EP4111532A1 - Support d'antenne mobile - Google Patents

Support d'antenne mobile

Info

Publication number
EP4111532A1
EP4111532A1 EP21706971.5A EP21706971A EP4111532A1 EP 4111532 A1 EP4111532 A1 EP 4111532A1 EP 21706971 A EP21706971 A EP 21706971A EP 4111532 A1 EP4111532 A1 EP 4111532A1
Authority
EP
European Patent Office
Prior art keywords
rotation
axis
ring
antenna
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21706971.5A
Other languages
German (de)
English (en)
Inventor
Guillaume GILBERT
Jean-Luc GINESTET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exail SAS
Original Assignee
iXBlue SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by iXBlue SAS filed Critical iXBlue SAS
Publication of EP4111532A1 publication Critical patent/EP4111532A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/18Means for stabilising antennas on an unstable platform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons

Definitions

  • the present invention relates generally to the field of antennas, and more particularly that of satellite communication antennas, which require platforms stabilized with one or more degrees of freedom.
  • an antenna support comprising a base, at least one ring comprising means for securing an antenna element, means for guiding the ring in rotation about an axis of rotation , means for driving the crown in rotation around the axis of rotation, and means for determining the angular position of the crown around the axis of rotation.
  • the invention also relates to a vehicle, for example an airplane, comprising an antenna attached to an antenna support as mentioned above.
  • This platform is generally integrated into the antenna itself.
  • the present invention proposes a support for an antenna which is not integrated therein and which is therefore adaptive in the sense that it makes it possible to receive different antenna models.
  • the architecture of this support also has the advantage of being modular, in the sense that it allows to receive antennas of different dimensions by changing only the base and the crown, all of the other elements remaining virtually unchanged.
  • the proposed support can also have a very small thickness (measured along the axis of rotation), so that it can be easily used in the aeronautical field since it will generate, once placed under a radome of dimensions also reduced, very low drag.
  • each cassette is mounted so as to pivot on the base, around a pivot axis parallel to the axis of rotation;
  • One of the cassettes is mounted to move in translation on the base along an inclined or orthogonal axis with respect to the axis of rotation (preferably radial with respect to this axis), said cassette being returned in the direction of the crown by a return system elastic ;
  • the drive means comprise a motor which drives a belt wound around the crown;
  • the drive means comprise two return pulleys located on both sides other side of the belt, between the motor and the crown wheel;
  • At least one of the return pulleys is mounted movable in translation on the support along an axis orthogonal to the axis of rotation and is biased against the belt by a tensioning system;
  • the determination means comprise an encoder strip wound around the crown
  • the invention also provides a set of two antenna supports as mentioned above, in which each ring of one of the antenna supports has a diameter distinct from that of each ring of the other of the supports. antenna, and in which the guide means, part of the drive means and part of the determination means are identical in the two antenna supports.
  • the invention also proposes a vehicle comprising propulsion means, an antenna and an antenna support as mentioned above.
  • FIG. 2 is a schematic perspective view of the base and the guide means of the antenna support of Figure 1;
  • FIG. 6 is a schematic perspective view of an aircraft equipped with the antenna support of Figure 1.
  • This base 10 is here pierced with tapped holes, part of which allows the components of the three stages of the antenna support 1 to be fixed therein.
  • rollers 311, 312, 321, 322, 331, 332 rotating which are distributed in pairs on three cassettes 313, 323, 333 mounted on the base 10.
  • each of these two parts 314, 315 comprises a wheel 316 which is designed to roll against the crown 20 and which is pierced in its center by an opening, and a tube 317 which borders this opening on one side uniquely.
  • These two parts 314, 315 are assembled by placing the two tubes 317 in the axis of one another, by threading a screw 318 through these tubes, and by screwing a nut at the end of this screw.
  • Each roller 311, 312 is rotatably mounted on the cassette 313 about an axis A3, A4.
  • ball bearings 319 are used here.
  • the two tubes 317 are fitted in the inner ring of the ball bearing 319.
  • the screw 318 acts as a clamp.
  • a bearing of the angular contact type could be used.
  • the screw 318 would then also have a function of preloading the bearing.
  • the locking of the crown 20 in height (along the axis of rotation A1) is here also provided by the rollers.
  • the outer face of the crown 20 is grooved at mid-height, which allows it to accommodate part of the determination means 50 in an area where the wheels 316 are not rolling.
  • the cassette 313 comprises a trapezoid-shaped body, with two openings 350 to accommodate the two aforementioned ball bearings 319 and a central hole 360, of axis A2 (hereinafter called axis pivot A2) parallel to axes A3, A4.
  • axis A2 hereinafter called axis pivot A2
  • each cassette 313, 323, 333 is for this purpose mounted on a base 361 which is screwed on the base 10 and whose height is adjusted so that the rollers hold the crown 20 at the desired height.
  • Each base 361 comprises a cylindrical stud (not visible in the figures) on which the central hole 360 of the cassette 313, 323, 333 is engaged. Screwing means are used here to block the wall 362 resting against the top of this. cylindrical stud, so as to block the cassette in height (along the pivot axis A2).
  • the three cassettes 313, 323, 333 are here regularly distributed around the axis of rotation A1, in that their pivot axes A2 are spaced apart angularly two by two of 120 degrees around the axis of rotation A1.
  • each cassette around its pivot axis A2 ensures that the six rollers come to rest against the ring 20, taking up any faults or assembly play (this mobility makes it possible to obtain a isostatic mounting).
  • a slide system 340 which comprises a movable arm 341 to which the cassette 333 is fixed, and a fixed hoop 342 which is fixed to the base 10.
  • This slide system 340 is equipped with elastic means, for example a spring (not visible in the figures) making it possible to return the rollers 331, 332 in the direction of the crown 20.
  • elastic means for example a spring (not visible in the figures) making it possible to return the rollers 331, 332 in the direction of the crown 20.
  • the rollers and the crown are made of materials which make it possible to reduce friction and whose resistance to contact pressures (in the sense of "Hertz pressure") is good.
  • the crown 20 receives a surface treatment by Hard Anodic Oxidation (OAD) with a Teflon sealing.
  • OAD Hard Anodic Oxidation
  • These training means could come in various forms. They could thus include a rack-and-pinion system or any other suitable system.
  • the preferred drive solution uses pulleys and a belt 450 wound around the crown 20.
  • the drive means 40 also include a motor 410 which drives the belt 450.
  • This motor 410 is flat so as not to generate space depending on the thickness of the antenna support 1 (that is to say - say according to the axis of rotation A1). It thus has a diameter greater than its thickness. It may, for example, be a "brushless" type motor.
  • this box is fixed to a tripod so that its output shaft points towards the base 10 and extends to the height of the crown 20.
  • the drive means In order to maximize the angular sector according to which the belt 450 is in contact with the driving pulley, the drive means also comprise two return pulleys 420, 430 located on either side of the belt 450, between engine 410 and crown 20.
  • One of these return pulleys 420 is mounted with a single degree of freedom, namely rotational mobility relative to the base 10 about an axis parallel to the axis of rotation A1.
  • the other of the return pulleys 430 is mounted on the base 10 with a single rotational mobility about an axis parallel to the axis of rotation A1 and a single translational mobility along an axis A6 orthogonal to the axis of rotation A1.
  • this axis A6 is chosen such that, in the absence of a return pulley, it would be perpendicular to the corresponding strand of the belt 450.
  • the axis A6 is median to the directions formed by the two taut and straight strands of the belt which are located on either side of the deflection pulley.
  • This other return pulley 430 is for this purpose equipped with a tensioner system 440 of identical architecture to that of the aforementioned slide system 340 (it thus comprises a movable arm which is mounted on the return pulley, a hoop fixed which is fixed to the base, and elastic return means of the return pulley 430 bearing against the belt 450).
  • This tensioner system 440 then makes it possible to force the belt 450 continuously so as to optimize the coefficient of adhesion between the belt 450 and the driving pulley to prevent any slippage. It also makes it possible to make up for the circularity dispersions of the pulleys and of the crown 20 as well as the differential expansions between the parts.
  • the preferred solution here for its precision and its cost is to use an encoder strip 530 wound around the ring 20, and two encoder readers 510, 520 fixed to the support 10 and angularly spaced from one another. around the axis of rotation A1.
  • the encoder readers 510, 520 are for their part suitable for measuring the magnetic field and therefore for detecting the variations in the magnetic field induced by the encoder strip 530 when the ring 20 rotates.
  • two separate encoder readers 510, 520 then makes it possible to measure the magnetic field in two separate locations, so that one of the two readers can permanently perform an exact measurement of the angular position of the crown 50 relative to the base 10 around the axis of rotation A1.
  • the two encoder readers 510, 520 are fixed on bases 511, 521 screwed to the base 10.
  • the second and third stages of the antenna support 1 have architectures homologous to that of the first stage described above.
  • the third stage comprises a third ring 20B on which can be fixed a third antenna element, third guide means 30B in rotation of the third ring 20B around the axis of rotation A1, third drive means 40B in rotation of the third ring gear 20B around the axis of rotation A1, and third means for determining the angular position of the third ring 20B around the axis of rotation A1.
  • the antenna support 1 is designed to accommodate an antenna of reduced dimensions (the diameter of its crowns is 300 mm).
  • the diameters of the drive pulleys may differ from one antenna support to another, which will make it possible to maintain the same reduction ratio and therefore the same control software for the two antenna supports. Provision can be made for the configuration of the control software to vary, to take account of the fact that the encoder will have a different resolution.
  • the belt is full, so that it could theoretically appear under certain operating conditions a slip between the belt and the driving pulley, one could alternatively use a perforated belt , a toothed ring gear and a toothed driving pulley, ensuring perfectly synchronous operation of the drive means.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

L'invention concerne un support d'antenne (1) comportant : - un socle (10), - au moins une couronne (20) comprenant des moyens d'assujettissement d'un élément d'antenne, - des moyens de guidage (30) en rotation de la couronne autour d'un axe de rotation (A1), - des moyens d'entraînement (40) en rotation de la couronne autour de l'axe de rotation, et - des moyens de détermination (50) de la position angulaire de la couronne autour de l'axe de rotation. Selon l'invention, les moyens de guidage, les moyens d'entraînement et les moyens de détermination sont montés sur le socle du côté extérieur de la couronne.

Description

SUPPORT D’ANTENNE MOBILE
DOMAINE TECHNIQUE DE L'INVENTION
[0001] La présente invention concerne de manière générale le domaine des antennes, et plus particulièrement celui des antennes de communication par satellite, lesquelles nécessitent des plateformes stabilisées à un ou plusieurs degrés de liberté.
[0002] Elle concerne plus particulièrement un support d’antenne comportant un socle, au moins une couronne comprenant des moyens d’assujettissement d’un élément d’antenne, des moyens de guidage en rotation de la couronne autour d’un axe de rotation, des moyens d’entraînement en rotation de la couronne autour de l’axe de rotation, et des moyens de détermination de la position angulaire de la couronne autour de l’axe de rotation.
[0003] L’invention concerne également un véhicule, par exemple un avion, comportant une antenne fixée à un support d’antenne tel que précité.
ETAT DE LA TECHNIQUE
[0004] Pour permettre à un avion de communiquer avec l’extérieur, il est connu de l’équiper d’une antenne plate à balayage mécanique adaptée à communiquer avec un satellite. [0005] Une telle antenne comprend une source d'émission d’un faisceau divergent et des moyens de guidage de ce faisceau dans une direction souhaitée. Ces moyens de guidage sont montés mobiles en rotation autour d’un axe, de façon que le faisceau puisse être constamment orienté vers le satellite souhaité, même lorsque l’avion change de cap ou d’altitude. [0006] Il est alors connu d’utiliser une plateforme stabilisée pour recevoir cette antenne plate à balayage mécanique, qui offre aux moyens de guidage précités la ou les mobilités en rotation souhaitées.
[0007] Cette plateforme est généralement intégrée à l’antenne elle-même.
PRESENTATION DE L'INVENTION [0008] La présente invention propose un support pour antenne qui n’est pas intégré à celle-ci et qui est donc adaptatif en ce sens qu’il permet de recevoir différents modèles d’antennes.
[0009] Plus particulièrement, on propose selon l’invention un support tel que défini dans l’introduction, dans lequel les moyens de guidage, les moyens d’entraînement et les moyens de détermination sont montés sur le socle du côté extérieur de la couronne.
[0010] Ainsi, grâce à l’invention, l’antenne peut être en tout ou partie fixée à l’intérieur de la couronne, ce qui lui offre une position idéale pour assurer sa fonction de communication avec un satellite et ce qui permet d’éviter qu’elle n’interfère avec les éléments du support.
[0011] L’architecture de ce support présente en outre l’avantage d’être modulaire, en ce sens qu’il permet de recevoir des antennes de dimensions différentes en ne changeant que le socle et la couronne, l’ensemble des autres éléments restant pratiquement inchangé.
[0012] Le support proposé peut en outre présenter une épaisseur (mesurée selon l’axe de rotation) très réduite, si bien qu’il peut être facilement employé dans le domaine aéronautique puisqu’il engendrera, une fois placé sous un radome de dimensions également réduites, une traînée très faible.
[0013] D’autres caractéristiques avantageuses et non limitatives du support d’antenne conforme à l’invention, prises individuellement ou selon toutes les combinaisons techniquement possibles, sont les suivantes :
- les moyens de guidage comportent au moins trois galets répartis autour de la couronne ;
- les moyens de guidage comportent six galets répartis par paires sur des cassettes montées sur le socle ;
- chaque cassette est montée mobile en pivotement sur le socle, autour d’un axe de pivot parallèle à l’axe de rotation ;
- une des cassettes est montée mobile en translation sur le socle selon un axe incliné ou orthogonal par rapport à l’axe de rotation (préférentiellement radial par rapport à cet axe), ladite cassette étant rappelée en direction de la couronne par un système de rappel élastique ;
- les moyens d’entraînement comportent un moteur qui entraîne une courroie enroulée autour de la couronne ;
- la courroie est entièrement métallique ;
- les moyens d’entraînement comportent deux poulies de renvoi situées de part et d’autre de la courroie, entre le moteur et la couronne ;
- l’une au moins des poulies de renvoi est montée mobile en translation sur le support selon un axe orthogonal à l’axe de rotation et est rappelée en appui contre la courroie par un système tendeur ;
- préférentiellement, cet axe est un axe médian par rapport aux orientations des deux brins droits et tendus de la courroie contre lesquels la poulie de renvoi s’appuie ;
- les moyens de détermination comportent une bande codeuse enroulée autour de la couronne ;
- les moyens de détermination comportent deux lecteurs codeurs fixés au support et écartés angulairement l’un de l’autre autour de l’axe de rotation ;
- il est prévu au moins une seconde couronne comprenant des moyens d’assujettissement d’un second élément d’antenne, des seconds moyens de guidage en rotation de la seconde couronne autour de l’axe de rotation, des seconds moyens d’entraînement en rotation de la seconde couronne autour de l’axe de rotation, et des seconds moyens de détermination de la position angulaire de la seconde couronne autour de l’axe de rotation ;
- les seconds moyens de guidage, les seconds moyens d’entraînement et les seconds moyens de détermination sont montés sur le socle du côté extérieur de la seconde couronne ;
- il est prévu au moins une troisième couronne comprenant des moyens d’assujettissement d’un troisième élément d’antenne, des troisièmes moyens de guidage en rotation de la troisième couronne autour de l’axe de rotation, des troisièmes moyens d’entraînement en rotation de la troisième couronne autour de l’axe de rotation, et des troisièmes moyens de détermination de la position angulaire de la troisième couronne autour de l’axe de rotation ;
- les troisièmes moyens de guidage, les troisièmes moyens d’entraînement et les troisièmes moyens de détermination sont montés sur le socle du côté extérieur de la troisième couronne.
[0014] L’invention propose également un set de deux supports d’antenne tels que précités, dans lequel chaque couronne de l’un des supports d’antenne présente un diamètre distinct de celui de chaque couronne de l’autre des supports d’antenne, et dans lequel les moyens de guidage, une partie des moyens d’entraînement et une partie des moyens de détermination sont identiques dans les deux supports d’antenne.
[0015] L’invention propose aussi un véhicule comportant des moyens de propulsion, une antenne et un support d’antenne tel que précité.
[0016] Bien entendu, les différentes caractéristiques, variantes et formes de réalisation de l'invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres.
DESCRIPTION DETAILLEE DE L'INVENTION
[0017] La description qui va suivre en regard des dessins annexés, donnés à titre d’exemples non limitatifs, fera bien comprendre en quoi consiste l’invention et comment elle peut être réalisée.
[0018] Sur les dessins annexés :
- la figure 1 est une vue schématique en perspective d’un support d’antenne conforme à l’invention ;
- la figure 2 est une vue schématique en perspective du socle et des moyens de guidage du support d’antenne de la figure 1 ;
- la figure 3 est une vue schématique en perspective d’une coupe d’un élément des moyens de guidage de la figure 2 ;
- la figure 4 est une vue schématique en perspective du socle et des moyens d’entraînement du support d’antenne de la figure 1 ;
- la figure 5 est une vue schématique en perspective du socle et des moyens de détermination du support d’antenne de la figure 1 ;
- la figure 6 est une vue schématique en perspective d’un avion équipé du support d’antenne de la figure 1.
[0019] Sur la figure 1, on a représenté un exemple de support d’antenne 1 conforme à l’invention.
[0020] Dans cet exemple, comme le montre la figure 6, le support d’antenne 1 est spécifiquement conçu pour être installé sous un radome 3 d’un avion 2, afin d’accueillir une antenne à balayage mécanique.
[0021] Bien entendu, en variante, ce support pourrait être utilisé dans tout autre type de véhicule (voiture, navire...) et même sur des infrastructures terrestres. Il pourrait en outre accueillir d’autres types d’antennes.
[0022] Le support d’antenne 1 est modulaire en ce sens qu’il peut accueillir des antennes ayant différents nombres de fonctions. Dans l’exemple illustré sur la figure 1, ce support d’antenne 1 comporte trois étages mobiles distincts, ce qui permet d’offrir trois fonctions à l’antenne, à savoir ici un réglage d’azimut (c’est-à- dire un réglage du cap visé), un réglage d’élévation (c’est-à-dire un réglage de hauteur visée), et un réglage de fréquence d’émission et de réception.
[0023] Bien entendu, en variante, il pourrait ne comporter qu’un seul étage et qu’une seule fonction, ou deux étages et deux fonctions, ou encore un nombre plus important d’étages et de fonctions. Toutefois, un nombre d’étages compris entre 1 et 3 sera préféré.
[0024] Enfin, ce support d’antenne 1 est modulable en ce sens qu’en changeant un nombre réduit de ses composants, il peut accueillir des antennes de formes et de dimensions variées.
[0025] Comme le montre la figure 1 , ce support d’antenne 1 comporte ici un socle 10 qui supporte, pour chacun des trois étages :
- une couronne 20,
- des moyens de guidage 30 en rotation de la couronne 20 autour d’un axe de rotation A1 ,
- des moyens d’entraînement 40 en rotation de la couronne 20 autour de l’axe de rotation A1 , et
- des moyens de détermination 50 de la position angulaire de la couronne 20 autour de l’axe de rotation A1.
[0026] Selon une caractéristique particulièrement avantageuse de l’invention, les moyens de guidage 30, les moyens d’entraînement 40 et les moyens de détermination 50 de chaque étage sont montés sur le socle 10, du côté extérieur de la couronne 20.
[0027] On entend par là que, la couronne 20 définissant un cylindre de révolution autour de l’axe de rotation A1, dont le rayon est égal au rayon minimum de la couronne 20, les moyens de guidage 30, les moyens d’entraînement 40 et les moyens de détermination 50 sont montés à l’extérieur de ce cylindre de révolution. [0028] L’élément d’antenne qui est porté par la couronne est quant à lui prévu pour être installé majoritairement à l’intérieur de ce cylindre de révolution.
[0029] On peut décrire en détail les différents éléments constituant le support d’antenne 1, en ne s’intéressant qu’à un seul des étages de ce support d’antenne 1 , les éléments des autres étages étant quasi-identiques. [0030] Le socle 10 est bien visible sur la figure 5.
[0031] Il se présente ici sous la forme d’une plaque annulaire, dont la forme générale est sensiblement de révolution autour de l’axe de rotation A1.
[0032] Il est donc défini entre un bord périphérique extérieur 11 et un bord périphérique intérieur 12 tous deux de formes circulaires.
[0033] Ce socle 10 est ici percé de trous taraudés, dont une partie d’entre eux permet d’y fixer les composants des trois étages du support d’antenne 1.
[0034] Comme le montre bien la figure 1, quatre de ces trous taraudés sont employés pour fixer au socle 10 deux poignées 90. Ces deux poignées 90, situées de façon diamétralement opposée, permettent ici une manipulation aisée du support d’antenne 1.
[0035] Le socle 10 est ici prévu pour être fixé au châssis du véhicule, c’est-à-dire ici à la structure de l’avion 2.
[0036] Il comporte à cet effet des trous situés à sa périphérie, qui permettent son vissage sur la structure de l’avion 2.
[0037] Comme le montre la figure 2, la couronne 20 présente une forme d’anneau, sensiblement de révolution autour de l’axe de rotation A1.
[0038] Elle comporte une bague extérieure 22 qui porte, en saillie de sa face interne, une nervure périphérique 21. La couronne présente ainsi une section transversale en forme de L (la base de ce L étant orientée vers l’axe de rotation A1 et formant la nervure périphérique 21).
[0039] Cette couronne 20 comprend des moyens d’assujettissement 25 d’un élément d’antenne.
[0040] Ces moyens d’assujettissement 25 sont préférentiellement prévus de façon à permettre de fixer l’élément d’antenne de manière amovible (c’est-à-dire non permanente) sur la couronne 20.
[0041] Ils se présentent ici sous la forme de trous taraudés pratiqués au travers de la nervure périphérique 21, selon des axes parallèles à l’axe de rotation A1. Ces trous taraudés sont ici régulièrement répartis autour de cet axe de rotation A1.
[0042] Pour des raisons de réduction de masse et de contraintes d’implantation, la couronne 20 présente un diamètre extérieur inférieur au diamètre intérieur du socle 10.
[0043] Les moyens de guidage 30, qui sont fixés au socle 10, sont alors prévus pour coopérer avec cette couronne 20 de façon à lui autoriser un seul degré de liberté, à savoir une mobilité de rotation autour de l’axe de rotation A1.
[0044] Ces moyens de guidage pourraient se présenter sous des formes très différentes. Ils pourraient ainsi être constitués de trois patins fixes ou de trois galets rotatifs répartis autour de la couronne 20.
[0045] Ici, ils comportent plutôt six galets 311, 312, 321, 322, 331, 332 rotatifs, qui sont répartis par paires sur trois cassettes 313, 323, 333 montées sur le socle 10.
[0046] Comme le montre la figure 3 sur laquelle l’un des galets 311 est représenté en coupe, chaque galet comporte deux parties 314, 315 quasi- identiques boulonnées l’une sur l’autre.
[0047] Ainsi, chacune de ces deux parties 314, 315 comporte une roue 316 qui est prévue pour venir rouler contre la couronne 20 et qui est percée en son centre par une ouverture, et un tube 317 qui borde cette ouverture d’un côté uniquement. [0048] Ces deux parties 314, 315 sont assemblées en plaçant les deux tubes 317 dans l’axe l’un de l’autre, en enfilant une vis 318 au travers de ces tubes, et en vissant un écrou à l’extrémité de cette vis.
[0049] L’une des parties de chaque galet comporte un chambrage pour laisser passer le corps de la vis 318 et l’autre partie comporte un trou taraudé dans lequel vient se serrer la vis. L’écrou sert de freinage mécanique pour éviter tout desserrage lié aux vibrations.
[0050] Chaque galet 311, 312 est monté rotatif sur la cassette 313 autour d’un axe A3, A4. Pour réduire au mieux les frottements entre la cassette 313 et les galets 311, 312, on utilise ici des roulements à billes 319.
[0051] Comme le montre la figure 3, la bague intérieure du roulement à billes 319 est montée sur les tubes 317 du galet 311 et est maintenue axialement par les deux roues 316. Sa bague extérieure est pour sa part engagée à l’intérieur d’une ouverture 350 prévue en correspondance dans la cassette 313.
[0052] En pratique, les deux tubes 317 sont ajustés dans la bague intérieure du roulement à bille 319. La vis 318 fait office de serrage. En variante, on pourrait utiliser un roulement du type à contact oblique. Dans cette variante, la vis 318 aurait alors en outre une fonction de précharge du roulement.
[0053] Pour bloquer axialement cette bague extérieure, l’ouverture 350 présente dans son fond un épaulement 351 qui forme une réduction de section. La cassette 313 comporte en outre une plaquette 352 qui est percée en son centre pour ne pas interférer avec le galet 311 et qui est vissée sur le corps de la cassette 313, de façon à bloquer la bague extérieure du roulement à bille 319 contre l’épaulement 351.
[0054] Les deux roues 316 de chaque galet 311, 312, 321, 322, 331, 332 sont prévues pour rouler le long de la face externe de la couronne 20, de façon à maintenir cette dernière centrée sur l’axe de rotation A1.
[0055] Le blocage de la couronne 20 en hauteur (le long de l’axe de rotation A1) est ici aussi assuré par les galets.
[0056] Pour cela, les deux arêtes de la face externe de la couronne 20 sont chanfreinées de façon à former des chemins pour les deux roues 316 de chaque galet 311, 312, 321, 322, 331, 332, qui maintiennent axialement entre elles la couronne 20.
[0057] On remarque ici que la face externe de la couronne 20 est rainurée à mi- hauteur, ce qui lui permet d’accueillir une partie des moyens de détermination 50 dans une zone où les roues 316 ne roulent pas.
[0058] Comme le montre la figure 3, la cassette 313 comporte un corps en forme de trapèze, avec deux ouvertures 350 pour accueillir les deux roulements à billes 319 précités et un trou central 360, d’axe A2 (ci-après appelé axe de pivot A2) parallèle aux axes A3, A4.
[0059] Ce trou central 360 est partiellement fermé du côté supérieur (à l’opposé du socle 10) par une paroi 362 percée en son centre. Il est ici utilisé pour monter la cassette 313 avec une unique mobilité sur le socle 10, à savoir une mobilité de pivotement par rapport au socle 10 autour de l’axe de pivot A2.
[0060] Comme le montre la figure 2, chaque cassette 313, 323, 333 est à cet effet montée sur une embase 361 qui est vissée sur le socle 10 et dont la hauteur est ajustée de façon à ce que les galets maintiennent la couronne 20 à la hauteur souhaitée. Chaque embase 361 comporte un plot cylindrique (non visible sur les figures) sur lequel est engagé le trou central 360 de la cassette 313, 323, 333. Des moyens de vissage sont ici employés pour bloquer la paroi 362 en appui contre le sommet de ce plot cylindrique, de façon à bloquer la cassette en hauteur (le long de l’axe de pivot A2).
[0061] Les trois cassettes 313, 323, 333 sont ici régulièrement réparties autour de l’axe de rotation A1, en ce sens que leurs axes de pivots A2 sont écartés angulairement deux à deux de 120 degrés autour de l’axe de rotation A1.
[0062] La mobilité de chaque cassette autour de son axe de pivot A2 permet d’assurer aux six galets de venir s’appliquer contre la couronne 20, en rattrapant d’éventuels défauts ou jeux de montage (cette mobilité permet d’obtenir un montage isostatique).
[0063] Dans ce même but, une seule des cassettes 333 est montée mobile en translation sur le socle 10 selon un axe A5 incliné ou orthogonal par rapport à l’axe de rotation A1 (voir figure 2). Ici, cette cassette 333 est montée mobile en translation selon une axe A5 perpendiculaire à l’axe de rotation A1.
[0064] On utilise pour cela un système de glissière 340 qui comporte un bras mobile 341 auquel est fixée la cassette 333, et un arceau fixe 342 qui est fixé au socle 10.
[0065] Le bras mobile 341 a plusieurs fonctions. Il sert tout d’abord d’embase pour la cassette 333. Il reçoit en outre la partie mobile d’une glissière à billes miniature (non visible sur les figures) qui guide son coulissement. La glissière comporte de son côté une partie fixe qui est fixée au socle 10, soit directement, soit via une rehausse.
[0066] Ce système de glissière 340 est équipé de moyens élastiques, par exemple d’un ressort (non visible sur les figures) permettant de rappeler les galets 331 , 332 en direction de la couronne 20.
[0067] En l’espèce, l’arceau fixe 342 a alors pour unique fonction de recevoir les ressorts et de délivrer la poussée sur le bras mobile 341 pour maintenir la couronne 20 en place.
[0068] Ce système de glissière 340 a pour avantage majeur de mettre les roulements à billes 319 en précharge (c’est-à-dire de les précontraindre radialement par rapport à l’axe de rotation A1), ce qui évite tout flottement dans le guidage de la couronne autour de l’axe de rotation A1. Il permet en outre de rattraper tout jeu entre les galets et la couronne 20, notamment en cas de variation de température.
[0069] Préférentiellement, les galets et la couronne sont réalisés dans des matériaux permettant de réduire les frottements et dont la tenue aux pressions de contact (au sens de la « pression de Hertz ») est bonne.
[0070] Ils sont en outre usinés de façon à présenter des rugosités très faibles, afin de réduire encore le frottement. [0071] Ici, la couronne 20 reçoit un traitement de surface par Oxydation Anodique Dure (OAD) avec un colmatage au téflon.
[0072] Les galets étant très petits au regard de la couronne 20, ils sont réalisés dans un alliage de titane de masse réduite et ayant une bonne tenue aux efforts. [0073] Les moyens d’entraînement 40 de la couronne 20 en rotation autour de l’axe de rotation A1 sont illustrés sur la figure 4.
[0074] Ces moyens d’entraînement pourraient se présenter sous diverses formes. Ils pourraient ainsi comporter un système de pignons-crémaillères ou tout autre système adéquat.
[0075] Ici, la solution d’entraînement préférée utilise des poulies et une courroie 450 enroulée autour de la couronne 20.
[0076] Cette courroie 450 est particulière en ce sens qu’elle est entièrement réalisée en matériau métallique. Elle se présente ici sous la forme d’une simple bande de métal de faible épaisseur.
[0077] Elle présente ainsi un coefficient de dilatation thermique proche de celui des poulies qui l’entrainent, une bonne tenue aux variations de températures, une masse réduite et une bonne tenue aux chocs.
[0078] Les moyens d’entraînement 40 comportent aussi un moteur 410 qui entraîne la courroie 450. Ce moteur 410 est plat de façon à ne pas générer d’encombrement selon l’épaisseur du support d’antenne 1 (c’est-à-dire selon l’axe de rotation A1). Il présente ainsi un diamètre supérieur à son épaisseur. Il peut par exemple s’agir d’un moteur de type « brushless ».
[0079] Ce moteur 410 comporte un boîtier duquel émerge un arbre de sortie équipé d’une poulie motrice (non visible sur la figure 4) sur laquelle s’enroule la courroie 450.
[0080] Tel que représenté sur la figure 4, ce boiter est fixé à un trépied de manière que son arbre de sortie pointe vers le socle 10 et s’étende à la hauteur de la couronne 20.
[0081] De façon à maximiser le secteur angulaire selon lequel la courroie 450 est au contact de la poulie motrice, les moyens d’entraînement comportent également deux poulies de renvoi 420, 430 situées de part et d’autre de la courroie 450, entre le moteur 410 et la couronne 20.
[0082] L’une de ces poulies de renvoi 420 est montée avec un unique degré de liberté, à savoir une mobilité de rotation par rapport au socle 10 autour d’un axe parallèle à l’axe de rotation A1.
[0083] L’autre des poulies de renvoi 430 est montée sur le socle 10 avec une unique mobilité de rotation autour d’un axe parallèle à l’axe de rotation A1 et une unique mobilité de translation selon un axe A6 orthogonal à l’axe de rotation A1. [0084] Ici, cet axe A6 est choisi de telle manière que, en l’absence de poulie de renvoi, il se trouverait perpendiculaire au brin correspondant de la courroie 450. Ainsi, l’axe A6 est médian aux directions formées par les deux brins tendus et rectilignes de la courroie qui se trouvent de part et d’autre de la poulie de renvoi. [0085] Cette autre poulie de renvoi 430 est à cet effet équipée d’un système tendeur 440 d’architecture identique à celui du système de glissière 340 précité (il comporte ainsi un bras mobile que lequel est montée la poulie de renvoie, un arceau fixe qui est fixé au socle, et des moyens élastiques de rappel de la poulie de renvoi 430 en appui contre la courroie 450).
[0086] Ce système tendeur 440 permet alors de contraindre la courroie 450 en continue de façon à optimiser le coefficient d’adhérence entre la courroie 450 et la poulie motrice pour éviter tout glissement. Il permet en outre de rattraper les dispersions de circularité des poulies et de la couronne 20 ainsi que les dilatations différentielles entre les pièces.
[0087] Sur la figure 5, on a plus précisément représenté les moyens de détermination 50 de la position angulaire de la couronne 50 par rapport au socle 10 autour de l’axe de rotation A1.
[0088] Ici encore, ces moyens de détermination pourraient se présenter sous différentes formes.
[0089] On aurait ainsi pu employer, en lieu et place du moteur 410 précité, un moteur pas-à-pas qui assure les fonctions de moyens d’entraînement et de moyens de détermination. On aurait aussi pu employer une roue codeuse située au contact de la couronne.
[0090] La solution préférée ici pour sa précision et son coût de revient consiste à utiliser une bande codeuse 530 enroulée autour de la couronne 20, et deux lecteurs codeurs 510, 520 fixés au support 10 et écartés angulairement l’un de l’autre autour de l’axe de rotation A1.
[0091] La bande codeuse 530 est ici une bande magnétique qui est placée dans la rainure prévue en creux dans la face externe de la couronne 20. Elle permet une mesure de la position angulaire de la couronne 20 sans contact, c’est-à-dire sans frottement ni usure.
[0092] Les lecteurs codeurs 510, 520 sont quant à eux adaptés à mesurer le champ magnétique et donc à détecter les variations du champ magnétique induites par la bande codeuse 530 lorsque la couronne 20 tourne.
[0093] La bande codeuse 530 présente en effet un motif magnétique qui se répète régulièrement sur sa longueur. Cette bande magnétique 530 est enroulée et collée sur la couronne 20. Ses extrémités en regard ou en contact génèrent alors une interruption de continuité du motif magnétique qui pourrait générer un défaut de mesure.
[0094] L’usage de deux lecteurs codeurs 510, 520 distincts permet alors de mesurer le champ magnétique en deux lieux distincts, de façon à ce que l’un des deux lecteurs puisse en permanence effectuer une mesure exacte de la position angulaire de la couronne 50 par rapport au socle 10 autour de l’axe de rotation A1. [0095] Ici, les deux lecteurs codeurs 510, 520 sont fixés sur des embases 511, 521 vissées au socle 10.
[0096] Ces deux embases 511 , 521 comportent ici des moyens de réglage de la position radiale des lecteurs codeurs 510, 520 (par rapport à l’axe de rotation A1), de façon à pouvoir ajuster la distance de lecture séparant ces derniers de la bande codeuse 530. Pour cela, les trous de réception des vis de fixation des embases 511, 521 présentent des formes oblongues permettant un réglage de la position radiale des lecteurs codeurs 510, 520.
[0097] Les deuxième et troisième étages du support d’antenne 1 présentent des architectures homologues de celle du premier étage décrit supra.
[0098] Ainsi, le deuxième étage comporte une seconde couronne 20A sur laquelle peut se fixer un second élément d’antenne, des seconds moyens de guidage 30A en rotation de la seconde couronne 20A autour de l’axe de rotation A1 , des seconds moyens d’entraînement 40A en rotation de la seconde couronne 20A autour de l’axe de rotation A1 , et des seconds moyens de détermination de la position angulaire de la seconde couronne 20A autour de l’axe de rotation A1. [0099] De la même façon, le troisième étage comporte une troisième couronne 20B sur laquelle peut se fixer un troisième élément d’antenne, des troisièmes moyens de guidage 30B en rotation de la troisième couronne 20B autour de l’axe de rotation A1, des troisièmes moyens d’entraînement 40B en rotation de la troisième couronne 20B autour de l’axe de rotation A1 , et des troisièmes moyens de détermination de la position angulaire de la troisième couronne 20B autour de l’axe de rotation A1.
[0100] Ici encore, ces moyens de guidage 30A, 30B, d’entraînement 40A, 40B et de détermination 50A, 50B sont montés sur le socle 10 du côté extérieur des couronnes 20, 20A, 20B.
[0101] Les moyens de guidage 30, 30A, 30B sont notamment conçus pour maintenir les trois couronnes 20, 20A, 20B les unes au-dessus des autres, en position superposée de façon coaxiale.
[0102] Les moyens de guidage 30A, 30B, d’entraînement 40A, 40B et de détermination 50A, 50B comportent pour cela des embases de fixation au socle 10 de hauteurs différentes, de façon à se trouver à la hauteur souhaitée.
[0103] On notera en outre que, comme le montre la figure 1, les moteurs 410, 410A, 410B d’entraînement des courroies ne sont pas tous orientés de la même façon, ceux entraînant les seconde et troisième couronnes 20A, 20B étant orientés de façon à ce que leurs poulies motrices 411 A, 411 B soient tournées vers le haut, à l’inverse de celui illustré sur la figure 4.
[0104] Comme cela a été exposé supra, le support d’antenne 1 est modulaire, en ce sens qu’il permet de recevoir des antennes de dimensions différentes en ne changeant qu’un nombre réduit de ses composants.
[0105] Dans l’exemple illustré sur les figures, le support d’antenne 1 est conçu pour accueillir une antenne de dimensions réduites (le diamètre de ses couronnes est de 300 mm).
[0106] On peut alors considérer un second support d’antenne, non représenté, permettant de recevoir une antenne de grande dimension (le diamètre de ses couronnes est de 600 mm).
[0107] Ces deux supports d’antenne comporteront des socles 10 et des couronnes 20, 20A, 20B de dimensions différentes. Leurs courroies et leurs bandes codeuses présenteront également des longueurs différentes.
[0108] En revanche, l’ensemble des autres composants de ces deux supports d’antennes pourront être identiques. Ils pourront ainsi utiliser les mêmes galets, les mêmes cassettes, les mêmes moteurs et poulies et les mêmes lecteurs codeurs.
[0109] Selon une variante préférentielle, les diamètres des poulies motrices pourront différer d’un support d’antenne à l’autre, ce qui permettra de conserver le même rapport de réduction et donc le même logiciel de pilotage pour les deux supports d’antenne. On pourra prévoir que le paramétrage du logiciel de pilotage varie, pour tenir compte du fait que le codeur aura une résolution différente.
[0110] Un autre avantage est de garantir un enroulement suffisant de la courroie autour de la poulie motrice. En effet, plus le diamètre de la couronne 20 est grand, plus il y a d’inertie (en conservant une section de couronne identique), ce qui implique de générer un couple d’entrainement supérieur.
[0111] Les hauteurs de ces deux supports d’antenne seront alors les mêmes, ce qui permettra de minimiser le profil aérodynamique et donc la traînée générée par ces deux supports d’antennes.
[0112] La présente invention n’est nullement limitée au mode de réalisation décrit et représenté, mais l’homme du métier saura y apporter toute variante conforme à l’invention.
[0113] Ainsi, si dans l’exemple décrit et illustré, la courroie est pleine, de sorte qu’il pourrait théoriquement apparaître dans certaines conditions de fonctionnement un glissement entre la courroie et la poulie motrice, on pourrait en variante employer une courroie ajourée, une couronne crantée et une poulie motrice crantée, assurant un fonctionnement parfaitement synchrone des moyens d’entraînement.

Claims

REVENDICATIONS
[Revendication 1] Support d’antenne (1) comportant :
- un socle (10),
- au moins une couronne (20) comprenant des moyens d’assujettissement (25) d’un élément d’antenne,
- des moyens de guidage (30) en rotation de la couronne (20) autour d’un axe de rotation (A1),
- des moyens d’entraînement (40) en rotation de la couronne (20) autour de l’axe de rotation (A1), et
- des moyens de détermination (50) de la position angulaire de la couronne (20) autour de l’axe de rotation (A1), caractérisé en ce que les moyens de guidage (30), les moyens d’entraînement (40) et les moyens de détermination (50) sont montés sur le socle (10) du côté extérieur de la couronne (20).
[Revendication 2] Support d’antenne (1) selon la revendication précédente, dans lequel les moyens de guidage (30) comportent au moins trois galets (311, 312, 321 , 322, 331 , 332) répartis autour de la couronne (20).
[Revendication 3] Support d’antenne (1) selon la revendication précédente, dans lequel les moyens de guidage (30) comportent six galets (311, 312, 321, 322, 331, 332) répartis par paires sur des cassettes (313, 323, 333) montées sur le socle (10).
[Revendication 4] Support d’antenne (1) selon la revendication précédente, dans lequel chaque cassette (313, 323, 333) est montée mobile en pivotement sur le socle (10), autour d’un axe de pivot (A2) parallèle à l’axe de rotation (A1).
[Revendication 5] Support d’antenne (1) selon l’une des deux revendications précédentes, dans lequel l’une des cassettes (333) est montée mobile en translation sur le socle (10) selon un axe (A5) incliné ou orthogonal par rapport à l’axe de rotation (A1), ladite cassette (333) étant rappelée en direction de la couronne (20) par un système de rappel élastique (340).
[Revendication 6] Support d’antenne (1) selon l’une des revendications précédentes, dans lequel les moyens d’entraînement (40) comportent un moteur (410) qui entraîne une courroie (450) enroulée autour de la couronne (20).
[Revendication 7] Support d’antenne (1) selon la revendication précédente, dans lequel la courroie (450) est entièrement métallique.
[Revendication 8] Support d’antenne (1) selon l’une des deux revendications précédentes, dans lequel les moyens d’entraînement (40) comportent deux poulies de renvoi (420, 430) situées de part et d’autre de la courroie (450), entre le moteur (410) et la couronne (20).
[Revendication 9] Support d’antenne (1) selon la revendication précédente, dans lequel l’une au moins des poulies de renvoi (430) est montée mobile en translation sur le support (10) selon un axe (A6) orthogonal à l’axe de rotation (A1) et est rappelée en appui contre la courroie (450) par un système tendeur (440).
[Revendication 10] Support d’antenne (1) selon l’une des revendications précédentes, dans lequel les moyens de détermination (50) comportent une bande codeuse (530) enroulée autour de la couronne (20), et deux lecteurs codeurs (510, 520) fixés au support (10) et écartés angulairement l’un de l’autre autour de l’axe de rotation (A1).
[Revendication 11] Support d’antenne (1) selon l’une des revendications précédentes, dans lequel il est prévu :
- au moins une seconde couronne (20A) comprenant des moyens d’assujettissement d’un second élément d’antenne,
- des seconds moyens de guidage (30A) en rotation de la seconde couronne (20A) autour de l’axe de rotation (A1),
- des seconds moyens d’entraînement (40A) en rotation de la seconde couronne (20A) autour de l’axe de rotation (A1), et
- des seconds moyens de détermination de la position angulaire de la seconde couronne (20A) autour de l’axe de rotation (A1), et dans lequel les seconds moyens de guidage (30A), les seconds moyens d’entraînement (40A) et les seconds moyens de détermination sont montés sur le socle (10) du côté extérieur de la seconde couronne (20A).
[Revendication 12] Support d’antenne (1) selon la revendication précédente, dans lequel il est prévu :
- au moins une troisième couronne (20B) comprenant des moyens d’assujettissement d’un troisième élément d’antenne,
- des troisièmes moyens de guidage (30B) en rotation de la troisième couronne (20B) autour de l’axe de rotation (A1),
- des troisièmes moyens d’entraînement (40B) en rotation de la troisième couronne (20B) autour de l’axe de rotation (A1 ), et
- des troisièmes moyens de détermination de la position angulaire de la troisième couronne (20B) autour de l’axe de rotation (A1), et dans lequel les troisièmes moyens de guidage (30B), les troisièmes moyens d’entraînement (40B) et les troisièmes moyens de détermination sont montés sur le socle (10) du côté extérieur de la troisième couronne (20B).
[Revendication 13] Set de deux supports d’antenne (1) conforme à l’une des revendications précédentes, dans lequel chaque couronne de l’un des supports d’antenne (1) présente un diamètre distinct de celui de chaque couronne de l’autre des supports d’antenne (1), et dans lequel les moyens de guidage (30), une partie des moyens d’entraînement (40) et une partie des moyens de détermination (50) sont identiques dans les deux supports d’antenne (1).
[Revendication 14] Véhicule comportant des moyens de propulsion, une antenne et un support d’antenne conforme à l’une des revendications 1 à 12.
EP21706971.5A 2020-02-28 2021-02-25 Support d'antenne mobile Pending EP4111532A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002023A FR3107787B1 (fr) 2020-02-28 2020-02-28 Support d’antenne mobile
PCT/EP2021/054693 WO2021170723A1 (fr) 2020-02-28 2021-02-25 Support d'antenne mobile

Publications (1)

Publication Number Publication Date
EP4111532A1 true EP4111532A1 (fr) 2023-01-04

Family

ID=71661969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21706971.5A Pending EP4111532A1 (fr) 2020-02-28 2021-02-25 Support d'antenne mobile

Country Status (4)

Country Link
US (1) US20230078679A1 (fr)
EP (1) EP4111532A1 (fr)
FR (1) FR3107787B1 (fr)
WO (1) WO2021170723A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2085170B1 (fr) * 1969-12-23 1974-06-14 Automatisme Cie Gle
US5419521A (en) * 1993-04-15 1995-05-30 Matthews; Robert J. Three-axis pedestal
WO2010075109A1 (fr) * 2008-12-15 2010-07-01 Sea Tel, Inc. Socle pour antenne de poursuite
US8169377B2 (en) * 2009-04-06 2012-05-01 Asc Signal Corporation Dual opposed drive loop antenna pointing apparatus and method of operation
US8810464B2 (en) * 2011-05-11 2014-08-19 Anderson Aerospace Compact high efficiency intregrated direct wave mobile communications terminal

Also Published As

Publication number Publication date
FR3107787B1 (fr) 2022-03-25
WO2021170723A1 (fr) 2021-09-02
FR3107787A1 (fr) 2021-09-03
US20230078679A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
EP0226515B1 (fr) Table d'examen à déplacement longitudinal d'un panneau
EP0658704B1 (fr) Transmission à engrenages orbitaux et charge répartie
FR2541399A1 (fr) Joint homocinetique
FR2902454A1 (fr) Stator de turbomachine comportant un etage d'aubes de redresseurs actionnees par une couronne rotative a centrage automatique
FR2590638A1 (fr) Dispositif d'entrainement a vitesse variable a accouplement a billes
FR2624239A1 (fr) Mecanisme reducteur sans jeu utilisable notamment pour le reglage de diverses parties d'un siege de vehicule automobile
FR2614596A1 (fr) Pedale de bicyclette
EP3754225B1 (fr) Vérin électromécanique à capteur d'effort intégré
EP3291367B1 (fr) Système de montage de deux pièces dans un dispositif de transmission de mouvement
WO2006067597A2 (fr) Organe reglant pour mouvement d'horlogerie
FR2492483A1 (fr) Roulement a billes oblique a deux rangees de billes ayant des bagues interieure et exterieure en une seule piece
EP0828092B1 (fr) Procédé d'assemblage d'un réducteur épicycloidal et réducteur épicycloidal
FR2913078A1 (fr) Pivot traversant a lames.
EP4111532A1 (fr) Support d'antenne mobile
EP1505334A1 (fr) Système de plate-forme stabilisée
EP2313812B1 (fr) Mouvement pour piece d'horlogerie a dispositif de remontage automatique embarque
EP1178910B1 (fr) Dispositif de rappel au point neutre, en particulier pour volant
EP2333365A1 (fr) Entretoises à longueurs ajustées pour roulements
EP1029226B1 (fr) Dispositif de mesure d'un couple de torsion sur un element mecanique
EP3280003B1 (fr) Positionneur pour antenne
EP0383651B1 (fr) Procédé et dispositif de montage d'une partie tournante entre deux paliers sans jeux
FR2555661A1 (fr) Mecanisme a bras de levier a rapport variable
EP2261588B1 (fr) Dispositif de pointage en gisement d'une tourelle
CH708657A1 (fr) Balancier pour mouvement d'horlogerie à moment d'inertie ajustable.
EP1582612A2 (fr) Came complémentaire pour mécanique d'armure de métier à tisser et son procédé de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EXAIL

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)