattenträger abhängig vom Ladungsträgereintrag bei elektrochemischer Aufrauung in HCl. Versuchsbänder Aufrauung in HCl - Ladungsträgereintrag [C/dm2] Nicht aufgeraut 300 400 500 600 700 800 Smr bei c = +0,25 µm [%] a Erf. 3,45 2,52 2,32 2,87 2,15 2,02 1,43 b Erf. 2,00 1,36 0,73 0,74 0,60 0,63 0,34 c Erf. 1,73 1,99 1,68 1,70 1,18 0,77 0,66 d Erf. 2,78 - 1,87 1,57 1,55 1,56 0,86 m Erf. 3,78 2,70 2,25 1,92 1,81 1,10 1,20 f Vgl. 8,09 8,06 7,67 6,51 6,37 5,81 4,16 g Vgl. 11,47 10,22 11,14 9,96 8,52 8,57 6,07 h Vgl. 9,32 8,88 8,67 8,08 7,63 6,69 4,88 Tabelle 5: Verhältnis Rp/Rv jeweils definiert in DIN EN ISO 4287 am aufgerauten Druckplattenträger abhängig vom Ladungsträgereintrag bei elektrochemischer Aufrauung in HCl. Versuchsbänder Aufrauung in HCl - Ladungsträgereintrag [C/dm2] Nicht aufgeraut 300 400 500 600 700 800 Rp/Rv a Erf. 1,04 0,44 0,39 0,44 0,39 0,38 0,38 b Erf. 1,33 0,35 0,39 0,34 0,34 0,34 0,34 c Erf. 1,53 0,45 0,38 0,38 0,36 0,35 0,35 d Erf. 1,38 - 0,41 0,37 0,40 0,38 0,37 m Erf. 1,39 0,45 0,38 0,38 0,38 0,35 0,38 f Vgl. 1,24 0,49 0,43 0,43 0,47 0,46 0,46 g Vgl. 2,50 0,69 0,56 0,55 0,55 0,57 0,54 h Vgl. 2,14 0,71 0,58 0,58 0,56 0,50 0,48 Tabelle 6: Seitenverhältnis der Oberflächentextur Str nach DIN EN ISO 25178 am aufgerauten Druckplattenträger abhängig vom Ladungsträgereintrag bei elektrochemischer Aufrauung in HCl. Versuchsbänder Aufrauung in HCl - Ladungsträgereintrag [C/dm2] Nicht aufgeraut 300 400 500 700 Str [%] a Erf. 1,70 3,50 21,60 65,70 83,60 b Erf. 1,60 5,60 70,10 82,90 83,10 c Erf. 1,50 1,90 54,60 74,00 82,90 d Erf. 1,80 - 32,10 76,20 82,60 m Erf. 1,90 2,10 49,80 73,70 84,20 f Vgl. 1,20 1,50 2,90 58,20 79,30 g Vgl. 1,20 1,60 2,00 3,20 27,10 h Vgl. 1,40 1,40 1,80 2,10 67,20 Tabelle 7: Arithmetische Mittenrauwert Ra der Walzenoberfläche nach DIN ISO 4287. Versuchsbänder Ra[µm] Abwalzgrad letzter Kaltwalzstich a Erf. 0,15 - 0,17 40-55 b Erf. 0,11 - 0,13 40-55 c Erf. 0,11 - 0,13 40-55 d Erf. 0,13 - 0,15 40-55 m Erf. 0,15 - 0,17 40-55 f Vgl. 0,22 - 0,25 40-55 g Vgl. 0,22 - 0,25 40-55 h Vgl. 0,22 - 0,25 40-55 It follows from this that the aluminum strips according to the invention can provide isotropically roughened surfaces with less charge carrier input and can therefore be processed more economically into printing plates. At the same time, the printing plates according to the invention also provide a longer service life, even for printing plates with very thin imaging coatings. Table 1: Composition of the test strips in% by weight, balance Al, unavoidable impurities individually maximum 0.05% by weight, in total maximum 0.15% by weight, arithmetic average roughness Ra defined in DIN EN 10049 perpendicular to the rolling direction, condition H18 with Intermediate annealing, condition H19 without intermediate annealing during cold rolling. Composition in wt.%, Test tapes Condition Thickness [mm] Ra [µm] Si Fe Cu Mn Mg Cr Zn Ti a Req. H18 0.37 0.11 0.08 0.37 0.001 0.004 0.20 0.001 0.012 0.005 b Req. H19 0.37 0.09 0.08 0.43 0.001 0.040 0.28 0.001 0.012 0.006 c Req. H19 0.275 0.10 0.08 0.43 0.001 0.040 0.27 0.001 0.011 0.005 d Req. H18 0.274 0.11 0.09 0.45 0.002 0.042 0.28 0.001 0.011 0.006 m Req. H19 0.37 0.11 0.08 0.43 0.001 0.041 0.28 0.001 0.013 0.007 f See. H18 0.275 0.19 0.09 0.38 0.001 0.002 0.20 0.000 0.014 0.008 G See. H19 0.275 0.19 0.09 0.44 0.001 0.042 0.28 0.001 0.012 0.008 H See. H18 0.275 0.19 0.09 0.43 0.001 0.041 0.28 0.001 0.011 0.008 Surface measurements of the aluminum alloy strips after rolling, mean peak height Rp, mean peak number RPc defined in DIN EN ISO 4287 and DIN EN 10049 with calibrated optical roughness measuring system, Smr with calibrated optical roughness measuring system defined in DIN EN ISO 25178. Test tapes Rp [µm] RPC [cm -1 ] Smr c = +0.25 µm [%] a Req. 0.65 35.2 3.45 b Req. 0.65 12.9 2.00 c Req. 0.69 9.4 1.73 d Req. 0.73 20.5 2.78 m Req. 0.74 34.3 3.78 f See. 0.88 68.4 8.09 G See. 1.32 92.3 11.47 H See. 1.06 74.4 9.32 Average center height Rp defined in DIN EN ISO 4287 on the roughened printing plate carrier depending on the charge carrier entry during electrochemical roughening in HCl. Test tapes Roughening in HCl - charge carrier entry [C/dm 2 ] Not roughened 300 400 500 600 700 800 Rp [µm] a Req. 0.65 0.73 0.77 0.95 0.95 1.01 1.03 b Req. 0.65 0.65 0.78 0.76 0.82 0.88 0.93 c Req. 0.69 0.71 0.74 0.86 0.86 0.90 0.97 d Req. 0.73 - 0.80 0.86 0.92 1.01 1.01 m Req. 0.74 0.75 0.79 0.86 0.89 0.92 1.06 f See. 0.88 0.89 1.09 1.08 1.19 1.25 1.26 G See. 1.32 1.36 1.37 1.41 1.41 1.49 1.49 H See. 1.06 1.06 1.14 1.23 1.33 1.29 1.32 Carrying fraction Smr at c = +0.25 µm in % according to DIN EN ISO 25178 on the roughened printing plate carrier depending on the charge carrier entry during electrochemical roughening in HCl. Test tapes Roughening in HCl - charge carrier entry [C/dm 2 ] Not roughened 300 400 500 600 700 800 Smr at c = +0.25 µm [%] a Req. 3.45 2.52 2.32 2.87 2.15 2.02 1.43 b Req. 2.00 1.36 0.73 0.74 0.60 0.63 0.34 c Req. 1.73 1.99 1.68 1.70 1.18 0.77 0.66 d Req. 2.78 - 1.87 1.57 1.55 1.56 0.86 m Req. 3.78 2.70 2.25 1.92 1.81 1.10 1.20 f See. 8.09 8.06 7.67 6.51 6.37 5.81 4.16 G See. 11.47 10.22 11.14 9.96 8.52 8.57 6.07 H See. 9.32 8.88 8.67 8.08 7.63 6.69 4.88 Ratio Rp/Rv defined in DIN EN ISO 4287 on the roughened printing plate carrier depending on the charge carrier entry during electrochemical roughening in HCl. Test tapes Roughening in HCl - charge carrier entry [C/dm 2 ] Not roughened 300 400 500 600 700 800 Rp/Rv a Req. 1.04 0.44 0.39 0.44 0.39 0.38 0.38 b Req. 1.33 0.35 0.39 0.34 0.34 0.34 0.34 c Req. 1.53 0.45 0.38 0.38 0.36 0.35 0.35 d Req. 1.38 - 0.41 0.37 0.40 0.38 0.37 m Req. 1.39 0.45 0.38 0.38 0.38 0.35 0.38 f See. 1.24 0.49 0.43 0.43 0.47 0.46 0.46 G See. 2.50 0.69 0.56 0.55 0.55 0.57 0.54 H See. 2.14 0.71 0.58 0.58 0.56 0.50 0.48 Aspect ratio of the surface texture Str according to DIN EN ISO 25178 on the roughened printing plate carrier depending on the charge carrier entry during electrochemical roughening in HCl. Test tapes Roughening in HCl - charge carrier entry [C/dm 2 ] Not roughened 300 400 500 700 Str [%] a Req. 1.70 3.50 21.60 65.70 83.60 b Req. 1.60 5.60 70.10 82.90 83.10 c Req. 1.50 1.90 54.60 74.00 82.90 d Req. 1.80 - 32.10 76.20 82.60 m Req. 1.90 2.10 49.80 73.70 84.20 f See. 1.20 1.50 2.90 58.20 79.30 G See. 1.20 1.60 2.00 3.20 27.10 H See. 1.40 1.40 1.80 2.10 67.20 Arithmetic average roughness Ra of the roll surface according to DIN ISO 4287. Test tapes Ra[µm] Degree of rolling of the last cold rolling pass a Req. 0.15 - 0.17 40-55 b Req. 0.11 - 0.13 40-55 c Req. 0.11 - 0.13 40-55 d Req. 0.13 - 0.15 40-55 m Req. 0.15 - 0.17 40-55 f See. 0.22 - 0.25 40-55 G See. 0.22 - 0.25 40-55 H See. 0.22 - 0.25 40-55

Claims (16)

  1. Use of an aluminium alloy strip for producing lithographic printing plates or printing plates for waterless offset printing, wherein the aluminium alloy strip has a rolled-in surface topography on at least one strip surface,
    characterised in that
    the surface of the aluminium alloy strip has a mean peak number RPc measured perpendicular to the rolling direction of the aluminium alloy strip of ≤ 50 cm-1, preferably ≤ 45 cm-1 or particularly preferably ≤ 40 cm-1, wherein c1 = + 0.25 µm and c2 = - 0.25 µm have been selected as section lines for the RPc measurement and the mean peak number RPc is determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1,6 µm or less, wherein the arithmetic mean value of the profile parameter RPc perpendicular to the rolling direction is calculated within the measuring areas from the profile sections of the areal measurement available perpendicular to the rolling direction per measuring area and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  2. Aluminium alloy strip for lithographic printing plate supports, which has a rolled-in surface topography on at least one strip surface,
    characterised in that
    the aluminium alloy strip has the following composition:
    0.02 wt.% ≤ Si ≤ 0.50 wt.%, preferably 0.02 wt.% ≤ Si ≤ 0.25 wt.%,
    0.2 wt.% ≤ Fe ≤ 1.0 wt.%, preferably 0.2 wt.% ≤ Fe ≤ 0.6 wt.%,
    Cu ≤ 0.05 wt.%, preferably ≤ 0.01 wt.%,
    Mn ≤ 0.3 wt.%, preferably < 0.1 wt.%, particularly preferably ≤ 0.05 wt.%,
    0.05 wt.% ≤ Mg ≤ 0.6 wt.%, preferably 0.1 wt.% ≤ Mg ≤ 0.4 wt.%,
    Cr ≤ 0.01 wt.%,
    Zn ≤ 0.1 wt.%, preferably ≤ 0.05 wt.%,
    Ti ≤ 0.05 wt.%,
    remainder Al and impurities individually at maximum 0.05 wt.%, in total at maximum 0.15 wt.%,
    the surface of the aluminium alloy strip has a mean peak number RPc measured perpendicular to the rolling direction of the aluminium alloy strip of ≤ 50 cm-1, preferably ≤ 45 cm-1 or particularly preferably ≤ 40 cm-1, wherein c1 = + 0.25 µm and c2 = - 0.25 µm have been selected as section lines for the RPc measurement and the mean peak number RPc is determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less, wherein an arithmetic mean value of the profile parameter RPc perpendicular to the rolling direction is calculated within the measuring areas from the profile sections of the areal measurement available perpendicular to the rolling direction per measuring area and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  3. Aluminium alloy strip according to claim 2,
    characterised in that
    the surface of the aluminium alloy strip has a mean peak height Rp of at most 1.1 µm, preferably 0.45 µm to 1.1 µm, and the mean peak height Rp is determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less, wherein an arithmetic mean value of the profile parameter Rp perpendicular to the rolling direction is calculated within the measuring areas from the profile sections of the areal measurement available perpendicular to the rolling direction per measuring area and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  4. Aluminium alloy strip according to claim 2 or 3,
    characterised in that
    the mean bearing length ratio Smr (c=+0.25 µm) of the surface portions of the surface of the aluminium alloy strip oriented in the rolling direction in % is at maximum 5%, preferably at maximum 4%, or at maximum 3.5%, wherein only the surface portions which result after a Fourier transformation of the surface in the rolling direction are taken into account and the mean bearing length ratio Smr (c=+0,25 µm) is determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less, the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  5. Aluminium alloy strip according to any one of claims 2 to 4,
    characterised in that
    the thickness of the aluminium alloy strip is 0.10 mm to 0.5 mm, preferably 0.10 mm to 0.4 mm.
  6. Aluminium alloy strip according to one of claims 2 to 5,
    characterised in that
    the aluminium alloy strip is in the hard-rolled state.
  7. Method for the production of an aluminium alloy strip for lithographic printing plate supports according to claims 2 to 6, in which a rolling ingot is cast from an aluminium alloy for lithographic printing plate supports, the rolling ingot is optionally preheated or homogenised before hot rolling, the rolling ingot is hot rolled to form a hot strip and the hot strip is then cold rolled to final thickness with or without intermediate annealing,
    characterised in that
    in the last cold rolling pass, a work roll is used which has a mean roughness Ra according to DIN ISO 4287 of less than 0.18 µm, preferentially less than 0.17 µm or preferably at maximum 0.15 µm.
  8. Method according to claim 7,
    characterised in that
    in the last cold rolling pass, a work roll is used which has a mean roughness Ra according to DIN ISO 4287 of at least 0.07 µm, preferably at least 0.10 µm.
  9. Method according to claim 7 or 8,
    characterised in that
    the degree of rolling in the last cold rolling pass is at least 20%, preferably at least 30%.
  10. Method according to one of claims 7 to 9,
    characterised in that
    the degree of rolling in the last cold rolling pass is at maximum 65 %, preferably at maximum 60 %.
  11. Printing plate for lithographic printing comprising a printing plate support made of an aluminium alloy, in particular produced from an aluminium alloy strip according to claim 2 to 7,
    characterised in that
    at least the surface of the printing plate support facing the imaging layer, after the electrochemical roughening of the printing plate support, has a mean bearing length ratio Smr (c=+0.25 µm) of the surface portions orientated in the rolling direction of less than 5%, preferably less than 4.5%, or at maximum 4%, wherein only the surface portions which result after a Fourier transformation of the surface in the rolling direction are taken into account, and the mean bearing length ratio Smr (c=+0,25 µm) is determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  12. Printing plate according to claim 11,
    characterised in that
    at least the surface of the printing plate support facing the imaging layer, after the electrochemical roughening of the printing plate support, has a ratio of the mean peak height to the mean valley depth Rp/Rv of at maximum 0.45, preferably at maximum 0,4 and the mean peak height Rp and the mean valley depth Rv are determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less, wherein the arithmetic mean value of the profile parameters Rp and Rv perpendicular to the rolling direction is calculated within the measuring areas from the profile sections of the areal measurement available perpendicular to the rolling direction per measuring area and the arithmetic mean is calculated for the parameters from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  13. Printing plate according to claim 11 or 12,
    characterised in that
    at least the surface facing the imaging layer, after the electrochemical roughening of the printing plate support, has a mean peak height Rp of less than 1.2 µm, preferably at maximum 1.1 µm or at maximum 1 µm, and the mean peak height Rp is determined from an optical areal measurement of three measuring areas of at least 4.5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less, wherein the arithmetic mean value of the profile parameter Rp perpendicular to the rolling direction is calculated within the measuring areas from the profile sections of the areal measurement available perpendicular to the rolling direction per measuring area and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  14. Printing plate according to one of claims 11 to 13,
    characterised in that
    at least the surface of the printing plate support facing the imaging layer, after electrochemical roughening with a charge carrier input of at least 500 C/dm2, achieves an aspect ratio of the surface texture Str according to DIN EN ISO 25178 of at least 50 % and the aspect ratio of the surface texture Str is determined from an optical areal measurement of three measuring areas of at least 4,5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  15. Printing plate according to claim 14,
    characterised in that
    at least the surface of the printing plate support facing the imaging layer, after electrochemical roughening with a charge carrier input of at least 400 C/dm2, achieves an aspect ratio of the surface texture Str according to DIN EN ISO 25178 of at least 20 %, and the aspect ratio of the surface texture Str is determined from an optical areal measurement of three measuring areas of at least 4,5 mm x 4.5 mm using a confocal microscope with a lateral measuring point distance of 1.6 µm or less and the arithmetic mean is calculated for the parameter from the three measuring areas, wherein the measurement data processing is performed by a shape equalisation with a second-order polynomial (F-filter) and a Gaussian filter with λc = 250 µm as a waviness filter without filtering the fine roughness.
  16. Printing plate for waterless offset printing comprising a printing plate support made of an aluminium alloy strip according to claim 2 to 6.
EP21713984.9A 2020-03-26 2021-03-26 Litho strip having flat topography and printing plate produced therefrom Active EP4127257B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20165738 2020-03-26
PCT/EP2021/057948 WO2021191425A1 (en) 2020-03-26 2021-03-26 Litho strip having flat topography and printing plate produced therefrom

Publications (3)

Publication Number Publication Date
EP4127257A1 EP4127257A1 (en) 2023-02-08
EP4127257B1 true EP4127257B1 (en) 2024-03-13
EP4127257C0 EP4127257C0 (en) 2024-03-13

Family

ID=70189660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21713984.9A Active EP4127257B1 (en) 2020-03-26 2021-03-26 Litho strip having flat topography and printing plate produced therefrom

Country Status (7)

Country Link
US (1) US11807027B2 (en)
EP (1) EP4127257B1 (en)
JP (1) JP2023515242A (en)
KR (1) KR102604655B1 (en)
CN (1) CN115349022A (en)
BR (1) BR112022019120A2 (en)
WO (1) WO2021191425A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038195A (en) * 1983-08-11 1985-02-27 Konishiroku Photo Ind Co Ltd Support for planographic printing plate
US5728503A (en) 1995-12-04 1998-03-17 Bayer Corporation Lithographic printing plates having specific grained and anodized aluminum substrate
JP4056682B2 (en) * 2000-07-11 2008-03-05 富士フイルム株式会社 Support for lithographic printing plate
JP3907095B2 (en) * 2001-02-06 2007-04-18 株式会社神戸製鋼所 Method for producing aluminum alloy foil
ES2389051T5 (en) 2005-05-19 2021-07-07 Hydro Aluminium Rolled Prod Conditioning of a lithographic strip
JP5001359B2 (en) 2006-06-06 2012-08-15 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー How to clean aluminum workpieces
EP2192202B2 (en) * 2008-11-21 2022-01-12 Speira GmbH Aluminium sheet for lithographic printing plate support having high resistance to bending cycles
CN102049915B (en) * 2009-11-03 2014-06-18 富士胶片株式会社 Aluminum alloy plate for lithographic printing plate
EP2444254B1 (en) 2010-10-22 2013-07-10 Hydro Aluminium Rolled Products GmbH Aluminum alloy strip for electrochemical roughening and method for producing same
CA2901307C (en) * 2013-03-15 2017-08-29 Novelis Inc. Rolled surfaces having a dulled gloss finish
JP6266905B2 (en) * 2013-06-20 2018-01-24 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
WO2016125608A1 (en) * 2015-02-03 2016-08-11 東洋アルミニウム株式会社 Aluminum foil, electronic device, roll-to-roll aluminum foil, and aluminum-foil manufacturing method
CN108778540B (en) * 2016-03-16 2020-10-20 东洋铝株式会社 Aluminum foil for ultraviolet reflecting material and method for producing same
CN109072389B (en) * 2016-04-20 2020-05-19 海德鲁铝业钢材有限公司 Lithographic strip production with high cold rolling reduction
CN108588499B (en) * 2018-04-12 2019-12-31 威海海鑫新材料有限公司 CTP printing plate-based aluminum strip and preparation process thereof
CN110102580B (en) * 2019-04-12 2020-10-27 郑州明泰实业有限公司 Production method of 1100-H14 state aluminum alloy strip for processing high-end cosmetic bottle cap

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZX PRINTER: "Lithographic Plate Composition", 10 June 2013 (2013-06-10), pages 1 - 2, XP055889665, Retrieved from the Internet <URL:https://www.zxprinter.com/support/22.html> [retrieved on 20220209] *

Also Published As

Publication number Publication date
EP4127257A1 (en) 2023-02-08
US11807027B2 (en) 2023-11-07
KR102604655B1 (en) 2023-11-21
CN115349022A (en) 2022-11-15
KR20220149759A (en) 2022-11-08
WO2021191425A1 (en) 2021-09-30
EP4127257C0 (en) 2024-03-13
US20230086926A1 (en) 2023-03-23
BR112022019120A2 (en) 2022-11-08
JP2023515242A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
EP2444254B1 (en) Aluminum alloy strip for electrochemical roughening and method for producing same
DE60213567T2 (en) METHOD AND DEVICE FOR TEXTURING METAL SHEETS OR METAL TAPES
EP1065071B1 (en) Aluminum alloy strip used for making lithographic plate and method of production
AT506547A2 (en) METHOD FOR PRODUCING DEFORMED METAL OBJECTS
DE102004013497B4 (en) Al-Mg-Si alloy sheet having excellent surface properties and manufacturing method therefor
DE202017007170U1 (en) Steel substrate for painted parts
EP3714077B1 (en) Battery electrode foil for the production of lithium-ion accumulators
DE102020208777A1 (en) Tempered steel sheet, skin-pass roller and method for producing a temper-tempered steel sheet
DE19902527B4 (en) Printing plate support and method for producing a printing plate support or an offset printing plate
EP3414365B1 (en) Reform optimised aluminum alloy sheet
EP3445887B1 (en) Lithographic sheet manufacturing with high cold roll pass reduction
DE19938995A1 (en) Aluminum alloy board for building materials, electrical machinery components etc
DE102020200321A1 (en) Process for the production of a surface-refined and surface-conditioned steel sheet
WO2010057959A1 (en) Aluminum strip for lithographic printing plate supports having a high reversed bending strength
DE202020100524U1 (en) Sheet metal packaging product, in particular tinplate or electrolytically chrome-plated sheet steel
DE3212181A1 (en) Steel support for a lithographic printing plate, and method of producing it
EP3253505B1 (en) Method and apparatus for embossing rolling metal strip
EP4127257B1 (en) Litho strip having flat topography and printing plate produced therefrom
EP4035788B1 (en) Method for texturing a skin-pass roll
EP1880861B1 (en) Aluminium strip for lithographic printing plate support
WO2021151652A1 (en) Sheet metal packaging product with a structured surface and method for producing a sheet metal packaging product of this type
EP2495106A1 (en) Aluminium band for lithographic pressure plate carriers with water-based coatings
DE102020200326A1 (en) Process for the production of a surface-refined and surface-conditioned steel sheet
DE19823790A1 (en) Multigrain aluminum or alloy strip used for making lithographic plate base and offset printing plate
DE19956692B4 (en) litho

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230712

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLTZ, JAN HENDRIK

Inventor name: WEICHBRODT, KLAUS

Inventor name: DAHMEN, JASMIN

Inventor name: BARTOSINSKI, VERA

Inventor name: BARISIK, VOLKAN

Inventor name: NITZSCHE, GERNOT

Inventor name: BAUER, OLIVER

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002973

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240327

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240408