EP4117845A1 - System zur temperierung des bauraums pulverbettbasierter additiver fertigungsanlagen - Google Patents

System zur temperierung des bauraums pulverbettbasierter additiver fertigungsanlagen

Info

Publication number
EP4117845A1
EP4117845A1 EP21711532.8A EP21711532A EP4117845A1 EP 4117845 A1 EP4117845 A1 EP 4117845A1 EP 21711532 A EP21711532 A EP 21711532A EP 4117845 A1 EP4117845 A1 EP 4117845A1
Authority
EP
European Patent Office
Prior art keywords
process chamber
chamber walls
powder bed
platform
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21711532.8A
Other languages
English (en)
French (fr)
Inventor
Jan GIERSE
Florian HENGSBACH
Dominik AHLERS
Mirko Schaper
Thomas Tröster
Thorsten Marten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Addition GmbH
Original Assignee
Addition GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Addition GmbH filed Critical Addition GmbH
Publication of EP4117845A1 publication Critical patent/EP4117845A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a sintering device for the additive manufacturing of metallic workpieces by means of a powder bed, at least comprising the components: a) irradiation unit; b) feed for metal powder; c) construction platform designed to be movable in height, the construction platform forming the bottom of the powder bed; d) the process chamber walls delimiting the powder bed to the sides, the process chamber walls made of metal and designed to be individually heatable and coolable as a function of the height from the floor of the building platform, with a plurality of height-spaced temperature sensors being arranged in or on the process chamber walls .
  • the present invention also relates to the use of a device according to the invention for the additive manufacturing of metallic workpieces.
  • Additive manufacturing is used to manufacture workpieces by sequentially adding substances, usually in layers.
  • Well-known manufacturing processes such as milling, cutting or turning, work out the shape of the workpiece by removing substance from a larger blank.
  • What speaks in favor of additive manufacturing in the industrial Elmfeld is that a high degree of design freedom is also made possible for demanding applications and complex geometries. It can Individual pieces can be manufactured at economically justifiable costs, which ultimately saves storage and tool costs.
  • a large number of different substances can be processed additively.
  • plastics are heated above their melting temperature and extruded in layers or at points from a nozzle to form the molded body.
  • Metals can also be processed additively. Metals can, for example, be joined to workpieces in the form of a powder in a powder bed using thermal processes.
  • powder-bed-based additive manufacturing technologies enables the production of highly complex geometries, also based on the application of material in layers. This process can also be referred to as multilayer micro-welding.
  • a high-power laser or electron beam exposes the contour of the component in the powder bed belonging to the current layer and briefly melts the affected area locally. After each layer, the powder bed is lowered further, a new powder layer is applied, smoothed and locally melted again until the component is completed.
  • EP 1 762122 B2 discloses a radiant heater for heating a construction material in a laser sintering device with a planar heat radiating element, with power connections being provided on the heat radiating element so that current can be sent through the heat radiating element in the planar direction for operation as a resistance heating element, characterized in that the heat radiating element consists of a material with a low thermal inertia and that the heat radiating element consists of a material which at a temperature of 20 ° C has a thermal diffusivity of more than about 1.5 * 10 4 m 2 / s, the heat radiating element at least in one section is designed in the form of a meander-like surface web.
  • WO 2012 104 536 A2 discloses a device for producing or building a metal part by sintering and laser melting, the device comprising a laser beam generator, a means for deflecting the beam in order to scan the surface of the part to be produced, and a sintering pan containing a metal powder that is used to cover the surface of the part and to be melted by the laser beam to thicken the part.
  • the invention is characterized in that it also comprises at least one means for heating powder which is contained in a region of the sintering pan by induction.
  • a sintering device for the additive manufacture of metallic workpieces by means of a powder bed, which at least includes the following components: a) irradiation unit; b) feed for metal powder; c) construction platform designed to be movable in height, the construction platform forming the bottom of the powder bed; d) the process chamber walls delimiting the powder bed at the sides, the process chamber walls being made of metal and designed to be heatable and coolable in a location-selective manner as a function of the height from the floor of the building platform, with several temperature sensors spaced apart in height being arranged in or on the process chamber walls .
  • the temperature of the powder can thus be regulated to a precisely defined value shortly before the actual sintering process, so that this regulation reduces the tendency of the material to crack.
  • materials that are difficult to weld such as high-carbon steels
  • specific temperature gradients in the powder bed can be set and maintained via the separately controllable heating and cooling, whereby the fine adjustment is significantly improved via the independent heating and cooling.
  • Another advantage of cooling results from the fact that the powder bed can be controlled after completion and the temperature can be reduced in a precise location, which can counteract tension in the finished workpiece and drastically shorten set-up times.
  • the sintering device is a sintering device for the additive manufacturing of metallic workpieces by means of a powder bed.
  • metallic workpieces can therefore be manufactured by means of an additive manufacturing process.
  • a powder bed process is carried out from the group of additive manufacturing processes. The method per se is known to the person skilled in the art.
  • a layer by layer application of a metal powder and subsequent thermal Machining of the metal powder at the points where the workpiece is to be built, any workpiece geometry can be obtained.
  • Metallic workpieces are workpieces that are predominantly made of metal.
  • the metal content of the workpieces can be greater than or equal to 75, further preferably greater than or equal to 80 and further preferably greater than or equal to 85 percent by weight.
  • the device comprises an irradiation unit.
  • Energy is fed into the powder bed at a precise location via the irradiation unit.
  • the irradiation takes place at the points where a further layer is to be added to the previously applied workpiece layers.
  • the metal powder in the powder bed is thermally melted at these points by the irradiation unit.
  • the irradiation unit is able to send out high-energy radiation, which leads to welding of the metal powder due to the locally accurate temperature increase.
  • the irradiation unit can comprise, for example, a laser source, a light source or also an electron beam source.
  • the irradiation unit can have additional structures which, for example, contribute to the positioning of the energetic beam on the powder bed.
  • the irradiation unit can also have protective devices, mirrors, lenses or similar structures.
  • the device comprises a feed for metal powder.
  • the feed for the metal powder serves the purpose of layering metal powder on top of the existing powder bed.
  • the metal powder is thus applied sequentially and the powder bed is irradiated via the irradiation unit between two application processes.
  • the application device is set up so that a certain amount of powder is applied to the powder bed per unit area of the powder bed.
  • the application unit can also be designed to remove excess powder from the powder bed and to store it in one or more storage devices.
  • the device comprises a construction platform designed to be movable in height, the construction platform forming the bottom of the powder bed.
  • the bottom of the powder bed forms a construction platform, which is designed to be movable in height. For example, it is possible for the construction platform to be lowered in the course of manufacture.
  • the construction platform is usually in an elevated position at the beginning of the manufacturing process and is lowered in proportion to the further layer structure by depositing metal powder. This enables a more or less constant distance between the powder bed and the irradiation unit.
  • the construction platform can also have other technical facilities, such as heating, on its underside.
  • the building platform can be lowered using a hydraulic ram mechanism, for example.
  • the device comprises the process chamber walls delimiting the powder bed on the sides, the process chamber walls being made of metal and configured so that they can be heated and cooled in a location-selective manner as a function of the height from the floor of the building platform, with a plurality of temperature sensors spaced apart in height in or on the process chamber walls are arranged.
  • the process chamber walls or the jacket surfaces can consist of metal if the proportion of a metal in the process chamber walls is greater than or equal to 75 percent by weight.
  • the process chamber walls are the walls that are in direct contact with the powder bed.
  • the process chamber walls can be heated and cooled. This means that different areas of the process chamber walls can each be individually supplied with thermal energy via a heating source.
  • the different areas of the process chamber walls can each also be individually controlled via cooling and / or heating elements.
  • the heating can take place in such a way that in each case a certain height section of the process chamber walls can be tempered by a separate heating device. This results in parallel sections on the process chamber walls, the temperature of which can be set individually. The consequence of this is that the corresponding sections in the powder bed can be individually controlled in terms of their temperature parallel to the building platform. Possible temperature ranges the individual heating are, for example, greater than or equal to 200 ° C., preferably greater than or equal to 400 ° C., greater than or equal to 600 ° C. and greater than or equal to 850 ° C.
  • each process chamber wall has at least two temperature sensors, the temperature sensors being at different distances from the building platform.
  • each process chamber wall can have at least 5, furthermore preferably 10, and furthermore preferably 15 temperature sensors.
  • each process chamber wall can have at least 5, furthermore preferably 10, and furthermore preferably 15 temperature sensors.
  • the individual temperature sensors can be the same or different in height from one another. It is thus possible, for example, for the temperature sensors to each have the same distance from one another. This distance can be, for example, 1 cm, 5 cm or 10 cm. The distances can preferably be selected as a function of the size of the workpiece or as a function of the thickness of the newly applied powder layers. However, it is also possible for the temperature sensors to have a different distance from one another. For example, the distances in the area of the melting of the metal powder can be selected to be smaller. In this way, the temperatures of the powder bed in the area of the welding can be controlled very precisely.
  • the cooling can take place, for example, via inert gases or liquids, for example in the form of molten solids, with the cooling medium being able to be arranged either between the heater and the building space or between the heater and the environment.
  • the sintering device can be a laser sintering device.
  • the energy input of the laser can be controlled very precisely and in this combination, a very precise control of the temperature of the powder bed in the area of the welding is advantageously noticeable.
  • the device according to the invention is a laser sintering device in which at least 50% of the thermal energy for melting the powder is provided by a laser.
  • the heating of the process chamber walls can be selected from the group consisting of radiation, induction, resistance heaters or combinations thereof. These heating systems have proven to be particularly suitable for reproducible and rapid control of the temperatures of the powder bed. With these types, a very even temperature of the powder bed can be provided, which results in an improved isotropy of the workpieces available.
  • the process chamber walls can be heated via a bifilar wound resistance heater located outside the process chamber wall and the process chamber walls can be cooled via an internal liquid cooling.
  • the combination of external bifilar wound resistance heating with internal cooling has surprisingly led to clear advantages in the workpieces available.
  • the bifilar winding of the conductors of the resistance heating can contribute to the compensation of electromagnetic fields of the heating.
  • the asymmetrical winding of the heating conductors can help minimize the temperature gradient at the level of the heated process wall. Due to the additional shielding of the metal powder by the cooling medium, for example in the form of molten metal, salts or ionic liquids, magnetic inhomogeneities seem to be further weakened, which leads to an even more uniform and weakened magnetic field.
  • the irradiation unit can comprise a laser and a focusable IR radiation unit.
  • a focused top heating unit with IR radiators outside the process chamber in conjunction with a laser has proven to be particularly suitable to avoid undesirable heating of the process space and more specific focus of the amount of energy on the essential powder areas.
  • This combination of IR emitter and laser enables workpieces that are particularly crack-free to be achieved. Without being bound by theory, this can probably be attributed to the fact that an excessively large temperature difference to the powder bed surrounding the laser spot can be avoided over the larger effective area of the IR radiator.
  • the radiation from the IR radiation source can be parallelized via a collimator and the emitters can be positioned outside the chamber by means of one or more plano-convex lenses.
  • the powder layer can be exposed at an angle so that the geometry of the actually elliptical illumination field of the IR radiator can be changed with the aid of a defined lens and, for example, can be formed into a round exposure field.
  • the focusing lenses can be placed in a water-cooled frame, which also acts as a gas-tight seal the building chamber can act.
  • the power of the focusable IR radiation unit can, for example, be in a range of 0-20 W / cm 2 .
  • the height-adjustable construction platform can be designed at least in two parts from a lower platform heater and an upper, construction platform, the seal between the platform heater and the construction platform via high-temperature-resistant lamellar rings, which between tween the construction platform and the Platform heating are arranged.
  • This configuration has resulted in a flexible solution for the lower installation space, which at the same time prevents powder material from getting stuck internally and jamming between the two structural parts.
  • a lamellar ring a secure seal between the process wall and the construction platform can be achieved, so that the trickling of metal powder into the gap between the wall and the movable floor platform can be prevented.
  • the lamellar ring seals reliably and better than, for example, the glass fibers that are frequently used, even when moving and under high temperature loads with high contact forces.
  • High-temperature-resistant laminar rings can, for example, be made of Ni-based or made of heat-resistant steel.
  • the ring can preferably have an elliptical shape before assembly.
  • the positioning of the lamellar ring is chosen so that the separate building platform can be easily installed and removed. In addition, this installation point prevents the powder material from getting stuck internally and jamming with the lamellar ring, so that undesired leaks can be avoided.
  • This installation location and the use of a lamellar ring in combination with an inner coating of the process wall are particularly suitable.
  • these two features can avoid sintering powder material on the process wall.
  • the additional coating reduces the friction of the construction platform and can be high-melting, so that sintering of the powder material on the wall can be further avoided.
  • a blocking or an irregularity in the lifting mechanism can advantageously be avoided in this way.
  • the additional coating can also minimize the fretting of the lamellar ring towards the process wall.
  • a comparatively higher clamping force of the spring ring can be selected, which also ensures reliable sealing of the installation space during the cooling-up and cooling-down phases.
  • the temperature sensors can be arranged directly on the outside of the process chamber walls.
  • the temperatures are measured by sensors which are located directly on the outer walls of the process chamber walls.
  • the inside of the process chamber walls can be coated non-stick at least at the level of the temperature sensors. Surprisingly, it turned out to be advantageous for the process chamber walls to receive a further coating.
  • the coating prevents the metal powder from sticking to the process chamber walls.
  • the further coating can consist, for example, of a CoCrMo coating or have this.
  • the use of the device according to the invention for the additive manufacturing of metallic workpieces is also according to the invention.
  • the device according to the invention can be used particularly advantageously in powder bed processes in which metallic workpieces are produced.
  • the metallic workpieces are made from metal powders whose thermal properties are less favorable compared to the thermal properties of other powders.
  • the device according to the invention can also be used to improve the properties of the metallic workpieces obtainable for these difficult-to-process metal powders. Crack-free metallic workpieces can result.
  • the device according to the invention can be used to manufacture laser-sintered workpieces
  • the materials of the laser-sintered Tert workpieces are selected, for example, from the group consisting of high-carbon steel, titanium aluminides, iron aluminides, wear-resistant cobalt alloys, nickel-containing materials.
  • the advantages of the device according to the invention can occur in particular with laser-sintered workpieces which are made from materials that are difficult to weld, such as high-carbon steels. In many cases, high carbon steels can only be thermally welded inadequately due to their composition. According to the prior art, there are usually workpieces which show severe cracking. By means of the device according to the invention presented here, in addition to thermally induced stresses, in particular cracks in additively manufactured components made of the above-mentioned materials can be avoided.
  • FIG. 1 schematically shows the structure of a system according to the invention for laser sintering
  • FIG 2 shows an embodiment of the device according to the invention with external heating and internal cooling
  • Fig. 3 shows an inventive embodiment of the device with two-part Ausgestal device of the coolable and heatable construction platform with sealing elements in the form of high-temperature-resistant lamellar rings.
  • FIG. 1 a possible structure of a system according to the invention is shown schematically.
  • the structure contains an irradiation unit 1, 2, 3, which in this case consists of a collimator and focusing unit 1, an XY scanner 2 and a protective laser glass 3. stands.
  • the actual laser or electron beam can be generated elsewhere.
  • the laser beam is passed through the irradiation unit and can then be directed through the laser protection glass 3 onto the powder bed 9 in a location-selective manner.
  • the device also has a coater 5, which provides the powder bed 9 with new layers of powder. Excess material can be transported away into the powder overflow container 4 by means of the coater 5.
  • the powder bed 9 is delimited at the bottom by the construction platform 10 and at the sides by the process chamber walls 8. In this case, the process chamber walls 8 have the temperature sensors (not shown).
  • the current temperature profile of the powder bed can be measured by means of the temperature sensors arranged at different heights
  • the powder bed 9 can be measured.
  • heat sources 7 are arranged which, depending on the height of the building platform 10, can hit the powder bed 9 at different heights with different temperatures.
  • the powder bed 9 is delimited on the sides by insulation 14.
  • a cooling sleeve 6 can be used, which has, for example, water cooling.
  • the wall is also designed to be coolable 16, the cooling being between the heating elements 7 and the powder bed 9.
  • the building platform 10 can for example have a platform heater 11, which together with the building platform
  • the construction platform 10 is designed to be movable in height via a hydraulic ram 12.
  • the stamp 12 can have insulation 13, for example.
  • the construction platform 10 is located in the upper region of the device.
  • a predefined powder layer thickness is sequentially deposited on the building platform 10 via the applicator 5, which is then irradiated with laser light, for example, via the irradiation unit 1, 2, 3.
  • the powder bed 9 is irradiated in a location-selective manner and the metal powder is melted at these points.
  • the construction platform 10 is lowered and a new powder layer is applied via the application device 5. In this way, a metallic workpiece is produced additively.
  • FIG. 2 shows an embodiment of the device according to the invention with a focus on the arrangement of the heating elements 7 and cooling elements 15.
  • the heating elements 7 represent a heating element 7 which is external to the installation space 9.
  • the internal cooling 15 is arranged closer to the installation space 9.
  • Both temperature control circuits are integrated into the side walls of the device.
  • the cooling circuit 15 can preferably be operated by means of a liquid temperature control medium, which is preferably able to further scatter magnetic currents which could be caused by the heating.
  • the magnetic currents through an induction heater 7 can be reduced, for example, by arranging the power lines required for generating heat in a bifilar manner in the installation space wall.
  • cooling system 15 an improvement in set-up times can be achieved via the cooling system 15.
  • the cooling it is also possible for the cooling to be provided via a gas cooling system 16 which, in relation to the heating elements 7, is arranged further away from the installation space.
  • gas cooling system 16 which, in relation to the heating elements 7, is arranged further away from the installation space.
  • the figure shows that in addition to the installation space walls, the floor of the device can also be heated and cooled. This temperature control can be achieved both via liquid and gas cooling.
  • FIG. 3 shows an embodiment of the device according to the invention with a two-part construction platform 17, 18.
  • the lower platform heater 17 of the construction platform can have both cooling and heating means and can use the sealing element 19 in the form of highly temperature-resistant lamellar rings 19 with respect to the actual upper construction platform 18 be sealed.
  • the upper construction platform 18 carries the actual powder bed.
  • the side walls 8 of the installation space 9 are also shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Sintervorrichtung zur additiven Fertigung metallischer Werkstücke mittels eine Pulverbetts, mindestens umfassend die Bestandteile: a) Bestrahlungseinheit; b) Zuführung für Metallpulver; c) in der Höhe beweglich ausgestaltete Bauplattform, wobei die Bauplattform den Boden des Pulverbetts bildet; d) das Pulverbett zu den Seiten hin begrenzende Prozesskammerwände, wobei die Prozesskammerwände aus Metall und ortsselektiv als Funktion der Höhe vom Boden der Bauplattform individuell beheiz- und kühlbar ausgestaltet sind, wobei in oder an den Prozesskammerwänden mehrere in der Höhe voneinander beabstandete Temperatursensoren angeordnet sind. Des Weiteren betrifft die vorliegende Erfindung die Verwendung einer erfindungsgemäßen Vorrichtung zur additiven Fertigung metallischer Werkstücke.

Description

System zur Temperierung des Bauraums pulverbettbasierter additiver Fertigungsanlagen
Die vorliegende Erfindung betrifft eine Sintervorrichtung zur additiven Fertigung metallischer Werkstücke mittels eines Pulverbetts, mindestens umfassend die Bestandteile: a) Bestrahlungseinheit; b) Zuführung für Metallpulver; c) in der Höhe beweglich ausgestaltete Bauplattform, wobei die Bauplattform den Boden des Pulverbetts bildet; d) das Pulverbett zu den Seiten hin begrenzende Prozesskammerwände, wobei die Prozesskammerwände aus Metall und ortsselektiv als Funktion der Höhe vom Bo den der Bauplattform individuell beheiz- und kühlbar ausgestaltet sind, wobei in oder an den Prozesskammerwänden mehrere in der Höhe voneinander beabstandete Temperatursensoren angeordnet sind. Des Weiteren betrifft die vorliegende Erfindung die Verwendung einer er- findungsgemäßen Vorrichtung zur additiven Fertigung metallischer Werkstücke.
Die additive Fertigung von Werkstücken hat in der Fertigungstechnik in den letzten Jahren einen immer größeren Stellenwert eingenommen. Durch additive Fertigung werden Werkstü cke über sequentielles Hinzufügen von Substanzen, üblicherweise in Schichten, gefertigt. Altbekannte Fertigungsverfahren, wie beispielsweise Fräsen, Spanen oder Drehen, arbeiten die Form des Werkstücks über Abnehmen von Substanz eines größeren Rohlings heraus. Für die additive Fertigung im industriellen Elmfeld spricht, dass auch für anspruchsvolle Anwen dungen und komplexe Geometrien eine hohe Gestaltungsfreiheit ermöglicht wird. Es können zu wirtschaftlich vertretbaren Kosten Einzelstücke hergestellt werden, welches letztendlich Lager- sowie Werkzeugkosten spart.
Prinzipiell lassen sich additiv eine Vielzahl unterschiedlicher Substanzen verarbeiten. So werden beispielsweise im Rahmen eines 3D-Drucks Kunststoffe über ihre Schmelztemperatur erhitzt und Schicht- oder punktweise aus einer Düse heraus zum Formkörper extrudiert. Auch Metalle lassen sich additiv verarbeiten. Metalle können beispielsweise in Form eines Pulvers in einem Pulverbett über thermische Verfahren zu Werkstücken gefügt werden. Generell er möglicht die Anwendung pulverbettbasierter, additiver Fertigungstechnologien die Herstel lung höchst komplexer Geometrien, ebenfalls basierend auf einem schichtweisen Materialauf trag. Dieser Prozess kann auch als multilagen Mikroschweißen bezeichnet werden. Während der Fertigung belichtet ein Hochleistungslaser oder Elektronen strahl die zur aktuellen Schicht gehörende Kontur des Bauteils im Pulverbett und schmilzt die betreffende Stelle kurzzeitig lokal auf. Nach jeder Schicht wird das Pulverbett weiter abgesenkt, eine neue Pulverschicht aufgebracht, glattgezogen und erneut lokal bis zur Fertigstellung des Bauteils aufgeschmol zen.
Aktuell können mit diesem Verfahren lediglich Bauteile aus gut schweißbaren Werkstoffen erzeugt werden. Legierungsübergreifend weisen additiv hergestellten Bauteile allerdings so wohl eine kristallographische wie auch eine morphologische Vorzugsrichtung auf.
Eine Vielzahl spröder oder besonders harter Werkstoffe, wie beispielsweise hoch- kohlenstoffhaltiger Stahl, lassen sich durch die additive Fertigung nur schwerlich verarbeiten, da die hergestellten Bauteile üblicherweise Mikro- und/oder Makrorisse direkt nach der addi tiven Fertigung aufweisen. Dies kann unter anderem darauf zurückgeführt werden, dass wäh rend der Verarbeitung durch das rapide Aufheizen und Abkühlen in den Aufschmelzungen sowie in der umgebenden Region große Eigenspannungen induziert werden, welche in uner wünschten Erstarrungs-, Aufschmelz- und Versprödungsrissen resultieren. Letztlich können diese rissbehafteten Bauteile in der Praxis nicht oder nur schwer eingesetzt werden, welches im hohen Maße die Einsatzfähigkeit hergestellter Bauteile beschränkt.
Auch in der Patentliteratur finden sich die unterschiedlichsten Ansätze zur additiven Ferti gung mittels Lasersintern.
So offenbart beispielsweise die EP 1 762122 B2 eine Strahlungsheizung zum Heizen eines Aufbaumaterials in einer Lasersintervorrichtung mit einem flächigen Wärmeabstrahlelement wobei an dem Wärmeabstrahlelement Stromanschlüsse vorgesehen sind, sodass durch das Wärmeabstrahlelement in Flächenrichtung Strom zum Betreiben als Widerstandsheizelement geschickt werden kann, dadurch gekennzeichnet, dass das Wärmeabstrahlelement aus einem Materialmit einer geringen thermischen Trägheit besteht und dass das Wärmeabstrahlelement aus einem Material besteht, das bei einer Temperatur von 20°C eine Temperaturleitzahl von mehr als etwa 1,5* 104 m2/s besitzt, wobei das Wärmeabstrahlelement zumindest in einem Abschnitt in Form einer mäanderartigen Flächenbahn ausgebildet ist.
Des Weiteren offenbart die WO 2012 104 536 A2 eine Vorrichtung zum Herstellen oder Auf bauen eines Metallteils durch Sintern und Laserschmelzen, wobei die Vorrichtung einen La serstrahlgenerator umfasst, ein Mittel zum Ablenken des Strahls, um die Oberfläche des her zustellenden Teils abzutasten, und eine Sinterpfanne, die ein Metallpulver enthält, das ver wendet wird, um die Oberfläche des Teils zu bedecken und durch den Laserstrahl geschmol zen zu werden, um das Teil zu verdicken. Die Erfindung ist dadurch gekennzeichnet, dass sie auch mindestens ein Mittel zum Erhitzen von Pulver umfasst, das in einem Bereich der Sin terpfanne durch Induktion enthalten ist.
Derartige aus dem Stand der Technik bekannte Lösungen können noch weiteres Verbesse rungspotential bieten, insbesondere hinsichtlich der möglichen Qualität, beispielsweise in Form der Rissneigung, der erhältlichen Werkstücke. Es ist daher die Aufgabe der vorliegenden Erfindung, die aus dem Stand der Technik bekann ten Nachteile zumindest teilweise zu überwinden. Es ist insbesondere die Aufgabe der vorlie genden Erfindung eine verbesserte Vorrichtung bereitzustellen, welche die Herstellung riss armer Werkstücke innerhalb eines Pulverbettverfahrens aus schwer schweißbaren Werkstof fen ermöglicht.
Die Lösung der Aufgabe erfolgt durch die Merkmale der unabhängigen Ansprüche, gerichtet auf die erfmdungsgemäße Vorrichtung und die erfmdungsgemäße Verwendung der Vorrich tung. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen, in der Be schreibung oder den Figuren angegeben, wobei weitere in den Unteransprüchen oder in der Beschreibung oder den Figuren beschriebene oder gezeigte Merkmale einzeln oder in einer beliebigen Kombination einen Gegenstand der Erfindung darstellen können, wenn sich aus dem Kontext nicht eindeutig das Gegenteil ergibt.
Die Lösung der Aufgabe erfolgt erfmdungsgemäß durch eine Sintervorrichtung zur additiven Fertigung metallischer Werkstücke mittels eine Pulverbetts, welche mindestens die Bestand teile: a) Bestrahlungseinheit; b) Zuführung für Metallpulver; c) in der Höhe beweglich ausgestaltete Bauplattform, wobei die Bauplattform den Boden des Pulverbetts bildet; d) das Pulverbett zu den Seiten hin begrenzende Prozesskammerwände, umfasst, wobei die Prozesskammerwände aus Metall und ortsselektiv als Funktion der Höhe vom Boden der Bauplattform beheiz- und kühlbar ausgestaltet sind, wobei in oder an den Prozesskammerwänden mehrere in der Höhe voneinander beabstandete Temperatursensoren angeordnet sind. Überraschenderweise hat sich gezeigt, dass über oben angegebenen Aufbau makrorissfreie Werkstücke über ein additives Pulverbett-Herstellverfahren erhalten werden können. Ohne durch die Theorie gebunden zu sein trägt dazu insbesondere der Einsatz von Mantelheizungen bei, durch welche sich das Pulverbett gezielt vorheizen lässt. Die Mantelheizung erwärmt das aufgetragene Metallpulver sowie die herzustellenden Bauteile zusätzlich von den Mantelflä chen in Baurichtung. Somit kann ein Temperaturgradient in der Baurichtung erfolgreich redu ziert werden. Zusätzlich zur Mantelheizung ist die Steuerung und Überwachung der Tempera tur im Pulverbett mittels eines oder mehrerer thermischer Kontaktsensoren oder mittels Thermographie wichtig. Die Sensoren zur Steuerung der Mantelheizung sind direkt im oder am metallischen Mantel angeordnet und können ortsgenau zur aktiven Steuerung und Über wachung der Vorwärmtemperatur des Pulvers beitragen. Die Temperatur des Pulvers kann somit kurz vor dem eigentlichen Sintervorgang auf einen genau festgelegten Wert geregelt werden, sodass sich über diese Regelung die Rissneigung des Materials verringert. Auf diese Art und Weise können selbst schwer zu schweißende Materialien, wie beispielsweise hoch- kohlenstoffhaltige Stähle, innerhalb eines additiven Pulverbettverfahrens verarbeitet werden. Zudem lassen sich über die separat steuerbare Heizung und Kühlung spezifische Temperatur gradienten im Pulverbett einstellen und halten, wobei über die unabhängige Heiz- und Küh lung die Feinjustage deutlich verbessert wird. Ein weiterer Vorteil der Kühlung ergibt sich dadurch, dass das Pulverbett nach Fertigstellung gesteuert und ortsgenau in der Temperatur heruntergefahren werden kann, welches Spannungen im gefertigten Werkstück entgegenwir ken und die Rüstzeiten drastisch verkürzen kann.
Die erfindungsgemäße Sintervorrichtung ist eine Sintervorrichtung zur additiven Fertigung metallischer Werkstücke mittels eines Pulverbetts. Über die erfindungsgemäße Vorrichtung können also mittels eines additiven Fertigungsverfahrens metallische Werkstücke hergestellt werden. Aus der Gruppe der additiven Fertigungsverfahrens wird ein Pulverbettverfahren durchgeführt. Das Verfahren an sich ist dem Fachmann bekannt. Im Rahmen des Verfahrens kann über ein schichtweises Aufträgen eines Metallpulvers und anschließender thermischer Bearbeitung des Metallpulvers an den Stellen, an denen das Werkstück aufgebaut werden soll, eine beliebige Werkstückgeometrie erhalten werden. Metallische Werkstücke sind dabei Werkstücke, welche zu einem überwiegenden Anteil aus Metall bestehen. So kann beispiels weise der Metallgehalt der Werkstücke größer oder gleich 75, des Weiteren bevorzugt größer oder gleich 80 und weiterhin bevorzugt großer gleich 85 Gewichtsprozent betragen.
Die Vorrichtung umfasst eine Bestrahlungseinheit. Über die Bestrahlungseinheit wird Energie ortsgenau in das Pulverbett eingetragen. Die Bestrahlung erfolgt an den Stellen, an denen eine weitere Schicht zu den bisher aufgebrachten Werkstückschichten hinzugefügt werden soll. Dazu wird das Metallpulver im Pulverbett durch die Bestrahlungseinheit an diesen Stellen thermisch aufgeschmolzen. Die Bestrahlungseinheit ist in der Lage, hochenergetische Strah lung auszusenden, welche durch die ortsgenaue Temperaturerhöhung zu einem Verschweißen des Metallpulvers führt. Die Bestrahlungseinheit kann beispielsweise eine Laserquelle, eine Licht- oder aber auch eine Elektronenstrahlquelle umfassen. Des Weiteren kann die Bestrah lungseinheit weitere Aufbauten aufweisen, welche beispielsweise zur Positionierung des energetischen Strahls auf dem Pulverbett beitragen. Des Weiteren kann die Bestrahlungsein heit noch Schutzeinrichtungen, Spiegel, Linsen oder ähnliche Aufbauten aufweisen.
Die Vorrichtung umfasst eine Zuführung für Metallpulver. Die Zuführung für das Metallpul ver dient dem Zweck, lagenweise Metallpulver auf das schon bestehende Pulverbett zu schichten. Das Metallpulver wird also sequenziell aufgetragen und zwischen zwei Auftra gungsvorgängen wird das Pulverbett über die Bestrahlungseinheit bestrahlt. Die Auftragsein richtung ist dazu eingerichtet, dass pro Flächeneinheit des Pulverbetts eine bestimmte Menge an Pulver auf das Pulverbett aufgebracht wird. Die Auftragungseinheit kann zudem dazu ein gerichtet sein, überschüssiges Pulver vom Pulverbett zu entfernen und in einer oder mehreren Ablageeinrichtungen zu lagern. Die Vorrichtung umfasst eine in der Höhe beweglich ausgestaltete Bauplattform, wobei die Bauplattform den Boden des Pulverbetts bildet. Den Boden des Pulverbetts bildet eine Bau plattform, welche in der Höhe beweglich ausgestaltet ist. So ist es beispielsweise möglich, dass die Bauplattform im Zuge der Herstellung abgesenkt wird. Üblicherweise befindet sich die Bauplattform zu Anfang des Herstellungsprozesses in einer erhöhten Position und wird proportional zum weiteren Schichtaufbau durch Ablage von Metallpulver abgesenkt. Dies ermöglicht einen mehr oder weniger konstanten Abstand des Pulverbetts zur Bestrahlungsein heit. Die Bauplattform kann auf ihrer Unterseite noch über weitere technische Einrichtungen, wie beispielsweise eine Beheizung, verfügen. Das Absenken der Bauplattform kann bei spielsweise über einen hydraulischen Stempelmechanismus erfolgen.
Die Vorrichtung umfasst das Pulverbett zu den Seiten hin begrenzende Prozesskammerwän de, wobei die Prozesskammerwände aus Metall und ortsselektiv als Funktion der Höhe vom Boden der Bauplattform beheiz- und kühlbar ausgestaltet sind, wobei in oder an den Prozess kammerwänden mehrere in der Höhe voneinander beabstandete Temperatursensoren ange ordnet sind. Die Prozesskammerwände oder die Mantelflächen können aus Metall bestehen, wenn der Anteil eines Metalls an den Prozesskammerwänden größer oder gleich 75 Ge wichtsprozent ist. Die Prozesskammerwände sind dabei die Wände, welche im direkten Kon takt mit dem Pulverbett stehen. Die Prozesskammerwände sind beheiz- und kühlbar ausgestal tet. Dies bedeutet, dass unterschiedliche Bereiche der Prozesskammerwände jeweils einzeln über eine Heizquelle mit thermischer Energie versorgt werden können. Die unterschiedlichen Bereiche der Prozesskammerwände können jeweils auch einzeln über eine Kühlung und/oder Heizelemente gesteuert gekühlt werden. Die Beheizung kann dabei so erfolgen, dass jeweils ein bestimmter Höhenabschnitt der Prozesskammerwände über eine separate Heizeinrichtung temperiert werden kann. Somit ergeben sich parallel verlaufende Abschnitte an den Prozess kammerwänden, welche individuell in ihrer Temperatur festgelegt werden können. Als Kon sequenz ergibt sich, dass die entsprechenden Abschnitte im Pulverbett parallel zur Bauplatt form individuell in ihrer Temperatur gesteuert werden können. Mögliche Temperaturbereiche der individuellen Beheizung liegen beispielsweise bei größer oder gleich 200°C, bevorzugt größer oder gleich 400°C, größer oder gleich 600°C und größer oder gleich 850°C. Zur repro duzierbaren Festlegung der Temperaturen in den unterschiedlichen Bereichen des Pulverbetts hat es sich als sehr wichtig herausgestellt, dass Temperatursensoren zur Steuerung der Pul- verbett-Temperaturen eingesetzt werden, welche im direkten mechanischen Kontakt zu den Prozesskammerwänden stehen. Dementsprechend können die Temperatursensoren in oder aber direkt an den Prozesskammerwänden angebracht sein. Die Temperaturen können inso fern sehr direkt gemessen werden und das gesamte System kann deutlich schneller auf Ab weichungen im festgelegten Temperaturprofil reagieren. Dazu weist jede Prozesskammer wand mindestens zwei Temperatursensoren auf, wobei die Temperatursensoren einen unter schiedlichen Abstand zur Bauplattform aufweisen. Erfindungsgemäß kann jede Prozesskam merwand mindestens 5, des Weiteren bevorzugt 10, und weiterhin bevorzugt 15 Temperatur sensoren aufweisen. Neben den Unterschieden im Abstand zur Bauplattform ist es auch mög lich, dass auf einem festgelegten Abstand zur Bauplattform mehrere Temperatursensoren an geordnet sind. Dadurch ist es zum Beispiel möglich, den thermischen Einfluss des Abstandes zu den weiteren Prozesskammerwänden zu erfassen. Die einzelnen Temperatursensoren kön nen einen gleichen oder aber einen unterschiedlichen Abstand in der Höhe zueinander aufwei sen. So ist es beispielsweise möglich, dass die Temperatursensoren jeweils einen gleichen Abstand zueinander aufweisen. Dieser Abstand kann beispielsweise 1 cm, 5 cm oder 10 cm betragen. Die Abstände können bevorzugt als Funktion der Größe des Werkstücks oder aber in Abhängigkeit der Dicke der neu aufgebrachten Pulver schichten gewählt werden. Es ist aber auch möglich, dass die Temperatursensoren einen unterschiedlichen Abstand zueinander auf weisen. So können die Abstände im Bereich des Aufschmelzens des Metallpulvers beispiels weise kleiner gewählt werden. Auf diese Art und Weise lassen sich die Temperaturen des Pulverbetts im Bereich des Verschweißens sehr genau steuern. Die Kühlung kann beispiels weise über inerte Gase oder Flüssigkeiten, beispielsweise in Form geschmolzener Feststoffe erfolgen, wobei Führung des Kühlmediums entweder zwischen der Heizung und dem Bau raum oder zwischen Heizung und Umgebung angeordnet sein kann. Innerhalb eines bevorzugten Aspektes der Vorrichtung kann die Sintervorrichtung eine Laser- sinter-Vorrichtung sein. Der Energieeintrag des Lasers lässt sich sehr ortsgenau steuern und in dieser Kombination macht sich eine sehr präzise Steuerung der Temperatur des Pulverbetts im Bereich des Verschweißens vorteilhaft bemerkbar. Die erfindungsgemäße Vorrichtung ist in den Fällen eine Lasersinter-Vorrichtung, in denen mindestens 50% der thermischen Energie zum Aufschmelzen des Pulvers über einen Laser bereitgestellt werden.
Im Rahmen einer bevorzugten Ausführungsform der Vorrichtung kann die Beheizung der Prozesskammerwände aus der Gruppe bestehend aus Strahlungs-, Induktions-, Widerstands heizungen oder Kombinationen daraus ausgewählt sein. Diese Heizungssysteme haben sich für eine reproduzierbare und schnelle Steuerung der Temperaturen des Pulverbetts als beson ders geeignet herausgestellt. Über diese Typen kann eine sehr gleichmäßige Temperatur des Pulverbetts bereitgestellt werden, welches in einer verbesserten Isotropie der erhältlichen Werkstücke mündet.
In einer bevorzugten Ausführungsform der Vorrichtung kann die Beheizung der Prozess kammerwände über eine in der Prozesskammerwand außenliegende, bifilar gewickelte Wi derstandsheizung und die Kühlung der Prozesskammerwände über eine innenliegende Flüs sigkühlung erfolgen. Die Kombination aus außenliegender bifilar gewickelter Widerstands heizung mit innenliegender Kühlung hat überraschenderweise zu deutlichen Vorteilen in den erhältlichen Werkstücken geführt. Die bifilare Wicklung der Leiter der Widerstandsheizung kann zur Kompensation elektromagnetischer Felder der Heizung beitragen. Außerdem kann die asymmetrische Wicklung der Heizleiter zur Minimierung des Temperaturgradienten in der Höhe von der beheizten Prozesswand beitragen. Durch die zusätzliche Abschirmung des Me tallpulvers durch das Kühlmedium, beispielsweise in Form geschmolzenen Metalls, Salze oder ionischen Flüssigkeiten, scheinen des Weiteren magnetische Inhomogenitäten weiter abgeschwächt zu werden, welches zu einem noch gleichmäßigeren und abgeschwächten mag- netischen Profil im Pulver des Bauraums beiträgt. Diese Ausgestaltung kann im Gegensatz zu einer außenliegenden Kühlung deutlich vorteilhafter sein. Eine solche Anordnung ist auch nicht naheliegend, da potentiell erst einmal die thermische Last durch das Kühlmedium erhöht wird. Dies ist zum Teil zwar richtig, aber die Vorteile in Bezug auf die magnetischen Effekte und die Vergleichmäßigung der Energieeinstrahlung in das Pulver durch einen dissipativen Effekt des Kühlmediums überwiegen deutlich. Zudem lassen sich durch eine unabhängige Steuerung der Heiz- und Kühlung dynamische Heizprofile etablieren, welche im hohen Maße ortsaufgelöst gesteuert werden können. So können auch stark asymmetrische Bauformen sehr homogen und rissfrei im Pulverbett hergestellt werden.
Innerhalb eines weiter bevorzugten Aspektes der Vorrichtung kann die Bestrahlungseinheit einen Laser und eine fokussierbare IR-Strahlungseinheit umfassen. Zur Vermeidung eines unerwünschten Aufheizens des Prozessraums und spezifischeren Fokussierung der Energie menge auf die wesentlichen Pulverbereiche, hat sich eine fokussierte Top-Heating Einheit mit IR-Strahlern außerhalb der Prozesskammer in Verbindung mit einem Laser als besonders ge eignet herausgestellt. Durch diese Kombination aus IR-Strahler und Laser werden insbeson dere besonders rissfreie Werkstücke erreicht. Ohne durch die Theorie gebunden zu sein kann dies wahrscheinlich darauf zurückgeführt werden, dass über den größeren Einwirkbereich des IR-Strahlers eine zu große Temperaturdifferenz zu dem Laserspot umgebenen Pulverbett vermieden werden kann. Die Strahlung der IR-Strahlenquelle kann über einen Kollimator parallelisiert und mittels einer oder mehrerer plankonvexer Linsen kann die Positionierung der Strahler außerhalb der Kammer erfolgen. Letzteres kann das Aufheizen der Baukammer als solche minimieren. Als weiterer Vorteil kann sich ergeben, dass die Pulverschicht schräg belichtet werden kann, sodass mithilfe einer definierten Linse das eigentlich elliptische Be lichtungsfeld des IR-Strahlers in seiner Geometrie geändert und beispielsweise zu einem run den Belichtungsfeld geformt werden kann. Hierzu können beispielsweise die Fokussierlinsen in einem wassergekühltem Rahmen platziert werden, welche zudem als gasdichte Abdichtung der Baukammer fungieren kann. Die Leistung der fokussierbaren IR-Strahlungseinheit kann beispielsweise in einem Bereich von 0-20 W/cm2 liegen.
In einer weiter bevorzugten Ausführungsform der Vorrichtung kann die in der Höhe beweg lich ausgestaltete Bauplattform mindestens zweiteilig aus einer unteren Plattformheizung und einer oberen, Bauplattform ausgebildet sein, wobei die Abdichtung zwischen Plattformhei zung und Bauplattform über hochtemperaturbeständige Lamellenringe erfolgt, welche zwi schen der Bauplattform und der Plattformheizung angeordnet sind. Durch diese Ausgestaltung hat sich eine flexible Lösung für den unteren Bauraum ergeben, welche gleichzeitig das Vers- intern und Verklemmen von Pulvermaterial zwischen den beiden Aufbauteilen verhindert. Durch die Verwendung eines Lamellenrings kann eine sichere Abdichtung des zwischen Pro zesswand und Bauplattform erreicht werden, sodass das Einrieseln von Metallpulvers in den Spalt Wand und beweglicher Bodenplattform verhindert werden kann. Der Lamellenring dichtet auch unter Bewegung und unter starker Temperaturbelastung mit hohen Anpresskräf ten sicher und besser als beispielsweise die häufig verwendeten Glasfasern. Hochtemperatur beständige Lamellenringe können beispielsweise auf Ni-basis geformt sein oder aus warmfes tem Stahl bestehen. Bevorzugt kann vor Montage der Ring eine elliptische Form aufweisen. Die Platzierung des Lamellenrings ist so gewählt, dass ein einfacher Ein- und Ausbau der separaten Bauplattform erfolgen kann. Darüber hinaus verhindert diese Einbaustelle das Vers- intern und Verklemmen von Pulvermaterial mit dem Lamellenring, sodass unerwünschte Un dichtigkeiten vermieden werden können. Besonders eignet sich dieser Einbauort und die Verwendung eines Lamellenringes in Kombination mit einer inneren Beschichtung der Pro zesswand. Diese beiden Merkmale können insbesondere das Sintern von Pulvermaterial an der Prozesswand vermeiden. Die zusätzliche Beschichtung vermindert die Reibung der Bau plattform und kann hochschmelzend sein, sodass die Versinterung vom Pulvermaterial an der Wand weiter vermieden werden kann. Vorteilhafterweise kann so ein Blockieren oder eine Unregelmäßigkeit in der Hubmechanik vermieden werden. Auch kann die zusätzliche Be schichtung das Fressen des Lamellenrings zur Prozesswand minimieren. Weiterhin kann eine vergleichsweise höhere Spannkraft des Federrings gewählt werden, welches auch während der Auf- und Abkühlphasen eine verlässliche Abdichtung des Bauraums gewährleistet.
Im Rahmen einer bevorzugten Ausgestaltung der Vorrichtung können die Temperatursenso ren unmittelbar an den Außenseiten der Prozesskammerwände angeordnet sein. Neben einer Anordnung der Temperatursensoren in den Prozesskammerwänden kann es des Weiteren vor teilhaft sein, dass die Temperaturen durch Sensoren gemessen werden, welche sich direkt an den Außenwänden der Prozesskammerwände befinden.
Innerhalb einer bevorzugten Charakteristik der Vorrichtung kann die Innenseite der Prozess kammerwände zumindest in Höhe der Temperatursensoren anti-haft beschichtet sein. Überra schenderweise hatte sich als vorteilhaft herausgestellt, dass die Prozesskammerwände eine weitere Beschichtung erhalten. Aufgrund der Beschichtung kann ein Anbacken des Metall pulvers an die Prozesskammerwände verhindert werden. Die weitere Beschichtung kann bei spielsweise einer CoCrMo-Beschichtung bestehen oder diese aufweisen.
Des Weiteren erfindungsgemäß ist die Verwendung der erfindungsgemäßen Vorrichtung zur additiven Fertigung metallischer Werkstücke. Die erfindungsgemäße Vorrichtung lässt sich insbesondere vorteilhaft in Pulverbettverfahren nutzen, in welchen metallische Werkstücke hergestellt werden. Die metallischen Werkstücke werden aus Metallpulvern hergestellt, deren thermische Eigenschaften im Vergleich zu den thermischen Eigenschaften anderer Pulver, ungünstiger sind. Insofern kann über die erfindungsgemäße Vorrichtung auch für diese schwer zu verarbeitenden Metallpulver eine Verbesserung in den Eigenschaften der erhältli chen metallischen Werkstücke erreicht werden. Es können sich rissfreie metallische Werkstü cke ergeben.
Innerhalb einer bevorzugten Ausgestaltung kann die erfindungsgemäße Vorrichtung zur Her stellung lasergesinterter Werkstücke verwendet werden, wobei die Materialien der lasergesin- terten Werkstücke beispielsweise ausgesucht sind aus der Gruppe bestehend aus hoch- kohlenstoffhaltiger Stahl, Titanaluminide, Eisenaluminide, verschleißbeständige Kobalt- Legierungen, nickelhaltige Werkstoffe. Die Vorteile der erfindungsgemäßen Vorrichtung können insbesondere bei lasergesinterten Werkstücken eintreten, welche aus schwer schweiß baren Materialien wie beispielsweise hoch-kohlenstoffhaltige Stählen hergestellt werden. Hoch kohlenstoffhaltige Stähle lassen sich aufgrund ihrer Zusammensetzung in vielen Fällen nur ungenügend thermisch verschweißen. Es ergeben sich nach dem Stand der Technik übli cherweise Werkstücke, welcher eine starke Rissbildung zeigen. Mittels der hier vorgestellten erfindungsgemäßen Vorrichtung können neben thermisch induzierten Spannungen insbeson dere Risse in additiv gefertigten Bauteilen aus oben genannten Materialien vermieden werden.
Weitere Vorteile und vorteilhafte Ausgestaltungen der erfindungsgemäßen Gegenstände wer den durch die Zeichnungen veranschaulicht und in der nachfolgenden Beschreibung erläutert. Dabei ist zu beachten, dass die Zeichnungen nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung einzuschränken.
Es zeigen die:
Fig. 1 schematisch den Aufbau eines erfindungsgemäßen Systems zum Lasersintern;
Fig. 2 eine erfindungsgemäße Ausgestaltung der Vorrichtung mit außenliegender Heizung und innenliegender Kühlung;
Fig. 3 eine erfindungsgemäße Ausgestaltung der Vorrichtung mit zweiteiliger Ausgestal tung der kühl- und heizbaren Bauplattform mit Dichtelementen in Form hochtempe raturbeständiger Lamellenringe.
In der Figur 1 ist ein möglicher Aufbau eines erfindungsgemäßen Systems schematisch darge stellt. Der Aufbau enthält eine Bestrahlungseinheit 1, 2, 3, welche in diesem Fall aus einem Kollimator und Fokussiereinheit 1, einem XY-Scanner 2 und einem Laserschutzglas 3 be- steht. Die Erzeugung des eigentlichen Laser- oder Elektronenstrahls kann an anderer Stelle erfolgen. Der Laserstrahl wird durch die Bestrahlungseinheit geleitet und kann dann durch das Laserschutzglas 3 auf das Pulverbett 9 ortsselektiv gerichtet werden. Die Vorrichtung weist des Weiteren einen Beschichter 5 auf, welcher das Pulverbett 9 jeweils mit neuen Pulverlagen versieht. Mittels des Beschichters 5 kann überschüssiges Material in Pulver-Überlaufbehälter 4 abtransportiert werden. Das Pulverbett 9 wird nach unten hin durch die Bauplattform 10 und zu den Seiten über die Prozesskammerwände 8 begrenzt. Die Prozesskammerwände 8 weisen in diesem Fall die Temperatursensoren (nicht dargestellt) auf. Mittels der in unterschiedlichen Höhen angeordneten Temperatursensoren kann das aktuelle Temperaturprofil des Pulverbetts
9 gemessen werden. An der Außenseite der Prozesskammerwände 8 sind Wärmequellen 7 angeordnet, welche in Abhängigkeit der Höhe von der Bauplattform 10 das Pulverbett 9 in unterschiedlichen Höhen mit unterschiedlichen Temperaturen aufschlagen können. Das Pul verbett 9 wird an den Seiten durch eine Isolierung 14 begrenzt. Zur thermischen Isolierung des gesamten Aufbaus kann eine Kühlmanschette 6 eingesetzt werden, welche beispielsweise über eine Wasserkühlung verfügt. Die Wand ist zudem kühlbar 16 ausgestaltet, wobei die Kühlung zwischen Heizelementen 7 und Pulverbett 9 liegt. Die Bauplattform 10 kann bei spielsweise über eine Plattformheizung 11 verfügen, welche zusammen mit der Bauplattform
10 über einen hydraulischen Stempel 12 in der Höhe verfahrbar ausgestaltet ist. Der Stempel 12 kann beispielsweise über eine Isolierung 13 verfügen. Am Start der Herstellung eines me tallischen Werkstücks befindet sich die Bauplattform 10 im oberen Bereich der Vorrichtung. Es wird sequenziell über den Beschichter 5 eine vordefinierte Pulverschichtdicke auf die Bauplattform 10 abgelegt, welche dann über die Bestrahlungseinheit 1, 2, 3 beispielsweise mit Laserlicht bestrahlt wird. Das Pulverbett 9 wird ortsselektiv bestrahlt und an diesen Stel len wird das Metallpulver aufgeschmolzen. Nach der orts selektiven Bestrahlung wird die Bauplattform 10 abgesenkt und über den Beschichter 5 wird eine neue Pulverschicht aufge- tragen. Auf diese Art und Weise wird additiv ein metallisches Werkstück gefertigt. Die Figur 2 zeigt eine erfindungsgemäße Ausgestaltung der Vorrichtung mit Fokus auf die Anordnung der Heiz- 7 und Kühlelemente 15. In dieser Figur ist dargestellt, dass die Heiz elemente 7 eine in Bezug auf den Bauraum 9 außenliegende Heizung 7 darstellen. Näher zum Bauraum 9 angeordnet ist die innenliegende Kühlung 15. Beide Temperierkreisläufe sind in die Seitenwände der Vorrichtung integriert. Bevorzugt kann der Kühlkreislauf 15 mittels ei nes flüssigen Temperiermittels betrieben werden, welches vorzugsweise in der Lage ist, mag netische Ströme, welche durch die Heizung verursacht werden könnten, noch weiter zu zer streuen. Die magnetischen Ströme durch eine Induktionsheizung 7 können beispielsweise dadurch verringert werden, indem die zur Wärmeerzeugung nötigen Stromleitungen bifilar in der Bauraumwand angeordnet werden. Durch die Heizung 7 und Kühlung 15 lassen sich un terschiedliche Höhenbereiche des Pulverbetts im Bauraum sehr genau in der Temperaturver teilung steuern. Zudem kann über die Kühlung 15 eine Verbesserung der Rüstzeiten erreicht werden. Prinzipiell ist es aber auch möglich, dass die Kühlung über eine Gaskühlung 16 be reitgestellt wird, welche bezogen auf die Heizelemente 7 weiter vom Bauraum entfernt ange- ordnet ist. Zusätzlich ist in der Figur dargestellt, dass neben den Bauraumwänden auch der Boden der Vorrichtung geheizt und gekühlt werden kann. Diese Temperierung kann sowohl über eine Flüssigkeits- wie auch über eine Gaskühlung erreicht werden.
Die Figur 3 zeigt eine erfindungsgemäße Ausgestaltung der Vorrichtung mit zweiteiliger Bauplattform 17, 18. Die untere Plattformheizung 17 der Bauplattform kann sowohl über kühl- wie auch über Heizmittel verfügen und kann über das Dichtelement 19 in Form hoch temperaturbeständiger Lamellenringe 19 gegenüber der eigentlichen oberen Bauplattform 18 abgedichtet sein. Die obere Bauplattform 18 trägt das eigentliche Pulverbett. In dieser Figur sind zudem die Seitenwände 8 des Bauraumes 9 dargestellt.

Claims

Patentansprüche
1. Sintervorrichtung zur additiven Fertigung metallischer Werkstücke mittels eine Pul verbetts, mindestens umfassend die Bestandteile: a) Bestrahlungseinheit (1, 2, 3); b) Zuführung für Metallpulver (5); c) in der Höhe beweglich ausgestaltete Bauplattform (10), wobei die Bauplattform (10) den Boden des Pulverbetts bildet; d) das Pulverbett zu den Seiten hin begrenzende Prozesskammerwände (8), dadurch gekennzeichnet, dass die Prozesskammerwände (8) aus Metall und ortsselektiv als Funktion der Höhe vom Boden der Bauplattform (10) beheiz- (7) und kühlbar (15) ausgestaltet sind, wobei in oder an den Prozesskammerwänden (8) mehrere in der Höhe voneinander beabstandete Temperatursenso ren angeordnet sind.
2. Vorrichtung nach Anspruch 1, wobei die Sintervorrichtung eine Lasersinter- Vorrichtung ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Beheizung (7) der Prozesskammerwände (8) über eine in der Prozesskammerwand (8) außenliegende, bifilar gewickelte Widerstandsheizung (7) und die Kühlung der Prozesskammerwände (8) über eine innenliegende Flüssigkühlung (15) erfolgt.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Temperatursenso- ren in den Prozesskammerwänden (8) angeordnet sind.
5. Vorrichtung nach einem der Ansprüche 2-4, wobei die Bestrahlungseinheit (1, 2, 3) einen Laser und eine fokussierbare IR-Strahlungseinheit umfasst.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die in der Höhe be weglich ausgestaltete Bauplattform (10) mindestens zweiteilig aus einer unteren Plattformhei zung (17) und einer oberen Bauplattform (18) ausgebildet ist, wobei die Abdichtung (19) zwi schen Plattformheizung (17) und Bauplattform (18) über hochtemperaturbeständige Lamel lenringe (19) erfolgt, welche zwischen der Bauplattform (18) und der Plattformheizung (17) angeordnet sind.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Innenseite der Prozesskammerwände (8) zumindest in Höhe der Temperatursensoren anti-haft beschichtet ist.
8. Verwendung einer Vorrichtung nach einem der Ansprüche 1-7 zur additiven Fertigung metallischer Werkstücke.
9. Verwendung nach Anspruch 8 zur Herstellung lasergesinterter Werkstücke, wobei die Materialien der lasergesinterten Werkstücke ausgesucht sind aus der Gruppe bestehend aus- hoch-kohlenstoffhaltiger Stahl, Titanaluminide, Eisenaluminide, verschleißbeständige Kobalt- Legierungen, nickelhaltige Werkstoffe.
EP21711532.8A 2020-03-10 2021-03-10 System zur temperierung des bauraums pulverbettbasierter additiver fertigungsanlagen Pending EP4117845A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020106516.7A DE102020106516A1 (de) 2020-03-10 2020-03-10 Sensor-integriertes Fertigungssystem für die Additive Fertigung
PCT/EP2021/056005 WO2021180766A1 (de) 2020-03-10 2021-03-10 System zur temperierung des bauraums pulverbettbasierter additiver fertigungsanlagen

Publications (1)

Publication Number Publication Date
EP4117845A1 true EP4117845A1 (de) 2023-01-18

Family

ID=74871396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21711532.8A Pending EP4117845A1 (de) 2020-03-10 2021-03-10 System zur temperierung des bauraums pulverbettbasierter additiver fertigungsanlagen

Country Status (3)

Country Link
EP (1) EP4117845A1 (de)
DE (1) DE102020106516A1 (de)
WO (1) WO2021180766A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309869B6 (cs) * 2022-12-20 2023-12-27 Západočeská Univerzita V Plzni Zařízení pro variabilní nanášení tiskového prášku
CN117680714A (zh) * 2024-02-01 2024-03-12 西安空天机电智能制造有限公司 一种电子束成形铺粉装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10104732C1 (de) * 2001-02-02 2002-06-27 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum selektiven Laser-Schmelzen von metallischen Werkstoffen
DE102005024790A1 (de) 2005-05-26 2006-12-07 Eos Gmbh Electro Optical Systems Strahlungsheizung zum Heizen des Aufbaumaterials in einer Lasersintervorrichtung
DE102008051478A1 (de) 2008-10-13 2010-06-02 Eos Gmbh Electro Optical Systems Rahmen für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einem solchen Rahmen
FR2970887B1 (fr) 2011-02-01 2013-12-20 Snecma Dispositif de frittage et fusion par laser comprenant un moyen de chauffage de la poudre par induction
DE102012012344B4 (de) * 2012-03-21 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Herstellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials
DE102015012844A1 (de) * 2015-10-02 2017-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur generativen Herstellung eines dreidimensionalen Formkörpers aus einem formlosen Material mittels Laserstrahlschmelzens, sowie Kammervorrichtung für das Verfahren und die Vorrichtung
WO2017075277A1 (en) * 2015-10-30 2017-05-04 Seurat Technologies, Inc. Part manipulation using printed manipulation points
DE102016201836A1 (de) * 2016-02-08 2017-08-10 Siemens Aktiengesellschaft Vorrichtung für eine Anlage zur additiven Herstellung eines Bauteils
DE102018212480A1 (de) 2018-07-26 2020-01-30 Siemens Aktiengesellschaft Additives Herstellungsverfahren mit selektivem Bestrahlen und gleichzeitigem Auftragen sowie Wärmebehandlung

Also Published As

Publication number Publication date
DE102020106516A1 (de) 2021-09-16
WO2021180766A1 (de) 2021-09-16

Similar Documents

Publication Publication Date Title
EP2613899B1 (de) Verfahren und vorrichtung zur generativen herstellung zumindest eines bauteilbereichs
EP2340925B1 (de) Verfahren zum generativen Herstellen eines dreidimensionalen Objekts mit kontinuierlicher Wärmezufuhr
EP2836323B1 (de) Mehrfach-spulenanordnung für eine vorrichtung zur generativen herstellung von bauteilen und entsprechendes herstellungsverfahren
DE60114453T2 (de) Verfahren und vorrichtung zur herstellung eines dreidimensionalen metallteils unter verwendung von hochtemperatur-direktlaserschmelzen
EP1236526B1 (de) Verfahren und Vorrichtung zum selektiven Lasersintern
EP1976680B1 (de) Vorrichtung und verfahren zum herstellen eines dreidimensionalen objektes mittels eines beschichters für pulverförmiges aufbaumaterial
DE102012012344B4 (de) Verfahren und Vorrichtung zur Herstellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials
EP3235580B1 (de) Verfahren und vorrichtung zum herstellen zumindest eines bauteilbereichs eines bauteils
CH705662A1 (de) Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
DE102007009273B4 (de) Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes aus einem verfestigbaren Material
EP4117845A1 (de) System zur temperierung des bauraums pulverbettbasierter additiver fertigungsanlagen
EP3322554B1 (de) Verfahren zur additiven herstellung von metallischen bauteilen
EP2913124A2 (de) Erzeugung von Druckeigenspannungen bei generativer Fertigung
DE102007057450A1 (de) Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes aus einem verfestigbaren Material
DE102017130282A1 (de) Verfahren und Vorrichtung zum additiven Herstellen eines Bauteil sowie Bauteil
DE102017125597A1 (de) 3D-Metalldruckverfahren und Anordnung für ein solches
EP3389898A1 (de) Vorrichtung für eine anlage zur additiven herstellung eines bauteils
DE102018120015A1 (de) 3D-Metalldruckverfahren und Anordnung für ein solches
EP3956088A1 (de) Schichtbauverfahren und schichtbauvorrichtung zum additiven herstellen zumindest einer wand eines bauteils sowie computerprogrammprodukt und speichermedium
EP2097544B1 (de) Verfahren und vorrichtung zur wärmebehandlung von schweissnähten
DE102017223643A1 (de) Verfahren und Vorrichtung zum generativen Herstellen eines Bauteils
DE102020204003A1 (de) Verfahren und Vorrichtung zur generativen Fertigung durch pulverbettbasiertes Strahlschmelzen
DE102016207112A1 (de) Verfahren zum Herstellen zumindest eines Bauteilbereichs eines Bauteils und Induktionshilfsstruktur
DE102017103650A1 (de) Verfahren für das selektive laserstrahlhartlöten
EP4121239A1 (de) Verfahren zur additiven herstellung mittels dualer selektiver bestrahlung eines pulverbettes und vorwärmung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)