EP4112780B1 - Three-chamber electrolysis cell for the production of alkali metal alcoholate - Google Patents

Three-chamber electrolysis cell for the production of alkali metal alcoholate Download PDF

Info

Publication number
EP4112780B1
EP4112780B1 EP21182470.1A EP21182470A EP4112780B1 EP 4112780 B1 EP4112780 B1 EP 4112780B1 EP 21182470 A EP21182470 A EP 21182470A EP 4112780 B1 EP4112780 B1 EP 4112780B1
Authority
EP
European Patent Office
Prior art keywords
chamber
internals
solution
middle chamber
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21182470.1A
Other languages
German (de)
French (fr)
Other versions
EP4112780A1 (en
Inventor
Philip Heinrich REINSBERG
Michael Horn
Jörn Klaus Erich WOLF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP21182470.1A priority Critical patent/EP4112780B1/en
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Priority to JP2023577604A priority patent/JP2024523349A/en
Priority to EP22735407.3A priority patent/EP4363639A1/en
Priority to PCT/EP2022/066943 priority patent/WO2023274796A1/en
Priority to US18/573,880 priority patent/US20240337029A1/en
Priority to KR1020237045183A priority patent/KR20240023533A/en
Priority to CN202280046253.5A priority patent/CN117580977A/en
Publication of EP4112780A1 publication Critical patent/EP4112780A1/en
Application granted granted Critical
Publication of EP4112780B1 publication Critical patent/EP4112780B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • C25B13/07Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte

Definitions

  • the present invention relates to an electrolytic cell which has three chambers, the middle chamber being separated from the cathode chamber by a solid electrolyte which is permeable to cations, for example NaSICON, and from the anode chamber by a diffusion barrier.
  • the invention is characterized in that the middle chamber comprises internals.
  • the electrolytic cell according to the invention solves the problem that a concentration gradient forms in the middle chamber of the electrolytic cell during electrolysis, which leads to locally reduced pH values and thus to damage to the solid electrolyte.
  • the internals cause the electrolyte solution to be swirled as it flows through the central chamber during the electrolysis, which prevents the formation of a pH gradient.
  • the present invention relates to a method for producing an alkali metal alkoxide solution in the electrolytic cell according to the invention.
  • the electrochemical production of alkali metal alkoxide solutions is an important industrial process that is used, for example, in DE 103 60 758 A1 , the U.S. 2006/0226022 A1 and the WO 2005/059205 A1 is described.
  • the principle of this process is reflected in an electrolytic cell in whose anode chamber there is a solution of an alkali salt, for example common salt or NaOH, and in whose cathode chamber there is the alcohol in question or a low-concentration alcoholic solution of the alkali metal alcoholate in question, for example sodium methoxide or sodium ethoxide.
  • the cathode compartment and the anode compartment are separated by a ceramic which conducts the alkali metal ion used, for example NaSICON or an analog for potassium or lithium.
  • a current is applied, chlorine is formed at the anode - if a chloride salt of the alkali metal is used - and hydrogen and alcohol ions are formed at the cathode.
  • the charge is equalized by the alkali metal ions migrating from the middle chamber into the cathode chamber via the ceramic that is selective for them.
  • the charge equalization between the middle chamber and the anode chamber takes place through the migration of cations when using cation exchange membranes or the migration of anions when using anion exchange membranes or through the migration of both types of ions when using non-specific diffusion barriers. This increases the concentration of the alkali alcoholate in the cathode chamber and the concentration of the sodium ions in the anolyte decreases.
  • WO 2014/008410 A1 describes an electrolytic process for the production of elemental titanium or rare earths. This process is based on the fact that titanium chloride is formed from TiOz and the corresponding acid, this reacts with sodium alcoholate to form titanium alcoholate and NaCl and is finally converted electrolytically to form elemental titanium and sodium alcoholate.
  • WO 2007/082092 A2 and WO 2009/059315 A1 describe processes for the production of biodiesel in which triglycerides are first converted into the corresponding alkali metal triglycerides with the aid of alcoholates electrolytically produced via NaSICON and in a second step are converted into glycerol and the respective alkali metal hydroxide with electrolytically produced protons.
  • Three-chamber cells have been proposed in the prior art. Such are known in the field of electrodialysis, for example US 6,221,225 B1 .
  • WO 2012/048032 A2 and US 2010/0044242 A1 describe, for example, electrochemical processes for the production of sodium hypochlorite and similar chlorine compounds in such a three-chamber cell.
  • the cathode chamber and the middle chamber of the cell are separated by a cation-permeable solid electrolyte such as NaSICON.
  • the middle chamber is supplied with solution from the cathode chamber, for example.
  • the US 2010/0044242 A1 also describes in Figure 6 that solution from the middle compartment can be mixed with solution from the anode compartment outside the compartment to obtain sodium hypochlorite.
  • the DE 42 33 191 A1 describes the electrolytic production of alcoholates from salts and alcoholates in multi-chamber cells and stacks of several cells.
  • the WO 2008/076327 A1 describes a process for preparing alkali metal alkoxides.
  • a three-chamber cell is used, the middle chamber of which is filled with alkali metal alkoxide (see, for example, paragraphs [0008] and [0067] of WO 2008/076327 A1 ).
  • WO 2009/073062 A1 A similar arrangement is described in WO 2009/073062 A1 .
  • this arrangement has the disadvantage that the alkali metal alkoxide solution is the desired product, but this is consumed as a buffer solution and is continuously contaminated.
  • the central chamber is separated from the anode chamber by a diffusion barrier and from the cathode chamber by an ion-conducting ceramic.
  • ion-conducting ceramic During the electrolysis, this inevitably leads to the formation of pH gradients and dead volumes. This can damage the ion-conducting ceramic and consequently increase the voltage requirement of the electrolysis and/or lead to breakage of the ceramic.
  • the object of the present invention was therefore to provide an improved process for the electrolytic production of alkali metal alkoxide and an electrolysis chamber which is particularly suitable for such a process. These should not have the aforementioned disadvantages and should in particular ensure improved protection of the solid electrolyte against the formation of the pH gradient and more economical use of the educts compared to the prior art.
  • illustration 1 shows a preferred embodiment of an electrolytic cell ⁇ 100> according to the invention and of the method according to the invention.
  • the three-chamber cell E ⁇ 100> comprises a cathode chamber K K ⁇ 102>, an anode chamber K A ⁇ 101> and a middle chamber K M ⁇ 103> lying between them.
  • the cathode chamber K K ⁇ 102> comprises a cathodic electrode E K ⁇ 105>, an inlet Z KK ⁇ 107> and an outlet A KK ⁇ 109>.
  • Anode chamber K A ⁇ 101> comprises an anodic electrode E A ⁇ 104> and drain A KA ⁇ 106> and is connected to middle chamber K M ⁇ 103> via connection V AM ⁇ 112>.
  • the middle chamber K M ⁇ 103> includes an inlet Z KM ⁇ 108>.
  • the three chambers are delimited by an outer wall ⁇ 117> of the three-chamber cell E ⁇ 100>.
  • the cathode chamber K K ⁇ 102> is also separated from the middle chamber K M ⁇ 103> by a NaSICON solid electrolyte F K ⁇ 111> that is selectively permeable for sodium ions.
  • the middle chamber K M ⁇ 103> is additionally in turn separated from the anode chamber K A ⁇ 101> by a diffusion barrier D ⁇ 110>.
  • the NaSICON solid electrolyte F K ⁇ 111> and the diffusion barrier D ⁇ 110> extend over the entire depth and height of the three-chamber cell E ⁇ 100>.
  • the diffusion barrier D ⁇ 110> is made of glass.
  • connection V AM ⁇ 112> is formed outside the electrolytic cell E ⁇ 100>, in particular by a tube or hose, the material of which can be selected from rubber, metal or plastic.
  • liquid can be conducted from the middle chamber K M ⁇ 103> into the anode chamber K A ⁇ 101> outside the outer wall WA ⁇ 117> of the three-chamber cell E ⁇ 100>.
  • connection V AM ⁇ 112> connects an outlet A KM ⁇ 118>, which breaks through the outer wall WA ⁇ 117> of the electrolysis cell E ⁇ 100> at the bottom of the central chamber K M ⁇ 103>, with an inlet Z KA ⁇ 119>, which breaks through the outer wall W A ⁇ 117> of the electrolytic cell E ⁇ 100> at the bottom of the anode chamber K A ⁇ 101>.
  • An aqueous solution of sodium chloride L 3 ⁇ 114> with a pH of 10.5 is added via the inlet Z KM ⁇ 108> in the same direction as gravity into the middle chamber KM ⁇ 103>.
  • the connection V AM ⁇ 112> which is formed between an outlet A KM ⁇ 118> of the middle chamber K M ⁇ 103> and an inlet Z KA ⁇ 119> of the anode chamber KA ⁇ 101>, creates the middle chamber K M ⁇ 103 > connected to the anode chamber K A ⁇ 101 >.
  • Sodium chloride solution L 3 ⁇ 114> is conducted through this connection V AM ⁇ 112> from the middle chamber KM ⁇ 103> into the anode chamber KA ⁇ 101>.
  • a solution of sodium methoxide in methanol L 2 ⁇ 113> is fed into the cathode chamber K K ⁇ 102> via the inlet Z KK ⁇ 107>.
  • a voltage is applied between the cathodic electrode E K ⁇ 105> and the anodic electrode E A ⁇ 104>.
  • methanol im Electrolyte L 2 ⁇ 113> reduced to methoxide and H 2 (CH 3 OH + e - ⁇ CH 3 O - + 1 ⁇ 2 H 2 ).
  • Sodium ions diffuse from the middle chamber K M ⁇ 103> through the NaSICON solid electrolyte F K ⁇ 111> into the cathode chamber K K ⁇ 102>.
  • the acidity damages the NaSICON solid electrolyte ⁇ 111>, but is limited by the arrangement according to the invention in the anode chamber K A ⁇ 101> and is thus kept away from the NaSICON solid electrolyte F K ⁇ 111> in the electrolytic cell E ⁇ 100>. This increases its lifespan considerably.
  • the middle chamber K M ⁇ 103> there are also fixtures in the form of a net-like wire basket ⁇ 122>, which contains glass or plastic balls ⁇ 121>.
  • the wire basket ⁇ 122> is placed loosely in the middle chamber ⁇ 103>, but can also be attached to the inside of the outer wall of ⁇ 117>.
  • the aqueous solution L 3 ⁇ 114> fed in through the inlet Z KM ⁇ 108> is conducted through these internals, as a result of which vortices and turbulence occur.
  • FIG. 2 shows a further embodiment of the electrolytic cell according to the invention and the method according to the invention, which is in illustration 1 shown.
  • connection V AM ⁇ 112> from the central chamber K M ⁇ 103> to the anode chamber K A ⁇ 101> is formed by a perforation in the diffusion barrier D ⁇ 110>.
  • wire basket ⁇ 122> loosely located in the middle chamber K M ⁇ 103> several pins made of glass or plastic ⁇ 123-2> are attached to the NaSICON solid electrolyte F K ⁇ 111> as internals, which are inserted into the middle chamber K M ⁇ 103 > protrude.
  • corresponding pins ⁇ 123-1> can also be attached to the diffusion barrier D ⁇ 110>.
  • the aqueous solution L 3 ⁇ 114> supplied through the inlet Z KM ⁇ 108> is swirled by these internals.
  • These turbulences in the solution L 3 ⁇ 114> destroy the pH gradient that builds up in the central chamber K M ⁇ 103> as the electrolysis progresses.
  • the first aspect of the invention relates to an electrolytic cell E ⁇ 100>.
  • the electrolytic cell E ⁇ 100> according to the first aspect of the invention comprises at least one anode chamber K A ⁇ 101>, at least one cathode chamber K K ⁇ 102> and at least one intermediate chamber K M ⁇ 103>.
  • This also includes electrolytic cells E ⁇ 100> which have more than one anode chamber KA ⁇ 101> and/or cathode chamber KK ⁇ 102> and/or middle chamber KM - ⁇ 103>.
  • Such electrolytic cells, in which these chambers are joined together in a modular manner are, for example, in DD 258 143 A3 and the U.S. 2006/0226022 A1 described.
  • the anode chamber K A ⁇ 101> includes an anodic electrode E A ⁇ 104>.
  • Any electrode familiar to a person skilled in the art that is stable under the conditions of the method according to the second aspect of the invention can be used as such an anodic electrode E A ⁇ 104>.
  • Such are in particular in WO 2014/008410 A1 , paragraph [024] or DE 10360758 A1 , paragraph [031].
  • This electrode E A ⁇ 104> can consist of one layer or of several planar layers parallel to one another, each of which can be perforated or expanded.
  • the anodic electrode E A ⁇ 104> comprises in particular a material selected from the group consisting of ruthenium oxide, iridium oxide, nickel, cobalt, nickel tungstate, nickel titanate, noble metals such as platinum in particular, which is deposited on a carrier such as titanium or Kovar ® (an iron /nickel/cobalt alloy, in which the individual proportions are preferably as follows: 54% by mass iron, 29% by mass nickel, 17% by mass cobalt).
  • Other possible anode materials are, in particular, stainless steel, lead, graphite, tungsten carbide, titanium diboride.
  • the anodic electrode E A ⁇ 104> preferably comprises a titanium anode (RuO 2 +IrO 2 /Ti) coated with ruthenium oxide/iridium oxide.
  • the cathode chamber K K ⁇ 102> includes a cathodic electrode E K ⁇ 105>. Any electrode familiar to a person skilled in the art that is stable under the conditions can be used as such a cathodic electrode E K ⁇ 105>. Such are in particular in WO 2014/008410 A1 , paragraph [025] or DE 10360758 A1 , paragraph [030].
  • This electrode E K ⁇ 105> can be selected from the group consisting of mesh wool, three-dimensional matrix structure or "balls”.
  • the cathodic electrode E K ⁇ 105> comprises in particular a material selected from the group consisting of steel, nickel, copper, platinum, platinized metals, palladium, palladium supported on carbon, titanium. E K ⁇ 105> preferably comprises nickel.
  • the at least one middle chamber K M ⁇ 103> is located between the anode chamber K A ⁇ 101> and the cathode chamber K K ⁇ 102>.
  • the electrolytic cell E ⁇ 100> usually has an outer wall W A ⁇ 117>.
  • the outer wall W A ⁇ 117> is in particular made of a material which is selected from the group consisting of steel, preferably rubberized steel, plastic, which is in particular made of Telene® (thermosetting polydicyclopentadiene), PVC (polyvinyl chloride), PVC-C (post-chlorinated polyvinyl chloride), PVDF (polyvinylidene fluoride) is selected.
  • W A ⁇ 117> can be perforated in particular for inlets and outlets.
  • the at least one anode chamber K A ⁇ 101>, the at least one cathode chamber K K ⁇ 102> and the at least one intermediate chamber K M ⁇ 103> are then located within W A ⁇ 117>.
  • K M ⁇ 103> is separated from K A ⁇ 101> by a diffusion barrier D ⁇ 110> and separated from K K ⁇ 102> by an alkali cation-conducting solid electrolyte F K ⁇ 111>.
  • Any material which is stable under the conditions of the method according to the second aspect of the invention and which prevents the transfer of protons from the liquid in the anode chamber K A ⁇ 101> to the middle chamber K M can be used for the diffusion barrier D ⁇ 110> ⁇ 103> prevented or slowed down.
  • a non-ion-specific dividing wall or a membrane permeable to specific ions is used as the diffusion barrier D ⁇ 110>.
  • the diffusion barrier D ⁇ 110> is preferably a non-ion-specific partition.
  • the material of the non-ion-specific partition wall is in particular selected from the group consisting of fabric, in particular textile fabric or metal fabric, glass, in particular sintered glass or glass frits, ceramic, in particular ceramic frits, membrane diaphragms, and is selected particularly preferably glass.
  • the diffusion barrier D ⁇ 110> is a “membrane permeable to specific ions”, this means according to the invention that the respective membrane favors the diffusion of certain ions through it compared to other ions.
  • membranes are meant that favor the diffusion through them of ions of a certain type of charge compared to oppositely charged ions. More preferably, specific ion permeable membranes also favor the diffusion of certain ions having one charge type through them over other ions of the same charge type.
  • the diffusion barrier D ⁇ 110> is a “membrane permeable to specific ions”, the diffusion barrier D ⁇ 110> is in particular an anion-conducting membrane or a cation-conducting membrane.
  • anion-conducting membranes are those which selectively conduct anions, preferably selectively specific anions. In other words, they favor the diffusion of anions through them over that of cations, especially protons, more preferably they additionally favor the diffusion of certain anions through them over the diffusion of other anions through them.
  • cation-conducting membranes are those which selectively conduct cations, preferably selectively specific cations. In other words, they favor the diffusion of cations through them over that of anions, more preferably they additionally favor the diffusion of certain cations through them over the diffusion of other cations through them, much more preferably cations where there is are not protons, more preferably sodium cations, over protons.
  • “Favour the diffusion of certain ions X over the diffusion of other ions Y” means in particular that the diffusion coefficient (unit m 2 /s) of the ion type X at a given temperature for the membrane in question is higher by a factor of 10, preferably 100, preferably 1000 as the diffusion coefficient of the ionic species Y for the membrane in question.
  • the diffusion barrier D ⁇ 110> is a "membrane that is permeable to specific ions"
  • it is preferably an anion-conducting membrane, because this is particularly good at preventing the diffusion of protons from the anode chamber K A ⁇ 101> into the middle chamber K M ⁇ 103>.
  • a membrane which is selective for the anions comprised by the salt S is used as the anion-conducting membrane.
  • Such membranes are known to those skilled in the art and can be used by them.
  • the salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • a membrane selective for halides is preferably used as the anion-conducting membrane.
  • they have covalently bonded functional groups selected from -NH 3 + , -NRH 2 + , -NR 3 + , more preferably selected from -NH 3 + , -NR 3 + , even more preferably -NR 3 + .
  • the diffusion barrier D ⁇ 110> is a cation-conducting membrane, it is in particular a membrane that is selective for the cations comprised by the salt S. Even more preferably, the diffusion barrier D ⁇ 110> is an alkali cation-conducting membrane, even more preferably a potassium and/or sodium ion-conducting membrane, most preferably a sodium ion-conducting membrane.
  • Cation-conducting membranes are described, for example, on page 181 of the textbook by Volkmar M. Schmidt Electrochemical Process Engineering: Fundamentals, Reaction Engineering, Process Optimization, 1st edition (October 8, 2003 ).
  • organic polymers which are selected in particular from polyethylene, polybenzimidazoles, polyetherketones, polystyrene, polypropylene or fluorinated membranes such as polyperfluoroethylene, preferably polystyrene, polyperfluoroethylene, are even more preferably used as the cation-conducting membrane, with these covalently bonded functional groups selected from -SO 3 - , -COO - , -PO 3 2- , -PO 2 H - , preferably -SO 3 - , (described in DE 10 2010 062 804 A1 , U.S. 4,831,146 ) carry.
  • Neosepta ® membranes are described, for example, by SA Mareev, D.Yu. Butylskii, ND Pismenskaya, C Larchet, L Dammak, VV Nikonenko, Journal of Membrane Science 2018, 563, 768-776 .
  • a cation-conducting membrane is used as the diffusion barrier D ⁇ 110>, this can be, for example, a polymer functionalized with sulfonic acid groups, in particular of the following formula P NAFION , where n and m are independently an integer from 1 to 10 6 , more preferably an integer from 10 to 10 5 , more preferably an integer from 10 2 to 10 4 .
  • any solid electrolyte which can transport cations, in particular alkali cations, more preferably sodium cations, from the central chamber K M ⁇ 103> into the cathode chamber K K ⁇ 102> can be used as the alkali cation-conducting solid electrolyte F K ⁇ 111>.
  • Such solid electrolytes are known to those skilled in the art and, for example, in DE 10 2015 013 155 A1 , in the WO 2012/048032 A2 , paragraphs [0035], [0039], [0040], in the US 2010/0044242 A1 , paragraphs [0040], [0041], in which DE 10360758 A1 , paragraphs [014] to [025].
  • NaSICON LiSICON
  • KSICON KSICON
  • a sodium ion conductive solid electrolyte F K ⁇ 111> is preferred, which more preferably has a NaSICON structure.
  • NaSICON structures that can be used according to the invention are also described, for example, by Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha Velchuri, Vithal M, J Mater Sei 2011, 46, 2821-2837 .
  • NaSICON preferably has a structure of the formula M I 1+2w+x-y+z M II w M III x Zr IV 2-wxy M V y (SiO 4 ) z (PO 4 ) 3-z.
  • M I is selected from Na + , Li + , preferably Na + .
  • M" is a divalent metal cation preferably selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Co 2+ , Ni 2+ , more preferably selected from Co 2+ , Ni 2+ .
  • M III is a trivalent metal cation, preferably selected from Al 3+ , Ga 3+ , Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , Lu 3+ , Fe 3+ , Cr 3+ , more preferably selected from Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , particularly preferably selected from Sc 3+ , Y 3+ , La 3+ .
  • M V is a pentavalent metal cation, preferably selected from V 5+ , Nb 5+ , Ta 5+ .
  • w, x, y, z are real numbers, where 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2, 0 ⁇ w ⁇ 2, 0 ⁇ z ⁇ 3, and where w, x, y, z are so chosen become that 1 + 2w + x - y + z ⁇ 0 and 2 - w - x - y ⁇ 0.
  • the cathode chamber K K ⁇ 102> also comprises an inlet Z KK ⁇ 107> and an outlet A KK ⁇ 109>, which allows liquid, such as the solution L 2 ⁇ 113>, to flow into the cathode chamber K K ⁇ 102>. to add and liquid contained therein, such as the solution L 1 ⁇ 115> to remove.
  • the inlet Z KK ⁇ 107> and the outlet A KK ⁇ 109> are attached to the cathode chamber K K ⁇ 102> in such a way that the liquid contacts the cathodic electrode E K ⁇ 105> as it flows through the cathode chamber K K ⁇ 102>.
  • the anode chamber K A ⁇ 101> also includes an outlet A KA ⁇ 106>, which makes it possible to remove liquid located in the anode chamber K A ⁇ 101>, for example the aqueous solution L 4 ⁇ 116>.
  • the middle chamber K M ⁇ 103> includes an inlet Z KM ⁇ 108>, while K A ⁇ 101> and K M ⁇ 103> are connected to one another by a connection V AM ⁇ 112>, through which liquid from K M ⁇ 103> can be directed into K A ⁇ 101 >.
  • a solution L 3 ⁇ 114> can be added to K M ⁇ 103> via the inlet Z KM ⁇ 108> and this can be conducted through K M ⁇ 103>, then via V AM ⁇ 112> into the anode chamber K A ⁇ 101> , and finally through the anode chamber K A ⁇ 101 >.
  • V AM ⁇ 112> and the drain A KA ⁇ 106> are attached to the anode chamber K A ⁇ 101> in such a way that the solution L 3 ⁇ 114> when flowing through the anode chamber K A ⁇ 101> the anodic electrode E A ⁇ 104 > contacted.
  • the inflows Z KK ⁇ 107>, Z KM ⁇ 108>, Z KA ⁇ 119> and outflows A KK ⁇ 109>, A KA ⁇ 106>, A KM ⁇ 118> can be processed according to methods known to those skilled in the art on the electrolytic cell E ⁇ 100 > be attached.
  • connection V AM ⁇ 112> can be formed within the electrolytic cell E ⁇ 100> and/or outside of the electrolytic cell E ⁇ 100>.
  • connection V AM ⁇ 112> is formed within the electrolytic cell E ⁇ 100>, it is preferably formed by at least one perforation in the diffusion barrier D ⁇ 110>.
  • connection V AM ⁇ 112> is formed outside of the electrolytic cell E ⁇ 100>, it is preferably formed by a connection of K M ⁇ 103> and K A ⁇ 101> running outside of the electrolytic cell E ⁇ 100>, in particular by the fact that in the middle chamber K M ⁇ 103> an outlet A KM ⁇ 118> through the outer wall W A ⁇ 117>, preferably at the bottom of the middle chamber K M ⁇ 103>, with the inlet Z KM ⁇ 108> even more preferably at the top of the middle chamber K M ⁇ 103> is formed, and in the anode chamber K A ⁇ 101> an inlet Z KA ⁇ 119> through the outer wall W A ⁇ 117>, preferably at the bottom of the anode chamber K A ⁇ 101>, and these are connected by a line, for example a pipe or a hose, which preferably comprises a material selected from rubber, plastic.
  • the outlet A KA ⁇ 106> is then even more preferably at the top of the anode chamber K A
  • Outflow A KM ⁇ 118> at the bottom of the middle chamber K M ⁇ 103> means that the outflow A KM ⁇ 118> is attached to the electrolytic cell E ⁇ 100> in such a way that the solution L 3 ⁇ 114> fills the middle chamber K M ⁇ 103> aligned with gravity.
  • Inlet Z KA ⁇ 119> at the bottom of the anode chamber K A ⁇ 101> means that the inlet Z KA ⁇ 119> is attached to the electrolytic cell E ⁇ 100> in such a way that the solution L 3 ⁇ 114> flows into the anode chamber K A ⁇ 101 > occurs against gravity.
  • Inlet Z KM ⁇ 108> at the top of the middle chamber K M ⁇ 103> means that the inlet Z KM ⁇ 108> is attached to the electrolytic cell E ⁇ 100> in such a way that the solution L 3 ⁇ 114> enters the middle chamber K M ⁇ 103> in the same direction as gravity.
  • Drain A KA ⁇ 106> at the top of the anode chamber K A ⁇ 101> means that the drain A KA ⁇ 106> is attached to the electrolytic cell E ⁇ 100> in such a way that the solution L 4 ⁇ 116> fills the anode chamber K A ⁇ 101> leaves against gravity.
  • This embodiment is particularly advantageous and therefore preferred if the outlet A KM ⁇ 118> through the outer wall WA ⁇ 117> at the bottom of the middle chamber KM ⁇ 103>, and the inlet Z KA ⁇ 119> through the outer wall WA ⁇ 117> at the bottom of the anode chamber K A ⁇ 101>.
  • This arrangement makes it particularly easy to discharge gases with L 4 ⁇ 116> formed in the anode chamber K A from the anode chamber K A ⁇ 101> in order to then separate them further.
  • connection V AM ⁇ 112> is formed outside the electrolytic cell E ⁇ 100>
  • Z KM ⁇ 108> and A KM ⁇ 118> are arranged on opposite sides of the outer wall W A ⁇ 117> of the central chamber K M ⁇ 103> ( eg Z KM ⁇ 108> at the bottom and A KM ⁇ 118> at the top of the electrolytic cell E ⁇ 100> or vice versa) and Z KA ⁇ 119> and A KA ⁇ 106> on opposite sides of the outer wall W A ⁇ 117> of the Anode chamber K A ⁇ 101> arranged (i.e.
  • L 3 ⁇ 114> must flow through the two chambers KM ⁇ 103> and KA ⁇ 101> through this geometry.
  • Z KA ⁇ 119> and Z KM ⁇ 108> can be formed on the same side of the electrolytic cell E ⁇ 100>, with A KM ⁇ 118> and A KA ⁇ 106> then automatically also being formed on the same side of the electrolytic cell E ⁇ 100> are.
  • Z KA ⁇ 119> and Z KM ⁇ 108> may be formed on opposite sides of the electrolytic cell E ⁇ 100>, then A KM ⁇ 118> and A KA ⁇ 106> are automatically also formed on opposite sides of the electrolytic cell E ⁇ 100>.
  • connection V AM ⁇ 112> is formed inside the electrolytic cell E ⁇ 100>
  • this can be ensured by one side ("side A") of the electrolytic cell E ⁇ 100>, which is the top or the bottom of the electrolytic cell E ⁇ 100>, preferably as in Figure 2 shown is the top, comprises the inlet Z KM ⁇ 108> and the outlet A KA ⁇ 106> and the diffusion barrier D ⁇ 110> extends from this side ("side A") into the electrolytic cell E ⁇ 100>, but does not quite reach the opposite side of side A ("side B") of electrolytic cell E ⁇ 100>, which is then the bottom or top of electrolytic cell E ⁇ 100>, being 50% or more the height of the three-chamber cell E ⁇ 100>, more preferably 60% to 99% of the height of the three-chamber cell E ⁇ 100>, even more preferably 70% to 95% of the height of the three-chamber cell E ⁇ 100>, even more preferably 80% to 90% of the height of the three-chamber cell E
  • Bottom of the electrolytic cell E ⁇ 100> is, according to the invention, the side of the electrolytic cell E ⁇ 100> through which a solution (e.g. L 3 ⁇ 114> at A KM ⁇ 118> in illustration 1 ) exits the electrolytic cell E in the same direction as gravity or the side of the electrolytic cell E through which a solution (e.g. L 2 ⁇ 113> at Z KK ⁇ 107> in Figures 1 and 2 and L 3 ⁇ 114> at A KA ⁇ 119> in illustration 1 ) of the electrolytic cell E is fed against gravity.
  • a solution e.g. L 3 ⁇ 114> at A KM ⁇ 118> in illustration 1
  • top side of the electrolytic cell E is the side of the electrolytic cell E through which a solution (eg L 4 ⁇ 116> at A KA ⁇ 106> and L 1 ⁇ 115> at A KK ⁇ 109> in Figures 1 and 2) is opposed exits the electrolytic cell E under gravity or the side of the electrolytic cell E through which a solution (e.g. L 3 ⁇ 114> at Z KM ⁇ 108> in Figures 1 and 2) is fed to the electrolytic cell E in the same direction as gravity.
  • a solution e.g L 4 ⁇ 116> at A KA ⁇ 106> and L 1 ⁇ 115> at A KK ⁇ 109> in Figures 1 and 2
  • the central chamber K M includes built-in components.
  • internals are in the solid state of aggregation. Any objects or structures known to those skilled in the art that are sufficiently inert to the electrolysis conditions are suitable as such internals.
  • the internals include in particular at least one material selected from rubber; Plastic chosen in particular from polystyrene, polypropylene, PVC, PVC-C; Glass; Porcelain; Metal.
  • the metal is in particular a metal or an alloy of several metals selected from titanium, iron, molybdenum, chromium, nickel, preferably an alloy comprising at least two metals selected from titanium, iron, molybdenum, chromium, nickel, even more preferably a steel alloy comprising, in addition to iron, at least one other metal selected from titanium, molybdenum, chromium, nickel, and most preferably it is stainless steel.
  • the internals are selected in particular from structured packings, unstructured packings (packings) and trays, e.g. bubble-cap trays, valve trays, tunnel trays, Thormann trays, cross-recess bell-bottom trays or sieve trays.
  • Unstructured packings are generally random packings. Raschig rings, Pall rings, Berl saddles or Intalox® saddles are usually used as packing. Structured packings are sold, for example, under the trade name Mellapack® from Sulzer.
  • the internals can be loose in the central chamber K M ⁇ 103>, e.g. balls ⁇ 121>, perhaps made of glass, placed in a wire basket, as in illustration 1 shown.
  • the internals can also be attached, for example to the solid electrolyte F K ⁇ 111>, to the diffusion barrier D ⁇ 110> or to the outer wall ⁇ 117> delimiting the inside of the central chamber K M ⁇ 103>.
  • the attachment can be done by methods known to those skilled in the art, for example by screwing, clamping, gluing (plastic adhesive, PVC adhesive).
  • the internals can be fastened to the alkali cation-conducting solid electrolyte F K ⁇ 111> or to the diffusion barrier D ⁇ 110>, for example, by fastening them to a wire frame on the relevant wall.
  • the internals make up a proportion ⁇ of 1 to 99%, more preferably 10 to 99%, more preferably 40 to 90%, more preferably 50 to 90% 60 to 90%, most preferably 80 to 90% of the volume comprised by the central chamber K M .
  • V O is the maximum volume of liquid, for example the electrolyte L 3 ⁇ 114>, which the central chamber K M ⁇ 103> can hold if it does not include any internals.
  • V M is the maximum volume of liquid, for example the electrolyte L 3 ⁇ 114>, which the middle chamber K M ⁇ 103> can hold if it includes internals.
  • the internals interrupt the direct path in the middle chamber K M between inlet Z KM ⁇ 108> and connection V AM ⁇ 112>.
  • the thread is selected in particular from sewing thread (e.g. from the Heilrmann company), fishing line, twine.
  • a fishing line with a diameter of 0.2 mm such as that sold by the companies Hemingway or Nexos, is most preferably used for the thread test.
  • the method according to the second aspect of the invention is one for preparing a solution L 1 ⁇ 115> of an alkali metal alkoxide XOR in the alcohol ROH in an electrolytic cell E ⁇ 100> according to the first aspect of the invention.
  • the method according to the second aspect of the invention comprises the following steps (a), (b) and (c) occurring simultaneously.
  • step (a) a solution L 2 ⁇ 113> comprising the alcohol ROH, preferably comprising an alkali metal alkoxide XOR and alcohol ROH, is passed through K K ⁇ 102>.
  • X is an alkali metal cation and R is an alkyl group of 1 to 4 carbon atoms.
  • R is preferably selected from the group consisting of n-propyl, iso-propyl, ethyl, methyl, more preferably selected from the group consisting of ethyl, methyl. Most preferably R is methyl.
  • the solution L 2 ⁇ 113> is preferably free of water.
  • "free of water” means that the weight of the water in the solution L 2 ⁇ 113>, based on the weight of the alcohol ROH in the solution L 2 ⁇ 113> (mass ratio) ⁇ 1:10, more preferably ⁇ 1:20, more preferably ⁇ 1:100, even more preferably ⁇ 0.5:100.
  • the mass fraction of XOR in the solution L 2 ⁇ 113> is in particular >0 to 30% by weight, preferably 5 to 20% by weight, more preferably at 10 to 20% by weight, even more preferably at 10 to 15% by weight, most preferably at 13 to 14% by weight, most preferably at 13% by weight.
  • the solution L 2 ⁇ 113> comprises XOR
  • the mass ratio of XOR to alcohol ROH is still in the range from 1:100 to 1:5, more preferably in the range from 1:25 to 3:20 more preferably in the range 1:12 to 1:8, even more preferably at 1:10.
  • step (b) a neutral or alkaline aqueous solution L 3 ⁇ 114> of a salt S comprising X as a cation is passed through KM ⁇ 103>, then over V AM ⁇ 112>, then through KA ⁇ 101>.
  • the salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • the pH of the aqueous solution L 3 ⁇ 114> is ⁇ 7.0, preferably in the range from 7 to 12, more preferably in the range from 8 to 11, even more preferably from 10 to 11, most preferably at 10.5.
  • the mass fraction of the salt S in the solution L 3 ⁇ 113> is preferably in the range >0 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 20% by weight, even more preferably 10 to 20% by weight, most preferably at 20% by weight, based on the total solution L 3 ⁇ 113>.
  • step (b) the internals in the central chamber K M ⁇ 103> result in turbulence and turbulence in the electrolyte L 3 ⁇ 114> flowing through the central chamber K M ⁇ 103> during the method according to the invention. This slows down or completely prevents the build-up of a pH gradient during the electrolysis, which protects the acid-sensitive solid electrolyte F K ⁇ 111> and thus enables the electrolysis to run longer or prolongs the life of the electrolysis cell.
  • step (c) a voltage is then applied between E A ⁇ 104> and E K ⁇ 105>.
  • the charge source is known to those skilled in the art and is typically a rectifier that converts alternating current into direct current and can generate specific voltages via voltage converters.
  • the area of the solid electrolyte that contacts the anolyte located in the middle chamber K M ⁇ 103> is in particular 0.00001 to 10 m 2 , preferably 0.0001 to 2.5 m 2 , more preferably 0.0002 to 0.15 m 2 , even more preferably 2.83 cm 2 .
  • step (c) of the method according to the second aspect of the invention is carried out when both chambers K M ⁇ 103> and K A ⁇ 101> are at least partially loaded with L 3 ⁇ 114> and K K ⁇ 102> is at least partially loaded with L 2 ⁇ 113>.
  • step (c) charge transport takes place between E A ⁇ 104> and E K ⁇ 105> implies that K K ⁇ 102>, K M ⁇ 103> and K A ⁇ 101 > simultaneously with L 2 ⁇ 113> or L 3 ⁇ 114> are loaded in such a way that they cover the electrodes EA ⁇ 104> and EK ⁇ 105> to such an extent that the current circuit is closed.
  • This desired effect is preferably further enhanced in the method according to the second aspect of the invention in that the flow rate of the electrolyte L 3 ⁇ 114> through the central chamber K M ⁇ 103> is varied while step (b) is being carried out, thereby generating further turbulence which disturb the formation of a pH gradient.
  • step (a) and step (b) are carried out continuously and voltage is applied in accordance with step (c).
  • solution L 1 ⁇ 115> is obtained at outlet A KK ⁇ 109>, the concentration of XOR in L 1 ⁇ 115> being higher than in L 2 ⁇ 113>.
  • the concentration of XOR in L 1 ⁇ 115> is preferably 1.01 to 2.2 fold, more preferably 1.04 to 1.8 fold, still more preferably 1.077 to 1.4 fold more preferably 1077 to 1.08 times higher than in L 2 ⁇ 113>, most preferably 1077 times higher than in L 2 ⁇ 113>, more preferably the mass fraction of XOR in L 1 ⁇ 115> and in L 2 ⁇ 113> is in the range of 10 to 20% by weight, more preferably 13 to 14% by weight.
  • the concentration of the cation X in the aqueous solution L 3 ⁇ 114> is preferably in the range of 3.5 to 5 mol/l, more preferably 4 mol/l.
  • the concentration of the cation X in the aqueous solution L 4 ⁇ 116> is more preferably 0.5 mol/l lower than that of the aqueous solution L 3 ⁇ 114> used in each case.
  • the method according to the second aspect of the invention is carried out at a temperature of 20°C to 70°C, preferably 35°C to 65°C, more preferably 35°C to 60°C, even more preferably 35°C to 50°C and a pressure of 0.5 bar to 1.5 bar, preferably 0.9 bar to 1.1 bar, more preferably 1.0 bar.
  • hydrogen is typically produced in the cathode chamber K K ⁇ 102>, which hydrogen can be discharged from the cell together with the solution L 1 ⁇ 115> via the outlet A KK ⁇ 109>.
  • the mixture of hydrogen and solution L 1 ⁇ 115> can then be separated by methods known to those skilled in the art.
  • the alkali metal compound used is a halide, in particular chloride, chlorine or another halogen gas can be produced, which can escape from the cell via the outlet A KK ⁇ 106> together with the solution L 4 ⁇ 116> can be discharged.
  • oxygen and/or carbon dioxide can also be formed, which can also be removed.
  • the mixture of chlorine, oxygen and/or CO2 and solution L 4 ⁇ 116> can then be separated by methods known to those skilled in the art.
  • the gases chlorine, oxygen and/or CO2 have been separated from the solution L 4 ⁇ 116>, these can be separated from one another by methods known to those skilled in the art.
  • the method according to the invention protects the acid-labile solid electrolyte from corrosion without having to sacrifice alcoholate solution from the cathode compartment as a buffer solution, as is the case in the prior art.
  • the method according to the invention is thus more efficient than in WO 2008/076327 A1 described procedure in which the product solution is used for the middle chamber, which reduces the overall turnover.
  • the acid-labile solid electrolyte is stabilized by preventing the formation of a pH gradient due to the internals.
  • NM Sodium methylate
  • the electrolytic cell consisted of three chambers, which illustration 1 shown, except that the electrolytic cell had no internals in the middle chamber, ie not the in illustration 1 shown wire basket ⁇ 122> with the glass balls ⁇ 121>.
  • the connection between the middle and anode chamber was made by a hose that was attached to the bottom of the electrolytic cell.
  • the anode compartment and middle compartment were separated by a 2.83 cm 2 anion exchange membrane (Tokuyama AMX, ammonium groups on polymer).
  • the cathode and middle chamber were separated by a ceramic of the NaSICON type with an area of 2.83 cm 2 .
  • the ceramic had a chemical composition of the formula Na 3.4 Zr 2.0 Si 2.4 P 0.6 O 12 .
  • the anolyte was transferred to the anode compartment through the middle compartment.
  • the flow rate of the anolyte was 1 l/h, that of the catholyte was 90 ml/h and a current of 0.14 A was applied.
  • the temperature was 35°C.
  • the electrolysis was carried out for 500 hours with the voltage remaining constant at 5V.
  • Comparative example 1 was repeated with a two-chamber cell comprising only an anode and a cathode chamber, the anode chamber being separated from the cathode chamber by the ceramic of the NaSICON type.
  • this electrolytic cell did not contain a center chamber. This is reflected in an even more rapid corrosion of the ceramic compared to comparative example 1, which leads to a rapid rise in the stress curve. With an initial value of the voltage of ⁇ 5 V, this increases to > 20 V within 100 hours.
  • Comparative example 1 is repeated, with a basket ⁇ 122> made of wire frame with glass balls ⁇ 121> being placed in the middle chamber, which is facing the NASICON solid electrolyte occupies half of the central chamber. This arrangement disrupts the uniform flow of electrolyte through the center chamber and creates turbulence in the electrolyte. This makes it difficult for a pH gradient to build up during electrolysis.
  • Comparative example 1 is repeated, with conical structures ⁇ 123-1> and ⁇ 123-2> being attached to the NASICON ceramic or the diffusion barrier in the central chamber K M ⁇ 103>. This arrangement also disrupts the uniform flow of electrolyte through the center chamber and creates turbulence. This makes it difficult for a pH gradient to build up during electrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die vorliegende Erfindung betrifft in einem ersten Aspekt eine Elektrolysezelle, welche drei Kammern aufweist, wobei die mittlere Kammer durch einen für Kationen durchlässigen Festelektrolyten, beispielsweise NaSICON, von der Kathodenkammer und durch eine Diffusionsbarriere von der Anodenkammer abgetrennt ist. Die Erfindung ist dadurch gekennzeichnet, dass die mittlere Kammer Einbauten umfasst.In a first aspect, the present invention relates to an electrolytic cell which has three chambers, the middle chamber being separated from the cathode chamber by a solid electrolyte which is permeable to cations, for example NaSICON, and from the anode chamber by a diffusion barrier. The invention is characterized in that the middle chamber comprises internals.

Die erfindungsgemäße Elektrolysezelle löst das Problem, dass sich während der Elektrolyse ein Konzentrationsgradient in der Mittelkammer der Elektrolysezelle bildet, der zu lokal erniedrigten pH-Werten und damit zu einer Schädigung des Festelektrolyten führt. Durch die Einbauten wird die Elektrolytlösung beim Durchströmen der Mittelkammer während der Elektrolyse verwirbelt, wodurch die Ausbildung eines pH-Gradienten verhindert wird.The electrolytic cell according to the invention solves the problem that a concentration gradient forms in the middle chamber of the electrolytic cell during electrolysis, which leads to locally reduced pH values and thus to damage to the solid electrolyte. The internals cause the electrolyte solution to be swirled as it flows through the central chamber during the electrolysis, which prevents the formation of a pH gradient.

In einem zweiten Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Alkalimetallalkoholatlösung in der erfindungsgemäßen Elektrolysezelle.In a second aspect, the present invention relates to a method for producing an alkali metal alkoxide solution in the electrolytic cell according to the invention.

1. Hintergrund der Erfindung1. Background of the Invention

Die elektrochemische Herstellung von Alkalimetallalkoholatlösungen ist ein wichtiger industrieller Prozess, der beispielsweise in der DE 103 60 758 A1 , der US 2006/0226022 A1 und der WO 2005/059205 A1 beschrieben ist. Das Prinzip dieser Verfahren spiegelt sich in einer Elektrolysezelle wider, in deren Anodenkammer sich die Lösung eines Alkalisalzes, beispielsweise Kochsalz oder NaOH, und in deren Kathodenkammer sich der betreffende Alkohol oder eine niedrig konzentrierte alkoholische Lösung des betreffenden Alkalialkoholates, beispielsweise Natriummethanolat oder Natriumethanolat, befinden. Die Kathodenkammer und die Anodenkammer sind durch eine das eingesetzte Alkalimetallion leitende Keramik getrennt, beispielsweise NaSICON oder ein Analogon für Kalium oder Lithium. Bei Anlegen eines Stroms entstehen an der Anode - wenn ein Chloridsalz des Alkalimetalls eingesetzt wird - Chlor und an der Kathode Wasserstoff und Alkoholationen. Der Ladungsausgleich erfolgt dadurch, dass Alkalimetallionen aus der Mittelkammer in die Kathodenkammer über die für sie selektive Keramik wandern. Der Ladungsausgleich zwischen Mittelkammer und Anodenkammer erfolgt durch die Wanderung von Kationen bei Einsatz von Kationenaustauschermembranen oder die Wanderung von Anionen bei Einsatz von Anionenaustauschermembranen oder durch Wanderung beider lonenarten bei Einsatz nichtspezifischer Diffusionsbarrieren. Dadurch erhöht sich die Konzentration des Alkalialkoholats in der Kathodenkammer und es erniedrigt sich die Konzentration der Natriumionen im Anolyten.The electrochemical production of alkali metal alkoxide solutions is an important industrial process that is used, for example, in DE 103 60 758 A1 , the U.S. 2006/0226022 A1 and the WO 2005/059205 A1 is described. The principle of this process is reflected in an electrolytic cell in whose anode chamber there is a solution of an alkali salt, for example common salt or NaOH, and in whose cathode chamber there is the alcohol in question or a low-concentration alcoholic solution of the alkali metal alcoholate in question, for example sodium methoxide or sodium ethoxide. The cathode compartment and the anode compartment are separated by a ceramic which conducts the alkali metal ion used, for example NaSICON or an analog for potassium or lithium. When a current is applied, chlorine is formed at the anode - if a chloride salt of the alkali metal is used - and hydrogen and alcohol ions are formed at the cathode. The charge is equalized by the alkali metal ions migrating from the middle chamber into the cathode chamber via the ceramic that is selective for them. The charge equalization between the middle chamber and the anode chamber takes place through the migration of cations when using cation exchange membranes or the migration of anions when using anion exchange membranes or through the migration of both types of ions when using non-specific diffusion barriers. This increases the concentration of the alkali alcoholate in the cathode chamber and the concentration of the sodium ions in the anolyte decreases.

NaSICON-Festelektrolyte werden auch bei der elektrochemischen Herstellung anderer Verbindungen eingesetzt:
WO 2014/008410 A1 beschreibt ein elektrolytisches Verfahren zur Herstellung von elementarem Titan oder Seltenen Erden. Dieses Verfahren beruht darauf, dass Titanchlorid aus TiOz und der entsprechenden Säure gebildet wird, dieses mit Natriumalkoholat zum Titaniumalkoholat und NaCl reagiert und schließlich elektrolytisch zu elementarem Titan und Natriumalkoholat umgesetzt wird.
NaSICON solid electrolytes are also used in the electrochemical production of other compounds:
WO 2014/008410 A1 describes an electrolytic process for the production of elemental titanium or rare earths. This process is based on the fact that titanium chloride is formed from TiOz and the corresponding acid, this reacts with sodium alcoholate to form titanium alcoholate and NaCl and is finally converted electrolytically to form elemental titanium and sodium alcoholate.

WO 2007/082092 A2 und WO 2009/059315 A1 beschreiben Verfahren zur Herstellung von Biodiesel, in denen mithilfe von über NaSICON elektrolytisch hergestellten Alkoholaten zunächst Triglyceride in die entsprechenden Alkalimetalltriglyceride überführt werden und in einem zweiten Schritt mit elektrolytisch erzeugten Protonen zu Glycerin und dem jeweiligen Alkalimetallhydroxid umgesetzt werden. WO 2007/082092 A2 and WO 2009/059315 A1 describe processes for the production of biodiesel in which triglycerides are first converted into the corresponding alkali metal triglycerides with the aid of alcoholates electrolytically produced via NaSICON and in a second step are converted into glycerol and the respective alkali metal hydroxide with electrolytically produced protons.

Im Stand der Technik sind demnach Verfahren beschrieben, die in Elektrolysezellen mit einer ionendurchlässigen Schicht durchgeführt werden, wie zum Beispiel NaSiCON-Festelektrolyten. Diese Festelektrolyten weisen allerdings typischerweise den Nachteil auf, dass sie nicht gegenüber wässrigen Säuren langzeitstabil sind. Dies ist insofern problematisch, als während der Elektrolyse in der Anodenkammer der pH durch Oxidationsprozesse sinkt (zum Beispiel bei Herstellung von Halogenen durch Disproportionierung oder durch Sauerstoffbildung). Diese sauren Bedingungen greifen den NaSICON-Festelektrolyten an, so dass das Verfahren nicht großtechnisch eingesetzt werden kann. Um diesem Problem zu begegnen, wurden im Stand der Technik verschiedene Ansätze beschrieben.Accordingly, methods are described in the prior art which are carried out in electrolytic cells with an ion-permeable layer, such as, for example, NaSiCON solid electrolytes. However, these solid electrolytes typically have the disadvantage that they are not long-term stable to aqueous acids. This is problematic insofar as the pH drops in the anode chamber during electrolysis as a result of oxidation processes (for example when halogens are produced by disproportionation or by oxygen formation). These acidic conditions attack the NaSICON solid electrolyte, so the process cannot be used on an industrial scale. Various approaches have been described in the prior art to address this problem.

So wurden im Stand der Technik Dreikammerzellen vorgeschlagen. Solche sind auf dem Gebiet der Elektrodialyse bekannt, zum Beispiel US 6,221,225 B1 .Three-chamber cells have been proposed in the prior art. Such are known in the field of electrodialysis, for example US 6,221,225 B1 .

WO 2012/048032 A2 und US 2010/0044242 A1 beschreiben beispielsweise elektrochemische Verfahren zur Herstellung von Natriumhypochlorit und ähnlicher Chlorverbindungen in einer solchen Dreikammerzelle. Die Kathodenkammer und die mittlere Kammer der Zelle werden dabei durch einen für Kationen durchlässigen Festelektrolyten wie zum Beispiel NaSICON getrennt. Um diesen vor dem sauren Anolyten zu schützen, wird der Mittelkammer beispielsweise Lösung aus der Kathodenkammer zugeführt. Die US 2010/0044242 A1 beschreibt außerdem in Abbildung 6, dass Lösung aus der mittleren Kammer mit Lösung aus der Anodenkammer außerhalb der Kammer vermischt werden kann, um Natriumhypochlorit zu erhalten. WO 2012/048032 A2 and US 2010/0044242 A1 describe, for example, electrochemical processes for the production of sodium hypochlorite and similar chlorine compounds in such a three-chamber cell. The cathode chamber and the middle chamber of the cell are separated by a cation-permeable solid electrolyte such as NaSICON. In order to protect this from the acidic anolyte, the middle chamber is supplied with solution from the cathode chamber, for example. The US 2010/0044242 A1 also describes in Figure 6 that solution from the middle compartment can be mixed with solution from the anode compartment outside the compartment to obtain sodium hypochlorite.

Auch für die Herstellung oder Reinigung von Alkalialkoholaten wurden solche Zellen im Stand der Technik vorgeschlagen.Such cells have also been proposed in the prior art for the production or purification of alkali metal alkoxides.

So beschreibt die US 5,389,211 A ein Verfahren zur Reinigung von Alkoholatlösungen, in denen eine Dreikammerzelle eingesetzt wird, in welcher die Kammern durch kationenselektive Festelektrolyten oder auch nichtionische Trennwände voneinander abgegrenzt sind. Die Mittelkammer wird als Pufferkammer eingesetzt, um zu verhindern, dass sich die gereinigte Alkoxid- oder Hydroxidlösung aus der Kathodenkammer mit der verunreinigten Lösung aus der Anodenkammer mischt.That's how she describes it US 5,389,211A a process for the purification of alcoholate solutions in which a three-chamber cell is used, in which the chambers are separated from one another by cation-selective solid electrolytes or non-ionic partitions. The middle chamber is used as a buffer chamber to prevent the cleaned Alkoxide or hydroxide solution from the cathode compartment mixes with the contaminated solution from the anode compartment.

Die DE 42 33 191 A1 beschreibt die elektrolytische Gewinnung von Alkoholaten aus Salzen und Alkoholaten in Mehrkammerzellen und Stapeln aus mehreren Zellen.The DE 42 33 191 A1 describes the electrolytic production of alcoholates from salts and alcoholates in multi-chamber cells and stacks of several cells.

Die WO 2008/076327 A1 beschreibt ein Verfahren zur Herstellung von Alkalimetallalkoholaten. Dabei wird eine Dreikammerzelle eingesetzt, deren Mittelkammer mit Akalimetallalkoholat gefüllt ist (siehe zum Beispiel Absätze [0008] und [0067] der WO 2008/076327 A1 ). Dadurch wird der die Mittelkammer und die Kathodenkammer abtrennende Festelektrolyt vor der in der Anodenkammer befindlichen Lösung, die bei der Elektrolyse saurer wird, geschützt. Eine ähnliche Anordnung beschreibt die WO 2009/073062 A1 . Diese Anordnung hat allerdings den Nachteil, dass es sich bei Alkalimetallalkoholatlösung um das gewünschte Produkt handelt, was aber als Pufferlösung verbraucht und kontinuierlich kontaminiert wird. Ein weiterer Nachteil des in der WO 2008/076327 A1 beschriebenen Verfahrens ist, dass die Bildung des Alkoholats in der Kathodenkammer von der Diffusionsgeschwindigkeit der Alkalimetallionen durch zwei Membranen bzw. Festelektrolyten abhängt. Dies führt wiederum zu einer Verlangsamung der Bildung des Alkoholats.The WO 2008/076327 A1 describes a process for preparing alkali metal alkoxides. A three-chamber cell is used, the middle chamber of which is filled with alkali metal alkoxide (see, for example, paragraphs [0008] and [0067] of WO 2008/076327 A1 ). This protects the solid electrolyte separating the middle chamber and the cathode chamber from the solution in the anode chamber, which becomes more acidic during the electrolysis. A similar arrangement is described in WO 2009/073062 A1 . However, this arrangement has the disadvantage that the alkali metal alkoxide solution is the desired product, but this is consumed as a buffer solution and is continuously contaminated. Another disadvantage of the in the WO 2008/076327 A1 The method described is that the formation of the alcoholate in the cathode chamber depends on the diffusion rate of the alkali metal ions through two membranes or solid electrolytes. This in turn slows down the formation of the alcoholate.

Ein weiteres Problem ergibt sich durch die Geometrie der Dreikammerzelle. Die Mittelkammer ist in einer solchen Kammer durch eine Diffusionsbarriere von der Anodenkammer und durch eine ionenleitende Keramik von der Kathodenkammer abgetrennt. Während der Elektrolyse kommt es damit unvermeidlich zur Ausbildung von pH-Gradienten und zu Totvolumina. Dies kann die ionenleitende Keramik schädigen und infolgedessen den Spannungsbedarf der Elektrolyse erhöhen und/oder zum Bruch der Keramik führen.Another problem arises from the geometry of the three-chamber cell. In such a chamber, the central chamber is separated from the anode chamber by a diffusion barrier and from the cathode chamber by an ion-conducting ceramic. During the electrolysis, this inevitably leads to the formation of pH gradients and dead volumes. This can damage the ion-conducting ceramic and consequently increase the voltage requirement of the electrolysis and/or lead to breakage of the ceramic.

Während dieser Effekt in der gesamten Elektrolysekammer stattfindet, ist der Abfall des pH-Wertes besonders kritisch in der Mittelkammer, da diese von der ionenleitenden Keramik begrenzt wird. An der Anode und der Kathode werden üblicherweise Gase gebildet, sodass es in diesen Kammern zumindest bis zu einem gewissen Grad zur Durchmischung kommt. Eine solche Durchmischung findet dagegen in der Mittelkammer nicht statt, so dass sich in ihr der pH-Gradient ausbildet. Dieser unerwünschte Effekt verstärkt sich dadurch, dass die Sole im Allgemeinen relativ langsam durch die Elektrolysezelle gepumpt wird.While this effect takes place throughout the electrolysis chamber, the drop in pH is particularly critical in the middle chamber, as this is bounded by the ion-conducting ceramic. Gases are usually formed at the anode and the cathode, so that there is at least a certain degree of mixing in these chambers. On the other hand, such mixing does not take place in the middle chamber, so that the pH gradient develops in it. This undesirable effect is amplified by the fact that the brine is generally pumped relatively slowly through the electrolytic cell.

Aufgabe der vorliegenden Erfindung war es deshalb, ein verbessertes Verfahren zur elektrolytischen Herstellung von Alkalimetallalkoholat wie auch eine insbesondere für ein solches Verfahren geeignete Elektrolysekammer zu Verfügung zu stellen. Diese sollen die vorgenannten Nachteile nicht aufweisen und insbesondere einen verbesserten Schutz des Festelektrolyten vor der Ausbildung des pH-Gradienten sowie einen gegenüber dem Stand der Technik sparsameren Einsatz der Edukte gewährleisten.The object of the present invention was therefore to provide an improved process for the electrolytic production of alkali metal alkoxide and an electrolysis chamber which is particularly suitable for such a process. These should not have the aforementioned disadvantages and should in particular ensure improved protection of the solid electrolyte against the formation of the pH gradient and more economical use of the educts compared to the prior art.

Weitere Dokumente, siehe EP 3 885 470 A1 , EP 3 885 471 A1 , US 5 425 856 A , US 5 575 901 A , US 2007/138020 A1 , US 2019/292668 A1 , US 5 254 227 A .Other documents, see EP 3 885 470 A1 , EP 3 885 471 A1 , U.S. 5,425,856 A , U.S. 5,575,901A , U.S. 2007/138020 A1 , U.S. 2019/292668 A1 , U.S. 5,254,227 A .

2. Kurzbeschreibung der Erfindung2. Summary of the Invention

Es wurden nun überraschend eine Elektrolysezelle und ein Verfahren gefunden, welche die erfindungsgemäße Aufgabe lösen.Surprisingly, an electrolytic cell and a method have now been found which achieve the object of the invention.

Das Elektrolysezelle E <100> gemäß dem ersten Aspekt der Erfindung umfasst mindestens eine Anodenkammer KA <101>, mindestens eine Kathodenkammer KK <102> und mindestens eine dazwischen liegende Mittelkammer KM <103>,

  • wobei KA <101 > eine anodische Elektrode EA <104> und einen Ablauf AKA <106> umfasst, wobei KK <102> eine kathodische Elektrode EK <105>, einen Zulauf ZKK <107> und einen Ablauf AKK <109> umfasst,
  • wobei KM <103> einen Zulauf ZKM <108> umfasst, durch eine Diffusionsbarriere D <110> von KA <101 > abgetrennt ist und durch einen alkalikationenleitenden Festelektrolyten FK <111> von KK <102> abgetrennt ist,
  • wobei KM <103> und KA <101 > durch eine Verbindung VAM <112> miteinander verbunden sind, durch welche Flüssigkeit aus KM <103> in KA <101 > geleitet werden kann,
  • und ist dadurch gekennzeichnet, dass die Mittelkammer KM <103> Einbauten umfasst.
The electrolytic cell E <100> according to the first aspect of the invention comprises at least one anode chamber K A <101>, at least one cathode chamber K K <102> and at least one intermediate chamber K M <103>,
  • where K A <101> comprises an anodic electrode E A <104> and an outlet A KA <106>, where K K <102> comprises a cathodic electrode E K <105>, an inlet Z KK <107> and an outlet A KK <109> includes,
  • where K M <103> comprises an inlet Z KM <108>, is separated from K A <101> by a diffusion barrier D <110> and is separated from K K <102> by an alkali cation-conducting solid electrolyte F K <111>,
  • where K M <103> and K A <101> are connected to each other by a connection V AM <112>, through which liquid can be conducted from K M <103> to K A <101>,
  • and is characterized in that the central chamber comprises K M <103> internals.

In einem zweiten Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Lösung L1 <115> eines Alkalimetallalkoholats XOR im Alkohol ROH in einer Elektrolysezelle E <100> gemäß dem ersten Aspekt der Erfindung,

  • wobei das Verfahren die folgenden, gleichzeitig ablaufenden Schritte (a), (b) und (c) umfasst:
    1. (a) ein Lösung L2 <113> umfassend den Alkohol ROH wird durch KK <102> geleitet,
    2. (b) eine neutrale oder alkalische, wässrige Lösung L3 <114> eines Salzes S umfassend X als Kation wird durch KM, dann über VAM, dann durch KA <101 > geleitet,
    3. (c) zwischen EA <104> und EK <105> wird Spannung angelegt,
  • wodurch am Ablauf AKK <109> die Lösung L1 <115> erhalten wird, wobei die Konzentration von XOR in L1 <115> höher ist als in L2 <113>,
  • und wodurch am Ablauf AKA <106> eine wässrige Lösung L4 <116> von S erhalten wird, wobei die Konzentration von S in L4 <116> geringer ist als in L3 <114>,
  • wobei X ein Alkalimetallkation ist und Rein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist.
In a second aspect, the present invention relates to a method for preparing a solution L 1 <115> of an alkali metal alkoxide XOR in the alcohol ROH in an electrolysis cell E <100> according to the first aspect of the invention,
  • the method comprising the following concurrent steps (a), (b) and (c):
    1. (a) a solution L 2 <113> comprising the alcohol ROH is passed through K K <102>,
    2. (b) a neutral or alkaline aqueous solution L 3 <114> of a salt S comprising X as a cation is passed through K M , then over V AM , then through K A <101>,
    3. (c) voltage is applied between E A <104> and E K <105>,
  • whereby the solution L 1 <115> is obtained at the outlet A KK <109>, the concentration of XOR in L 1 <115> being higher than in L 2 <113>,
  • and whereby an aqueous solution L 4 <116> of S is obtained at the outlet A KA <106>, the concentration of S in L 4 <116> being lower than in L 3 <114>,
  • where X is an alkali metal cation and Rein is alkyl of 1 to 4 carbon atoms.

3. Abbildungen3. Pictures

Abbildung 1 zeigt eine bevorzugte Ausführungsform einer erfindungsgemäßen Elektrolysezelle <100> und des erfindungsgemäßen Verfahrens. Die Dreikammerzelle E <100> umfasst eine Kathodenkammer KK <102>, eine Anodenkammer KA <101 > und eine dazwischen liegende Mittelkammer KM <103>. illustration 1 shows a preferred embodiment of an electrolytic cell <100> according to the invention and of the method according to the invention. The three-chamber cell E <100> comprises a cathode chamber K K <102>, an anode chamber K A <101> and a middle chamber K M <103> lying between them.

Die Kathodenkammer KK <102> umfasst eine kathodische Elektrode EK <105>, einen Zulauf ZKK <107> und einen Ablauf AKK <109>.The cathode chamber K K <102> comprises a cathodic electrode E K <105>, an inlet Z KK <107> and an outlet A KK <109>.

Die Anodenkammer KA <101> umfasst eine anodische Elektrode EA <104> und einen Ablauf AKA <106> und ist mit der Mittelkammer KM <103> über die Verbindung VAM <112> verbunden.Anode chamber K A <101> comprises an anodic electrode E A <104> and drain A KA <106> and is connected to middle chamber K M <103> via connection V AM <112>.

Die Mittelkammer KM <103> umfasst einen Zulauf ZKM <108>.The middle chamber K M <103> includes an inlet Z KM <108>.

Die drei Kammern werden von einer Außenwand <117> der Dreikammerzelle E <100> begrenzt. Die Kathodenkammer KK <102> ist außerdem durch einen für Natriumionen selektiv permeablen NaSICON-Festelektrolyten FK <111> von der Mittelkammer KM <103> abgetrennt. Die Mittelkammer KM <103> ist zusätzlich wiederum durch eine Diffusionsbarriere D <110> von der Anodenkammer KA <101 > abgetrennt. Der NaSICON-Festelektrolyt FK <111> und die Diffusionsbarriere D <110> erstrecken sich über die gesamte Tiefe und Höhe der Dreikammerzelle E <100>. Die Diffusionsbarriere D <110> ist aus Glas.The three chambers are delimited by an outer wall <117> of the three-chamber cell E <100>. The cathode chamber K K <102> is also separated from the middle chamber K M <103> by a NaSICON solid electrolyte F K <111> that is selectively permeable for sodium ions. The middle chamber K M <103> is additionally in turn separated from the anode chamber K A <101> by a diffusion barrier D <110>. The NaSICON solid electrolyte F K <111> and the diffusion barrier D <110> extend over the entire depth and height of the three-chamber cell E <100>. The diffusion barrier D <110> is made of glass.

In der Ausführungsform gemäß Abbildung 1 wird die Verbindung VAM <112> außerhalb der Elektrolysezelle E <100> ausgebildet, insbesondere durch ein Rohr oder Schlauch, dessen Material aus Gummi, Metall oder Kunststoff ausgewählt sein kann. Durch die Verbindung VAM <112> kann Flüssigkeit aus der Mittelkammer KM <103> in die Anodenkammer KA <101> außerhalb der Außenwand WA <117> der Dreikammerzelle E <100> geleitet werden. Die Verbindung VAM <112> verbindet einen Ablauf AKM <118>, der am Boden der Mittelkammer KM <103> die Außenwand WA <117> der Elektrolysezelle E <100> durchbricht, mit einem Zulauf ZKA <119>, der am Boden der Anodenkammer KA <101> die Außenwand WA <117> der Elektrolysezelle E <100> durchbricht.In the embodiment according to illustration 1 the connection V AM <112> is formed outside the electrolytic cell E <100>, in particular by a tube or hose, the material of which can be selected from rubber, metal or plastic. Through the connection V AM <112>, liquid can be conducted from the middle chamber K M <103> into the anode chamber K A <101> outside the outer wall WA <117> of the three-chamber cell E <100>. The connection V AM <112> connects an outlet A KM <118>, which breaks through the outer wall WA <117> of the electrolysis cell E <100> at the bottom of the central chamber K M <103>, with an inlet Z KA <119>, which breaks through the outer wall W A <117> of the electrolytic cell E <100> at the bottom of the anode chamber K A <101>.

Eine wässrige Lösung von Natriumchlorid L3 <114> mit pH 10.5 wird über den Zulauf ZKM <108> gleichgerichtet mit der Schwerkraft in die Mittelkammer KM <103> gegeben. Durch die Verbindung VAM <112>, die zwischen einem Ablauf AKM <118> der Mittelkammer KM <103> und einem Zulauf ZKA <119> der Anodenkammer KA <101 > ausgebildet ist, ist die Mittelkammer KM <103> mit der Anodenkammer KA <101 > verbunden. Natriumchloridlösung L3 <114> wird durch diese Verbindung VAM <112> von der Mittelkammer KM <103> in die Anodenkammer KA <101 > geleitet.An aqueous solution of sodium chloride L 3 <114> with a pH of 10.5 is added via the inlet Z KM <108> in the same direction as gravity into the middle chamber KM <103>. The connection V AM <112>, which is formed between an outlet A KM <118> of the middle chamber K M <103> and an inlet Z KA <119> of the anode chamber KA <101>, creates the middle chamber K M <103 > connected to the anode chamber K A <101 >. Sodium chloride solution L 3 <114> is conducted through this connection V AM <112> from the middle chamber KM <103> into the anode chamber KA <101>.

Über den Zulauf ZKK <107> wird eine Lösung von Natriummethanolat in Methanol L2 <113> in die Kathodenkammer KK <102> geleitet.A solution of sodium methoxide in methanol L 2 <113> is fed into the cathode chamber K K <102> via the inlet Z KK <107>.

Es wird dabei eine Spannung zwischen der kathodischen Elektrode EK <105> und der anodischen Elektrode EA <104> angelegt. Dadurch wird in der Kathodenkammer KK <102> Methanol im Elektrolyten L2 <113> zu Methanolat und H2 reduziert (CH3OH + e- → CH3O- + ½ H2). Natriumionen diffundieren dabei von der Mittelkammer KM <103> durch den NaSICON-Festelektrolyten FK <111> in die Kathodenkammer KK <102>. Insgesamt erhöht sich dadurch die Konzentration von Natriummethanolat in der Kathodenkammer KK <102>, wodurch eine methanolische Lösung von Natriummethanolat L1 <115> erhalten wird, deren Konzentration an Natriummethanolat gegenüber L2 <113> erhöht ist.A voltage is applied between the cathodic electrode E K <105> and the anodic electrode E A <104>. As a result, in the cathode chamber K K <102> methanol im Electrolyte L 2 <113> reduced to methoxide and H 2 (CH 3 OH + e - → CH 3 O - + ½ H 2 ). Sodium ions diffuse from the middle chamber K M <103> through the NaSICON solid electrolyte F K <111> into the cathode chamber K K <102>. Overall, this increases the concentration of sodium methoxide in the cathode chamber K K <102>, as a result of which a methanolic solution of sodium methoxide L 1 <115> is obtained, whose concentration of sodium methoxide is increased compared to L 2 <113>.

In der Anodenkammer KA <101 > findet die Oxidation von Chloridionen zu molekularem Chlor statt (Cl- → ½ Cl2 + e-). Am Ablauf AKA <106> wird eine wässrige Lösung L4 <116> erhalten, in der der Gehalt an NaCl gegenüber L3 <114> verringert ist. Chlorgas Cl2 bildet in Wasser gemäß der Reaktion Cl2 + H2O → HOCI + HCl hypochlorige Säure und Salzsäure, welche mit weiteren Wassermolekülen sauer reagieren. Die Acidität schädigt den NaSICON-Festelektrolyten <111 >, wird aber durch die erfindungsgemäße Anordnung in der Anodenkammer KA <101> begrenzt und somit in der Elektrolysezelle E <100> vom NaSICON-Festelektrolyten FK <111 > ferngehalten. Dadurch erhöht sich dessen Lebensdauer beträchtlich.In the anode chamber K A <101 >, the oxidation of chloride ions to molecular chlorine takes place (Cl - → ½ Cl 2 + e - ). At outlet A KA <106>, an aqueous solution L 4 <116> is obtained in which the NaCl content is reduced compared to L 3 <114>. Chlorine gas Cl 2 forms hypochlorous acid and hydrochloric acid in water according to the reaction Cl 2 + H 2 O → HOCl + HCl, which reacts acidically with other water molecules. The acidity damages the NaSICON solid electrolyte <111>, but is limited by the arrangement according to the invention in the anode chamber K A <101> and is thus kept away from the NaSICON solid electrolyte F K <111> in the electrolytic cell E <100>. This increases its lifespan considerably.

In der Mittelkammer KM <103> befinden sich außerdem Einbauten in Form eines netzartigen Drahtkorbs <122>, welcher Glas- oder Kunststoffkugeln <121 > enthält. Der Drahtkorb <122> wird lose in die Mittelkammer KM <103> gestellt, kann aber auch an der Innenseite der Außenwand der <117> befestigt werden. Die durch den Zulauf ZKM <108> zugeführte wässrige Lösung L3 <114> wird durch diese Einbauten geführt, wodurch es zu Verwirbelungen und Turbulenzen kommt. Diese Turbulenzen in der Lösung L3 <114> verhindern einen sich in der Mittelkammer KM <103> mit Fortgang der Elektrolyse aufbauenden pH-Gradienten und unterbinden so die Ausbildung eines niedrigen pH-Werts in der unmittelbar am NaSICON-Festelektrolyten <111> grenzenden Lösung. Dadurch wird die Haltbarkeit des NaSICON-Festelektrolyten <111> weiter erhöht.In the middle chamber K M <103> there are also fixtures in the form of a net-like wire basket <122>, which contains glass or plastic balls <121>. The wire basket <122> is placed loosely in the middle chamber <103>, but can also be attached to the inside of the outer wall of <117>. The aqueous solution L 3 <114> fed in through the inlet Z KM <108> is conducted through these internals, as a result of which vortices and turbulence occur. These turbulences in the solution L 3 <114> prevent a pH gradient building up in the central chamber K M <103> as the electrolysis progresses and thus prevent the formation of a low pH value in the area immediately adjacent to the NaSICON solid electrolyte <111> Solution. This further increases the durability of the NaSICON solid electrolyte <111>.

Abbildung 2 zeigt eine weitere Ausführungsform der erfindungsgemäßen Elektrolysezelle und des erfindungsgemäßen Verfahrens, die der in Abbildung 1 dargestellten entspricht. Ein Unterschied ist dabei, dass die Verbindung VAM <112> von der Mittelkammer KM <103> in die Anodenkammer KA <101 > durch eine Perforation in der Diffusionsbarriere D <110> gebildet wird. Als Einbauten sind außerdem anstatt des lose in der Mittelkammer KM <103> befindlichen Drahtkorbs <122> am NaSICON-Festelektrolyten FK <111> mehrere Zapfen aus Glas oder Kunststoff <123-2> angebracht, die in die Mittelkammer KM <103> hineinragen. Alternativ oder zusätzlich können auch entsprechende Zapfen <123-1> an der Diffusionsbarriere D <110> angebracht werden. Wie auch in der in Abbildung 1 gezeigten Ausführungsform wird die durch den Zulauf ZKM <108> zugeführte wässrige Lösung L3 <114> durch diese Einbauten verwirbelt. Diese Turbulenzen in der Lösung L3 <114> zerstören den sich in der Mittelkammer KM <103> mit Fortgang der Elektrolyse aufbauenden pH-Gradienten. Figure 2 shows a further embodiment of the electrolytic cell according to the invention and the method according to the invention, which is in illustration 1 shown. One difference is that the connection V AM <112> from the central chamber K M <103> to the anode chamber K A <101> is formed by a perforation in the diffusion barrier D <110>. Instead of the wire basket <122> loosely located in the middle chamber K M <103>, several pins made of glass or plastic <123-2> are attached to the NaSICON solid electrolyte F K <111> as internals, which are inserted into the middle chamber K M <103 > protrude. Alternatively or additionally, corresponding pins <123-1> can also be attached to the diffusion barrier D <110>. As in the in illustration 1 In the embodiment shown, the aqueous solution L 3 <114> supplied through the inlet Z KM <108> is swirled by these internals. These turbulences in the solution L 3 <114> destroy the pH gradient that builds up in the central chamber K M <103> as the electrolysis progresses.

4. Detaillierte Beschreibung der Erfindung4. Detailed Description of the Invention 4.1 Elektrolysezelle E 4.1 Electrolytic Cell E

Der erste Aspekt der Erfindung betrifft eine Elektrolysezelle E <100>. Die Elektrolysezelle E <100> gemäß dem ersten Aspekt der Erfindung umfasst mindestens eine Anodenkammer KA <101 >, mindestens eine Kathodenkammer KK <102> und mindestens eine dazwischen liegende Mittelkammer KM <103>. Dies umfasst auch Elektrolysezellen E <100>, welche mehr als eine Anodenkammer KA <101 > und/oder Kathodenkammer KK <102> und/oder Mittelkammer K M-<103> aufweisen. Solche Elektrolysezellen, in denen diese Kammern modulartig aneinandergefügt werden, sind beispielsweise in der DD 258 143 A3 und der US 2006/0226022 A1 beschrieben.The first aspect of the invention relates to an electrolytic cell E <100>. The electrolytic cell E <100> according to the first aspect of the invention comprises at least one anode chamber K A <101>, at least one cathode chamber K K <102> and at least one intermediate chamber K M <103>. This also includes electrolytic cells E <100> which have more than one anode chamber KA <101> and/or cathode chamber KK <102> and/or middle chamber KM - <103>. Such electrolytic cells, in which these chambers are joined together in a modular manner, are, for example, in DD 258 143 A3 and the U.S. 2006/0226022 A1 described.

Die Anodenkammer KA <101 > umfasst eine anodische Elektrode EA <104>. Als solche anodische Elektrode EA <104> kommt jede dem Fachmann geläufige Elektrode in Frage, die unter den Bedingungen des erfindungsgemäßen Verfahrens nach dem zweiten Aspekt der Erfindung stabil ist. Solche sind insbesondere in WO 2014/008410 A1 , Absatz [024] oder DE 10360758 A1 , Absatz [031] beschrieben. Diese Elektrode EA <104> kann aus einer Schicht bestehen oder aus mehreren planen, zueinander parallelen Schichten bestehen, die jeweils perforiert oder expandiert sein können. Die anodische Elektrode EA <104> umfasst insbesondere ein Material, welches ausgewählt ist aus der Gruppe bestehend aus Rutheniumoxid, Iridiumoxid, Nickel, Kobalt, Nickelwolframat, Nickeltitanat, Edelmetalle wie insbesondere Platin, welches auf einem Träger wie Titan oder Kovar ® (einer Eisen/Nickel/Kobalt-Legierung, in denen die einzelnen Anteile bevorzugt wie folgt sind: 54 Massen-% Eisen, 29 Massen-% Nickel, 17 Massen-% Cobalt) geträgert ist. Weitere mögliche Anodenmaterialien sind insbesondere Edelstahl, Blei, Graphit, Wolframcarbid, Titandiborid. Bevorzugt umfasst die anodische Elektrode EA <104> eine mit Rutheniumoxid/ Iridiumoxid beschichtete Titananode (RuO2+ IrO2 / Ti).The anode chamber K A <101> includes an anodic electrode E A <104>. Any electrode familiar to a person skilled in the art that is stable under the conditions of the method according to the second aspect of the invention can be used as such an anodic electrode E A <104>. Such are in particular in WO 2014/008410 A1 , paragraph [024] or DE 10360758 A1 , paragraph [031]. This electrode E A <104> can consist of one layer or of several planar layers parallel to one another, each of which can be perforated or expanded. The anodic electrode E A <104> comprises in particular a material selected from the group consisting of ruthenium oxide, iridium oxide, nickel, cobalt, nickel tungstate, nickel titanate, noble metals such as platinum in particular, which is deposited on a carrier such as titanium or Kovar ® (an iron /nickel/cobalt alloy, in which the individual proportions are preferably as follows: 54% by mass iron, 29% by mass nickel, 17% by mass cobalt). Other possible anode materials are, in particular, stainless steel, lead, graphite, tungsten carbide, titanium diboride. The anodic electrode E A <104> preferably comprises a titanium anode (RuO 2 +IrO 2 /Ti) coated with ruthenium oxide/iridium oxide.

Die Kathodenkammer KK <102> umfasst eine kathodische Elektrode EK <105>. Als solche kathodische Elektrode EK <105> kommt jede dem Fachmann geläufige Elektrode in Frage, die unter den Bedingungen stabil ist. Solche sind insbesondere in WO 2014/008410 A1 , Absatz [025] oder DE 10360758 A1 , Absatz [030] beschrieben. Diese Elektrode EK <105> kann aus der Gruppe bestehend aus Maschenwolle, dreidimensionale Matrixstruktur oder "Kugeln" ausgewählt sein. Die kathodische Elektrode EK <105> umfasst insbesondere ein Material, welches ausgewählt ist aus der Gruppe bestehend aus Stahl, Nickel, Kupfer, Platin, platinierte Metalle, Palladium, auf Kohle geträgertes Palladium, Titan. Bevorzugt umfasst EK <105> Nickel.The cathode chamber K K <102> includes a cathodic electrode E K <105>. Any electrode familiar to a person skilled in the art that is stable under the conditions can be used as such a cathodic electrode E K <105>. Such are in particular in WO 2014/008410 A1 , paragraph [025] or DE 10360758 A1 , paragraph [030]. This electrode E K <105> can be selected from the group consisting of mesh wool, three-dimensional matrix structure or "balls". The cathodic electrode E K <105> comprises in particular a material selected from the group consisting of steel, nickel, copper, platinum, platinized metals, palladium, palladium supported on carbon, titanium. E K <105> preferably comprises nickel.

Die mindestens eine Mittelkammer KM <103> befindet sich zwischen der Anodenkammer KA <101> und der Kathodenkammer KK <102>.The at least one middle chamber K M <103> is located between the anode chamber K A <101> and the cathode chamber K K <102>.

Die Elektrolysezelle E <100> weist üblicherweise eine Außenwand WA <117> auf. Die Außenwand WA <117> ist insbesondere aus einem Material, welches aus der Gruppe bestehend aus Stahl, bevorzugt gummiertem Stahl, Kunststoff, der insbesondere aus Telene ® (duroplastischem Polydicyclopentadien), PVC (Polyvinylchlorid), PVC-C (nachchloriertes Polyvinylchlorid), PVDF (Polyvinylidenfluorid) ausgewählt ist. WA <117> kann insbesondere für Zuläufe und Abläufe durchbrochen sein. Innerhalb von WA <117> liegen dann die mindestens eine Anodenkammer KA <101>, die mindestens eine Kathodenkammer KK <102> und die mindestens eine dazwischen liegende Mittelkammer KM <103>.The electrolytic cell E <100> usually has an outer wall W A <117>. The outer wall W A <117> is in particular made of a material which is selected from the group consisting of steel, preferably rubberized steel, plastic, which is in particular made of Telene® (thermosetting polydicyclopentadiene), PVC (polyvinyl chloride), PVC-C (post-chlorinated polyvinyl chloride), PVDF (polyvinylidene fluoride) is selected. W A <117> can be perforated in particular for inlets and outlets. The at least one anode chamber K A <101>, the at least one cathode chamber K K <102> and the at least one intermediate chamber K M <103> are then located within W A <117>.

KM <103> ist durch eine Diffusionsbarriere D <110> von KA <101 > abgetrennt und durch einen alkalikationenleitenden Festelektrolyten FK <111> von KK <102> abgetrennt. K M <103> is separated from K A <101> by a diffusion barrier D <110> and separated from K K <102> by an alkali cation-conducting solid electrolyte F K <111>.

Für die Diffusionsbarriere D <110> kann jedes Material genutzt werden, welches unter den Bedingungen des erfindungsgemäßen Verfahrens nach dem zweiten Aspekt der Erfindung stabil ist und den Übergang von Protonen von der in der Anodenkammer KA <101 > befindlichen Flüssigkeit in die Mittelkammer KM <103> verhindert oder verlangsamt.Any material which is stable under the conditions of the method according to the second aspect of the invention and which prevents the transfer of protons from the liquid in the anode chamber K A <101> to the middle chamber K M can be used for the diffusion barrier D <110><103> prevented or slowed down.

Als Diffusionsbarriere D <110> wird insbesondere eine nicht ionenspezifische Trennwand oder eine für spezifische Ionen durchlässige Membran verwendet. Bevorzugt handelt es sich bei der Diffusionsbarriere D <110> um eine nicht ionenspezifische Trennwand.In particular, a non-ion-specific dividing wall or a membrane permeable to specific ions is used as the diffusion barrier D <110>. The diffusion barrier D <110> is preferably a non-ion-specific partition.

Das Material der nicht ionenspezifischen Trennwand ist insbesondere aus der Gruppe bestehend aus Gewebe, wobei es sich insbesondere um textiles Gewebe oder Metallgewebe handelt, Glas, wobei es sich insbesondere um gesintertes Glas oder Glasfritten handelt, Keramik, insbesondere keramische Fritten, Membrandiaphragmas ausgewählt, und ist besonders bevorzugt Glas.The material of the non-ion-specific partition wall is in particular selected from the group consisting of fabric, in particular textile fabric or metal fabric, glass, in particular sintered glass or glass frits, ceramic, in particular ceramic frits, membrane diaphragms, and is selected particularly preferably glass.

Handelt es sich bei der Diffusionsbarriere D <110> um eine "für spezifische Ionen durchlässige Membran", so bedeutet dies erfindungsgemäß, dass die jeweilige Membran die Diffusion bestimmter Ionen durch sie hindurch gegenüber anderen Ionen begünstigt. Insbesondere sind damit Membranen gemeint, die die Diffusion durch sie hindurch von Ionen einer bestimmten Ladungsart gegenüber entgegengesetzt geladenen Ionen begünstigt. Noch bevorzugter begünstigen für spezifische Ionen durchlässige Membranen außerdem die Diffusion bestimmter Ionen mit einer Ladungsart gegenüber anderen Ionen derselben Ladungsart durch sie hindurch.If the diffusion barrier D <110> is a “membrane permeable to specific ions”, this means according to the invention that the respective membrane favors the diffusion of certain ions through it compared to other ions. In particular, membranes are meant that favor the diffusion through them of ions of a certain type of charge compared to oppositely charged ions. More preferably, specific ion permeable membranes also favor the diffusion of certain ions having one charge type through them over other ions of the same charge type.

Ist die Diffusionsbarriere D <110> eine "für spezifische Ionen durchlässige Membran", handelt es sich insbesondere bei der Diffusionsbarriere D <110> um eine anionenleitende Membran oder um eine kationenleitende Membran.If the diffusion barrier D <110> is a “membrane permeable to specific ions”, the diffusion barrier D <110> is in particular an anion-conducting membrane or a cation-conducting membrane.

Anionenleitende Membranen sind erfindungsgemäß solche, die selektiv Anionen, bevorzugt selektiv bestimmte Anionen leiten. In anderen Worten begünstigen sie die Diffusion von Anionen durch sie hindurch gegenüber der von Kationen, insbesondere gegenüber Protonen, noch bevorzugter begünstigen sie zusätzlich die Diffusion von bestimmten Anionen durch sie hindurch gegenüber der Diffusion anderer Anionen durch sie hindurch.According to the invention, anion-conducting membranes are those which selectively conduct anions, preferably selectively specific anions. In other words, they favor the diffusion of anions through them over that of cations, especially protons, more preferably they additionally favor the diffusion of certain anions through them over the diffusion of other anions through them.

Kationenleitende Membranen sind erfindungsgemäß solche, die selektiv Kationen, bevorzugt selektiv bestimmte Kationen leiten. In anderen Worten begünstigen sie die Diffusion von Kationen durch sie hindurch gegenüber der von Anionen, noch bevorzugter begünstigen sie zusätzlich die Diffusion von bestimmten Kationen, durch sie hindurch gegenüber der Diffusion anderer Kationen durch sie hindurch, noch viel mehr bevorzugter von Kationen, bei denen es sich nicht um Protonen handelt, noch bevorzugter um Natriumkationen handelt, gegenüber Protonen.According to the invention, cation-conducting membranes are those which selectively conduct cations, preferably selectively specific cations. In other words, they favor the diffusion of cations through them over that of anions, more preferably they additionally favor the diffusion of certain cations through them over the diffusion of other cations through them, much more preferably cations where there is are not protons, more preferably sodium cations, over protons.

"Begünstigen die Diffusion bestimmter Ionen X gegenüber der Diffusion anderer Ionen Y" bedeutet insbesondere, dass der Diffusionskoeffizient (Einheit m2/s) der lonenart X bei einer gegebenen Temperatur für die betreffende Membran um den Faktor 10, bevorzugt 100, bevorzugt 1000 höher ist als der Diffusionskoeffizient der lonenart Y für die betreffende Membran.“Favour the diffusion of certain ions X over the diffusion of other ions Y” means in particular that the diffusion coefficient (unit m 2 /s) of the ion type X at a given temperature for the membrane in question is higher by a factor of 10, preferably 100, preferably 1000 as the diffusion coefficient of the ionic species Y for the membrane in question.

Handelt es sich bei der Diffusionsbarriere D <110> um eine "für spezifische Ionen durchlässige Membran", so ist es bevorzugt eine anionenleitende Membran, denn diese verhindert besonders gut die Diffusion von Protonen aus der Anodenkammer KA <101 > in die Mittelkammer KM <103>.If the diffusion barrier D <110> is a "membrane that is permeable to specific ions", it is preferably an anion-conducting membrane, because this is particularly good at preventing the diffusion of protons from the anode chamber K A <101> into the middle chamber K M <103>.

Als anionenleitende Membran wird insbesondere eine solche eingesetzt, die für die vom Salz S umfassten Anionen selektiv sind. Solche Membranen sind dem Fachmann bekannt und können von ihm eingesetzt werden.In particular, a membrane which is selective for the anions comprised by the salt S is used as the anion-conducting membrane. Such membranes are known to those skilled in the art and can be used by them.

Das Salz S ist bevorzugt ein Halogenid, Sulfat, Sulfit, Nitrat, Hydrogencarbonat oder Carbonat von X, noch bevorzugter ein Halogenid.The salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.

Halogenide sind Fluoride, Chloride, Bromide, Jodide. Das bevorzugteste Halogenid ist Chlorid.Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.

Bevorzugt wird als anionenleitende Membran eine für Halogenide, bevorzugter Chlorid, selektive Membran eingesetzt.A membrane selective for halides, more preferably chloride, is preferably used as the anion-conducting membrane.

Anionenleitende Membranen sind beispielsweise von M.A. Hickner, A.M. Herring, E.B. Coughlin, Journal of Polymer Science, Part B: Polymer Physics 2013, 51, 1727-1735 , von C.G. Arges, V. Ramani, P.N. Pintauro, Electrochemical Society Interface 2010, 19, 31-35 , in WO 2007/048712 A2 sowie auf Seite 181 des Lehrbuchs von Volkmar M. Schmidt Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozessoptimierung ,

  1. 1. Auflage (8. Oktober 2003) beschrieben.
Anion-conducting membranes are, for example, from MA Hickner, AM Herring, EB Coughlin, Journal of Polymer Science, Part B: Polymer Physics 2013, 51, 1727-1735 , from Arges CG, Ramani V, Pintauro PN, Electrochemical Society Interface 2010, 19, 31-35 , in WO 2007/048712 A2 as well as on page 181 of the textbook by Volkmar M. Schmidt Electrochemical process engineering: basics, reaction engineering, process optimization ,
  1. 1st edition (October 8, 2003).

Noch bevorzugter werden demnach als anionenleitende Membran organische Polymere, welche insbesondere aus Polyethylen, Polybenzimidazolen, Polyetherketonen, Polystyrol, Polypropylen oder fluorierten Membranen wie Polyperfluorethylen, bevorzugt Polystyrol, ausgewählt sind, eingesetzt, wobei diese kovalent gebunden funktionelle Gruppen ausgewählt aus -NH3 +, -NRH2 +, -NR3 +, =NR+;-PR3 +, wobei es sich bei R um Alkylgruppen mit bevorzugt 1 bis 20 Kohlenstoffatomen handelt, oder andere kationische Gruppen aufweisen. Bevorzugt weisen sie kovalent gebundene funktionelle Gruppen, ausgewählt aus -NH3 +, -NRH2 +, -NR3 +, bevorzugter ausgewählt aus -NH3 +, -NR3 +, noch bevorzugter-NR3 +, auf.Organic polymers, which are selected in particular from polyethylene, polybenzimidazoles, polyetherketones, polystyrene, polypropylene or fluorinated membranes such as polyperfluoroethylene, preferably polystyrene, are therefore even more preferably used as anion-conducting membrane, these covalently bonded functional groups selected from -NH 3 + , - NRH 2 + , -NR 3 + , =NR + ;-PR 3 + , where R is an alkyl group preferably having 1 to 20 carbon atoms, or other cationic groups. Preferably they have covalently bonded functional groups selected from -NH 3 + , -NRH 2 + , -NR 3 + , more preferably selected from -NH 3 + , -NR 3 + , even more preferably -NR 3 + .

Wenn die Diffusionsbarriere D <110> eine kationenleitende Membran ist, handelt es sich insbesondere um eine Membran, die für die vom Salz S umfassten Kationen selektiv ist. Noch bevorzugter ist die Diffusionsbarriere D <110> eine alkalikationenleitende Membran, noch mehr bevorzugter eine kalium- und/oder natriumionenleitende Membran, am bevorzugtesten eine natriumionenleitende Membran.If the diffusion barrier D <110> is a cation-conducting membrane, it is in particular a membrane that is selective for the cations comprised by the salt S. Even more preferably, the diffusion barrier D <110> is an alkali cation-conducting membrane, even more preferably a potassium and/or sodium ion-conducting membrane, most preferably a sodium ion-conducting membrane.

Kationenleitende Membranen sind beispielsweise beschrieben auf Seite 181 des Lehrbuchs von Volkmar M. Schmidt Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozessoptimierung, 1. Auflage (8. Oktober 2003 ).Cation-conducting membranes are described, for example, on page 181 of the textbook by Volkmar M. Schmidt Electrochemical Process Engineering: Fundamentals, Reaction Engineering, Process Optimization, 1st edition (October 8, 2003 ).

Noch bevorzugter werden demnach als kationenleitende Membran organische Polymere, welche insbesondere aus Polyethylen, Polybenzimidazolen, Polyetherketonen, Polystyrol, Polypropylen oder fluorierten Membranen wie Polyperfluorethylen, bevorzugt Polystyrol, Polyperfluorethylen, ausgewählt sind, eingesetzt, wobei diese kovalent gebunden funktionelle Gruppen ausgewählt aus -SO3 -, -COO-, -PO3 2-, -PO2H-, bevorzugt -SO3 -, (beschrieben in DE 10 2010 062 804 A1 , US 4,831,146 ) tragen.Accordingly, organic polymers, which are selected in particular from polyethylene, polybenzimidazoles, polyetherketones, polystyrene, polypropylene or fluorinated membranes such as polyperfluoroethylene, preferably polystyrene, polyperfluoroethylene, are even more preferably used as the cation-conducting membrane, with these covalently bonded functional groups selected from -SO 3 - , -COO - , -PO 3 2- , -PO 2 H - , preferably -SO 3 - , (described in DE 10 2010 062 804 A1 , U.S. 4,831,146 ) carry.

Dies kann zum Beispiel ein sulfoniertes Polyperfluorethylen (Nafion ® mit CAS-Nummer: 31175-20-9 ) sein. Diese sind dem Fachmann beispielsweise aus der WO 2008/076327 A1 , Absatz [058], US 2010/0044242 A1 , Absatz [0042] oder der US 2016/ 0204459 A1 bekannt und unter dem Handelsnamen Nafion ®, Aciplex ® F, Flemion ®, Neosepta ®, Ultrex ®, PC-SK ® erwerblich. Neosepta®-Membranen sind beispielsweise beschrieben von S.A. Mareev, D.Yu. Butylskii, N.D. Pismenskaya, C. Larchet, L. Dammak, V.V. Nikonenko, Journal of Membrane Science 2018, 563, 768-776 .This can be, for example, a sulfonated polyperfluoroethylene (Nafion ® with CAS number: 31175-20-9 ) be. These are the expert, for example, from WO 2008/076327 A1 , paragraph [058], US 2010/0044242 A1 , paragraph [0042] or the U.S. 2016/0204459 A1 known and commercially available under the trade names Nafion® , Aciplex® F, Flemion® , Neosepta® , Ultrex® , PC- SK® . Neosepta ® membranes are described, for example, by SA Mareev, D.Yu. Butylskii, ND Pismenskaya, C Larchet, L Dammak, VV Nikonenko, Journal of Membrane Science 2018, 563, 768-776 .

Wird eine kationenleitende Membran als Diffusionsbarriere D <110> eingesetzt, kann dies beispielsweise ein mit Sulfonsäuregruppen funktionalisiertes Polymer, insbesondere der folgenden Formel PNAFION , wobei n und m unabhängig voneinander eine ganze Zahl von 1 bis 106, bevorzugter eine ganze Zahl von 10 bis 105, noch bevorzugter eine ganze Zahl von 102 bis 104 ist, sein.

Figure imgb0001
If a cation-conducting membrane is used as the diffusion barrier D <110>, this can be, for example, a polymer functionalized with sulfonic acid groups, in particular of the following formula P NAFION , where n and m are independently an integer from 1 to 10 6 , more preferably an integer from 10 to 10 5 , more preferably an integer from 10 2 to 10 4 .
Figure imgb0001

Als alkalikationenleitender Festelektrolyt FK <111> kommt jeder Festelektrolyt in Frage, welcher Kationen, insbesondere Alkalikationen, noch bevorzugter Natriumkationen, von der Mittelkammer KM <103> in die Kathodenkammer KK <102> transportieren kann. Solche Festelektrolyten sind dem Fachmann bekannt und beispielsweise in der DE 10 2015 013 155 A1 , in der WO 2012/048032 A2 , Absätze [0035], [0039], [0040], in der US 2010/0044242 A1 , Absätze [0040], [0041], in der DE 10360758 A1 , Absätze [014] bis [025] beschrieben. Sie werden kommerziell unter dem Namen NaSICON, LiSICON, KSICON vertrieben. Ein natriumionenleitender Festelektrolyt FK <111> ist bevorzugt, wobei dieser noch bevorzugter eine NaSICON-Struktur aufweist. Erfindungsgemäß einsetzbare NaSICON-Strukturen sind außerdem beispielsweise beschrieben von N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, Velchuri Radha, M. Vithal, J Mater Sei 2011, 46, 2821-2837 .Any solid electrolyte which can transport cations, in particular alkali cations, more preferably sodium cations, from the central chamber K M <103> into the cathode chamber K K <102> can be used as the alkali cation-conducting solid electrolyte F K <111>. Such solid electrolytes are known to those skilled in the art and, for example, in DE 10 2015 013 155 A1 , in the WO 2012/048032 A2 , paragraphs [0035], [0039], [0040], in the US 2010/0044242 A1 , paragraphs [0040], [0041], in which DE 10360758 A1 , paragraphs [014] to [025]. They are sold commercially under the names NaSICON, LiSICON, KSICON. A sodium ion conductive solid electrolyte F K <111> is preferred, which more preferably has a NaSICON structure. NaSICON structures that can be used according to the invention are also described, for example, by Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha Velchuri, Vithal M, J Mater Sei 2011, 46, 2821-2837 .

NaSICON hat bevorzugt eine Struktur der Formel MI 1+2w+x-y+z MII w MIII x ZrIV 2-w-x-y MV y (SiO4)z (PO4)3-z. NaSICON preferably has a structure of the formula M I 1+2w+x-y+z M II w M III x Zr IV 2-wxy M V y (SiO 4 ) z (PO 4 ) 3-z.

MI ist ausgewählt aus Na+, Li+, bevorzugt Na+.M I is selected from Na + , Li + , preferably Na + .

M" ist ein zweiwertiges Metallkation, bevorzugt ausgewählt aus Mg2+, Ca2+, Sr2+, Ba2+, Co2+, Ni2+, bevorzugter ausgewählt aus Co2+, Ni2+.M" is a divalent metal cation preferably selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Co 2+ , Ni 2+ , more preferably selected from Co 2+ , Ni 2+ .

MIII ist ein dreiwertiges Metallkation, bevorzugt ausgewählt aus Al3+, Ga3+, Sc3+, La3+, Y3+, Gd3+, Sm3+, Lu3+, Fe3+, Cr3+, bevorzugter ausgewählt aus Sc3+, La3+, Y3+, Gd3+, Sm3+, besonders bevorzugt ausgewählt aus Sc3+, Y3+, La3+.M III is a trivalent metal cation, preferably selected from Al 3+ , Ga 3+ , Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , Lu 3+ , Fe 3+ , Cr 3+ , more preferably selected from Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , particularly preferably selected from Sc 3+ , Y 3+ , La 3+ .

MV ist ein fünfwertiges Metallkation, bevorzugt ausgewählt aus V5+, Nb5+, Ta5+.M V is a pentavalent metal cation, preferably selected from V 5+ , Nb 5+ , Ta 5+ .

Die römischen Indizes I, II, III, IV, V geben die Oxidationszahlen an, in der die jeweiligen Metallkationen vorliegen.
w, x, y, z sind reelle Zahlen, wobei gilt, dass 0 ≤ x < 2, 0 ≤ y < 2, 0 ≤ w < 2, 0 ≤ z < 3, und wobei w, x, y, z so gewählt werden, dass gilt 1 + 2w + x - y + z ≥ 0 und 2 - w - x - y ≥ 0.
The Roman indices I, II, III, IV, V indicate the oxidation numbers in which the respective metal cations are present.
w, x, y, z are real numbers, where 0 ≤ x < 2, 0 ≤ y < 2, 0 ≤ w < 2, 0 ≤ z < 3, and where w, x, y, z are so chosen become that 1 + 2w + x - y + z ≥ 0 and 2 - w - x - y ≥ 0.

NaSICON hat erfindungsgemäß noch bevorzugter eine Struktur der Formel Na(1 + v)Zr2SivP(3 - v)O12, wobei v eine reelle Zahl ist, für die 0 ≤ v ≤ 3 gilt. Am bevorzugtesten gilt v = 2.4More preferably, according to the invention, NaSICON has a structure of the formula Na (1+v) Zr 2 Si v P (3-v) O 12 , where v is a real number such that 0≦v≦3. Most preferably v = 2.4

Die Kathodenkammer KK <102> umfasst auch einen Zulauf ZKK <107> und einen Ablauf AKK <109>, der es ermöglicht, in die Kathodenkammer KK <102> Flüssigkeit, wie zum Beispiel die Lösung L2 <113>, zuzufügen und darin befindliche Flüssigkeit, wie zum Beispiel die Lösung L1 <115>, zu entfernen. Der Zulauf ZKK <107> und der Ablauf AKK <109> sind dabei so an der Kathodenkammer KK <102> angebracht, dass die Flüssigkeit beim Durchströmen der Kathodenkammer KK <102> die kathodische Elektrode EK <105> kontaktiert. Dies ist die Voraussetzung dafür, dass bei der Durchführung des erfindungsgemäßen Verfahrens gemäß dem zweiten Aspekt der Erfindung am Ablauf AKK <109> die Lösung L1 <115> erhalten wird, wenn die Lösung L2 <113> eines Alkalialkoholats XOR im Alkohol ROH durch KK <102> geleitet wird.The cathode chamber K K <102> also comprises an inlet Z KK <107> and an outlet A KK <109>, which allows liquid, such as the solution L 2 <113>, to flow into the cathode chamber K K <102>. to add and liquid contained therein, such as the solution L 1 <115> to remove. The inlet Z KK <107> and the outlet A KK <109> are attached to the cathode chamber K K <102> in such a way that the liquid contacts the cathodic electrode E K <105> as it flows through the cathode chamber K K <102>. This is the prerequisite for the solution L 1 <115> being obtained when the method according to the invention is carried out according to the second aspect of the invention at the outlet A KK <109> if the solution L 2 <113> of an alkali metal alkoxide XOR in the alcohol ROH is passed through K K <102>.

Die Anodenkammer KA <101 > umfasst auch einen Ablauf AKA <106>, der es ermöglicht, in der Anodenkammer KA <101 > befindliche Flüssigkeit, beispielsweise die wässrige Lösung L4 <116> zu entfernen. Daneben umfasst die Mittelkammer KM <103> einen Zulauf ZKM <108>, während KA <101> und KM <103> durch eine Verbindung VAM <112> miteinander verbunden sind, durch welche Flüssigkeit aus KM <103> in KA <101 > geleitet werden kann. Dadurch kann über den Zulauf ZKM <108> zu KM <103> eine Lösung L3 <114> gegeben und diese durch KM <103> geleitet werden, dann über VAM <112> in die Anodenkammer KA <101 >, und schließlich durch die Anodenkammer KA <101 > geleitet werden. VAM <112> und der Ablauf AKA <106> sind dabei so an der Anodenkammer KA <101 > angebracht, dass die Lösung L3 <114> beim Durchströmen der Anodenkammer KA <101 > die anodische Elektrode EA <104> kontaktiert. Dies ist die Voraussetzung dafür, dass bei der Durchführung des erfindungsgemäßen Verfahrens gemäß dem zweiten Aspekt der Erfindung am Ablauf AKA <106> die wässrige Lösung L4 <116> erhalten wird, wenn die Lösung L3 <114> zuerst durch KM <103>, dann VAM <112>, dann KA <101 > geleitet wird.The anode chamber K A <101> also includes an outlet A KA <106>, which makes it possible to remove liquid located in the anode chamber K A <101>, for example the aqueous solution L 4 <116>. In addition, the middle chamber K M <103> includes an inlet Z KM <108>, while K A <101> and K M <103> are connected to one another by a connection V AM <112>, through which liquid from K M <103> can be directed into K A <101 >. As a result, a solution L 3 <114> can be added to K M <103> via the inlet Z KM <108> and this can be conducted through K M <103>, then via V AM <112> into the anode chamber K A <101> , and finally through the anode chamber K A <101 >. V AM <112> and the drain A KA <106> are attached to the anode chamber K A <101> in such a way that the solution L 3 <114> when flowing through the anode chamber K A <101> the anodic electrode E A <104 > contacted. This is the prerequisite for the aqueous solution L 4 <116> being obtained when the method according to the invention is carried out according to the second aspect of the invention at the outflow A KA <106> if the solution L 3 <114> is first divided by K M <103>, then V AM <112>, then K A <101>.

Die Zuläufe ZKK <107>, ZKM <108>, ZKA <119> und Abläufe AKK <109>, AKA <106>, AKM <118> können nach dem Fachmann bekannten Verfahren an der Elektrolysezelle E <100> angebracht werden.The inflows Z KK <107>, Z KM <108>, Z KA <119> and outflows A KK <109>, A KA <106>, A KM <118> can be processed according to methods known to those skilled in the art on the electrolytic cell E <100 > be attached.

Die Verbindung VAM <112> kann innerhalb der Elektrolysezelle E <100> und/oder außerhalb der Elektrolysezelle E <100> ausgebildet sein.The connection V AM <112> can be formed within the electrolytic cell E <100> and/or outside of the electrolytic cell E <100>.

Ist die Verbindung VAM <112> innerhalb der Elektrolysezelle E <100> ausgebildet, wird sie bevorzugt durch mindestens eine Perforation in der Diffusionsbarriere D <110> gebildet.If the connection V AM <112> is formed within the electrolytic cell E <100>, it is preferably formed by at least one perforation in the diffusion barrier D <110>.

Ist die Verbindung VAM <112> außerhalb der Elektrolysezelle E <100> ausgebildet, wird sie bevorzugt durch eine außerhalb der Elektrolysezelle E <100> verlaufende Verbindung von KM <103> und KA <101 > gebildet, insbesondere dadurch, dass in der Mittelkammer KM <103> ein Ablauf AKM <118> durch die Außenwand WA <117>, bevorzugt am Boden der Mittelkammer KM <103>, wobei noch bevorzugter der Zulauf ZKM <108> an der Oberseite der Mittelkammer KM <103> ist, gebildet wird, und in der Anodenkammer KA <101 > ein Zulauf ZKA <119> durch die Außenwand WA <117>, bevorzugt am Boden der Anodenkammer KA <101>, gebildet wird, und diese durch eine Leitung, beispielsweise ein Rohr oder ein Schlauch, der bevorzugt ein Material ausgewählt aus Gummi, Kunststoff umfasst, verbunden sind. Der Ablauf AKA <106> ist dann noch bevorzugter an der Oberseite der Anodenkammer KA <101 >.If the connection V AM <112> is formed outside of the electrolytic cell E <100>, it is preferably formed by a connection of K M <103> and K A <101> running outside of the electrolytic cell E <100>, in particular by the fact that in the middle chamber K M <103> an outlet A KM <118> through the outer wall W A <117>, preferably at the bottom of the middle chamber K M <103>, with the inlet Z KM <108> even more preferably at the top of the middle chamber K M <103> is formed, and in the anode chamber K A <101> an inlet Z KA <119> through the outer wall W A <117>, preferably at the bottom of the anode chamber K A <101>, and these are connected by a line, for example a pipe or a hose, which preferably comprises a material selected from rubber, plastic. The outlet A KA <106> is then even more preferably at the top of the anode chamber K A <101>.

Ablauf AKM <118> am Boden der Mittelkammer KM <103>" bedeutet, dass der Ablauf AKM <118> so an der Elektrolysezelle E <100> angebracht ist, dass die Lösung L3 <114> die Mittelkammer KM <103> gleichgerichtet mit der Schwerkraft verlässt.Outflow A KM <118> at the bottom of the middle chamber K M <103>" means that the outflow A KM <118> is attached to the electrolytic cell E <100> in such a way that the solution L 3 <114> fills the middle chamber K M <103> aligned with gravity.

"Zulauf ZKA <119> am Boden der Anodenkammer KA <101>" bedeutet, dass der Zulauf ZKA <119> so an der Elektrolysezelle E <100> angebracht ist, dass die Lösung L3 <114> in die Anodenkammer KA <101 > entgegen der Schwerkraft eintritt."Inlet Z KA <119> at the bottom of the anode chamber K A <101>" means that the inlet Z KA <119> is attached to the electrolytic cell E <100> in such a way that the solution L 3 <114> flows into the anode chamber K A <101 > occurs against gravity.

"Zulauf ZKM <108> an der Oberseite der Mittelkammer KM <103>" bedeutet, dass der Zulauf ZKM <108> so an der Elektrolysezelle E <100> angebracht ist, dass die Lösung L3 <114> in die Mittelkammer KM <103> gleichgerichtet mit der Schwerkraft eintritt."Inlet Z KM <108> at the top of the middle chamber K M <103>" means that the inlet Z KM <108> is attached to the electrolytic cell E <100> in such a way that the solution L 3 <114> enters the middle chamber K M <103> in the same direction as gravity.

"Ablauf AKA <106> an der Oberseite der Anodenkammer KA <101>" bedeutet, dass der Ablauf AKA <106> so an der Elektrolysezelle E <100> angebracht ist, dass die Lösung L4 <116> die Anodenkammer KA <101 > entgegen der Schwerkraft verlässt."Drain A KA <106> at the top of the anode chamber K A <101>" means that the drain A KA <106> is attached to the electrolytic cell E <100> in such a way that the solution L 4 <116> fills the anode chamber K A <101> leaves against gravity.

Diese Ausführungsform ist dabei besonders vorteilhaft und deshalb bevorzugt, wenn der Ablauf AKM <118> durch die Außenwand WA <117> am Boden der Mittelkammer KM <103>, und der Zulauf ZKA <119> durch die Außenwand WA <117> am Boden der Anodenkammer KA <101>, gebildet wird. Durch diese Anordnung ist es besonders einfach möglich, in der Anodenkammer KA gebildete Gase mit L4 <116> aus der Anodenkammer KA <101 > abzuleiten, um diese dann weiter abzutrennen.This embodiment is particularly advantageous and therefore preferred if the outlet A KM <118> through the outer wall WA <117> at the bottom of the middle chamber KM <103>, and the inlet Z KA <119> through the outer wall WA <117> at the bottom of the anode chamber K A <101>. This arrangement makes it particularly easy to discharge gases with L 4 <116> formed in the anode chamber K A from the anode chamber K A <101> in order to then separate them further.

Wenn die Verbindung VAM <112> außerhalb der Elektrolysezelle E <100> ausgebildet ist, sind insbesondere ZKM <108> und AKM <118> an gegenüberliegenden Seiten der Außenwand WA <117> der Mittelkammer KM <103> angeordnet (also z.B. ZKM <108> am Boden und AKM <118> an der Oberseite der Elektrolysezelle E <100> oder umgekehrt) und ZKA <119> und AKA <106> an gegenüberliegenden Seiten der Außenwand WA <117> der Anodenkammer KA <101> angeordnet (also ZKA <119> am Boden und AKA <106> an der Oberseite der Elektrolysezelle E <100> oder umgekehrt), wie es insbesondere in Abbildung 1 gezeigt ist. Durch diese Geometrie muss L3 <114> die beiden Kammern KM <103> und KA <101 > durchströmen. Dabei können ZKA <119> und ZKM <108> an derselben Seite der Elektrolysezelle E <100> ausgebildet sein, wobei dann automatisch auch AKM <118> und AKA <106> an derselben Seite der Elektrolysezelle E <100> ausgebildet sind. Alternativ können wie in Abbildung 1 gezeigt, ZKA <119> und ZKM <108> an gegenüberliegenden Seiten der Elektrolysezelle E <100> ausgebildet sein, wobei dann automatisch auch AKM <118> und AKA <106> an gegenüberliegenden Seiten der Elektrolysezelle E <100> ausgebildet sind.In particular, when the connection V AM <112> is formed outside the electrolytic cell E <100>, Z KM <108> and A KM <118> are arranged on opposite sides of the outer wall W A <117> of the central chamber K M <103> ( eg Z KM <108> at the bottom and A KM <118> at the top of the electrolytic cell E <100> or vice versa) and Z KA <119> and A KA <106> on opposite sides of the outer wall W A <117> of the Anode chamber K A <101> arranged (i.e. Z KA <119> on the bottom and A KA <106> on the top of the electrolytic cell E <100> or vice versa), as is particularly the case in illustration 1 is shown. L 3 <114> must flow through the two chambers KM <103> and KA <101> through this geometry. In this case, Z KA <119> and Z KM <108> can be formed on the same side of the electrolytic cell E <100>, with A KM <118> and A KA <106> then automatically also being formed on the same side of the electrolytic cell E <100> are. Alternatively, as in illustration 1 shown, Z KA <119> and Z KM <108> may be formed on opposite sides of the electrolytic cell E <100>, then A KM <118> and A KA <106> are automatically also formed on opposite sides of the electrolytic cell E <100>.

Wenn die Verbindung VAM <112> innerhalb der Elektrolysezelle E <100> ausgebildet ist, kann dies insbesondere dadurch gewährleistet werden, dass eine Seite ("Seite A") der Elektrolysezelle E <100>, bei der es sich um die Oberseite oder den Boden der Elektrolysezelle E <100> handelt, bevorzugt wie in Abbildung 2 gezeigt um die Oberseite handelt, den Zulauf ZKM <108> und den Ablauf AKA <106> umfasst und die Diffusionsbarriere D <110> ausgehend von dieser Seite ("Seite A") sich in die Elektrolysezelle E <100> erstreckt, aber nicht ganz bis zur der der Seite A gegenüberliegenden Seite ("Seite B") der Elektrolysezelle E <100>, bei der es dann sich um den Boden bzw. die Oberseite der Elektrolysezelle E <100> handelt, reicht und dabei 50 % oder mehr der Höhe der Dreikammerzelle E <100>, bevorzugter 60 % bis 99 % der Höhe der Dreikammerzelle E <100>, noch bevorzugter 70 % bis 95 % der Höhe der Dreikammerzelle E <100>, noch mehr bevorzugter 80 % bis 90 % der Höhe der Dreikammerzelle E <100>, noch viel mehr bevorzugter 85 % der Höhe der Dreikammerzelle E <100> durchspannt. Dadurch dass die Diffusionsbarriere D <110> die Seite B der Dreikammerzelle E <100> nicht berührt, entsteht so ein Spalt zwischen Diffusionsbarriere D <110> und der Außenwand WA <117> der Seite B der Dreikammerzelle E <100>. Der Spalt ist dann die Verbindung VAM <112>. Durch diese Geometrie muss L3 <114> die beiden Kammern KM <103> und KA <101> vollständig durchströmen.In particular, when the connection V AM <112> is formed inside the electrolytic cell E <100>, this can be ensured by one side ("side A") of the electrolytic cell E <100>, which is the top or the bottom of the electrolytic cell E <100>, preferably as in Figure 2 shown is the top, comprises the inlet Z KM <108> and the outlet A KA <106> and the diffusion barrier D <110> extends from this side ("side A") into the electrolytic cell E <100>, but does not quite reach the opposite side of side A ("side B") of electrolytic cell E <100>, which is then the bottom or top of electrolytic cell E <100>, being 50% or more the height of the three-chamber cell E <100>, more preferably 60% to 99% of the height of the three-chamber cell E <100>, even more preferably 70% to 95% of the height of the three-chamber cell E <100>, even more preferably 80% to 90% of the height of the three-chamber cell E <100>, even more preferably 85% of the height of the three-chamber cell E <100>. Because the diffusion barrier D <110> does not touch side B of the three-chamber cell E <100>, a gap is created between the diffusion barrier D <110> and the outer wall WA <117> of side B of the three-chamber cell E <100>. The gap is then the connection V AM <112>. Due to this geometry, L 3 <114> must flow completely through the two chambers KM <103> and KA <101>.

Diese Ausführungsformen gewährleisten am besten, dass am säureempfindlichen Festelektrolyten die wässrige Salzlösung L3 <114> vorbeiströmt, bevor diese mit der anodischen Elektrode EA <104> in Kontakt kommt, wodurch es zur Bildung von Säuren kommt.These embodiments best ensure that the aqueous salt solution L 3 <114> flows past the acid-sensitive solid electrolyte before it comes into contact with the anodic electrode EA <104>, which leads to the formation of acids.

"Boden der Elektrolysezelle E <100>" ist erfindungsgemäß die Seite der Elektrolysezelle E <100>, durch die eine Lösung (z.B. L3 <114> bei AKM <118> in Abbildung 1) gleichgerichtet mit der Schwerkraft aus der Elektrolysezelle E austritt bzw. die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L2 <113> bei ZKK <107> in Abbildungen 1 und 2 und L3 <114> bei AKA <119> in Abbildung 1) der Elektrolysezelle E entgegen der Schwerkraft zugeführt wird."Bottom of the electrolytic cell E <100>" is, according to the invention, the side of the electrolytic cell E <100> through which a solution (e.g. L 3 <114> at A KM <118> in illustration 1 ) exits the electrolytic cell E in the same direction as gravity or the side of the electrolytic cell E through which a solution (e.g. L 2 <113> at Z KK <107> in Figures 1 and 2 and L 3 <114> at A KA <119> in illustration 1 ) of the electrolytic cell E is fed against gravity.

"Oberseite der Elektrolysezelle E" ist erfindungsgemäß die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L4 <116> bei AKA <106> und L1 <115> bei AKK <109> in Abbildungen 1 und 2) entgegen der Schwerkraft aus der Elektrolysezelle E austritt bzw. die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L3 <114> bei ZKM <108> in Abbildungen 1 und 2) der Elektrolysezelle E gleichgerichtet mit der Schwerkraft zugeführt wird.According to the invention, "top side of the electrolytic cell E " is the side of the electrolytic cell E through which a solution (eg L 4 <116> at A KA <106> and L 1 <115> at A KK <109> in Figures 1 and 2) is opposed exits the electrolytic cell E under gravity or the side of the electrolytic cell E through which a solution (e.g. L 3 <114> at Z KM <108> in Figures 1 and 2) is fed to the electrolytic cell E in the same direction as gravity.

Die Mittelkammer KM umfasst erfindungsgemäß Einbauten. Einbauten sind erfindungsgemäß im festen Aggregatzustand. Als solche Einbauten eignen sich jede dem Fachmann bekannten Gegenstände oder Strukturen, die ausreichend inert gegenüber den Elektrolysebedingungen sind.According to the invention, the central chamber K M includes built-in components. According to the invention, internals are in the solid state of aggregation. Any objects or structures known to those skilled in the art that are sufficiently inert to the electrolysis conditions are suitable as such internals.

Die Einbauten umfassen insbesondere mindestens ein Material ausgewählt aus Gummi; Kunststoff, der insbesondere aus Polystyrol, Polypropylen, PVC, PVC-C ausgewählt ist; Glas; Porzellan; Metall. Bei dem Metall handelt es sich insbesondere um ein Metall oder eine Legierung mehrerer Metalle ausgewählt aus Titan, Eisen, Molybdän, Chrom, Nickel, bevorzugt um eine Legierung umfassend mindestens zwei Metalle ausgewählt aus Titan, Eisen, Molybdän, Chrom, Nickel, noch bevorzugter um eine Stahllegierung umfassend neben Eisen mindestens ein weiteres Metall ausgewählt aus Titan, Molybdän, Chrom, Nickel handelt, und am bevorzugtesten handelt es sich um Edelstahl.The internals include in particular at least one material selected from rubber; Plastic chosen in particular from polystyrene, polypropylene, PVC, PVC-C; Glass; Porcelain; Metal. The metal is in particular a metal or an alloy of several metals selected from titanium, iron, molybdenum, chromium, nickel, preferably an alloy comprising at least two metals selected from titanium, iron, molybdenum, chromium, nickel, even more preferably a steel alloy comprising, in addition to iron, at least one other metal selected from titanium, molybdenum, chromium, nickel, and most preferably it is stainless steel.

Die Einbauten sind insbesondere ausgewählt aus strukturierten Packungen, unstrukturierten Packungen (Füllkörpern) und Böden, z.B. Glockenböden, Ventilböden, Tunnelböden, Thormann-Böden, Kreuzschlitzglockenböden oder Siebböden.The internals are selected in particular from structured packings, unstructured packings (packings) and trays, e.g. bubble-cap trays, valve trays, tunnel trays, Thormann trays, cross-recess bell-bottom trays or sieve trays.

Unstrukturierte Packungen sind im Allgemeinen Füllkörperschüttungen. Als Füllkörper werden üblicherweise Raschigringe, Pallringe, Berl-Sättel oder Intalox®-Sättel verwendet. Strukturierte Packungen werden zum Beispiel unter dem Handelsnamen Mellapack® der Firma Sulzer vertrieben.Unstructured packings are generally random packings. Raschig rings, Pall rings, Berl saddles or Intalox® saddles are usually used as packing. Structured packings are sold, for example, under the trade name Mellapack® from Sulzer.

Die Einbauten können lose in der Mittelkammer KM <103> sein, z.B. Kugeln <121>, etwa aus Glas, in einem Korb aus Drahtgestellt, wie in Abbildung 1 gezeigt.The internals can be loose in the central chamber K M <103>, e.g. balls <121>, perhaps made of glass, placed in a wire basket, as in illustration 1 shown.

Alternativ können die Einbauten auch befestigt sein, zum Beispiel am Festelektrolyten FK <111>, an der Diffusionsbarriere D <110> oder an der die Innenseite der Mittelkammer KM <103> begrenzenden Außenwand <117>. Die Befestigung kann durch dem Fachmann bekannte Verfahren erfolgen, z.B. durch Festschrauben, Klemmen, Kleben (Kunststoffkleber, PVC-Kleber).Alternatively, the internals can also be attached, for example to the solid electrolyte F K <111>, to the diffusion barrier D <110> or to the outer wall <117> delimiting the inside of the central chamber K M <103>. The attachment can be done by methods known to those skilled in the art, for example by screwing, clamping, gluing (plastic adhesive, PVC adhesive).

Dementsprechend sind die in Abbildung 2 gezeigten Zapfen <123-2> am Festelektrolyten FK <111>, die Zapfen <123-1> an der Diffusionsbarriere D <110> angebracht. Entsprechende Zapfen können auch an die Innenseite der Mittelkammer KM <103> begrenzenden Außenwand <117> angebracht werden, und bilden dann stalaktit- bzw. stalakmitartige Strukturen in der Mittelkammer.Accordingly, the in Figure 2 shown pin <123-2> on the solid electrolyte F K <111>, the pin <123-1> attached to the diffusion barrier D <110>. Corresponding pegs can also be attached to the outer wall <117> delimiting the inside of the central chamber K M <103>, and then form stalactite or stalactite-like structures in the central chamber.

Eine Befestigung der Einbauten am alkalikationenleitenden Festelektrolyten FK <111> oder an der Diffusionsbarriere D <110> kann beispielsweise dadurch geschehen, dass sie an einem Drahtgestell an der betreffenden Wand befestigt sind.The internals can be fastened to the alkali cation-conducting solid electrolyte F K <111> or to the diffusion barrier D <110>, for example, by fastening them to a wire frame on the relevant wall.

In einer bevorzugten Ausführungsform der Elektrolysezelle E <100> gemäß dem ersten Aspekt der Erfindung machen die Einbauten einen Anteil ζ von 1 bis 99 %, bevorzugter 10 bis 99 %, noch bevorzugter 40 bis 90 %, noch bevorzugter 50 bis 90 %, noch bevorzugter 60 bis 90 %, am bevorzugtesten 80 bis 90 % des von der Mittelkammer KM umfassten Volumens aus.In a preferred embodiment of the electrolytic cell E <100> according to the first aspect of the invention, the internals make up a proportion ζ of 1 to 99%, more preferably 10 to 99%, more preferably 40 to 90%, more preferably 50 to 90% 60 to 90%, most preferably 80 to 90% of the volume comprised by the central chamber K M .

Der Anteil ζ (in %) wird berechnet nach ζ = [(VO - VM)/ VO]*100.The proportion ζ (in %) is calculated according to ζ = [(V O - V M )/ V O ]*100.

Dabei ist VO das maximale Volumen an Flüssigkeit, z.B. dem Elektrolyten L3 <114>, den die Mittelkammer KM <103> aufnehmen kann, wenn sie keine Einbauten umfasst.In this case, V O is the maximum volume of liquid, for example the electrolyte L 3 <114>, which the central chamber K M <103> can hold if it does not include any internals.

Dabei ist VM das maximale Volumen an Flüssigkeit, z.B. dem Elektrolyten L3 <114>, den die Mittelkammer KM <103> aufnehmen kann, wenn sie Einbauten umfasst.In this case, V M is the maximum volume of liquid, for example the electrolyte L 3 <114>, which the middle chamber K M <103> can hold if it includes internals.

Es wurde überraschend festgestellt, dass die Einbauten in der Mittelkammer KM <103> zu Turbulenzen und Verwirbelungen im die Mittelkammer KM <103> während des erfindungsgemäßen Verfahrens durchströmenden Elektrolyten L3 <114> führen. Dadurch wird der Aufbau eines pH-Gradienten während der Elektrolyse verlangsamt oder ganz verhindert, was den säureempfindlichen Festelektrolyten FK <111> schont und so eine längere Laufzeit der Elektrolyse ermöglicht bzw. die Lebenszeit der Elektrolysezelle verlängert.It was surprisingly found that the installations in the middle chamber K M <103> lead to turbulence and turbulence in the electrolyte L 3 <114> flowing through the middle chamber K M <103> during the method according to the invention. This slows down or completely prevents the build-up of a pH gradient during the electrolysis, which protects the acid-sensitive solid electrolyte F K <111> and thus enables the electrolysis to run longer or prolongs the life of the electrolysis cell.

Es versteht sich von selbst, dass die Einbauten so in der Mittelkammer KM <103> angebracht werden, dass sie den Durchfluss des Elektrolyten L3 <114> durch die Mittelkammer KM <103> und die Anodenkammer KA <101 > in ausreichendem Maße ermöglichen bzw. nicht vollständig blockieren.It goes without saying that the internals are placed in the central chamber K M <103> in such a way that they allow the electrolyte L 3 <114> to flow through the central chamber K M <103> and the anode chamber K A <101> in a sufficient manner Allow dimensions or not completely block.

In einer bevorzugten Ausführungsform der erfindungsgemäßen Elektrolysezelle unterbrechen die Einbauten den direkten Weg in der Mittelkammer KM zwischen Zulauf ZKM <108> und Verbindung VAM <112>.In a preferred embodiment of the electrolytic cell according to the invention, the internals interrupt the direct path in the middle chamber K M between inlet Z KM <108> and connection V AM <112>.

Ob der direkte Weg zwischen Zulauf ZKM <108> und Verbindung VAM <112> in der Mittelkammer KM unterbrochen wird, wird mit dem folgenden "Fadentest" ermittelt:

  1. 1. Ein Faden wird durch die Öffnung geführt, durch welche der Zulauf ZKM <108> in die Mittelkammer KM mündet, und aus der Öffnung geführt, durch welche die Verbindung VAM <112> in die Mittelkammer KM mündet. Dabei ist der Faden so lang, dass seine Enden außerhalb der Mittelkammer KM liegen.
  2. 2. Auf das jeweilige Fadenende wird in entgegengesetzter Richtung eine Kraft ausgeübt, so dass sich der Faden strafft, ohne zu zerreißen.
  3. 3. Wenn es mindestens einen Faden gibt, der die Einbauten berührt, wenn er entsprechend den Schritten 1. und 2.in die Mittelkammer eingeführt und gestrafft wird, so ist das Merkmal, dass der direkte Weg zwischen Zulauf ZKM <108> und Verbindung VAM <112> in der Mittelkammer KM unterbrochen wird, erfüllt.
  4. 4. Wenn kein Faden, der, wenn er entsprechend den Schritten 1. und 2. in die Mittelkammer eingeführt und gestrafft wird, die Einbauten berührt, dann ist das Merkmal, dass der direkte Weg zwischen Zulauf ZKM <108> und Verbindung VAM <112> in der Mittelkammer KM unterbrochen wird, nicht erfüllt.
The following "thread test" is used to determine whether the direct path between inlet Z KM <108> and connection V AM <112> in the middle chamber KM is interrupted:
  1. 1. A thread is guided through the opening through which the inlet Z KM <108> opens into the middle chamber K M and out of the opening through which the connection V AM <112> opens into the middle chamber K M . The thread is so long that its ends lie outside the central chamber K M .
  2. 2. A force is applied in the opposite direction to the respective end of the thread so that the thread tightens without breaking.
  3. 3. If there is at least one thread that touches the internals when it is introduced into the middle chamber and tightened according to steps 1. and 2., then the feature is that the direct path between inlet Z KM <108> and connection V AM <112> in the middle chamber K M is interrupted.
  4. 4. If no thread touches the internals when it is introduced into the middle chamber and tightened according to steps 1. and 2., then the feature is that the direct path between inlet Z KM <108> and connection V AM <112> in the middle chamber K M is interrupted, not fulfilled.

Der Faden ist dabei insbesondere ausgewählt aus Nähgarn (z.B, von der Firma Gütermann), Angelschnur, Bindfaden.The thread is selected in particular from sewing thread (e.g. from the Gütermann company), fishing line, twine.

Am bevorzugtesten wir für den Fadentest eine Angelschnur mit einem Durchmesser von 0.2 mm genutzt, wie sie beispielsweise von den Firmen Hemingway oder Nexos vertrieben wird.A fishing line with a diameter of 0.2 mm, such as that sold by the companies Hemingway or Nexos, is most preferably used for the thread test.

4.2 Erfindungsgemäßes Verfahren 4.2 Method according to the invention

Das Verfahren gemäß dem zweiten Aspekt der Erfindung ist eines zur Herstellung einer Lösung L1 <115> eines Alkalimetallalkoholats XOR im Alkohol ROH in einer Elektrolysezelle E <100> gemäß dem ersten Aspekt der Erfindung.The method according to the second aspect of the invention is one for preparing a solution L 1 <115> of an alkali metal alkoxide XOR in the alcohol ROH in an electrolytic cell E <100> according to the first aspect of the invention.

Das Verfahren gemäß dem zweiten Aspekt der Erfindung umfasst die folgenden Schritte (a), (b) und (c), welche gleichzeitig ablaufen.The method according to the second aspect of the invention comprises the following steps (a), (b) and (c) occurring simultaneously.

Im Schritt (a) wird eine Lösung L2 <113> umfassend den Alkohol ROH, bevorzugt umfassend ein Alkalialkoholat XOR und Alkohol ROH, durch KK <102> geleitet. X ist ein Alkalimetallkation und R ein Alkylrest mit 1 bis 4 Kohlenstoffatomen.In step (a), a solution L 2 <113> comprising the alcohol ROH, preferably comprising an alkali metal alkoxide XOR and alcohol ROH, is passed through K K <102>. X is an alkali metal cation and R is an alkyl group of 1 to 4 carbon atoms.

Bevorzugt ist X aus der Gruppe bestehend aus Li+, K+, Na+, bevorzugter aus der Gruppe bestehend aus K+, Na+ ausgewählt. Am bevorzugtesten ist X = Na+.Preferably X is selected from the group consisting of Li + , K + , Na + , more preferably from the group consisting of K + , Na + . Most preferably X = Na + .

R ist bevorzugt aus der Gruppe bestehend aus n-Propyl, iso-Propyl, Ethyl, Methyl ausgewählt, bevorzugter aus der Gruppe bestehend aus Ethyl, Methyl ausgewählt. Am bevorzugtesten ist R Methyl.R is preferably selected from the group consisting of n-propyl, iso-propyl, ethyl, methyl, more preferably selected from the group consisting of ethyl, methyl. Most preferably R is methyl.

Die Lösung L2 <113> ist bevorzugt frei von Wasser. "Frei von Wasser" bedeutet erfindungsgemäß, dass das Gewicht des Wassers in der Lösung L2 <113> bezogen auf das Gewichts des Alkohols ROH in der Lösung L2 <113> (Massenverhältnis) ≤ 1 : 10, bevorzugter ≤ 1 : 20, noch bevorzugter ≤ 1 : 100, noch bevorzugter ≤ 0.5 : 100 ist.The solution L 2 <113> is preferably free of water. According to the invention, "free of water" means that the weight of the water in the solution L 2 <113>, based on the weight of the alcohol ROH in the solution L 2 <113> (mass ratio) ≦1:10, more preferably ≦1:20, more preferably ≦1:100, even more preferably ≦0.5:100.

Umfasst die Lösung L2 <113> XOR, so liegt der Massenanteil von XOR in der Lösung L2 <113>, bezogen auf die gesamte Lösung L2 <113>, insbesondere bei > 0 bis 30 Gew.-%, bevorzugt bei 5 bis 20 Gew.-%, noch bevorzugter bei 10 bis 20 Gew.-%, noch bevorzugter bei 10 bis 15 Gew.-%, am bevorzugtesten bei 13 bis 14 Gew.-%, am allerbevorzugtesten bei 13 Gew.-%.If the solution L 2 <113> includes XOR, the mass fraction of XOR in the solution L 2 <113>, based on the entire solution L 2 <113>, is in particular >0 to 30% by weight, preferably 5 to 20% by weight, more preferably at 10 to 20% by weight, even more preferably at 10 to 15% by weight, most preferably at 13 to 14% by weight, most preferably at 13% by weight.

Umfasst die Lösung L2 <113> XOR, so liegt in der Lösung L2 <113> insbesondere das Massenverhältnis von XOR zu Alkohol ROH im Bereich 1 : 100 bis 1 : 5, bevorzugter im Bereich 1 : 25 bis 3 : 20, noch bevorzugter im Bereich 1 : 12 bis 1 : 8, noch bevorzugter bei 1 : 10.If the solution L 2 <113> comprises XOR, then in the solution L 2 <113> in particular the mass ratio of XOR to alcohol ROH is still in the range from 1:100 to 1:5, more preferably in the range from 1:25 to 3:20 more preferably in the range 1:12 to 1:8, even more preferably at 1:10.

In Schritt (b) wird eine neutrale oder alkalische, wässrige Lösung L3 <114> eines Salzes S umfassend X als Kation durch KM <103>, dann über VAM <112>, dann durch KA <101 > geleitet.In step (b), a neutral or alkaline aqueous solution L 3 <114> of a salt S comprising X as a cation is passed through KM <103>, then over V AM <112>, then through KA <101>.

Das Salz S ist bevorzugt ein Halogenid, Sulfat, Sulfit, Nitrat, Hydrogencarbonat oder Carbonat von X, noch bevorzugter ein Halogenid.The salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.

Halogenide sind Fluoride, Chloride, Bromide, Jodide. Das bevorzugteste Halogenid ist Chlorid.Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.

Der pH der wässrigen Lösung L3 <114> ist dabei ≥ 7.0, bevorzugt im Bereich 7 bis 12, bevorzugter im Bereich 8 bis 11, noch bevorzugter 10 bis 11, am bevorzugtesten bei 10.5.The pH of the aqueous solution L 3 <114> is ≧7.0, preferably in the range from 7 to 12, more preferably in the range from 8 to 11, even more preferably from 10 to 11, most preferably at 10.5.

Der Massenanteil des Salzes S in der Lösung L3 <113> liegt dabei bevorzugt im Bereich > 0 bis 20 Gew.-%, bevorzugt 1 bis 20 Gew.-%, bevorzugter bei 5 bis 20 Gew.-%, noch bevorzugter bei 10 bis 20 Gew.-%, am bevorzugtesten bei 20 Gew.-%, bezogen auf die gesamte Lösung L3 <113>.The mass fraction of the salt S in the solution L 3 <113> is preferably in the range >0 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 20% by weight, even more preferably 10 to 20% by weight, most preferably at 20% by weight, based on the total solution L 3 <113>.

Es wurde überraschend festgestellt, dass es im Schritt (b) durch die Einbauten in der Mittelkammer KM <103> zu Turbulenzen und Verwirbelungen im die Mittelkammer KM <103> während des erfindungsgemäßen Verfahrens durchströmenden Elektrolyten L3 <114> kommt. Dadurch wird der Aufbau eines pH-Gradienten während der Elektrolyse verlangsamt oder ganz verhindert, was den säureempfindlichen Festelektrolyten FK <111> schont und so eine längere Laufzeit der Elektrolyse ermöglicht bzw. die Lebenszeit der Elektrolysezelle verlängert.It was surprisingly found that in step (b) the internals in the central chamber K M <103> result in turbulence and turbulence in the electrolyte L 3 <114> flowing through the central chamber K M <103> during the method according to the invention. This slows down or completely prevents the build-up of a pH gradient during the electrolysis, which protects the acid-sensitive solid electrolyte F K <111> and thus enables the electrolysis to run longer or prolongs the life of the electrolysis cell.

Im Schritt (c) wird dann eine Spannung zwischen EA <104> und EK <105> angelegt.In step (c) a voltage is then applied between E A <104> and E K <105>.

Dadurch kommt es zu einem Stromtransport von der Ladungsquelle zur Anode, zu einem Ladungstransport über Ionen zur Kathode und schließlich zu einem Stromtransport zurück zur Ladungsquelle. Die Ladungsquelle ist dem Fachmann bekannt und ist typischerweise ein Gleichrichter, der Wechselstrom in Gleichstrom umwandelt und über Spannungsumwandler bestimmte Spannungen erzeugen kann.This leads to a current transport from the charge source to the anode, to a charge transport via ions to the cathode and finally to a current transport back to the charge source. The charge source is known to those skilled in the art and is typically a rectifier that converts alternating current into direct current and can generate specific voltages via voltage converters.

Dies hat wiederum folgende Konsequenzen:

  • am Ablauf AKK <109> wird die Lösung L1 <115> erhalten, wobei die Konzentration von XOR in L1 <115> höher ist als in L2 <113>,
  • am Ablauf AKA <106> wird eine wässrige Lösung L4 <116> von S erhalten, wobei die Konzentration von S in L4 <116> geringer ist als in L3 <114>.
This in turn has the following consequences:
  • at the outlet A KK <109> the solution L 1 <115> is obtained, the concentration of XOR in L 1 <115> being higher than in L 2 <113>,
  • at outlet A KA <106> an aqueous solution L 4 <116> of S is obtained, the concentration of S in L 4 <116> being lower than in L 3 <114>.

Im Verfahren gemäß dem zweiten Aspekt der Erfindung wird insbesondere eine solche Spannung angelegt, dass so ein Strom fließt, so dass die Stromdichte (= Verhältnis des Stroms, der zur Elektrolysezelle fließt, zur Fläche des Festelektrolyten, die den in der Mittelkammer KM <103> befindlichen Anolyten kontaktiert) im Bereich von 10 bis 8000 A/ m2 liegt, bevorzugter im Bereich von 100 bis 2000 A/ m2 liegt, noch bevorzugter im Bereich von 300 bis 800 A/ m2, noch bevorzugter bei 494 A/ m2 liegt. Dies kann vom Fachmann standardmäßig bestimmt werden. Die Fläche des Festelektrolyten, die den in der Mittelkammer KM <103> befindlichen Anolyten kontaktiert beträgt insbesondere 0.00001 bis 10 m2, bevorzugt 0.0001 bis 2.5 m2, bevorzugter 0.0002 bis 0.15 m2, noch bevorzugter 2.83 cm2.In the method according to the second aspect of the invention, such a voltage is applied in particular that a current flows such that the current density (= ratio of the current flowing to the electrolytic cell to the area of the solid electrolyte, which corresponds to the area in the central chamber K M <103 > anolyte contacted) is in the range of 10 to 8000 A/ m 2 , more preferably in the range of 100 to 2000 A/ m 2 , even more preferably in the range of 300 to 800 A/ m 2 , even more preferably at 494 A/ m 2 lies. This can be determined by a person skilled in the art by default. The area of the solid electrolyte that contacts the anolyte located in the middle chamber K M <103> is in particular 0.00001 to 10 m 2 , preferably 0.0001 to 2.5 m 2 , more preferably 0.0002 to 0.15 m 2 , even more preferably 2.83 cm 2 .

Es versteht sich von selbst, dass der Schritt (c) des Verfahrens gemäß dem zweiten Aspekt der Erfindung dann durchgeführt wird, wenn beide Kammern KM <103> und KA <101 > mindestens teilweise mit L3 <114> beladen sind und KK <102> mit L2 <113> mindestens teilweise beladen ist.It goes without saying that step (c) of the method according to the second aspect of the invention is carried out when both chambers K M <103> and K A <101> are at least partially loaded with L 3 <114> and K K <102> is at least partially loaded with L 2 <113>.

Die Tatsache, dass in Schritt (c) ein Ladungstransport zwischen EA <104> und EK <105> stattfindet, impliziert, dass KK <102>, KM <103> und KA <101 > gleichzeitig mit L2 <113> bzw. L3 <114> so beladen sind, dass sie die Elektroden EA <104> und EK <105> soweit bedecken, dass der Stromkreislauf geschlossen ist.The fact that in step (c) charge transport takes place between E A <104> and E K <105> implies that K K <102>, K M <103> and K A <101 > simultaneously with L 2 <113> or L 3 <114> are loaded in such a way that they cover the electrodes EA <104> and EK <105> to such an extent that the current circuit is closed.

Das ist insbesondere dann der Fall, wenn kontinuierlich ein Flüssigkeitsstrom von L3 <114> durch KM <103>, VAM <112> und KA <101 > und ein Flüssigkeitsstrom von L2 <113> durch KK <102> geleitet wird und der Flüssigkeitsstrom von L3 <114> die Elektrode EA <104> und der Flüssigkeitsstrom von L2 <113> die Elektrode EK <105> mindestens teilweise, bevorzugt vollständig bedeckt.This is particularly the case when there is a continuous liquid flow from L 3 <114> through KM <103>, V AM <112> and KA <101> and a liquid flow from L 2 <113> through KK <102> and the liquid flow from L 3 <114> covers the electrode E A <104> and the liquid flow from L 2 <113> covers the electrode E K <105> at least partially, preferably completely.

Dadurch, dass der Strom des Elektrolyten L3 <114> auf die Einbauten in der Mittelkammer KM <103> trifft, kommt es in dieser Kammer nicht zur Ausbildung eines typischen pH-Gradienten. Dieser Effekt ist noch stärker, wenn die Einbauten den direkten Weg in der Mittelkammer KM zwischen Zulauf ZKM <108> und Verbindung VAM <112> unterbrechen, da diese Einbauten dann im Durchflussweg des Elektrolyten L3 <114> durch die Mittelkammer KM <103> liegen und den ungehinderten Durchfluss stören.Due to the fact that the flow of the electrolyte L 3 <114> hits the installations in the central chamber K M <103>, a typical pH gradient does not form in this chamber. This effect is even stronger if the fixtures interrupt the direct path in the middle chamber K M between the inlet Z KM <108> and the connection V AM <112>, since these fixtures are then in the flow path of the electrolyte L 3 <114> through the middle chamber K M <103> and disrupt the unhindered flow.

Dieser gewünschte Effekt wird bevorzugt im Verfahren gemäß dem zweiten Aspekt der Erfindung noch dadurch verstärkt, dass die Durchflussgeschwindigkeit des Elektrolyten L3 <114> durch die Mittelkammer KM <103> während der Durchführung des Schritts (b) variiert wird, wodurch weitere Turbulenzen erzeugt werden können, die die Ausbildung eines pH-Gradienten stören.This desired effect is preferably further enhanced in the method according to the second aspect of the invention in that the flow rate of the electrolyte L 3 <114> through the central chamber K M <103> is varied while step (b) is being carried out, thereby generating further turbulence which disturb the formation of a pH gradient.

In einer weiteren bevorzugten Ausführungsform wird das Verfahren gemäß dem zweiten Aspekt der Erfindung kontinuierlich durchgeführt, also Schritt (a) und Schritt (b) kontinuierlich durchgeführt und dabei gemäß Schritt (c) Spannung angelegt.In a further preferred embodiment, the method according to the second aspect of the invention is carried out continuously, ie step (a) and step (b) are carried out continuously and voltage is applied in accordance with step (c).

Nach Durchführung des Schrittes (c) wird am Ablauf AKK <109> die Lösung L1 <115> erhalten, wobei die Konzentration von XOR in L1 <115> höher ist als in L2 <113>. Wenn L2 <113> schon XOR umfasste, ist die Konzentration von XOR in L1 <115> bevorzugt um das 1.01 bis 2.2-fache, bevorzugter um das 1.04 bis 1.8-fache, noch bevorzugter um das 1.077 bis 1.4-fache, noch mehr bevorzugter um das 1.077 bis 1.08-fache höher als in L2 <113>, am bevorzugtesten um das 1.077-fache höher als in L2 <113>, wobei noch bevorzugter dabei der Massenanteil von XOR in L1 <115> und in L2 <113> im Bereich 10 bis 20 Gew.-%, noch mehr bevorzugter 13 bis 14 Gew.-% liegt.After step (c) has been carried out, solution L 1 <115> is obtained at outlet A KK <109>, the concentration of XOR in L 1 <115> being higher than in L 2 <113>. If L 2 <113> already comprised XOR, the concentration of XOR in L 1 <115> is preferably 1.01 to 2.2 fold, more preferably 1.04 to 1.8 fold, still more preferably 1.077 to 1.4 fold more preferably 1077 to 1.08 times higher than in L 2 <113>, most preferably 1077 times higher than in L 2 <113>, more preferably the mass fraction of XOR in L 1 <115> and in L 2 <113> is in the range of 10 to 20% by weight, more preferably 13 to 14% by weight.

Am Ablauf AKA <106> wird eine wässrige Lösung L4 <116> von S erhalten wird, wobei die Konzentration von S in L4 <116> geringer ist als in L3 <114>.At outlet A KA <106>, an aqueous solution L 4 <116> of S is obtained, the concentration of S in L 4 <116> being lower than that in L 3 <114>.

Die Konzentration des Kations X in der wässrigen Lösung L3 <114> liegt bevorzugt im Bereich 3.5 bis 5 mol/l, bevorzugter 4 mol/l. Die Konzentration des Kations X in der wässrigen Lösung L4 <116> ist bevorzugter 0.5 mol/l geringer als jene der jeweils eingesetzten wässrigen Lösung L3 <114>.The concentration of the cation X in the aqueous solution L 3 <114> is preferably in the range of 3.5 to 5 mol/l, more preferably 4 mol/l. The concentration of the cation X in the aqueous solution L 4 <116> is more preferably 0.5 mol/l lower than that of the aqueous solution L 3 <114> used in each case.

Insbesondere wird das Verfahren gemäß dem zweiten Aspekt der Erfindung bei einer Temperatur von 20 °C bis 70 °C, bevorzugt 35 °C bis 65 °C, bevorzugter 35 °C bis 60 °C, noch bevorzugter 35 °C bis 50 °C und einem Druck von 0.5 bar bis 1.5 bar, bevorzugt 0.9 bar bis 1.1 bar, bevorzugter 1.0 bar durchgeführt.In particular, the method according to the second aspect of the invention is carried out at a temperature of 20°C to 70°C, preferably 35°C to 65°C, more preferably 35°C to 60°C, even more preferably 35°C to 50°C and a pressure of 0.5 bar to 1.5 bar, preferably 0.9 bar to 1.1 bar, more preferably 1.0 bar.

Bei der Durchführung des erfindungsgemäßen Verfahrens entsteht in der Kathodenkammer KK <102> typischerweise Wasserstoff, der über den Ablauf AKK <109> aus der Zelle zusammen mit der Lösung L1 <115> abgeführt werden kann. Die Mischung aus Wasserstoff und Lösung L1 <115> kann dann in einer besonderen Ausführungsform der vorliegenden Erfindung nach dem Fachmann bekannten Verfahren aufgetrennt werden. In der Anodenkammer KA <101>, wenn es sich bei der eingesetzten Alkalimetallverbindung um ein Halogenid, insbesondere Chlorid handelt, kann Chlor oder ein anderes Halogengas entstehen, welches über den Ablauf AKK <106> aus der Zelle zusammen mit der Lösung L4 <116> abgeführt werden kann. Daneben kann auch Sauerstoff oder/und Kohlendioxid entstehen, was ebenso abgeführt werden kann. Die Mischung aus Chlor, Sauerstoff und/oder COz und Lösung L4 <116> kann dann in einer besonderen Ausführungsform der vorliegenden Erfindung nach dem Fachmann bekannten Verfahren aufgetrennt werden. Genauso kann dann nach Abtrennung der Gase Chlor, Sauerstoff und/oder COz von der Lösung L4 <116> diese nach dem Fachmann bekannten Verfahren voneinander abgetrennt werden.When the method according to the invention is carried out, hydrogen is typically produced in the cathode chamber K K <102>, which hydrogen can be discharged from the cell together with the solution L 1 <115> via the outlet A KK <109>. In a particular embodiment of the present invention, the mixture of hydrogen and solution L 1 <115> can then be separated by methods known to those skilled in the art. In the anode chamber K A <101>, if the alkali metal compound used is a halide, in particular chloride, chlorine or another halogen gas can be produced, which can escape from the cell via the outlet A KK <106> together with the solution L 4 <116> can be discharged. In addition, oxygen and/or carbon dioxide can also be formed, which can also be removed. In a particular embodiment of the present invention, the mixture of chlorine, oxygen and/or CO2 and solution L 4 <116> can then be separated by methods known to those skilled in the art. Likewise, after the gases chlorine, oxygen and/or CO2 have been separated from the solution L 4 <116>, these can be separated from one another by methods known to those skilled in the art.

Diese Ergebnisse waren überraschend und im Lichte des Standes der Technik nicht zu erwarten. Durch das erfindungsgemäße Verfahren wird der säurelabile Feststoffelektrolyt vor Korrosion geschützt, ohne dass dabei wie im Stand der Technik Alkoholatlösung aus dem Kathodenraum als Pufferlösung geopfert werden muss. Damit ist das erfindungsgemäße Verfahren effizienter als die in WO 2008/076327 A1 beschriebene Vorgehensweise, in der die Produktlösung für die Mittelkammer verwendet wird, was den Gesamtumsatz schmälert. Zusätzlich wird der säurelabile Festelektrolyt dadurch stabilisiert, dass die Ausbildung eines pH-Gradienten aufgrund der Einbauten verhindert wird.These results were surprising and not to be expected in the light of the prior art. The method according to the invention protects the acid-labile solid electrolyte from corrosion without having to sacrifice alcoholate solution from the cathode compartment as a buffer solution, as is the case in the prior art. The method according to the invention is thus more efficient than in WO 2008/076327 A1 described procedure in which the product solution is used for the middle chamber, which reduces the overall turnover. In addition, the acid-labile solid electrolyte is stabilized by preventing the formation of a pH gradient due to the internals.

Beispieleexamples Vergleichsbeispiel 1Comparative example 1

Natriummethylat (NM) wurde über einen kathodischen Prozess hergestellt, wobei in der Anodenkammer 20 Gew.-%-ige NaCl-Lösung (in Wasser) und in der Kathodenkammer 10 Gew.-%-ige methanolische NM-Lösung zugeführt werden. Dabei bestand die Elektrolysezelle aus drei Kammern, welcher jenen in Abbildung 1 gezeigten entsprach, außer dass die Elektrolysezelle keine Einbauten in der Mittelkammer aufwies, d.h. nicht den in Abbildung 1 gezeigten Drahtkorb <122> mit den Glaskugeln <121> umfasste. Die Verbindung zwischen Mittel- und Anodenkammer wurde durch einen Schlauch, der am Boden der Elektrolysezelle angebracht war, hergestellt. Die Anodenkammer und mittlere Kammer waren durch eine 2.83 cm2 Anionenaustauschermembran (Tokuyama AMX, Ammoniumgruppen auf Polymer) getrennt. Kathoden und Mittelkammer waren durch eine Keramik vom Typ NaSICON mit einer Fläche von 2.83 cm2 getrennt. Die Keramik hatte eine chemische Zusammensetzung der Formel Na3.4Zr2.0Si2.4P0.6O12.Sodium methylate (NM) was produced via a cathodic process, with 20% by weight NaCl solution (in water) being fed into the anode chamber and 10% by weight methanolic NM solution being fed into the cathode chamber. The electrolytic cell consisted of three chambers, which illustration 1 shown, except that the electrolytic cell had no internals in the middle chamber, ie not the in illustration 1 shown wire basket <122> with the glass balls <121>. The connection between the middle and anode chamber was made by a hose that was attached to the bottom of the electrolytic cell. The anode compartment and middle compartment were separated by a 2.83 cm 2 anion exchange membrane (Tokuyama AMX, ammonium groups on polymer). The cathode and middle chamber were separated by a ceramic of the NaSICON type with an area of 2.83 cm 2 . The ceramic had a chemical composition of the formula Na 3.4 Zr 2.0 Si 2.4 P 0.6 O 12 .

Der Anolyt wurde durch die mittlere Kammer in die Anodenkammer überführt. Die Durchflussrate des Anolyten betrug 1 l/h, jene des Katholyten betrug 90 ml/h, und es wurde ein Strom von 0.14 A angelegt. Die Temperatur betrug 35 °C. Die Elektrolyse wurde für 500 Stunden durchgeführt, wobei die Spannung konstant bei 5 V verblieb.The anolyte was transferred to the anode compartment through the middle compartment. The flow rate of the anolyte was 1 l/h, that of the catholyte was 90 ml/h and a current of 0.14 A was applied. The temperature was 35°C. The electrolysis was carried out for 500 hours with the voltage remaining constant at 5V.

Es wurde beobachtet, dass sich in der Mittelkammer über längere Zeit ein pH-Gradient ausbildete, was auf die Wanderung der Ionen zu den Elektroden im Zuge der Elektrolyse und die Ausbreitung der an der Anode in Folgereaktionen gebildeten Protonen zurückzuführen ist. Diese lokale Erhöhung des pH-Wertes ist unerwünscht, da er den Festelektrolyten angreifen kann und gerade bei sehr langen Laufzeiten zur Korrosion und Bruch des Festelektrolyten führen kann.It was observed that a pH gradient formed in the middle chamber over a longer period of time, which can be attributed to the migration of the ions to the electrodes in the course of the electrolysis and the propagation of the protons formed at the anode in subsequent reactions. This local increase in the pH value is undesirable since it can attack the solid electrolyte and can lead to corrosion and breakage of the solid electrolyte, especially over very long running times.

Vergleichsbeispiel 2Comparative example 2

Das Vergleichsbeispiel 1 wurde mit einer Zweikammerzelle umfassend nur eine Anoden- und eine Kathodenkammer, wobei die Anodenkammer durch die Keramik vom Typ NaSICON von der Kathodenkammer getrennt war, wiederholt. Somit enthielt diese Elektrolysezelle keine Mittelkammer. Dies schlägt sich in einer noch schnelleren Korrosion der Keramik im Vergleich zum Vergleichsbeispiel 1 nieder, was zu einem schnellen Anstieg der Spannungskurve führt. Bei einem Startwert der Spannung von < 5 V steigt diese innerhalb von 100 Stunden auf > 20 V.Comparative example 1 was repeated with a two-chamber cell comprising only an anode and a cathode chamber, the anode chamber being separated from the cathode chamber by the ceramic of the NaSICON type. Thus, this electrolytic cell did not contain a center chamber. This is reflected in an even more rapid corrosion of the ceramic compared to comparative example 1, which leads to a rapid rise in the stress curve. With an initial value of the voltage of < 5 V, this increases to > 20 V within 100 hours.

Erfinderisches Beispiel 1Inventive Example 1

Vergleichsbeispiel 1 wird wiederholt, wobei in die Mittelkammer ein Korb <122> aus Drahtgestell mit Glaskugeln <121 > gestellt wurde, welcher die dem NASICON-Festelektrolyten zugewandte Hälfte der Mittelkammer einnimmt. Durch diese Anordnung wird der gleichförmige Durchfluss des Elektrolyten durch die Mittelkammer durchbrochen, und es kommt zu Turbulenzen im Elektrolyten. Dadurch wird der Aufbau eines pH-Gradienten während der Elektrolyse erschwert.Comparative example 1 is repeated, with a basket <122> made of wire frame with glass balls <121> being placed in the middle chamber, which is facing the NASICON solid electrolyte occupies half of the central chamber. This arrangement disrupts the uniform flow of electrolyte through the center chamber and creates turbulence in the electrolyte. This makes it difficult for a pH gradient to build up during electrolysis.

Erfinderisches Beispiel 2Inventive example 2

Vergleichsbeispiel 1 wird wiederholt, wobei in der Mittelkammer KM <103> kegelförmige Strukturen <123-1> und <123-2> an der NASICON-Keramik bzw. der Diffusionsbarriere befestigt werden. Auch durch diese Anordnung wird der gleichförmige Durchfluss des Elektrolyten durch die Mittelkammer durchbrochen, und es kommt zu Turbulenzen. Dadurch wird der Aufbau eines pH-Gradienten während der Elektrolyse erschwert.Comparative example 1 is repeated, with conical structures <123-1> and <123-2> being attached to the NASICON ceramic or the diffusion barrier in the central chamber K M <103>. This arrangement also disrupts the uniform flow of electrolyte through the center chamber and creates turbulence. This makes it difficult for a pH gradient to build up during electrolysis.

ErgebnisResult

Durch die Verwendung einer erfindungsgemäßen Dreikammerzelle im erfindungsgemäßen Verfahren wird die Korrosion des Festelektrolyten verhindert, wobei gleichzeitig kein Alkalialkoholatprodukt für die Mittelkammer geopfert werden muss und die Spannung konstant gehalten wird. Diese Vorteile, die schon aus dem Vergleich der beiden Vergleichsbeispiele 1 und 2 ersichtlich sind, unterstreichen den überraschenden Effekt der vorliegenden Erfindung.The use of a three-chamber cell according to the invention in the method according to the invention prevents corrosion of the solid electrolyte, while at the same time no alkali alcoholate product has to be sacrificed for the middle chamber and the voltage is kept constant. These advantages, which are already apparent from the comparison of the two comparative examples 1 and 2, underscore the surprising effect of the present invention.

Daneben führt die Abmilderung bzw. Zerstörung des sich mit Fortgang der Elektrolyse aufbauenden pH-Gradienten durch die Verwirbelungen und Turbulenzen im Elektrolyten in der Mittelkammer zu einer Verlängerung der Lebensdauer der Elektrolysekammer. Dieser Gradient kann gerade bei sehr langen Laufzeiten die Elektrolyse weiter erschweren und zur Korrosion und letztendlich Bruch des Festelektrolyten führen. In der Ausführung gemäß erfindungsgemäßem Beispielen 1 und 2 wird dieser pH-Gradient zerstört, was zusätzlich zu den genannten Vorteilen, die eine Dreikammerzelle gegenüber einer Zweikammerzelle erbringt, die Stabilität des Festelektrolyten noch weiter erhöht.In addition, the weakening or destruction of the pH gradient that builds up as the electrolysis progresses due to the turbulence and turbulence in the electrolyte in the middle chamber leads to an extension of the service life of the electrolysis chamber. This gradient can make electrolysis even more difficult, especially in the case of very long running times, and can lead to corrosion and ultimately fracture of the solid electrolyte. In the embodiment according to Examples 1 and 2 according to the invention, this pH gradient is destroyed, which, in addition to the stated advantages that a three-chamber cell has over a two-chamber cell, further increases the stability of the solid electrolyte.

Claims (16)

  1. Electrolysis cell E <100> comprising at least one anode chamber KA <101>, at least one cathode chamber KK <102> and at least one interposed middle chamber KM <103>, wherein KA. <101> comprises an anodic electrode EA <104> and an outlet AKA <106>,
    wherein KK <102> comprises a cathodic electrode EK <105>, an inlet ZKK <107> and an outlet AKK <109>,
    wherein KM <103> comprises an inlet ZKM <108>, is divided from KA <101> by a diffusion barrier D <110> and is divided from KK <102> by an alkali metal cation-conducting solid-state electrolyte FK <111>,
    wherein KM <103> and KA <101> are connected to one another by a connection VAM <112> through which liquid can be routed from KM <103> into KA <101>,
    characterized in that the middle chamber KM <103> comprises internals, wherein the internals are configured to lead to turbulence and vortexing in an electrolyte L3 <114> that flows through the middle chamber KM <103>.
  2. Electrolysis cell E <100> according to Claim 1, wherein the alkali metal ion-conducting solid-state electrolyte FK <111> has a structure of the formula MI 1+2w+x-y+z MII w MIII x ZrIV 2-w-x-y MV y (SiO4)z (PO4)3-z,
    where MI is selected from Na+ and Li+,
    MII is a divalent metal cation,
    MIII is a trivalent metal cation,
    MV is a pentavalent metal cation,
    the Roman indices I, II, III, IV, V indicate the oxidation numbers in which the respective metal cations exist,
    and w, x, y, z are real numbers, where 0 ≤ x < 2, 0 ≤ y < 2, 0 ≤ w < 2, 0 ≤ z < 3,
    and where w, x, y, z are chosen such that 1 + 2w + x - y + z ≥ 0 and 2 - w - x - y ≥ 0.
  3. Electrolysis cell E <100> according to Claim 1 or 2, wherein the internals are selected from the group consisting of trays, structured packings, unstructured packings.
  4. Electrolysis cell E <100> according to any of Claims 1 to 3, wherein the internals comprise at least one material selected from rubber, plastic, glass, porcelain, metal.
  5. Electrolysis cell E <100> according to any of Claims 1 to 4, wherein the connection VAM <112> is formed within the electrolysis cell E <100>.
  6. Electrolysis cell E <100> according to any of Claims 1 to 5, wherein the internals account for a proportion ζ of 1% to 99% of the volume encompassed by the middle chamber KM,
    wherein ζ = V O V M / V O * 100 ,
    Figure imgb0003
    and wherein VO is the maximum volume of liquid that can be accommodated by the middle chamber KM <103> if it does not comprise internals,
    and wherein VM is the maximum volume of liquid that can be accommodated by the middle chamber KM <103> if it comprises internals.
  7. Electrolysis cell E <100> according to any of Claims 1 to 6, wherein the internals interrupt the direct pathway in the middle chamber KM between inlet ZKM <108> and connection VAM <112> according to the thread test stated in the description.
  8. Process for producing a solution L1 <115> of an alkali metal alkoxide XOR in the alcohol ROH in an electrolysis cell E <100> according to any of Claims 1 to 7,
    wherein the process comprises the following steps (a), (b) and (c) that proceed simultaneously:
    (a) a solution L2 <113> comprising the alcohol ROH is routed through KK <102>,
    (b) a neutral or alkaline, aqueous solution L3 <114> of a salt S comprising X as cation is routed through KM <103>, then via VAM <112>, then through KA <101>,
    (c) voltage is applied between EA <104> and EK <105>, which affords the solution L1 <115> at the outlet AKK <109>, with a higher concentration of XOR in L1 <115> than in L2 <113>,
    and which affords an aqueous solution L4 <116> of S at the outlet AKA <106>, with a lower concentration of S in L4 <116> than in L3 <114>,
    wherein X is an alkali metal cation and R is an alkyl radical having 1 to 4 carbon atoms.
  9. Process according to Claim 8, wherein X is selected from the group consisting of Li+, Na+, K+.
  10. Process according to Claim 8 or 9, wherein S is a halide, sulfate, sulfite, nitrate, hydrogencarbonate or carbonate of X.
  11. Process according to any of Claims 8 to 10, wherein R is selected from the group consisting of methyl and ethyl.
  12. Process according to any of Claims 8 to 11, wherein L2 <113> comprises the alcohol ROH and an alkali metal alkoxide XOR.
  13. Process according to Claim 12, wherein the mass ratio of XOR to alcohol ROH in L2 <113> is in the range from 1:100 to 1:5.
  14. Process according to Claim 12 or 13, wherein the concentration of XOR in L1 <115> is 1.01 to 2.2 times higher than in L2 <113>.
  15. Process according to any of Claims 8 to 14, which is performed at a temperature of 20 to 70°C and a pressure of 0.5 to 1.5 bar.
  16. Process according to any of Claims 8 to 15, wherein the flow rate of the electrolyte L3 <114> through the middle chamber KM <103> is varied during the performance of step (b).
EP21182470.1A 2021-06-29 2021-06-29 Three-chamber electrolysis cell for the production of alkali metal alcoholate Active EP4112780B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21182470.1A EP4112780B1 (en) 2021-06-29 2021-06-29 Three-chamber electrolysis cell for the production of alkali metal alcoholate
EP22735407.3A EP4363639A1 (en) 2021-06-29 2022-06-22 Three-chamber electrolytic cell for the production of alkali metal alkoxides
PCT/EP2022/066943 WO2023274796A1 (en) 2021-06-29 2022-06-22 Three-chamber electrolytic cell for the production of alkali metal alkoxides
US18/573,880 US20240337029A1 (en) 2021-06-29 2022-06-22 Three-chamber electrolytic cell for the production of alkali metal alkoxides
JP2023577604A JP2024523349A (en) 2021-06-29 2022-06-22 A three-compartment electrolytic cell for the production of alkali metal alkoxides.
KR1020237045183A KR20240023533A (en) 2021-06-29 2022-06-22 Three-chamber electrolytic cell for the production of alkali metal alkoxides
CN202280046253.5A CN117580977A (en) 2021-06-29 2022-06-22 Three-compartment electrolytic cell for producing alkali metal alkoxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21182470.1A EP4112780B1 (en) 2021-06-29 2021-06-29 Three-chamber electrolysis cell for the production of alkali metal alcoholate

Publications (2)

Publication Number Publication Date
EP4112780A1 EP4112780A1 (en) 2023-01-04
EP4112780B1 true EP4112780B1 (en) 2023-08-02

Family

ID=76708089

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21182470.1A Active EP4112780B1 (en) 2021-06-29 2021-06-29 Three-chamber electrolysis cell for the production of alkali metal alcoholate
EP22735407.3A Pending EP4363639A1 (en) 2021-06-29 2022-06-22 Three-chamber electrolytic cell for the production of alkali metal alkoxides

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP22735407.3A Pending EP4363639A1 (en) 2021-06-29 2022-06-22 Three-chamber electrolytic cell for the production of alkali metal alkoxides

Country Status (6)

Country Link
US (1) US20240337029A1 (en)
EP (2) EP4112780B1 (en)
JP (1) JP2024523349A (en)
KR (1) KR20240023533A (en)
CN (1) CN117580977A (en)
WO (1) WO2023274796A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024156567A1 (en) 2023-01-23 2024-08-02 Evonik Operations Gmbh Process for depolymerization of polyalkylene terephthalates in an extruder
WO2024156563A1 (en) 2023-01-23 2024-08-02 Evonik Operations Gmbh Process for depolymerizing polyalkylene terephthalates in mixtures with lower-melting polyolefins
WO2024156568A1 (en) 2023-01-23 2024-08-02 Evonik Operations Gmbh Process for depolymerization of polyalkylene terephthalates in an extruder

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD258143A3 (en) 1986-03-03 1988-07-13 Koethen Ing Hochschule ELECTROLYSIS CELL FOR FABRIC TRANSPORTED OR BY KINETICALLY SLOWED ELECTRODE REACTIONS
US4831146A (en) 1988-03-21 1989-05-16 Air Products And Chemicals, Inc. Process for preparing triacetone amine and other oxopiperidines
US5254227A (en) * 1989-06-16 1993-10-19 Olin Corporation Process for removing catalyst impurities from polyols
DE4233191C2 (en) 1992-01-16 1995-06-29 Huels Chemische Werke Ag Process for the production of alcoholates
US5389211A (en) 1993-11-08 1995-02-14 Sachem, Inc. Method for producing high purity hydroxides and alkoxides
US5425856A (en) * 1994-04-26 1995-06-20 Occidental Chemical Corporation Method of making alkali metal alcoholates
US5575901A (en) * 1995-01-31 1996-11-19 Sachem, Inc. Process for preparing organic and inorganic hydroxides or alkoxides or ammonia or organic amines from the corresponding salts by electrolysis
US6294066B1 (en) 1997-01-23 2001-09-25 Archer Daniels Midland Company Apparatus and process for electrodialysis of salts
US20080173540A1 (en) * 2003-12-11 2008-07-24 Joshi Ashok V Electrolytic Cell for Producing Alkali Alcoholates
US7824536B2 (en) 2003-12-11 2010-11-02 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
US7918986B2 (en) 2003-12-11 2011-04-05 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
US8075758B2 (en) 2003-12-11 2011-12-13 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
DE10360758A1 (en) 2003-12-23 2005-07-28 Degussa Ag Electrochemical production of alkali alcoholate, used as intermediate, reactant or catalyst in organic synthesis, uses sodium- or potassium-ion-conducting ceramic membrane separating anolyte containing salt and alcoholic catholyte
DE102005051162A1 (en) 2005-10-24 2007-04-26 Basf Ag Surface-structured membranes and catalyst-coated membranes and membrane-electrode assemblies thereof
JP4955015B2 (en) * 2005-12-20 2012-06-20 セラマテック・インク Electrolytic process of sodium hypochlorite production using Na ion conductive ceramic membrane
WO2007082092A2 (en) 2006-01-11 2007-07-19 Ceramatec, Inc. Synthesis of biodiesel using alkali ion conductive ceramic membranes
WO2009059315A1 (en) 2007-11-02 2009-05-07 Ceramatec, Inc Electrolytic process to separate alkali metal ions from alkali salts of glycerine
US20100044242A1 (en) 2008-08-25 2010-02-25 Sai Bhavaraju Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte
DE102010062804A1 (en) 2010-01-12 2011-07-14 Evonik Degussa GmbH, 45128 Process for the preparation of 1,1-diarylalkanes and derivatives thereof
US9611555B2 (en) * 2010-10-07 2017-04-04 Ceramatec, Inc. Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
EP2870277B1 (en) 2012-07-03 2021-04-14 Enlighten Innovations Inc. Apparatus and method of producing metal in a nasicon electrolytic cell
KR101719293B1 (en) 2015-01-13 2017-03-23 한국과학기술연구원 Porous Nafion membrane and method for preparing the same
DE102015013155A1 (en) 2015-10-09 2017-04-13 Forschungszentrum Jülich GmbH Electrolytic material with NASICON structure for solid sodium ion batteries and process for their preparation
US11105006B2 (en) * 2018-03-22 2021-08-31 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound
EP3885470B1 (en) * 2020-03-24 2023-06-28 Evonik Operations GmbH Method for producing alkaline metal alcaholates in a three-chamber electrolysis cell
EP3885471B1 (en) * 2020-03-24 2023-07-19 Evonik Operations GmbH Improved method for the preparation of sodium alcoholates

Also Published As

Publication number Publication date
EP4112780A1 (en) 2023-01-04
US20240337029A1 (en) 2024-10-10
JP2024523349A (en) 2024-06-28
EP4363639A1 (en) 2024-05-08
KR20240023533A (en) 2024-02-22
WO2023274796A1 (en) 2023-01-05
CN117580977A (en) 2024-02-20

Similar Documents

Publication Publication Date Title
EP3885470B1 (en) Method for producing alkaline metal alcaholates in a three-chamber electrolysis cell
EP3885471B1 (en) Improved method for the preparation of sodium alcoholates
EP4112780B1 (en) Three-chamber electrolysis cell for the production of alkali metal alcoholate
EP4043616B1 (en) Method for producing alkaline metal alcoholates in a three-chamber electrolysis cell
EP4112779B1 (en) Three-chamber electrolysis cell for the production of alkali metal alcoholate
EP4112778B1 (en) Three-chamber electrolysis cell for the production of alkali metal alcoholate
DE2844499C2 (en) Process for producing a halogen
DE69429531T2 (en) ELECTROLYTIC CELL FOR PRODUCING AN OXIDIZING GAS MIXTURE
DE2926560A1 (en) ELECTROLYSIS CELL, MEMBRANE ELECTRODE UNIT AND METHOD FOR PRODUCING HALOGEN AND ALKALIMETAL HYDROXIDE
DE2844496C2 (en) Process for producing halogen and alkali metal hydroxides
DE102015212503A1 (en) Reduction process and electrolysis system for electrochemical carbon dioxide recovery
DE2451847A1 (en) PROCESS FOR THE ELECTROLYTIC PRODUCTION OF METAL HYDROXIDE SOLUTIONS
DE2451846A1 (en) PROCESS FOR THE ELECTROLYTIC PRODUCTION OF METAL HYDROXIDE SOLUTIONS
DE2922275C2 (en) Process for chlorinating and brominating water in an electrolytic cell and apparatus therefor
WO2023016897A1 (en) Method for producing alkali metal alcoholates in an electrolytic cell
EP4124675B1 (en) Fracture-stable partition comprising solid electrolyte ceramics for electrolytic cells
WO2023030917A1 (en) Method for producing alkali metal alcoholates in an electrolysis cell
DE2434921C3 (en) Electrolysis cell and process for the electrolysis of ionizable chemical compounds
EP4124677A1 (en) Fracture-stable partition comprising solid electrolyte ceramics for electrolytic cells
EP1167579B1 (en) Chlor-alkali electrolytic process in membrane cells using non-purified salt
EP4399349A1 (en) Method for producing alkali metal alcoholates in an electrolysis cell
EP4399347A1 (en) Method for producing alkali metal alcoholates in an electrolysis cell
DE10004877A1 (en) Process and electrolysis cell for reducing corrosive components in liquids
WO2023193940A1 (en) Improved method for depolymerising polyethylene terephthalate
DE2409193C3 (en) Electrolysis cells and their use for chlor-alkali electrolysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001143

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021001143

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240619

Year of fee payment: 4