EP4108831B1 - Road miller and method for controlling a road miller - Google Patents

Road miller and method for controlling a road miller Download PDF

Info

Publication number
EP4108831B1
EP4108831B1 EP22177023.3A EP22177023A EP4108831B1 EP 4108831 B1 EP4108831 B1 EP 4108831B1 EP 22177023 A EP22177023 A EP 22177023A EP 4108831 B1 EP4108831 B1 EP 4108831B1
Authority
EP
European Patent Office
Prior art keywords
milling
working direction
obstacle
milling drum
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22177023.3A
Other languages
German (de)
French (fr)
Other versions
EP4108831A1 (en
Inventor
Ole Edelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP4108831A1 publication Critical patent/EP4108831A1/en
Application granted granted Critical
Publication of EP4108831B1 publication Critical patent/EP4108831B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/0855Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools moved rectilinearly, e.g. scabblers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • E01C23/122Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus
    • E01C23/124Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus moved rectilinearly, e.g. road-breaker apparatus with reciprocating tools, with drop-hammers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • E01C23/122Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus
    • E01C23/127Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus rotary, e.g. rotary hammers

Definitions

  • the invention relates to a method for controlling a road milling machine comprising a milling drum and a rear blade when there is an obstacle in the ground to be milled.
  • the invention relates to a road milling machine for carrying out the method.
  • Generic road milling machines are used in road and path construction, for repairing and renewing roadways, squares and runways.
  • these are, for example, road milling machines, especially cold milling machines, for example of the tail rotor or center rotor type. They typically include a machine frame supported by driving devices, such as track drives or wheels.
  • the primary working tool of generic road milling machines is a milling drum mounted in a milling drum box so that it can rotate about an axis of rotation.
  • the milling drum is typically equipped with a hollow cylindrical jacket, on the outer peripheral surface of which a large number of milling tools, for example milling cutters, are arranged.
  • the milling drum is rotated around the axis of rotation so that the milling tools are driven into the ground and mill it away. How far the milling drum dips into the ground is determined by the milling depth specified by the operator, for example.
  • the milling depth can be achieved, for example, by a relative adjustment of the milling drum or the milling drum box relative to the machine frame.
  • the machine frame including the milling device can be adjustable in the vertical direction to the ground.
  • the milling drum is usually surrounded by the milling drum box, which is mounted, for example, on the machine frame and which can have a front shield, two side shields and a rear shield that is height-adjustable relative to the machine frame.
  • a so-called hold-down device can also be provided.
  • the hold-down device like the front shield, is arranged transversely to the working direction in front of the milling drum and the rear shield is arranged transversely to the working direction behind the milling drum, while the side shields house the milling drum laterally parallel to the working direction.
  • the height adjustment of the machine frame and/or the milling drum box and/or parts thereof can be controlled using a control device.
  • the milling drum box also serves to guide the milled material onto a conveyor device, for example a conveyor belt, from which the milled material is transferred to a transport vehicle, for example a truck, for transport. This can be done, for example, in the milling direction forwards or backwards.
  • a conveyor device for example a conveyor belt
  • transport vehicle for example a truck
  • the hold-down device When the road milling machine is in operation, the hold-down device is typically pressed from above onto the ground to be milled in the working direction in front of the milling drum, guided floating over it or held just above the ground. It serves to prevent large clods from breaking out of the ground to be milled and to ensure that the milling drum mills off sufficiently small pieces of milled material.
  • the front shield can have a transfer opening through which the milled material can emerge from the interior of the milling drum box onto the transport device. Such a transfer opening can also be provided in the rear shield.
  • the side shields close the milling drum box laterally, are typically guided gliding over the ground and prevent milled material from escaping to the side.
  • the rear shield in turn, similar to the hold-down device, is pressed from above onto the milled surface, also called the milling bed, in the working direction behind the milling drum, guided floating above it or held just above the milling bed. In this position, known as the working position, the rear blade shears off any protruding soil components remaining in the milling bed.
  • the rear shield also strips off milled material remaining in the milling bed and carries it with the road milling machine inside the milling drum box until it reaches the conveyor device during further operation.
  • the DE 10 2016 015499 A1 discloses a method for controlling a road milling machine, which includes a conveyor device with a primary conveyor belt and a secondary conveyor belt.
  • the road milling machine also has a milling drum cat, which includes height-adjustable side plates on the sides.
  • the milling drum cat is lowered until a milling drum arranged within the milling drum cat engages with a desired milling depth in the ground to be processed, with the road milling machine moving in the working direction for milling the ground.
  • the milling drum is raised together with the milling drum box from the milling position into a transport position and then lowered back into the milling position.
  • the US 10 2010 014695 A1 discloses a road milling machine for milling a soil in one working direction, the road milling machine having a machine frame on which a milling drum box with a front shield, two side shields and a height-adjustable rear shield is mounted. Furthermore, the road milling machine also includes a control device, via which the milling drum and the rear shield can be lifted when surface obstacles are encountered in the direction of travel.
  • the object of the present invention is to increase the economic efficiency of the milling process when there are obstacles in the ground to be milled.
  • the operator of the road milling machine should be relieved and the workload of the necessary post-processing should be reduced.
  • the lifting of the milling drum and the lifting of the rear shield each refer to a relative movement of the milling drum or the rear shield in the vertical direction relative to the ground or a virtual ground reference plane.
  • the milling drum can, for example, be designed to be height-adjustable within the milling drum box relative to the milling drum box. In this case, the milling drum can be raised independently of the rear blade and the rear blade can remain in the working position without having to be adjusted.
  • the rear shield may therefore be necessary for the rear shield to be extended downwards relative to the rest of the milling drum box during the lifting of the milling drum in order to remain in the working position in order to compensate for a vertical adjustment of the entire milling drum box.
  • the extension movement of the rear shield takes place during the lifting of the remaining milling drum box in such a way that the lifting movement of the remaining milling drum box is compensated for in the vertical direction.
  • the stroke adjustment of the rear shield is preferably controlled in such a way that it maintains its vertical position in relation to the ground surface while the rest of the milling drum box is being lifted.
  • the rear shield is adjusted relative to the milling drum and relative to the machine frame, but ideally it remains in the same relative position relative to the ground, specifically the working position. It is therefore not a case of “lifting out” the rear shield according to the invention.
  • cutting circles are defined by the milling tools, in particular by the chisel tips.
  • the cutting circles describe those Paths on which, for example, the chisel tips move together with the milling drum around the axis of rotation.
  • the cutting circles determine how much soil is removed by the milling drum at a certain vertical height or how great the milling depth ultimately is. If we are talking about a diameter of the milling drum, this means in particular the diameter of the largest cutting circle.
  • soil is removed along this cutting circle by the milling drum. Lifting the milling drum out of the ground therefore leaves an excavation area in which the milling depth of the milled track begins to decrease due to the lifting of the milling drum in the working direction.
  • the transition area In the excavation area there is typically a ramp or a transition area from the milling bed lying in the predetermined milling depth to the unmilled ground, whereby the transition area can essentially represent a negative of the milling drum circumferential section or of cutting circle segments of the milling drum when the milling drum is excavated, for example when the machine is stationary.
  • the creation of this ramp is due to the geometry of the milling drum and the cutting circles.
  • At the lowest point of the excavation or milling area it has a front edge.
  • the deepest point of the excavation area is the point immediately vertically below the axis of rotation of the milling drum at the position at which the milling drum is excavated. This front edge has the distance corresponding to the previous milling depth to the height of the unmilled ground surface.
  • the front edge of the excavation area is created at the position where the milling drum mills the ground to the full, specified milling depth before it is excavated. It therefore describes the transition from the ground milled to the full, specified milling depth or the milling bed floor to the ramp of the excavation area.
  • the rear shield should be excavated closer to the front edge of the excavation area in the working direction than in the prior art.
  • the position in the working direction at which the rear blade is moved vertically upwards from its working position or away from the milling bed floor and is thus lifted is referred to as the displacement point.
  • the rear shield is lifted at a displacement point along the working direction, which has a distance to the front edge of the excavation area that is smaller than a distance of the rear shield to the axis of rotation of the milling drum.
  • the milling drum and the rear shield are typically excavated at the same time, so that the distance of the displacement point of the prior art to the front edge of the excavation area is equal to the distance of the rear shield to the axis of rotation of the milling drum.
  • the distances mentioned always refer to the working direction.
  • the distance according to the invention between the said displacement point and the front edge of the excavation area corresponds in particular to a maximum of 75%, preferably a maximum of 50% and particularly preferably a maximum of 25%, of the distance of the rear shield to the axis of rotation of the milling drum in the working direction.
  • a particularly preferred alternative of the invention provides that the rear shield is lifted out at a displacement point along the working direction, which is located on, in particular directly on, the front edge. The rear shield is therefore preferably lifted out of the milling track at the same position in the working direction as the milling drum.
  • the ramp begins in the working direction behind the front edge of the excavation area, i.e. the depth of the milled track decreases.
  • the longer carrying of the rear shield in the working position compared to the prior art is already advantageous in relation to the smaller amount of milled material left behind in the milling bed.
  • the invention advantageously also provides for controlling the manner in which the rear shield is raised, so that the rear shield traverses a predetermined path of movement, also referred to below as a trajectory.
  • the lower edge of the rear shield facing the ground is used as a reference point for the movement path.
  • the movement path or trajectory of the rear shield is created by superimposing all the movements that the rear shield performs, for example a height adjustment in the vertical direction of the rear shield itself and the travel movement of the road milling machine in the working direction. It can also happen that the road milling machine accelerates or brakes.
  • Both the driving speed and in particular an acceleration of the road milling machine are preferably detected by sensors on the machine, so that these are available and also used for the control of the rear shield along the trajectory according to the invention.
  • the lifting of the rear shield is controlled in such a way that a lower edge of the rear shield facing the ground follows a predetermined trajectory during the lifting, taking into account the feed speed and in particular the acceleration of the road milling machine.
  • the trajectory begins when the tail blade is in the working position at the displacement point. she begins i.e. directly on or slightly above the milling bed at the displacement point where the lifting of the rear shield begins.
  • the trajectory ends in a raised position of the rear shield, in which the rear shield has been raised at least by the specified milling depth.
  • the rear shield can be guided over the obstacle in the working direction without damaging it or being damaged yourself.
  • the trajectory preferably also includes a movement of the rear shield in the working direction and therefore preferably ends in the working direction behind the excavation area, i.e. in the area of the unmilled ground or the obstacle.
  • the rear shield can either be guided floating over the obstacle, in particular without pressure, i.e. without being subjected to a tracking force in the vertical direction downwards towards the obstacle.
  • the rear shield is in contact with the obstacle, but slides along it without any damage.
  • the rear shield can be adjusted beyond the obstacle with a vertical safety distance, for example 2 cm, so that the rear shield can be guided over the obstacle without contact or floating.
  • the trajectory exclusively includes a vertically upward movement transverse to the working direction and a subsequent horizontal movement in the working direction.
  • the rear shield is adjusted in a single vertical movement between the working position and the raised position.
  • the movement vertically upward transverse to the working direction is not superimposed on a travel movement of the road milling machine in the working direction. The road milling machine is stopped for the adjustment of the rear blade and does not move in the working direction while the rear blade is adjusted vertically upwards from the working position to the raised position. Only then does the road milling machine and thus also the rear shield move again in the working direction.
  • the trajectory has the form of a single, particularly rectangular, step.
  • the trajectory can also have the shape of several, especially rectangular, steps.
  • the trajectory includes several stepwise movements vertically upwards transversely to the working direction, with the lower edge of the rear shield being moved horizontally in the working direction between the steps.
  • the horizontal movement in the working direction is achieved by the advance of the road milling machine.
  • the gradual vertical movements are not superimposed on a travel movement of the road milling machine in the working direction. This also means that the road milling machine is stopped during the vertical adjustment of the rear blade and does not move in the working direction.
  • the rear shield and in particular the lower edge of the rear shield is held closer to the ramp of the excavation area than, for example, by the single-stage trajectory. This works better the more stages are provided. It is therefore preferred that the trajectory comprises at least two, preferably at least three, particularly preferably at least four and very particularly preferably at least five stages. This makes it possible to at least partially carry the milled material carried by the rear shield further up the ramp in the excavation area and not leave it completely behind in the milling bed, where it requires complex post-processing.
  • the trajectory has at least one oblique movement, at the same time transverse to the working direction vertically upwards and horizontally in the working direction.
  • the adjustment of the rear shield in the vertical direction is superimposed on the forward movement of the road milling machine in the working direction.
  • this results in an at least partially oblique trajectory, in particular directed obliquely forward and upward. It is particularly preferred that the road milling machine moves in the working direction during the entire lifting of the rear shield.
  • the road milling machine is not stopped during excavation and continues to move in the working direction, creating a particularly fluid workflow.
  • the oblique movement can be used in both single-stage and multi-stage trajectories.
  • the steps of the trajectory are no longer rectangular, but rather have an obtuse angle.
  • the multi-stage design of the trajectory in which the lifting of the rear shield from the working position to the lifted position is divided into several, separate movements, it is preferred that all of these separate movements are designed obliquely. In other words, it is preferred that every movement of the rear blade in the vertical direction away from the milling bed floor is superimposed on a forward movement of the road milling machine.
  • the trajectory follows a ramp created by lifting the milling drum in the excavation area in such a way that the lower edge of the rear shield essentially rests on the surface of the ramp over the entire excavation area.
  • This embodiment requires particularly precise control of the vertical position of the rear shield and the feed speed of the road milling machine, in particular including its acceleration. These values for the movement of the rear shield and the road milling machine are therefore recorded by a control device.
  • the geometry of the milling drum is known in advance and is stored in the control device and/or can be entered into the control device.
  • All parameters are therefore known and are used by the control device to adjust the rear shield or are taken into account during the adjustment so that the rear shield follows the trajectory.
  • the lower edge of the rear shield can, for example, be subjected to a force directed vertically downwards onto the ground, as is usual in work operations, so that the lower edge of the rear shield scrapes the surface of the ramp.
  • the height position of the rear shield must be adjusted according to the ramp geometry so that the rear shield can actually follow the shape of the ramp and does not get stuck on it.
  • the rear shield is guided up the ramp in a sliding or floating manner without being pressed onto the ground.
  • the rear shield is in contact with the surface of the ramp, but is not actively subjected to a force directed towards the ground.
  • the trajectory follows the surface of the ramp.
  • the lower edge of the rear shield is guided floating along the ramp.
  • the embodiments mentioned all describe options in which the lower edge of the rear shield essentially rests on the surface of the ramp over the entire excavation area.
  • the lower edge of the rear shield and thus the rear shield itself is adjusted particularly close along the ramp between the working position and the raised position. In this way, a large part of the loose material to be milled in the milling drum box is transported up the ramp by the rear blade and does not remain in the milling bed. This results in significant time savings as there is no need for rework.
  • the method according to the invention can be carried out manually step by step by an operator by controlling the road milling machine accordingly.
  • at least step c), and in particular also steps d) and e) are carried out automatically, in particular triggered by a single control command from an operator.
  • the milling of the ground in normal operation according to step a) and the approach of the road milling machine to the obstacle according to step b) are carried out or controlled by the operator as usual.
  • the operator then positions the road milling machine as close as possible to the obstacle.
  • the operator simply enters a control command on the control device of the road milling machine, for example via a control element such as a switch or a touchscreen.
  • the lifting of the milling drum according to step c) is then carried out automatically by the control device of the road milling machine, with the rear shield and in particular the lower edge of the rear shield being guided in particular along the predetermined trajectory.
  • the operator can control driving over the obstacle again according to step d) and position the road milling machine behind the obstacle.
  • the lowering according to step e) is then preferably carried out automatically again by the control device, in particular the working parameters which were already present before the lifting according to c) are set here again. In this way, work can continue quickly and easily.
  • the operator can also enter the extent of the obstacle in the working direction in advance, for example on the control device. If the extent of the obstacle in the working direction is entered in advance by the operator, all steps c), d) and e) can be carried out automatically by a single control command from the operator, in particular by the control device. As already explained, the operator positions the road milling machine as close as possible to the obstacle. Then the operator simply issues the control command to the control device, whereupon it automatically lifts the milling drum according to step c), drives over the obstacle according to step d) and lowers the milling drum and the rear shield according to step e), without the The operator must continue to work for this.
  • the operator simply carries out normal milling work up to just in front of the obstacle, then issues the control command, whereupon the road milling machine automatically mills around the obstacle, and can then continue the milling work in the working direction behind the obstacle as normal. In this way, not only is rework minimized, but the workload on the operator of the road milling machine is also relieved during work.
  • the method according to the invention can be carried out by the operator of the road milling machine recognizing the obstacle in the ground to be milled and determining or specifying its extent in the working direction as the basis for automatic control.
  • the detection of the obstacle itself and also its dimensions, in particular the extent in the working direction can alternatively also be carried out by a sensor device.
  • a sensor device is arranged in front of the milling drum in the working direction and is designed to detect obstacles in the soil to be milled.
  • the sensor device can include, for example, an inductive, capacitive or magnetic sensor, for example a metal detector.
  • the sensor device can also include an optical sensor, for example a camera or a thermal imaging camera, or a sound sensor, for example an ultrasonic sensor. It is important that the sensor device is able to detect obstacles that lie within the milling width of the road milling machine or the milling drum. The detection range of the sensor device must therefore cover the entire milling width of the milling drum so that even laterally offset obstacles can be reliably detected.
  • the sensor device can, for example, also have several sensors, for example also several sensors of different types, for example distributed transversely to the working direction.
  • step c), and in particular also steps d) and e), are carried out automatically, triggered by the detection an obstacle through the sensor device.
  • steps c), d) and e) the extent of the obstacle in the working direction is particularly preferably determined by the sensor device. The sensor device therefore automatically detects a front edge of the obstacle in the working direction and a rear edge in the working direction and determines the extent of the obstacle in the working direction between these two edges.
  • the lifting of the milling drum according to step c), the driving over the obstacle according to step d) and the lowering of the milling drum and the rear shield according to step e) are then carried out automatically, without the operator having to take any further action. In particular, it is no longer even necessary for the operator to issue a control command that triggers these steps. This is also preferably carried out automatically by the control device based on the detection of the obstacle.
  • the sensor device detects the presence and in particular the dimensions of the obstacle, but the operator still has specific specifications for controlling, in particular, the lifting according to step c) and driving over according to step d) and/or lowering according to step e). In particular, the operator should be given the opportunity to determine how much unmilled ground should remain around the obstacle.
  • the operator is shown a representation of the obstacle created from data obtained by the sensor device on a display device, and that the operator can specify the front and rear edges of the obstacle in the working direction on the display device, with steps c), d) and e) are then carried out in such a way that the Milling drum remains out of contact with the edges of the obstacle specified by the operator.
  • the image from a camera can be displayed to the operator on the display device, with the obstacle being visible in the image.
  • the operator can then use input elements, for example a touchscreen, to determine the front and rear edges of the obstacle in the working direction based on the image. These dimensions of the obstacle in the working direction determined by the operator are then used as the basis for further control.
  • the control is carried out in such a way that the milling drum is lifted out of the ground in front of the front edge of the obstacle in the working direction and is only lowered back into the ground behind the rear edge of the obstacle in the working direction. This avoids potentially damaging contact between the milling drum and the obstacle.
  • the approach of the road milling machine in the working direction to the obstacle in the ground according to step b) is also carried out automatically by the control device.
  • the control device positions the road milling machine as close as possible to the obstacle.
  • the milling drum should be lifted as close as possible in front of the obstacle in order to keep as little as possible any protruding residues of the soil to be milled, which subsequently have to be removed manually or mechanically.
  • the position in the working direction at which the milling drum is lifted out is determined taking into account the position of the obstacle, the milling depth and in particular the geometry of the milling drum in order to keep it out of contact with the obstacle.
  • this position is determined automatically by the control device, so that step b) of approaching the road milling machine in the working direction to the obstacle in the ground is also carried out automatically by the control device and without intervention by the operator. In this case, the operator can concentrate completely on milling the ground according to step a). All further steps b) to e), which deal with the avoidance due to the obstacle, are preferably carried out automatically by the control device.
  • the road milling machine removes less or no milled material from the ground during steps c) and d), it is preferably provided that a conveyor device is installed while these steps are being carried out the road milling machine is put out of operation, especially automatically. This can also be carried out by the control device. In this way, while these steps are being carried out, additional attention does not have to be paid to the error-free and low-loss transfer of the milled material to a transport vehicle. Corresponding sources of error are thereby reduced and occupational safety is increased.
  • the conveyor device is preferably automatically reactivated in step e) in order to continue the milling process smoothly.
  • the same machine settings are automatically used to continue milling the soil according to step e), in particular with regard to milling depth and / or feed speed and / or Operation of the conveyor device can be set, in particular as they were in step a).
  • the milling work should continue in the working direction behind the obstacle with the same machine settings that were set in front of the obstacle. Accordingly, the respective settings are saved by the control device and automatically restored in step e).
  • the rear shield is in the excavated position either resting against the unmilled ground and the obstacle or with a safety distance, for example 2 cm, while driving over the obstacle according to step d). This is kept floating. In this way, a large part of the material to be milled is transported out of the milling bed in front of the obstacle in the working direction, then transported over the obstacle by the rear blade and kept in the milling drum box until the milling drum is repositioned. As soon as the milling work begins again in the working direction behind the obstacle, the milled material can then be transported to the conveyor and disposed of as normal.
  • the repositioning of the milling drum in the working direction behind the obstacle can basically proceed in the same way as at the start of a new milling track.
  • the lowering of the rear shield is controlled to the predetermined milling depth in the working direction behind the obstacle in such a way that the lower edge of the rear shield is during the lowering of one of the trajectories described here follows in the opposite direction.
  • this can be any of the trajectories described above. In particular, it is the same trajectory as during excavation.
  • the lowering of the rear shield and the feed speed of the road milling machine are controlled in such a way that the corresponding trajectory is carried out exactly the other way around. This way you stay both in front of and behind The obstacle leaves behind as little milled material as possible, which has to be removed in complex rework.
  • the process can be further improved if obstacle widths are saved during the process.
  • the obstacle width refers to the extent of the obstacle in the travel or milling direction of the road milling machine. This can be useful, for example, for obstacles that have to be driven over several times and/or obstacles with standard widths, such as manhole covers, etc.
  • the operator can signal, for example, by manual triggering that such an obstacle with a saved width has been reached. This determines the distance over which the milling drum and the rear shield should be lifted according to the above information. In particular, there is no longer any need for the driver to trigger the lowering. Additionally or alternatively, an offset can also be provided. This denotes a distance, in particular also manually definable, in the milling direction in front of and behind the obstacle. This can be set individually for each obstacle by the operator or can also be stored as a defined size in a memory device.
  • the task mentioned at the beginning can also be solved with a road milling machine for milling a floor in one working direction.
  • the road milling machine according to the invention comprises a milling drum box which is height-adjustable relative to the ground. This height adjustment can be achieved via an adjusting device which is designed in such a way that the milling drum box is completely or partially height-adjustable relative to the machine frame.
  • the machine frame can be connected to the driving devices running on the ground via vertically adjustable lifting devices. In this case, the milling drum box is adjusted in the vertical direction together with the machine frame.
  • the milling drum box has a front shield, two side shields (one on the front of the milling drum) and a rear shield that is height-adjustable relative to the machine frame and can have a hold-down device.
  • it comprises a milling drum rotatably mounted in the milling drum box about a rotation axis, in particular horizontal and transverse to the working direction, and a control device.
  • the road milling machine according to the invention is characterized in that the control device is designed to carry out the method described above, with at least step c) being carried out automatically by the control device in such a way that the milling drum is lifted out before the rear shield is lifted out of the ground , whereby the road milling machine continues to move in the working direction between lifting the milling drum and lifting the rear shield.
  • All of the features, effects and advantages mentioned above for the method therefore also apply in a figurative sense to the method according to the invention road milling machine and vice versa. Reference is only made to the other statements to avoid repetition.
  • the milling drum can either be designed to be height-adjustable within the milling drum box and relative to it, or the milling drum is designed to be height-adjustable together with the milling drum box.
  • the rear shield and in particular the lower edge of the rear shield can be designed to be lowerable lower than the milling drum and in particular its lower apex.
  • the lower apex of the milling drum is related to the largest cutting circles of the milling drum.
  • the road milling machine has an adjusting device for adjusting the height of the rear shield, which is designed such that the rear shield can be adjusted below the lower apex of the milling drum, in particular by at least 10%, preferably by at least 20%, in particular preferably by at least 30% of the diameter of the milling drum.
  • the rear shield carries out a countermovement for compensation, in which the rear shield is adjusted vertically below the milling drum and in particular below its lower apex.
  • Figure 1 shows a road milling machine 1, here a road milling machine or cold milling machine of the center rotor type, for milling a floor 8 in working direction a.
  • the road milling machine 1 has a machine frame 3 and an operator's cab 2.
  • the machine frame 3 is carried via lifting columns 15, which connect the machine frame 3 to the driving devices 6, which in the exemplary embodiment shown are designed as chain drives, which, however, can also be wheels.
  • the machine frame 3 can be adjusted in height relative to the floor 8 or adjusted in the vertical direction via the lifting columns 15.
  • the road milling machine 1 also includes a drive motor 4, which is typically a diesel internal combustion engine, but can also be an electric motor, for example.
  • a hybrid drive is also possible.
  • the road milling machine 1 has a milling drum 9, which is mounted in a milling drum box 7 so that it can rotate about an axis of rotation 10.
  • the milling drum 9 rotates about the axis of rotation 10 and thereby mills ground material from the ground 8.
  • This detached milled material is transferred from the milling roller box 7 to a conveyor device 5, which typically comprises a conveyor belt and which is designed to load the milled material onto a transport vehicle (not shown) for removal.
  • the milling drum box 7 can be arranged stationary on the machine frame 7 in the vertical direction.
  • an adjusting device can also be provided, which is designed such that the milling drum box can be adjusted in the vertical direction relative to the machine frame.
  • the lifting devices 15 could also be dispensed with.
  • a control device 18 in the driver's cab 2 which is, for example, part of the on-board computer of the road milling machine 1.
  • the control device 18 is equipped with input means via which an operator can input control commands to the control device 18 for controlling the road milling machine 1.
  • the control device 18 has a display device 26 connected, for example a display.
  • the display device 26 can also be designed as an input means, for example as a touchscreen.
  • FIG. 2 a top view of the milling drum 9 arranged in the milling drum box 7 is shown.
  • a closure in the vertical direction upwards or a lid is in Fig. 2 not shown for clarity reasons.
  • the milling drum 9 has a large number of milling tools 11, for example milling cutters.
  • the milling tools 11 are arranged distributed over the outer jacket of the hollow cylindrical milling drum 9, for example in spirals.
  • the milling drum box 7 surrounds the milling drum 9 in a hood-like manner and is essentially designed to be open only in the direction of the base 8, i.e. downwards (in addition, a material passage opening can also be provided in the front and/or rear shield).
  • the milling drum box 7 is closed by a front plate 13.
  • the front shield 13 can include a hold-down device.
  • the hold-down device can also be arranged as a separate element in the working direction a in front of the front plate 13.
  • the hold-down device pressing on the ground 8 in front of the milling drum 9 prevents larger clods from breaking out of the ground 8.
  • the milling drum box 7 is delimited on the side by side plates 12, which are on the ground 8 can be slid along next to the milling drum 9 and prevent milled material from escaping laterally from the milling drum box 7. In the working direction a, the milling drum box 7 is closed off by a rear shield 14.
  • the rear shield 14 wipes off the milled material lying on the floor 8 and ensures that it is transported with the milling drum box 7 and channeled away from it. In this way, the cleanest possible milling bed is left behind.
  • the front shield 13, the side shields 12 and the rear shield 14 can each be designed to be height-adjustable.
  • only one adjusting device 28 for adjusting the height of the rear shield 14 is shown. This includes, for example, one or more, in particular double-acting, hydraulic cylinders.
  • the rear shield 14 is height-adjustable via the adjusting device 28, in particular relative to the machine frame 3 and/or to the milling drum 9 and/or to the floor 8.
  • the Figures 3-9 illustrate the timing of milling work and an obstacle 16 located in the ground 8 to be milled.
  • the obstacle 16 can be, for example, a manhole cover, a shaft or another installation in the ground 8.
  • the obstacle 16 should not be damaged or destroyed by the milling work.
  • the milling drum 9 or its milling tools 11 should also be protected from damage caused by a collision with the obstacle 16.
  • Figure 3 shows the situation before the milling work began.
  • the milling drum 9 is arranged in a raised position above the ground 8. she will then rotatingly lowered into the ground 8 while the road milling machine 1 moves over the ground 8 in the working direction a.
  • the milling drum 9 thereby removes the soil 8 and a milling track is created. This situation is in Figure 4 shown.
  • FIG. 5 shows the situation in which the road milling machine 1 was positioned and stopped in front of the obstacle 16.
  • the milling drum 9 is then raised vertically upwards by at least the predetermined milling depth of the milling track, as shown in Figure 6 is shown.
  • the rear shield 14 initially remains in its working position and is therefore not adjusted vertically upwards from the ground 8 at the same time as the milling drum 9. Compared to the milling drum 9, the rear shield 14 can, if necessary, be adjusted vertically downwards.
  • Figure 7 shows the situation of driving over the obstacle 16 with the milling drum 9 raised and the rear plate 14 raised.
  • Figure 8 shows the next work step, in which the milling drum 9 is lowered back into the ground 8 behind the obstacle 16 in the working direction a and mills a new milling track behind the obstacle 16 in the working direction a.
  • This milling work behind the obstacle 16 can then be carried out accordingly Figure 9 continue as usual.
  • the invention makes it possible for only minimal rework to be necessary both in the working direction a in front of and behind the obstacle 16, for example in order to remove unmilled ground material or milled material that has been left lying around.
  • FIG 10 is the section X Figure 5 shown enlarged.
  • the road milling machine 1 or the milling drum 9 was positioned just in front of the obstacle 16.
  • the milling drum 9 has removed a milling track at a milling depth FT.
  • the milling drum 9 is now raised vertically from the milling track by at least the milling depth FT.
  • the milling drum 9 can be raised by a safety distance, for example 2 cm. In this way it is ensured that the milling tools 11 of the milling drum 9 do not come into contact with the obstacle 16.
  • the rear shield 14 is still in its working position.
  • FIG 12 A case is shown in which the rear shield 14 is lifted out at the same time as the milling drum 19.
  • an excavation area AB is created in the working direction a in front of the obstacle 16, the shape of which essentially corresponds to the circumference of the milling drum 9 or its cutting circles, and which runs from the milling bed floor 27 to the unmilled floor 8.
  • the line transverse to the working direction a, where the milling depth FT is still maximum, but then begins to decrease in the working direction a, is referred to as the front edge VK of the excavation area AB.
  • the front edge VK of the excavation area AB lies directly vertically below the axis of rotation 10 of the milling drum 9 at the position at which the milling drum 9 is lifted out of the milling track.
  • the distance between the axis of rotation 10 of the milling drum 9 and the rear shield 14 in the working direction a is referred to as x.
  • Figure 12 now shows the case that the rear shield 14 is lifted out at the same time as the milling drum 9, i.e. the displacement point V 1 at which the rear shield 14 is lifted out of the milling track is removed by the distance x from the front edge VK of the excavation area AB.
  • the lower edge 19 of the rear shield 14 is guided along a single-stage, rectangular trajectory T.
  • Figure 13 shows a case in which the lower edges 19 of the rear shield 14 are excavated at a displacement point V 2 , the displacement point V 2 being a distance y from the front edge VK of the excavation area AB, the distance y being smaller than the distance x.
  • the rear shield 14 remains in the working position after the milling drum 9 has been lifted and the road milling machine 1 continues to move in the working direction a between the lifting of the milling drum 9 and the lifting of the rear shield 14, specifically by the difference in the distance x minus the Distance y. Only after the road milling machine 1 has moved further in working direction a by this difference is the rear shield 14 lifted at the displacement point V 2 .
  • the rear shield 14 still fulfills its function up to the displacement point V 2 and transports the loose milled material collected in the milling drum box 17 with the milling drum box 7. In this way, after the rear shield 14 has been raised, less milled material remains on the milling bed base 27. Also in the Figure 13 the lower edges 19 of the rear shield 14 are guided along a single-stage, rectangular trajectory T.
  • FIG 14 a case is shown in which the rear shield 14 is excavated from the milling track at a displacement point V 3 , the displacement point V 3 corresponding to the front edge VK of the excavation area AB.
  • the distance is y in the case of Figure 14 equals zero.
  • the rear shield 14 is therefore maintained in the working position after the milling drum 9 has been lifted out of the milling track up to the front edge VK of the excavation area AB and only at the front edge VK as well excavated from the milling track.
  • the rear shield 14 is therefore lifted out of the milling track at the same position in the working direction a as the milling drum 9.
  • FIG. 15-18 Further examples of differently shaped trajectories T can be found in the Figures 15-18 out. Although there are in the Figures 15-18 only cases are shown in which the rear shield 14 is lifted at the displacement point V 3 corresponding to the front edge VK. However, according to the invention, cases are also included in which the shapes of the trajectories T der Figures 15-18 starting from a displacement point V 2 at a distance y from the front edge VK of the excavation area AB, and in which the distance y is in particular not zero. For example, shows Figure 15 a multi-stage trajectory T, in the present case a two-stage trajectory T. Of course, the trajectory T can optionally also include a higher number of stages.
  • the example shown is the Figure 15 about rectangular steps, which come about because the vertical height adjustment of the rear shield 14 is carried out without interference with the feed movement of the road milling machine 1.
  • the height adjustment of the rear shield 14 is always carried out when the road milling machine 1 is stationary and does not move in working direction a.
  • Figure 16 A case is shown in which there is also a multi-stage trajectory T, although the individual stages have an obtuse angle.
  • the height adjustment of the rear shield 14 in the vertical direction is superimposed on a movement of the road milling machine 1 in the working direction a, so that overall an obliquely forward and upward trajectory T is created.
  • the height adjustment of the rear shield 14 in the vertical direction is not adjusted in a single movement from the working position to the raised position, but rather at intervals.
  • Figure 17 again shows a single-stage trajectory T, although this is oblique.
  • the trajectory T according to Figure 17 So includes a single continuous movement of the rear shield 14 in the vertical direction from the working position to the raised position.
  • the vertical adjustment of the rear shield 14 is continuously superimposed by the movement of the road milling machine 1 in the working direction a, so that the overall oblique movement path results.
  • the angle of the oblique trajectory T relative to a horizontal, in particular the milling bed base 27, is selected such that the trajectory T runs from the front edge of the excavation area AB to the end of the excavation area AB opposite the front edge VK in the working direction a.
  • the angle is chosen such that the lower edge 19 of the rear shield 14 rests on the front edge VK and on the end of the excavation area AB opposite the front edge VK in the working direction a or hovers above it with a predetermined safety distance.
  • the trajectory T runs from the front end of the ramp R in the working direction a to the rear end of the ramp R in the working direction a.
  • a trajectory T is shown, the course of which is adapted to the excavation area AB or the ramp R. Taking into account the geometry of the milling drum 9 and the feed speed of the road milling machine 1 and in particular its acceleration, the lower edge 19 of the rear shield 14 is guided along the trajectory T in such a way that the lower edge 19 follows the surface of the ramp R and either touches it or in it hovers above it at a predetermined safety distance.
  • Figure 19 shows a top view of the milling drum box 7 based on Figure 2 .
  • the milling drum 9 When the milling drum 9 is in operation, it mills the ground 8 in the working direction a, whereby the milling track 29 is created.
  • the milling track 29 is created over the entire milling width FB of the milling drum 9.
  • the milling width FB essentially corresponds to the extent of the milling drum 9 along the axis of rotation 10.
  • a sensor device in the exemplary embodiment shown 17 which is designed to detect obstacles 16 in the ground 8 and in particular within the milling width FB.
  • the sensor device 17 is designed such that it has a detection area EB that covers the entire milling width FB.
  • Figure 20 is shown in an exemplary embodiment in which the sensor device 17 comprises several individual sensors. Each of the sensors has a detection area EB that is smaller than the milling width FB. Overall, however, the sensor device 17 is again designed in such a way that the entirety of the detection areas EB of all sensors of the sensor device 17 cover the entire milling width FB.
  • the sensor device 17 can additionally be designed to detect or determine the extent E of the obstacle 16 in the working direction a. This is in Figure 19 for example shown using a round obstacle 16, for example a manhole cover. In Figure 20 This is shown in the case of non-round, for example rectangular obstacles 16, for example installation shafts.
  • the extent E of the obstacles 16 is how in particular Figure 20 emerges, always related to the working direction a. It runs from the front edge of the obstacle 16 in the working direction a to the rear edge of the obstacle 16 in the working direction a. If this extension E and thus the edges of the obstacle 16 are taken into account when controlling the road milling machine 1 as described above, it can be efficiently prevented that the milling drum 9 comes into contact with the obstacle 16.
  • FIG 21 It is shown what influence the milling depth has on the position at which the milling drum 9 has to be lifted out of the milling track 29 in order to avoid contact between the obstacle 16 and the milling drum 9.
  • two different positions of milling drums 9 are shown in dashed lines, which are located at different milling depths FT 1 and FT 2 , the milling depth FT 1 being greater than the milling depth FT 2 .
  • the different milling depths FT 1 , FT 2 result in different distances A 1 , A 2 between the respective axis of rotation 10 of the milling rollers 9 and the obstacle 16, in which the milling roller 9 must be lifted out of the milling track 29.
  • the milling drum 9 can be lifted out of the milling track 29 at a smaller milling depth FT 2 at a smaller distance A 2 in front of the obstacle 16 than at a higher milling depth FT 1 .
  • the road milling machine 1 can therefore move closer to the obstacle 16 at a lower milling depth FT than at a higher milling depth FT.
  • This parameter, together with the geometry of the milling drum 9, is therefore taken into account by the control device 18 when it automatically determines the position of the lifting of the milling drum 9.
  • FIG 22 a flowchart of the method 20 for controlling the road milling machine 1 is shown in the event of an obstacle 16 located in the ground 8 to be milled.
  • the method 20 begins with the milling 21 of the ground 8 at a predetermined milling depth FT in the working direction a during the normal operation of the road milling machine 1. This is followed by an approach 22 of the road milling machine 1 to the obstacle 16 located in the ground 8. This can be done either by the operator be carried out, or for example also automatically by the control device 18, in particular if a sensor device 17 is present which can detect the obstacle 16 located in the floor 8.
  • the road milling machine 1 is positioned in front of the obstacle 16.
  • the milling drum 9 and the rear shield 14 are lifted out of the ground 8 in front of the obstacle 16.
  • the milling drum 9 is lifted out 23 'before the rear shield 14 is lifted out of the ground 8 , and that the road milling machine 1 moves further in working direction a between the lifting 23 of the milling drum 9 and the lifting 23 'of the rear shield 14. This causes the distance y between the front edge VK of the excavation area AB and the displacement point V 2/3 of the rear shield 14 shortened. This is then followed by driving over 24 of the obstacle 16, with the milling drum 9 remaining out of contact with the obstacle 16. Finally, the milling drum 9 and the rear shield 14 are lowered 25 to the predetermined milling depth FT in the working direction a behind the obstacle 16, so that the milling process can be continued.
  • Both the lifting 23, 23 ', the driving over 24 and the lowering 25 can be carried out automatically by the control device 18. This can be triggered, for example, by a single control command from the operator or, alternatively, also by the detection of the obstacle 16 by the sensor device 17.
  • the method 20 described herein relieves the operator of the road milling machine of constantly repeating control processes on obstacles 16 during work. At the same time, less milled material is left behind in the milling bed, so that necessary rework is reduced by the method 20 according to the invention. Overall, the milling process of the road milling machine 1 can therefore be made more economical and efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Road Repair (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung einer eine Fräswalze und ein Heckschild umfassenden Straßenfräsmaschine bei einem im zu fräsenden Boden befindlichen Hindernis. Darüber hinaus betrifft die Erfindung eine Straßenfräse zur Durchführung des Verfahrens.The invention relates to a method for controlling a road milling machine comprising a milling drum and a rear blade when there is an obstacle in the ground to be milled. In addition, the invention relates to a road milling machine for carrying out the method.

Gattungsgemäße Straßenfräsmaschinen werden im Straßen- und Wegebau, zur Ausbesserung und Erneuerung von Fahrbahnen, Plätzen und Start- beziehungsweise Landebahnen eingesetzt. Konkret handelt es sich hierbei beispielsweise um Straßenfräsen, speziell Kaltfräsen, beispielsweise vom Heckrotor- oder vom Mittelrotortyp. Sie umfassen typischerweise einen von Fahreinrichtungen, beispielsweise Kettenlaufwerken oder Rädern, getragenen Maschinenrahmen. Das primäre Arbeitswerkzeug gattungsgemäßer Straßenfräsmaschinen ist eine in einem Fräswalzenkasten um eine Rotationsachse rotierbar gelagerte Fräswalze. Die Fräswalze ist typischerweise mit einem hohlzylindrischen Mantel ausgestattet, auf dessen Außenumfangsfläche eine Vielzahl von Fräswerkzeugen, beispielsweise Fräsmeißel, angeordnet sind. Im Arbeitsbetrieb wird die Fräswalze um die Rotationsachse rotiert, so dass die Fräswerkzeuge in den Boden getrieben werden und diesen abfräsen. Wie weit die Fräswalze hierbei in den Boden eintaucht, wird durch die beispielsweise vom Bediener vorgegebene Frästiefe bestimmt. Die Frästiefe kann dabei beispielsweise durch eine Relativverstellung der Fräswalze bzw. des Fräswalzenkasten gegenüber dem Maschinenrahmen erreicht werden. Dazu ist es bekannt, den Fräswalzenkasten über eine zumindest teilweise in Vertikalrichtung relativ zum Maschinenrahmen verstellbare Hubeinrichtung am Maschinenrahmen zu lagern. Ergänzend oder alternativ kann der Maschinenrahmen samt Fräseinrichtung in Vertikalrichtung zum Bodenuntergrund verstellbar sein. Dazu ist es bekannt, den Maschinenrahmen mit den Fahreinrichtungen über geeignete Hubeinrichtungen, beispielsweise Hubsäulen, zu verbinden. Um das herumgeschleuderte Fräsgut einzudämmen, ist die Fräswalze üblicherweise von dem beispielsweise am Maschinenrahmen gelagerten Fräswalzenkasten umgeben, der einen Frontschild, zwei Seitenschilde und einen gegenüber dem Maschinenrahmen höhenverstellbaren Heckschild aufweisen kann. Es kann ferner ein sogenannter Niederhalter vorgesehen sein. Der Niederhalter ist dabei wie der Frontschild quer zur Arbeitsrichtung vor und der Heckschild quer zur Arbeitsrichtung hinter der Fräswalze angeordnet, während die Seitenschilde die Fräswalze parallel zur Arbeitsrichtung seitlich einhausen. Die Steuerung der Höhenverstellung des Maschinenrahmens und/oder des Fräswalzenkastens und/oder Teilen davon kann mithilfe einer Steuereinrichtung erfolgen. Der Fräswalzenkasten dient ebenfalls dazu, das Fräsgut auf eine Fördereinrichtung zu leiten, beispielsweise ein Förderband, von der das Fräsgut auf ein Transportfahrzeug, beispielsweise einen Lastwagen, zum Abtransport überladen wird. Dies kann beispielsweise in Fräsrichtung nach vorn oder nach hinten erfolgen.Generic road milling machines are used in road and path construction, for repairing and renewing roadways, squares and runways. Specifically, these are, for example, road milling machines, especially cold milling machines, for example of the tail rotor or center rotor type. They typically include a machine frame supported by driving devices, such as track drives or wheels. The primary working tool of generic road milling machines is a milling drum mounted in a milling drum box so that it can rotate about an axis of rotation. The milling drum is typically equipped with a hollow cylindrical jacket, on the outer peripheral surface of which a large number of milling tools, for example milling cutters, are arranged. During operation, the milling drum is rotated around the axis of rotation so that the milling tools are driven into the ground and mill it away. How far the milling drum dips into the ground is determined by the milling depth specified by the operator, for example. The milling depth can be achieved, for example, by a relative adjustment of the milling drum or the milling drum box relative to the machine frame. For this purpose, it is known to store the milling drum box on the machine frame via a lifting device that is at least partially adjustable in the vertical direction relative to the machine frame. Additionally or alternatively, the machine frame including the milling device can be adjustable in the vertical direction to the ground. For this purpose, it is known to connect the machine frame to the driving devices via suitable lifting devices, for example lifting columns. Around the milled material thrown around To contain the milling drum, the milling drum is usually surrounded by the milling drum box, which is mounted, for example, on the machine frame and which can have a front shield, two side shields and a rear shield that is height-adjustable relative to the machine frame. A so-called hold-down device can also be provided. The hold-down device, like the front shield, is arranged transversely to the working direction in front of the milling drum and the rear shield is arranged transversely to the working direction behind the milling drum, while the side shields house the milling drum laterally parallel to the working direction. The height adjustment of the machine frame and/or the milling drum box and/or parts thereof can be controlled using a control device. The milling drum box also serves to guide the milled material onto a conveyor device, for example a conveyor belt, from which the milled material is transferred to a transport vehicle, for example a truck, for transport. This can be done, for example, in the milling direction forwards or backwards.

Der Niederhalter wird typischerweise im Arbeitsbetrieb der Straßenfräsmaschine in Arbeitsrichtung vor der Fräswalze von oben auf den zu fräsenden Boden gedrückt, schwimmend über diesen geführt oder knapp über dem Boden gehalten. Er dient dazu, das Herausbrechen von großen Schollen aus dem zu fräsenden Boden zu verhindern und sicherzustellen, dass die Fräswalze ausreichend kleine Fräsgutstücke abfräst. Der Frontschild kann eine Übergabeöffnung aufweisen, durch die hindurch das Fräsgut auf die Transporteinrichtung aus dem Inneren des Fräswalzenkastens austreten kann. Eine solche Übergabeöffnung kann auch im Heckschild vorgesehen sein. Die Seitenschilde verschließen den Fräswalzenkasten seitlich, werden typischerweise gleitend über den Boden geführt und verhindern ein seitliches Austreten von Fräsgut. Der Heckschild wiederum wird, ähnlich wie der Niederhalter, in Arbeitsrichtung hinter der Fräswalze von oben auf die gefräste Fläche, auch Fräsbett genannt, gedrückt, schwimmend über diesem geführt oder knapp über dem Fräsbett gehalten. In dieser als Arbeitsposition bezeichneten Stellung schert der Heckschild zum einen im Fräsbett verbliebene, aufragende Bodenbestandteile ab. Zum anderen streift der Heckschild auch im Fräsbett verbliebenes Fräsgut ab und führt dieses im Inneren des Fräswalzenkastens mit der Straßenfräsmaschine mit, bis es im weiteren Arbeitsbetrieb zur Fördereinrichtung gelangt.When the road milling machine is in operation, the hold-down device is typically pressed from above onto the ground to be milled in the working direction in front of the milling drum, guided floating over it or held just above the ground. It serves to prevent large clods from breaking out of the ground to be milled and to ensure that the milling drum mills off sufficiently small pieces of milled material. The front shield can have a transfer opening through which the milled material can emerge from the interior of the milling drum box onto the transport device. Such a transfer opening can also be provided in the rear shield. The side shields close the milling drum box laterally, are typically guided gliding over the ground and prevent milled material from escaping to the side. The rear shield, in turn, similar to the hold-down device, is pressed from above onto the milled surface, also called the milling bed, in the working direction behind the milling drum, guided floating above it or held just above the milling bed. In this position, known as the working position, the rear blade shears off any protruding soil components remaining in the milling bed. On the other hand, the rear shield also strips off milled material remaining in the milling bed and carries it with the road milling machine inside the milling drum box until it reaches the conveyor device during further operation.

Während der Fräsarbeiten kommt es immer wieder vor, dass sich im zu fräsenden Boden Hindernisse befinden. Hierbei kann es sich beispielsweise um Einbauten handeln, beispielsweise Schächte, Kanaldeckel, Metallplatten oder ähnliches. Diese Einbauten sollen durch Fräsarbeiten nicht beschädigt werden. Darüber hinaus soll auch ein Schaden an der Fräswalze und den Fräswerkzeugen selbst, der bei einer Kollision mit den Hindernissen entstehen könnte, vermieden werden. Es ist daher notwendig, dass der Bediener der Straßenfräsmaschine diese vor jedem Hindernis anhält, die Fräswalze samt Fräswalzenkasten anhebt, bis diese auf eine Vertikalposition über dem Hindernis verstellt wurde, beispielsweise mit ca. 2 cm Bodenfreiheit, und dann das Hindernis mit außer Bodeneingriff stehender Fräswalze überfährt. Hinter dem Hindernis muss der Bediener erneut die Stra-ßenfräsmaschine stoppen, die Fräswalze erneut auf die gewünschte Frästiefe absenken und den Fräsvorgang fortsetzen. Insgesamt ist für diesen Vorgang daher eine Vielzahl von Schritten notwendig, die der Bediener im Arbeitsablauf möglichst präzise ausführen muss. Ein zusätzliches Problem besteht darin, dass durch das Anheben der Fräswalze und des Fräswalzenkastens vor dem Hindernis eine nicht unbeachtliche Menge an Fräsgut auf dem abgefrästen Boden im Fräsbett verbleibt. Dieses liegengebliebene Fräsgut muss im Nachgang von Hand oder maschinell aufwendig beseitigt werden, was den Zeitaufwand zur Fertigstellung der Baustelle und damit auch die Kosten erhöht. Von der Fräswalze in Arbeitsrichtung vor und hinter dem Hindernis nicht abgefräster Boden muss gegebenenfalls ebenfalls per Hand oder maschinell in einem Nachbearbeitungsschritt abgetragen werden. Der Aufwand für diese Nachbearbeitung variiert stark, je nachdem, wie präzise vor dem Hindernis der Bediener die Fräswalze anhebt und sie nach dem Hindernis wieder absenkt. Hierbei entsteht allerdings ein Spannungsfeld, da der Bediener einerseits eine Kollision des Hindernisses mit der Fräswalze auf jeden Fall verhindern möchte, andererseits der manuelle Nachbearbeitungsaufwand möglichst gering gehalten werden soll. Im Ergebnis versucht der Bediener häufig, so knapp wie möglich an das Hindernis heranzufräsen und die Fräswalze hinter dem Hindernis so nah wie möglich am Hindernis wieder in den Boden eintauchen zu lassen. Fehleinschätzungen durch den Bediener können hier daher zu Beschädigungen am Hindernis und an der Fräswalze oder zu einem erhöhten Aufwand der Nachbearbeitung führen. Die DE 10 2016 015499 A1 offenbart ein Verfahren zur Steuerung einer Straßenfräsmaschine, welche eine Fördereinrichtung mit einem Primärförderband und einem Sekundärförderband umfasst. Die Straßenfräsmaschine weist weiterhin einen Fräswalzenkaten auf, welcher zu den Seiten hin höhenverstellbare Seitenschilder umfasst. Im Fräsbetrieb wird der Fräswalzenkaten so weit abgesenkt, bis eine innerhalb des Fräswalzenkatens angeordnete Fräswalze mit einer gewünschten Frästiefe in den zu bearbeitenden Bodenuntergrund eingreift, wobei sich die Straßenfräsmaschine in Arbeitsrichtung zum Auffräsen des Bodenuntergrunds fortbewegt. Vor einem Fräsflächenhindernis wird die Fräswalze zusammen mit dem Fräswalzenkasten aus der Frässtellung in eine Transportstellung angehoben und dahinter wieder in die Frässtellung abgesenkt. Die US 10 2010 014695 A1 offenbart eine Straßenfräsmaschine zum Abfräsen eines Bodens in einer Arbeitsrichtung, wobei die Straßenfräsmaschine einen Maschinenrahmen aufweist, an dem ein Fräswalzenkasten mit einem Frontschild, zwei Seitenschilden und einem höhenverstellbaren Heckschild gelagert ist. Des Weiteren umfasst die Straßenfräsmaschine auch eine Steuereinrichtung auf, über welche beim Auftreffen von Flächenhindernissen in der Fahrtrichtung die Fräswalze und der Heckschild ausgehoben werden können.During milling work, it often happens that there are obstacles in the ground to be milled. These can be, for example, installations, such as shafts, manhole covers, metal plates or similar. These internals should not be damaged by milling work. In addition, damage to the milling drum and the milling tools themselves, which could occur in the event of a collision with the obstacles, should also be avoided. It is therefore necessary that the operator of the road milling machine stops it in front of every obstacle and raises the milling drum including the milling drum box until it is in a vertical position above the obstacle was adjusted, for example with approx. 2 cm of ground clearance, and then the obstacle is driven over with the milling drum out of contact with the ground. Behind the obstacle, the operator must stop the road milling machine again, lower the milling drum again to the desired milling depth and continue the milling process. Overall, this process requires a large number of steps that the operator must carry out as precisely as possible during the workflow. An additional problem is that by lifting the milling drum and the milling drum box in front of the obstacle, a not inconsiderable amount of milled material remains on the milled ground in the milling bed. This remaining milled material must then be removed by hand or by machine, which is a laborious process, which increases the time required to complete the construction site and thus also the costs. Soil that is not milled away by the milling drum in the working direction in front of and behind the obstacle may also have to be removed by hand or by machine in a post-processing step. The effort required for this post-processing varies greatly, depending on how precisely the operator raises the milling drum before the obstacle and lowers it again after the obstacle. However, this creates a tension because, on the one hand, the operator wants to prevent a collision between the obstacle and the milling drum, and on the other hand, the manual post-processing effort should be kept as low as possible. As a result, the operator often tries to mill as close to the obstacle as possible and to let the milling drum sink back into the ground behind the obstacle as close to the obstacle as possible. Misjudgments by the operator can therefore lead to damage to the obstacle and the milling drum or to increased post-processing effort. The DE 10 2016 015499 A1 discloses a method for controlling a road milling machine, which includes a conveyor device with a primary conveyor belt and a secondary conveyor belt. The road milling machine also has a milling drum cat, which includes height-adjustable side plates on the sides. During milling operation, the milling drum cat is lowered until a milling drum arranged within the milling drum cat engages with a desired milling depth in the ground to be processed, with the road milling machine moving in the working direction for milling the ground. In front of a milling surface obstacle, the milling drum is raised together with the milling drum box from the milling position into a transport position and then lowered back into the milling position. The US 10 2010 014695 A1 discloses a road milling machine for milling a soil in one working direction, the road milling machine having a machine frame on which a milling drum box with a front shield, two side shields and a height-adjustable rear shield is mounted. Furthermore, the road milling machine also includes a control device, via which the milling drum and the rear shield can be lifted when surface obstacles are encountered in the direction of travel.

Vor diesem Hintergrund ist die Aufgabe der vorliegenden Erfindung, die Wirtschaftlichkeit des Fräsvorgangs bei im zu fräsenden Boden befindlichen Hindernissen zu erhöhen. Insbesondere soll der Bediener der Straßenfräsmaschine entlastet und der Arbeitsaufwand der notwendigen Nachbearbeitung verringert werden.Against this background, the object of the present invention is to increase the economic efficiency of the milling process when there are obstacles in the ground to be milled. In particular, the operator of the road milling machine should be relieved and the workload of the necessary post-processing should be reduced.

Die Lösung dieser Aufgabe gelingt mit einem Verfahren und einer Straßenfräsmaschine gemäß den unabhängigen Ansprüchen. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.This problem is solved with a method and a road milling machine according to the independent claims. Preferred further developments are specified in the dependent claims.

Konkret gelingt die Lösung mit einem Verfahren zur Steuerung einer eine Fräswalze und einen Heckschild umfassenden Straßenfräsmaschine bei einem im zu fräsenden Boden befindlichen Hindernis, umfassend die Schritte:

  1. a) Abfräsen des Bodens in einer vorgegebenen Frästiefe entlang einer Arbeitsrichtung,
  2. b) Annähern der Straßenfräsmaschine in Arbeitsrichtung an das im Boden befindliche Hindernis,
  3. c) Ausheben der Fräswalze und des Heckschildes aus dem Boden in Arbeitsrichtung vor dem Hindernis,
  4. d) Überfahren des Hindernisses derart, dass die Fräswalze außer Kontakt mit dem Hindernis bleibt, und
  5. e) Absenken der Fräswalze und des Heckschildes bis zur vorgegebenen Frästiefe in Arbeitsrichtung hinter dem Hindernis und Fortsetzen des Abfräsens des Bodens.
Ein Kerngedanke der vorliegenden Erfindung liegt nun darin, dass die Straßenfräsmaschine derart gesteuert wird, dass in Schritt c) das Ausheben der Fräswalze zeitlich vor dem Ausheben des Heckschildes aus dem Boden durchgeführt wird, wobei sich die Straßenfräsmaschine zwischen dem Ausheben der Fräswalze und dem Ausheben des Heckschildes weiter in Arbeitsrichtung bewegt. Mit anderen Worten erfolgt das Ausheben des Heckschildes und das Ausheben der Fräswalze im laufenden Fräsprozess nacheinander, und die Straßenfräsmaschine fährt zwischen dem Ausheben des Heckschildes und dem Ausheben der Fräswalze zumindest ein Stück weit weiter in Arbeitsrichtung. Der Heckschild wird also nicht gleichzeitig mit der Fräswalze aus dem Fräsbett angehoben, sondern verbleibt während und/oder nach dem Anheben der Fräswalze noch in der Arbeitsstellung. Dadurch wird der Heckschild in seiner Arbeitsstellung in Arbeitsrichtung näher an das Hindernis herangeführt als wenn der Heckschild zusammen mit der Fräswalze angehoben werden würde, wie dies im Stand der Technik der Fall ist. Der Heckschild wird in Horizontalrichtung auf die Wegstrecke bezogen somit erst an einer Stelle ausgehoben, in der er in Fräsrichtung gesehen auf Höhe desjenigen Bereiches ist, in dem vorher die Fräswalze ausgehoben worden ist. Damit werden der Heckschild und die Fräswalze somit beim Annähern an ein zu überfahrendes Bodenhindernis relativ zueinander verstellt, derart, dass die Fräswalze in Vertikalrichtung gegenüber dem Heckschild angehoben wird, gefolgt von einer Phase, in der der Heckschild relativ zur Fräswalze angehoben wird. In Bezug auf die Wegstrecke vollziehen die Fräswalze und der Heckschild somit sukzessive zueinander die Hubbewegung und nicht gleichzeitig. Auf diese Weise kann der Heckschild seine Funktion, das abgefräste Fräsgut auf dem Fräsbett abzustreifen und mit dem Fräswalzenkasten mitzuführen, länger ausführen, als wenn er von vorneherein zusammen mit der Fräswalze ausgehoben worden wäre, denn er wird der Hubbewegung der Fräswalze zeitlich nachlaufend dem Hindernis in seiner abgesenkten Position näher angenähert. Insgesamt wird durch diese Maßnahme also weniger Fräsgut auf dem Fräsbett zurückgelassen, wenn der Heckschild dann schließlich vor dem Hindernis aus dem Fräsbett angehoben wird.Specifically, the solution is achieved with a method for controlling a road milling machine comprising a milling drum and a rear shield in the event of an obstacle in the ground to be milled, comprising the steps:
  1. a) milling the ground at a predetermined milling depth along a working direction,
  2. b) approaching the road milling machine in the working direction to the obstacle in the ground,
  3. c) lifting the milling drum and the rear blade out of the ground in the working direction in front of the obstacle,
  4. d) driving over the obstacle in such a way that the milling drum remains out of contact with the obstacle, and
  5. e) Lower the milling drum and the rear blade to the specified milling depth in the working direction behind the obstacle and continue milling the ground.
A core idea of the present invention is that the road milling machine is controlled in such a way that in step c) the lifting of the milling drum is carried out before the rear shield is lifted out of the ground, with the road milling machine between the lifting of the milling drum and the lifting of the Rear shield moved further in the working direction. In other words, the lifting of the rear shield and the lifting of the milling drum take place one after the other during the ongoing milling process, and the road milling machine moves at least a little further in the working direction between the lifting of the rear shield and the lifting of the milling drum. The rear shield is therefore not lifted out of the milling bed at the same time as the milling drum, but remains in the working position during and/or after the milling drum is raised. As a result, the rear shield is brought closer to the obstacle in its working position in the working direction than if the rear shield were to be raised together with the milling drum, as is the case in the prior art. The rear shield is therefore only excavated in the horizontal direction relative to the distance at a point in which, viewed in the milling direction, it is at the level of the area in which the milling drum was previously excavated. This will make the rear shield and the Milling drum thus adjusted relative to each other when approaching a ground obstacle to be driven over, such that the milling drum is raised in the vertical direction relative to the rear shield, followed by a phase in which the rear shield is raised relative to the milling drum. In relation to the distance traveled, the milling drum and the rear shield therefore carry out the lifting movement successively relative to each other and not at the same time. In this way, the rear shield can carry out its function of stripping the milled material on the milling bed and carrying it along with the milling drum box for longer than if it had been lifted out together with the milling drum from the outset, because it will move towards the obstacle in time after the lifting movement of the milling drum closer to its lowered position. Overall, this measure means that less milled material is left behind on the milling bed when the rear shield is finally lifted out of the milling bed in front of the obstacle.

Das Ausheben der Fräswalze und das Ausheben des Heckschildes beziehen sich dabei jeweils auf eine Relativbewegung der Fräswalze beziehungsweise des Heckschildes in Vertikalrichtung gegenüber dem Boden bzw. einer virtuellen Bodenbezugsebene. Die Fräswalze kann beispielsweise innerhalb des Fräswalzenkastens relativ zum Fräswalzenkasten höhenverstellbar ausgebildet sein. In diesem Fall kann die Fräswalze unabhängig vom Heckschild angehoben werden und der Heckschild kann in der Arbeitsposition verbleiben, ohne hierfür verstellt werden zu müssen. Es ist allerdings auch möglich, dass die Fräswalze zusammen mit dem gesamten Fräswalzenkasten höhenverstellbar ausgebildet ist. In diesem Fall wird mit dem Anheben der Fräswalze ebenfalls der gesamte Fräswalzenkasten inklusive des Heckschildes angehoben. Es kann daher notwendig sein, dass der Heckschild während des Aushebens der Fräswalze in Kompensation einer Vertikalverstellung des gesamten Fräswalzenkastens relativ zum übrigen Fräswalzenkasten nach unten ausgefahren werden muss, um in der Arbeitsposition zu verbleiben. Mit anderen Worten: Idealerweise erfolgt die Ausfahrbewegung des Heckschildes während des Anhebens des übrigen Fräswalzenkastens somit derart, dass die Hubbewegung des übrigen Fräswalzenkasten in Vertikalrichtung ausgeglichen wird. Näherungsweise wird somit bevorzugt die Hubverstellung des Heckschildes derart gesteuert, dass er während des Aushebens des übrigen Fräswalzenkasten sein Vertikallage in Bezug auf den Bodenuntergrund beibehält. Hierbei wird der Heckschild relativ zur Fräswalze und relativ zum Maschinenrahmen verstellt, gegenüber dem Boden bleibt er somit allerdings idealerweise in derselben Relativposition, konkret der Arbeitsposition. Es handelt sich daher nicht um ein erfindungsgemäßes "Ausheben" des Heckschildes.The lifting of the milling drum and the lifting of the rear shield each refer to a relative movement of the milling drum or the rear shield in the vertical direction relative to the ground or a virtual ground reference plane. The milling drum can, for example, be designed to be height-adjustable within the milling drum box relative to the milling drum box. In this case, the milling drum can be raised independently of the rear blade and the rear blade can remain in the working position without having to be adjusted. However, it is also possible for the milling drum to be designed to be height-adjustable together with the entire milling drum box. In this case, when the milling drum is raised, the entire milling drum box including the rear shield is also raised. It may therefore be necessary for the rear shield to be extended downwards relative to the rest of the milling drum box during the lifting of the milling drum in order to remain in the working position in order to compensate for a vertical adjustment of the entire milling drum box. In other words: Ideally, the extension movement of the rear shield takes place during the lifting of the remaining milling drum box in such a way that the lifting movement of the remaining milling drum box is compensated for in the vertical direction. Approximately, the stroke adjustment of the rear shield is preferably controlled in such a way that it maintains its vertical position in relation to the ground surface while the rest of the milling drum box is being lifted. Here, the rear shield is adjusted relative to the milling drum and relative to the machine frame, but ideally it remains in the same relative position relative to the ground, specifically the working position. It is therefore not a case of “lifting out” the rear shield according to the invention.

Durch die Rotation der Fräswalze im Arbeitsbetrieb werden von den Fräswerkzeugen, insbesondere von den Meißelspitzen, Schneidkreise definiert. Die Schneidkreise beschreiben dabei diejenigen Bahnen, auf denen sich beispielsweise die Meißelspitzen zusammen mit der Fräswalze um die Rotationsachse bewegen. Von den Schneidkreisen wird also festgelegt, wieviel Boden von der Fräswalze in einer bestimmten Vertikalhöhe abgetragen wird bzw. wie groß die Frästiefe letztendlich ist. Wird vorliegend von einem Durchmesser der Fräswalze gesprochen, so ist damit insbesondere der Durchmesser des größten Schneidkreises gemeint. Entlang dieses Schneidkreises wird im Arbeitsbetrieb Boden von der Fräswalze abgetragen. Das Ausheben der Fräswalze aus dem Boden hinterlässt daher einen Aushubbereich, in dem die Frästiefe der gefrästen Spur durch das Ausheben der Fräswalze in Arbeitsrichtung abzunehmen beginnt. Im Aushubbereich befindet sich typischerweise eine Rampe bzw. ein Übergangsbereich vom in der vorgegebenen Frästiefe liegenden Fräsbett bis zum ungefrästen Boden, wobei der Übergangsbereich im Wesentlichen ein Negativ des Fräswalzenumfangsabschnitts beziehungsweise von Schneidkreissegmenten der Fräswalze darstellen kann, wenn die Fräswalze beispielsweise bei stehende Maschine ausgehoben wird. Die Entstehung dieser Rampe ist dabei der Geometrie der Fräswalze und den Schneidkreisen geschuldet. An der tiefsten Stelle des Aushub- bzw. Fräsbereichs weist dieser eine Vorderkante auf. Die tiefste Stelle des Aushubbereiches ist dabei diejenige Stelle unmittelbar vertikal unter der Rotationsachse der Fräswalze an derjenigen Position, an der die Fräswalze ausgehoben wird. Zur Höhe der ungefrästen Bodenoberfläche hat diese Vorderkante den der vorhergehenden Frästiefe entsprechenden Abstand. Die Vorderkante des Aushubbereiches entsteht also an derjenigen Position, an der die Fräswalze den Boden noch in der vollen, vorgegebenen Frästiefe abfräst, bevor sie ausgehoben wird. Sie beschreibt daher den Übergang vom in der vollen, vorgegebenen Frästiefe abgefrästen Boden beziehungsweise dem Fräsbettboden zur Rampe des Aushubbereiches.Due to the rotation of the milling drum during operation, cutting circles are defined by the milling tools, in particular by the chisel tips. The cutting circles describe those Paths on which, for example, the chisel tips move together with the milling drum around the axis of rotation. The cutting circles determine how much soil is removed by the milling drum at a certain vertical height or how great the milling depth ultimately is. If we are talking about a diameter of the milling drum, this means in particular the diameter of the largest cutting circle. During operation, soil is removed along this cutting circle by the milling drum. Lifting the milling drum out of the ground therefore leaves an excavation area in which the milling depth of the milled track begins to decrease due to the lifting of the milling drum in the working direction. In the excavation area there is typically a ramp or a transition area from the milling bed lying in the predetermined milling depth to the unmilled ground, whereby the transition area can essentially represent a negative of the milling drum circumferential section or of cutting circle segments of the milling drum when the milling drum is excavated, for example when the machine is stationary. The creation of this ramp is due to the geometry of the milling drum and the cutting circles. At the lowest point of the excavation or milling area, it has a front edge. The deepest point of the excavation area is the point immediately vertically below the axis of rotation of the milling drum at the position at which the milling drum is excavated. This front edge has the distance corresponding to the previous milling depth to the height of the unmilled ground surface. The front edge of the excavation area is created at the position where the milling drum mills the ground to the full, specified milling depth before it is excavated. It therefore describes the transition from the ground milled to the full, specified milling depth or the milling bed floor to the ramp of the excavation area.

Gemäß der Erfindung soll der Heckschild in Arbeitsrichtung näher an der Vorderkante des Aushubbereiches ausgehoben werden als im Stand der Technik. Je später das Ausheben des Heckschildes durchgeführt wird, desto mehr Fräsgut wird von diesem noch in Arbeitsrichtung mitgeführt und desto weniger Fräsgut wird nach dem Ausheben auf dem Fräsbett hinterlassen. Es ist daher bevorzugt, dass der Heckschild möglichst nah und insbesondere erst unmittelbar an der Vorderkante des Aushubbereiches ausgehoben wird. Diejenige Position in Arbeitsrichtung, an der der Heckschild aus seiner Arbeitspositionen vertikal nach oben beziehungsweise vom Fräsbettboden weg bewegt und damit ausgehoben wird, wird als Verlagerungsstelle bezeichnet. Gemäß einer bevorzugten Ausführungsform der Erfindung ist es daher vorgesehen, dass das Ausheben des Heckschildes an einer Verlagerungsstelle entlang der Arbeitsrichtung erfolgt, die einen Abstand zur Vorderkante des Aushubbereiches aufweist, der kleiner ist als ein Abstand des Heckschildes zur Rotationsachse der Fräswalze. Im Stand der Technik dagegen werden die Fräswalze und der Heckschild typischerweise gleichzeitig ausgehoben, sodass der Abstand der Verlagerungsstelle des Standes der Technik zur Vorderkante des Aushubbereiches gleich dem Abstand des Heckschildes zur Rotationsachse der Fräswalze ist. Die genannten Abstände beziehen sich dabei immer auf die Arbeitsrichtung. Der erfindungsgemäße Abstand zwischen der genannten Verlagerungsstelle und der Vorderkante des Aushubbereiches entspricht insbesondere maximal 75%, bevorzugt maximal 50% und besonders bevorzugt maximal 25%, des Abstandes des Heckschildes zur Rotationsachse der Fräswalze in Arbeitsrichtung. Eine besonders bevorzugte Alternative der Erfindung sieht vor, dass das Ausheben des Heckschildes an einer Verlagerungsstelle entlang der Arbeitsrichtung erfolgt, die an, insbesondere unmittelbar an, der Vorderkante liegt. Bevorzugt wird also der Heckschild an derselben Position in Arbeitsrichtung aus der Frässpur ausgehoben wie die Fräswalze. Wie bereits erläutert, beginnt in Arbeitsrichtung hinter der Vorderkante des Aushubbereiches die Rampe, sprich, die Tiefe der ausgefrästen Spur nimmt ab. Spätestens an diesem Punkt muss daher der Heckschild angehoben werden, da er ansonsten mit der Rampe kollidieren und beschädigt werden könnte. Gleichzeitig wird durch das Mitführen des Heckschildes in Arbeitsposition bis zur Vorderkante des Aushubbereiches so wenig Fräsgut wie möglich auf dem Fräsbett bis zur Vorderkante hinterlassen.According to the invention, the rear shield should be excavated closer to the front edge of the excavation area in the working direction than in the prior art. The later the rear shield is lifted out, the more milled material is carried along in the working direction and the less milled material is left on the milling bed after lifting. It is therefore preferred that the rear shield is excavated as close as possible and in particular directly to the front edge of the excavation area. The position in the working direction at which the rear blade is moved vertically upwards from its working position or away from the milling bed floor and is thus lifted is referred to as the displacement point. According to a preferred embodiment of the invention, it is therefore provided that the rear shield is lifted at a displacement point along the working direction, which has a distance to the front edge of the excavation area that is smaller than a distance of the rear shield to the axis of rotation of the milling drum. In the prior art, however, the milling drum and the rear shield are typically excavated at the same time, so that the distance of the displacement point of the prior art to the front edge of the excavation area is equal to the distance of the rear shield to the axis of rotation of the milling drum. The distances mentioned always refer to the working direction. The distance according to the invention between the said displacement point and the front edge of the excavation area corresponds in particular to a maximum of 75%, preferably a maximum of 50% and particularly preferably a maximum of 25%, of the distance of the rear shield to the axis of rotation of the milling drum in the working direction. A particularly preferred alternative of the invention provides that the rear shield is lifted out at a displacement point along the working direction, which is located on, in particular directly on, the front edge. The rear shield is therefore preferably lifted out of the milling track at the same position in the working direction as the milling drum. As already explained, the ramp begins in the working direction behind the front edge of the excavation area, i.e. the depth of the milled track decreases. At this point at the latest, the rear shield must be raised, otherwise it could collide with the ramp and be damaged. At the same time, by carrying the rear blade in the working position up to the front edge of the excavation area, as little milled material as possible is left on the milling bed up to the front edge.

Grundsätzlich ist das gegenüber dem Stand der Technik verlängerte Mitführen des Heckschildes in Arbeitsposition bereits vorteilhaft in Bezug auf die hierdurch kleinere Menge zurückgelassenen Fräsgutes im Fräsbett. Vorteilhafterweise sieht die Erfindung in einer Weiterbildung allerdings ebenfalls vor, die Art und Weise des Aushebens des Heckschildes zu steuern, sodass der Heckschild eine vorgegebene Bewegungsbahn, nachstehend auch Trajektorie genannt, durchläuft. Als Referenzpunkt für die Bewegungsbahn wird die dem Boden zugewandte Unterkante des Heckschildes genutzt. Die Bewegungsbahn beziehungsweise Trajektorie des Heckschildes entsteht dabei durch die Überlagerung sämtlicher Bewegungen, die das Heckschild durchführt, beispielsweise eine Höhenverstellung in Vertikalrichtung des Heckschildes selbst und die Fahrbewegung der Straßenfräsmaschine in Arbeitsrichtung. Hierbei kann es ebenfalls vorkommen, dass die Straßenfräsmaschine beschleunigt oder abbremst. Sowohl die Fahrgeschwindigkeit als auch insbesondere eine Beschleunigung der Straßenfräsmaschine wird an der Maschine bevorzugt sensorisch erfasst, sodass diese für die erfindungsgemäße Steuerung des Heckschildes entlang der Trajektorie zur Verfügung stehen und auch herangezogen werden. Insgesamt ist es daher bevorzugt vorgesehen, dass das Ausheben des Heckschildes derart gesteuert wird, dass eine dem Boden zugewandte Unterkante des Heckschildes während des Aushebens unter Berücksichtigung der Vorschubgeschwindigkeit und insbesondere auch der Beschleunigung der Straßenfräsmaschine einer vorgegebenen Trajektorie folgt. Die Trajektorie beginnt, wenn das Heckschild sich in Arbeitsposition an der Verlagerungsstelle befindet. Sie beginnt also unmittelbar auf oder geringfügig über dem Fräsbett an der Verlagerungsstelle, an der das Ausheben des Heckschildes beginnt. Die Trajektorie endet in einer ausgehobenen Position des Heckschildes, in der der Heckschild mindestens um die vorgegebene Frästiefe angehoben wurde. In dieser ausgehobenen Position kann der Heckschild also in Arbeitsrichtung über das Hindernis geführt werden, ohne dieses zu beschädigen oder selbst Schaden zu nehmen. Die Trajektorie umfasst bevorzugt ebenfalls eine Bewegung des Heckschildes in Arbeitsrichtung und endet daher bevorzugt in Arbeitsrichtung hinter dem Aushubbereich, also im Bereich des ungefrästen Bodens beziehungsweise des Hindernisses. Der Heckschild kann entweder schwimmend über das Hindernis geführt werden, insbesondere drucklos, also ohne in Vertikalrichtung nach unten auf das Hindernis zu mit einer Auflagekraft beaufschlagt zu werden. Hierbei hat der Heckschild Kontakt zum Hindernis, gleitet allerdings schadlos an diesem entlang. Alternativ kann der Heckschild mit einem vertikalen Sicherheitsabstand, beispielsweise 2 cm, über das Hindernis hinaus verstellt werden, so dass der Heckschild kontaktlos beziehungsweise schwebend über das Hindernis geführt werden kann.In principle, the longer carrying of the rear shield in the working position compared to the prior art is already advantageous in relation to the smaller amount of milled material left behind in the milling bed. However, in a further development, the invention advantageously also provides for controlling the manner in which the rear shield is raised, so that the rear shield traverses a predetermined path of movement, also referred to below as a trajectory. The lower edge of the rear shield facing the ground is used as a reference point for the movement path. The movement path or trajectory of the rear shield is created by superimposing all the movements that the rear shield performs, for example a height adjustment in the vertical direction of the rear shield itself and the travel movement of the road milling machine in the working direction. It can also happen that the road milling machine accelerates or brakes. Both the driving speed and in particular an acceleration of the road milling machine are preferably detected by sensors on the machine, so that these are available and also used for the control of the rear shield along the trajectory according to the invention. Overall, it is therefore preferably provided that the lifting of the rear shield is controlled in such a way that a lower edge of the rear shield facing the ground follows a predetermined trajectory during the lifting, taking into account the feed speed and in particular the acceleration of the road milling machine. The trajectory begins when the tail blade is in the working position at the displacement point. she begins i.e. directly on or slightly above the milling bed at the displacement point where the lifting of the rear shield begins. The trajectory ends in a raised position of the rear shield, in which the rear shield has been raised at least by the specified milling depth. In this raised position, the rear shield can be guided over the obstacle in the working direction without damaging it or being damaged yourself. The trajectory preferably also includes a movement of the rear shield in the working direction and therefore preferably ends in the working direction behind the excavation area, i.e. in the area of the unmilled ground or the obstacle. The rear shield can either be guided floating over the obstacle, in particular without pressure, i.e. without being subjected to a tracking force in the vertical direction downwards towards the obstacle. The rear shield is in contact with the obstacle, but slides along it without any damage. Alternatively, the rear shield can be adjusted beyond the obstacle with a vertical safety distance, for example 2 cm, so that the rear shield can be guided over the obstacle without contact or floating.

Zwischen dem vorstehend beschriebenen Anfangs- und Endpunkt der Trajektorie kann diese unterschiedliche Formen annehmen. Beispielsweise umfasst die Trajektorie ausschließlich eine Bewegung quer zur Arbeitsrichtung vertikal nach oben und eine anschließende Bewegung horizontal in Arbeitsrichtung. Bei dieser Ausführungsform ist also vorgesehen, dass der Heckschild in einer einzigen Vertikalbewegung zwischen der Arbeitsposition und der ausgehobenen Position verstellt wird. Insbesondere kann vorgesehen sein, dass die Bewegung quer zur Arbeitsrichtung vertikal nach oben nicht mit einer Fahrbewegung der Straßenfräsmaschine in Arbeitsrichtung überlagert ist. Die Straßenfräsmaschine wird für die Verstellung des Heckschildes also angehalten und bewegt sich nicht in Arbeitsrichtung, während der Heckschild vertikal nach oben von der Arbeitsposition in die ausgehobene Position verstellt wird. Erst danach schließt sich eine erneute Bewegung der Straßenfräsmaschine und damit auch des Heckschildes in Arbeitsrichtung an. Mit anderen Worten hat die Trajektorie die Form einer einzigen, insbesondere rechtwinkligen, Stufe. Die Trajektorie kann allerdings auch die Form mehrerer, insbesondere rechtwinkliger, Stufen aufweisen. Beispielsweise umfasst die Trajektorie mehrere, stufenweise Bewegungen quer zur Arbeitsrichtung vertikal nach oben, wobei die Unterkante des Heckschildes zwischen den Stufen horizontal in Arbeitsrichtung bewegt wird. Die Bewegung horizontal in Arbeitsrichtung wird dabei durch den Vorschub der Straßenfräsmaschine bewerkstelligt. Wie schon für die einstufige Trajektorie beschrieben, kann es auch hier vorgesehen sein, dass die stufenweisen vertikalen Bewegungen nicht mit einer Fahrbewegung der Straßenfräsmaschine in Arbeitsrichtung überlagert sind. Dies bedeutet auch hier, dass die Straßenfräsmaschine während der vertikalen Verstellung des Heckschildes angehalten wird und sich nicht in Arbeitsrichtung bewegt. Durch die mehrstufige Ausbildung der Trajektorie wird der Heckschild und insbesondere die Unterkante des Heckschildes insgesamt näher an der Rampe des Aushubbereiches gehalten, als beispielsweise durch die einstufige Trajektorie. Dies gelingt umso besser, je mehr Stufen vorgesehen sind. Es ist daher bevorzugt, dass die Trajektorie mindestens zwei, bevorzugt mindestens drei, besonders bevorzugt mindestens vier und ganz besonders bevorzugt mindestens fünf Stufen umfasst. Hierdurch gelingt es, das vom Heckschild mitgeführte Fräsgut zumindest teilweise noch weiter die Rampe im Aushubbereich hinauf mitzuführen und dieses nicht vollständig im Fräsbett zurückzulassen, wo es eine aufwendige Nachbearbeitung notwendig macht.Between the start and end points of the trajectory described above, it can take different forms. For example, the trajectory exclusively includes a vertically upward movement transverse to the working direction and a subsequent horizontal movement in the working direction. In this embodiment it is therefore provided that the rear shield is adjusted in a single vertical movement between the working position and the raised position. In particular, it can be provided that the movement vertically upward transverse to the working direction is not superimposed on a travel movement of the road milling machine in the working direction. The road milling machine is stopped for the adjustment of the rear blade and does not move in the working direction while the rear blade is adjusted vertically upwards from the working position to the raised position. Only then does the road milling machine and thus also the rear shield move again in the working direction. In other words, the trajectory has the form of a single, particularly rectangular, step. However, the trajectory can also have the shape of several, especially rectangular, steps. For example, the trajectory includes several stepwise movements vertically upwards transversely to the working direction, with the lower edge of the rear shield being moved horizontally in the working direction between the steps. The horizontal movement in the working direction is achieved by the advance of the road milling machine. As already described for the single-stage trajectory, it can also be provided here that the gradual vertical movements are not superimposed on a travel movement of the road milling machine in the working direction. This also means that the road milling machine is stopped during the vertical adjustment of the rear blade and does not move in the working direction. Due to the multi-stage design of the trajectory, the rear shield and in particular the lower edge of the rear shield is held closer to the ramp of the excavation area than, for example, by the single-stage trajectory. This works better the more stages are provided. It is therefore preferred that the trajectory comprises at least two, preferably at least three, particularly preferably at least four and very particularly preferably at least five stages. This makes it possible to at least partially carry the milled material carried by the rear shield further up the ramp in the excavation area and not leave it completely behind in the milling bed, where it requires complex post-processing.

Um den Bewegungsablauf während des Aushebens des Heckschildes flüssiger zu gestalten und gleichzeitig das Heckschild beziehungsweise die Unterkante des Heckschildes noch näher an der Oberfläche der Rampe des Aushubbereiches zu halten, ist es besonders bevorzugt vorgesehen, dass die Trajektorie wenigstens eine schräge Bewegung, gleichzeitig quer zur Arbeitsrichtung vertikal nach oben und horizontal in Arbeitsrichtung, umfasst. Mit anderen Worten wird die Verstellung des Heckschildes in Vertikalrichtung mit einer Vorwärtsfahrt der Straßenfräsmaschine in Arbeitsrichtung überlagert. Insgesamt ergibt sich hieraus eine zumindest teilweise schräge Trajektorie, insbesondere schräg nach vorne und oben gerichtet. Besonders bevorzugt ist es, dass die Straßenfräsmaschine sich während des gesamten Aushebens des Heckschildes in Arbeitsrichtung bewegt. Die Straßenfräsmaschine wird also während des Aushebens nicht angehalten und fährt weiter in Arbeitsrichtung, wodurch ein besonders flüssiger Arbeitsablauf entsteht. Die schräge Bewegung kann sowohl bei der einstufigen als auch bei der mehrstufigen Trajektorie zum Einsatz kommen. Hierdurch sind die Stufen der Trajektorie insbesondere nicht mehr rechtwinkelig, sondern mit einem stumpfen Winkel ausgebildet. Bei der mehrstufigen Ausbildung der Trajektorie, bei der das Ausheben des Heckschildes von der Arbeitsposition bis in die ausgehobene Position in mehrere, voneinander getrennte Bewegungen aufgeteilt ist, ist es bevorzugt, dass sämtliche dieser getrennten Bewegungen schräg ausgebildet sind. Mit anderen Worten ist es bevorzugt, dass jede Bewegung des Heckschildes in Vertikalrichtung vom Fräsbettboden weg mit einer Vorwärtsbewegung der Straßenfräsmaschine überlagert ist.In order to make the movement sequence during the excavation of the rear shield more fluid and at the same time to keep the rear shield or the lower edge of the rear shield even closer to the surface of the ramp of the excavation area, it is particularly preferably provided that the trajectory has at least one oblique movement, at the same time transverse to the working direction vertically upwards and horizontally in the working direction. In other words, the adjustment of the rear shield in the vertical direction is superimposed on the forward movement of the road milling machine in the working direction. Overall, this results in an at least partially oblique trajectory, in particular directed obliquely forward and upward. It is particularly preferred that the road milling machine moves in the working direction during the entire lifting of the rear shield. The road milling machine is not stopped during excavation and continues to move in the working direction, creating a particularly fluid workflow. The oblique movement can be used in both single-stage and multi-stage trajectories. As a result, the steps of the trajectory are no longer rectangular, but rather have an obtuse angle. In the case of the multi-stage design of the trajectory, in which the lifting of the rear shield from the working position to the lifted position is divided into several, separate movements, it is preferred that all of these separate movements are designed obliquely. In other words, it is preferred that every movement of the rear blade in the vertical direction away from the milling bed floor is superimposed on a forward movement of the road milling machine.

Gemäß einer besonders bevorzugten Ausführungsform ist vorgesehen, dass die Trajektorie einer durch das Ausheben des Fräswalze entstehenden Rampe im Aushubbereich derart folgt, dass die Unterkante des Heckschildes über den gesamten Aushubbereich hinweg an der Oberfläche der Rampe im Wesentlichen anliegt. Dieser Ausführungsform bedarf einer besonders genauen Steuerung der Vertikalposition des Heckschildes und der Vorschubgeschwindigkeit der Straßenfräsmaschine, insbesondere inklusive deren Beschleunigung. Diese Werte zur Bewegung des Heckschildes und der Straßenfräsmaschine werden daher von einer Steuereinrichtung erfasst. Darüber hinaus ist es vorteilhaft, die Geometrie der Fräswalze und insbesondere deren Durchmesser beziehungsweise den Durchmesser der Schneidkreise, zu kennen, da dieser die Form der Rampe vorgibt. Die Geometrie der Fräswalze ist im Vorhinein bekannt und ist in der Steuereinrichtung hinterlegt und/oder kann an der Steuereinrichtung eingegeben werden. Sämtliche Parameter sind daher bekannt und werden von der Steuereinrichtung zur Verstellung des Heckschildes herangezogen beziehungsweise bei der Verstellung berücksichtigt, sodass der Heckschild der Trajektorie folgt. Die Unterkante des Heckschildes kann hierbei beispielsweise, wie im Arbeitsbetrieb üblich, mit einer vertikal nach unten auf den Boden gerichteten Kraft beaufschlagt werden, sodass die Unterkante des Heckschildes die Oberfläche der Rampe abstreift. Gleichzeitig muss die Höhenposition des Heckschildes gemäß der Rampen-Geometrie angepasst werden, damit der Heckschild der Form der Rampe auch tatsächlich folgen kann und nicht an dieser hängenbleibt. Alternativ kann vorgesehen sein, dass der Heckschild, ohne auf den Boden aufgedrückt zu werden, gleitend beziehungsweise schwimmend die Rampe hinauf geführt wird. Der Heckschild hat hierbei also Kontakt zur Oberfläche der Rampe, wird allerdings nicht aktiv mit einer zum Boden gerichteten Kraft beaufschlagt. Die Trajektorie folgt dabei der Oberfläche der Rampe. Schließlich ist es ebenfalls möglich, die Unterkante des Heckschildes entlang einer Trajektorie zu steuern, die der Form der Rampe entspricht, die Unterkante allerdings über einen Sicherheitsabstand, beispielsweise 2 cm, von der Rampe zu beabstanden. Die Unterkante des Heckschildes wird also schwebend entlang der Rampe geführt. Die genannten Ausführungsformen beschreiben allesamt Möglichkeiten, bei denen die Unterkante des Heckschildes über den gesamten Aushubbereich hinweg an der Oberfläche der Rampe im Wesentlichen anliegt. Insbesondere wird die Unterkante des Heckschildes und damit der Heckschild selber besonders nah entlang der Rampe zwischen der Arbeitsposition und der ausgehobenen Position verstellt. Ein Großteil im Fräswalzenkasten vorhandenen losen Fräsgutes wird auf diese Weise vom Heckschild mit die Rampe hinauf befördert und bleibt nicht im Fräsbett zurück. Hieraus ergibt sich eine signifikante Zeitersparnis, da Nacharbeiten entfallen.According to a particularly preferred embodiment, it is provided that the trajectory follows a ramp created by lifting the milling drum in the excavation area in such a way that the lower edge of the rear shield essentially rests on the surface of the ramp over the entire excavation area. This embodiment requires particularly precise control of the vertical position of the rear shield and the feed speed of the road milling machine, in particular including its acceleration. These values for the movement of the rear shield and the road milling machine are therefore recorded by a control device. In addition, it is advantageous to to know the geometry of the milling drum and in particular its diameter or the diameter of the cutting circles, as this determines the shape of the ramp. The geometry of the milling drum is known in advance and is stored in the control device and/or can be entered into the control device. All parameters are therefore known and are used by the control device to adjust the rear shield or are taken into account during the adjustment so that the rear shield follows the trajectory. The lower edge of the rear shield can, for example, be subjected to a force directed vertically downwards onto the ground, as is usual in work operations, so that the lower edge of the rear shield scrapes the surface of the ramp. At the same time, the height position of the rear shield must be adjusted according to the ramp geometry so that the rear shield can actually follow the shape of the ramp and does not get stuck on it. Alternatively, it can be provided that the rear shield is guided up the ramp in a sliding or floating manner without being pressed onto the ground. The rear shield is in contact with the surface of the ramp, but is not actively subjected to a force directed towards the ground. The trajectory follows the surface of the ramp. Finally, it is also possible to control the lower edge of the rear shield along a trajectory that corresponds to the shape of the ramp, but to space the lower edge from the ramp by a safety distance, for example 2 cm. The lower edge of the rear shield is guided floating along the ramp. The embodiments mentioned all describe options in which the lower edge of the rear shield essentially rests on the surface of the ramp over the entire excavation area. In particular, the lower edge of the rear shield and thus the rear shield itself is adjusted particularly close along the ramp between the working position and the raised position. In this way, a large part of the loose material to be milled in the milling drum box is transported up the ramp by the rear blade and does not remain in the milling bed. This results in significant time savings as there is no need for rework.

Grundsätzlich kann das erfindungsgemäße Verfahren von einem Bediener schrittweise manuell durchgeführt werden, indem dieser die Straßenfräsmaschine entsprechend steuert. Um den Bediener allerdings nach Möglichkeit zu entlasten, ist es bevorzugt vorgesehen, dass zumindest Schritt c), und insbesondere ebenfalls die Schritte d) und e), selbsttätig durchgeführt werden, insbesondere ausgelöst durch einen einzigen Steuerbefehl eines Bedieners. Das Abfräsen des Bodens im normalen Arbeitsbetrieb gemäß Schritt a) und das Annähern der Straßenfräsmaschine an das Hindernis gemäß Schritt b) werden also wie üblich vom Bediener durchgeführt beziehungsweise gesteuert. Um das erfindungsgemäße Verfahren zu nutzen, positioniert der Bediener dann die Straßenfräsmaschine möglichst nah vor dem Hindernis. Anstatt dann das Ausheben der Fräswalze zu steuern, gibt der Bediener allerdings lediglich einen Steuerbefehl an der Steuereinrichtung der Straßenfräsmaschine ein, beispielsweise über ein Bedienelement wie einen Schalter oder einen Touchscreen. Das Ausheben der Fräswalze gemäß Schritt c) wird dann selbsttätig von der Steuereinrichtung der Straßenfräsmaschine durchgeführt, wobei der Heckschild und insbesondere die Unterkante des Heckschildes insbesondere entlang der vorgegebenen Trajektorie geführt werden. Ist das Ausheben abgeschlossen, so kann der Bediener das Überfahren des Hindernisses gemäß Schritt d) wieder selbst steuern und die Straßenfräsmaschine hinter dem Hindernis positionieren. Durch einen weiteren Steuerbefehl des Bedieners wird dann das Absenken gemäß Schritt e) bevorzugt wieder selbsttätig durch die Steuereinrichtung durchgeführt, wobei hier insbesondere wieder die Arbeitsparameter eingestellt werden, die schon vor dem Ausheben gemäß c) vorgelegen haben. Auf diese Weise kann der Arbeitsbetrieb einfach und schnell fortgesetzt werden.In principle, the method according to the invention can be carried out manually step by step by an operator by controlling the road milling machine accordingly. However, in order to relieve the operator's burden as much as possible, it is preferably provided that at least step c), and in particular also steps d) and e), are carried out automatically, in particular triggered by a single control command from an operator. The milling of the ground in normal operation according to step a) and the approach of the road milling machine to the obstacle according to step b) are carried out or controlled by the operator as usual. In order to use the method according to the invention, the operator then positions the road milling machine as close as possible to the obstacle. Instead of then controlling the lifting of the milling drum, the operator simply enters a control command on the control device of the road milling machine, for example via a control element such as a switch or a touchscreen. The lifting of the milling drum according to step c) is then carried out automatically by the control device of the road milling machine, with the rear shield and in particular the lower edge of the rear shield being guided in particular along the predetermined trajectory. Once the excavation has been completed, the operator can control driving over the obstacle again according to step d) and position the road milling machine behind the obstacle. By means of a further control command from the operator, the lowering according to step e) is then preferably carried out automatically again by the control device, in particular the working parameters which were already present before the lifting according to c) are set here again. In this way, work can continue quickly and easily.

Der Bediener kann zusätzlich vorab eine Erstreckung des Hindernisses in Arbeitsrichtung eingeben, beispielsweise an der Steuereinrichtung. Wird die Erstreckung des Hindernisses in Arbeitsrichtung vom Bediener vorab eingegeben, so können sämtliche Schritte c), d) und e) ausgelöst durch einen einzigen Steuerbefehl des Bedieners selbsttätig durchgeführt werden, insbesondere von der Steuereinrichtung. Wie bereits erläutert, positioniert der Bediener also die Straßenfräsmaschine möglichst nah vor dem Hindernis. Dann gibt der Bediener nur noch den Steuerbefehl an die Steuereinrichtung ab, woraufhin diese das Ausheben der Fräswalze gemäß Schritt c), das Überfahren des Hindernisses gemäß Schritt d) und das Absenken der Fräswalze und des Heckschildes gemäß Schritt e) selbsttätig durchführt, ohne dass der Bediener hierfür weiter tätig werden muss. Der Bediener führt also lediglich ganz normale Fräsarbeiten bis kurz vor das Hindernis durch, gibt dann den Steuerbefehl ab, woraufhin die Straßenfräsmaschine selbsttätig das Hindernis umfräst, und kann dann die Fräsarbeiten in Arbeitsrichtung hinter dem Hindernis ganz normal fortsetzen. Auf diese Weise werden nicht nur Nacharbeiten minimiert, sondern auch der Bediener der Straßenfräsmaschine im Arbeitsbetrieb entlastet.The operator can also enter the extent of the obstacle in the working direction in advance, for example on the control device. If the extent of the obstacle in the working direction is entered in advance by the operator, all steps c), d) and e) can be carried out automatically by a single control command from the operator, in particular by the control device. As already explained, the operator positions the road milling machine as close as possible to the obstacle. Then the operator simply issues the control command to the control device, whereupon it automatically lifts the milling drum according to step c), drives over the obstacle according to step d) and lowers the milling drum and the rear shield according to step e), without the The operator must continue to work for this. The operator simply carries out normal milling work up to just in front of the obstacle, then issues the control command, whereupon the road milling machine automatically mills around the obstacle, and can then continue the milling work in the working direction behind the obstacle as normal. In this way, not only is rework minimized, but the workload on the operator of the road milling machine is also relieved during work.

Wie vorstehend beschrieben, kann das erfindungsgemäße Verfahren durchgeführt werden, indem der Bediener der Straßenfräsmaschine das im zu fräsenden Boden befindliche Hindernis erkennt und dessen Erstreckung in Arbeitsrichtung als Grundlage für eine selbsttätige Steuerung bestimmt beziehungsweise vorgibt. Das Erkennen des Hindernisses an sich und auch von dessen Ausmaßen, insbesondere der Erstreckung in Arbeitsrichtung, kann allerdings alternativ auch von einer Sensoreinrichtung durchgeführt werden. Hierfür ist es bevorzugt vorgesehen, dass in Arbeitsrichtung vor der Fräswalze wenigstens eine Sensoreinrichtung angeordnet ist, die dazu ausgebildet ist, Hindernisse im zu fräsenden Boden zu detektieren. Die Sensoreinrichtung kann hierfür beispielsweise einen induktiven, kapazitiven oder magnetischen Sensor, beispielsweise einen Metalldetektor, umfassen. Ergänzend oder alternativ kann die Sensoreinrichtung auch einen optischen Sensor, beispielsweise eine Kamera oder eine Wärmebildkamera, oder einen Schallsensor, beispielsweise einen Ultraschallsensor, umfassen. Wichtig ist, dass die Sensoreinrichtung in der Lage ist, Hindernisse zu erkennen, die innerhalb der Fräsbreite der Straßenfräsmaschine beziehungsweise der Fräswalze liegen. Der Erfassungsbereich der Sensoreinrichtung muss also die gesamte Fräsbreite der Fräswalze abdecken, damit auch seitlich versetzte Hindernisse zuverlässig erkannt werden können. Um dies zu erreichen, kann die Sensoreinrichtung beispielsweise auch mehrere Sensoren, beispielsweise auch mehrere Sensoren unterschiedlicher Art, beispielsweise quer zur Arbeitsrichtung verteilt, aufweisen.As described above, the method according to the invention can be carried out by the operator of the road milling machine recognizing the obstacle in the ground to be milled and determining or specifying its extent in the working direction as the basis for automatic control. However, the detection of the obstacle itself and also its dimensions, in particular the extent in the working direction, can alternatively also be carried out by a sensor device. For this purpose, it is preferably provided that at least one sensor device is arranged in front of the milling drum in the working direction and is designed to detect obstacles in the soil to be milled. For this purpose, the sensor device can include, for example, an inductive, capacitive or magnetic sensor, for example a metal detector. Additionally or alternatively, the sensor device can also include an optical sensor, for example a camera or a thermal imaging camera, or a sound sensor, for example an ultrasonic sensor. It is important that the sensor device is able to detect obstacles that lie within the milling width of the road milling machine or the milling drum. The detection range of the sensor device must therefore cover the entire milling width of the milling drum so that even laterally offset obstacles can be reliably detected. In order to achieve this, the sensor device can, for example, also have several sensors, for example also several sensors of different types, for example distributed transversely to the working direction.

Weist die Straßenfräsmaschine eine Sensoreinrichtung auf, die ein im zu fräsenden Boden befindliches Hindernis detektieren kann, so ist es besonders bevorzugt vorgesehen, dass der Schritt c), und insbesondere auch die Schritte d) und e), selbsttätig durchgeführt werden, ausgelöst durch die Detektion eines Hindernisses durch die Sensoreinrichtung. Besonders bevorzugt wird zur Durchführung der Schritte c), d) und e) die Erstreckung des Hindernisses in Arbeitsrichtung durch die Sensoreinrichtung bestimmt. Die Sensoreinrichtung erkennt also automatisch eine in Arbeitsrichtung vordere und in Arbeitsrichtung hintere Kante des Hindernisses und legt die Erstreckung des Hindernisses in Arbeitsrichtung zwischen diesen beiden Kanten fest. Daraufhin wird sowohl das Ausheben der Fräswalze gemäß Schritt c), das Überfahren des Hindernisses gemäß Schritt d) und das Absenken der Fräswalze und des Heckschildes gemäß Schritt e) selbsttätig durchführt, ohne dass der Bediener hierfür weiter tätig werden muss. Es ist also insbesondere noch nicht einmal mehr erforderlich, dass der Bediener einen Steuerbefehl absetzt, der diese Schritte auslöst. Auch dies wird bevorzugt von der Steuereinrichtung anhand der Detektion des Hindernisses selbsttätig durchgeführt.If the road milling machine has a sensor device which can detect an obstacle located in the ground to be milled, it is particularly preferably provided that step c), and in particular also steps d) and e), are carried out automatically, triggered by the detection an obstacle through the sensor device. To carry out steps c), d) and e), the extent of the obstacle in the working direction is particularly preferably determined by the sensor device. The sensor device therefore automatically detects a front edge of the obstacle in the working direction and a rear edge in the working direction and determines the extent of the obstacle in the working direction between these two edges. The lifting of the milling drum according to step c), the driving over the obstacle according to step d) and the lowering of the milling drum and the rear shield according to step e) are then carried out automatically, without the operator having to take any further action. In particular, it is no longer even necessary for the operator to issue a control command that triggers these steps. This is also preferably carried out automatically by the control device based on the detection of the obstacle.

Um die Flexibilität und gegebenenfalls die Sicherheit des erfindungsgemäßen Verfahrens zu erhöhen, kann ebenfalls vorgesehen sein, dass die Sensoreinrichtung das Vorhandensein und insbesondere die Ausmaße des Hindernisses detektiert, der Bediener allerdings dennoch konkrete Vorgaben zur Steuerung insbesondere des Aushebens gemäß Schritt c) und Überfahrens gemäß Schritt d) und/oder des Absenkens gemäß Schritt e) macht. Insbesondere soll der Bediener die Möglichkeit erhalten, festzulegen, wie viel ungefräster Boden um das Hindernis herum zurückbleiben soll. Hierfür ist bevorzugt vorgesehen, dass dem Bediener auf einer Anzeigeeinrichtung eine aus von der Sensoreinrichtung gewonnenen Daten erstellte Darstellung des Hindernisses angezeigt wird, und dass der Bediener an der Anzeigeeinrichtung die in Arbeitsrichtung vordere und hintere Kante des Hindernisses vorgeben kann, wobei die Schritte c), d) und e) dann derart durchgeführt werden, dass die Fräswalze außer Kontakt mit den vom Bediener vorgegebenen Kanten des Hindernisses bleibt. Beispielsweise kann dem Bediener das Bild einer Kamera auf der Anzeigeeinrichtung angezeigt werden, wobei das Hindernis auf dem Bild sichtbar ist. Der Bediener kann dann über Eingabeelemente, beispielsweise einen Touchscreen, die in Arbeitsrichtung vordere und hintere Kante des Hindernisses anhand des Bildes festlegen. Diese vom Bediener festgelegten Abmessungen des Hindernisses in Arbeitsrichtung werden dann der weiteren Steuerung zu Grunde gelegt. Die Steuerung erfolgt dabei derart, dass die Fräswalze vor der in Arbeitsrichtung vorderen Kante des Hindernisses aus dem Boden ausgehoben und erst hinter der in Arbeitsrichtung hinteren Kante des Hindernisses wieder in den Boden abgesenkt wird. Ein potenziell schädlicher Kontakt zwischen der Fräswalze und dem Hindernis wird dabei vermieden.In order to increase the flexibility and, if necessary, the safety of the method according to the invention, it can also be provided that the sensor device detects the presence and in particular the dimensions of the obstacle, but the operator still has specific specifications for controlling, in particular, the lifting according to step c) and driving over according to step d) and/or lowering according to step e). In particular, the operator should be given the opportunity to determine how much unmilled ground should remain around the obstacle. For this purpose, it is preferably provided that the operator is shown a representation of the obstacle created from data obtained by the sensor device on a display device, and that the operator can specify the front and rear edges of the obstacle in the working direction on the display device, with steps c), d) and e) are then carried out in such a way that the Milling drum remains out of contact with the edges of the obstacle specified by the operator. For example, the image from a camera can be displayed to the operator on the display device, with the obstacle being visible in the image. The operator can then use input elements, for example a touchscreen, to determine the front and rear edges of the obstacle in the working direction based on the image. These dimensions of the obstacle in the working direction determined by the operator are then used as the basis for further control. The control is carried out in such a way that the milling drum is lifted out of the ground in front of the front edge of the obstacle in the working direction and is only lowered back into the ground behind the rear edge of the obstacle in the working direction. This avoids potentially damaging contact between the milling drum and the obstacle.

Gemäß einer besonders bevorzugten Ausführungsform wird ebenfalls das Annähern der Stra-ßenfräsmaschine in Arbeitsrichtung an das im Boden befindliche Hindernis gemäß Schritt b) selbsttätig von der Steuereinrichtung durchgeführt. Hierbei kann vorgesehen sein, dass die Steuereinrichtung die Straßenfräsmaschine möglichst nah vor dem Hindernis positioniert. Zum einen soll die Fräswalze möglichst knapp vor dem Hindernis ausgehoben werden, um überstehende Reste des abzufräsenden Bodens möglichst gering zu halten, die nachträglich manuell oder maschinell entfernt werden müssen. Zum anderen soll sichergestellt werden, dass weder das Hindernis noch die Fräswalze durch eine Kollision beschädigt werden. Aufgrund der Geometrie der Fräswalze ist hierbei zu beachten, dass die Straßenfräsmaschine je nach Frästiefe unterschiedlich nah an Hindernisse heranfahren kann. Aufgrund des kreisförmigen Durchmessers der Fräswalze muss diese bei hohen Frästiefen früher und kann bei niedrigeren Frästiefen später ausgehoben werden, um sie außer Kontakt mit dem Hindernis zu halten. Es ist daher bevorzugt vorgesehen, dass die Position in Arbeitsrichtung, an dem das Ausheben der Fräswalze durchgeführt wird, unter Berücksichtigung der Lage des Hindernisses, der Frästiefe und insbesondere auch der Geometrie der Fräswalze bestimmt wird, um diese außer Kontakt mit dem Hindernis zu halten. Insbesondere wird diese Position selbsttätig durch die Steuereinrichtung bestimmt, sodass auch der Schritt b) des Annäherns der Straßenfräsmaschine in Arbeitsrichtung an das im Boden befindliche Hindernis selbsttätig von der Steuereinrichtung und ohne einen Eingriff des Bedieners durchgeführt wird. Der Bediener kann sich in diesem Fall vollständig auf das Abfräsen des Bodens gemäß Schritt a) konzentrieren. Sämtliche weiteren Schritte b) bis e), die sich mit dem Ausweichen aufgrund des Hindernisses befassen, werden bevorzugt selbsttätig durch die Steuereinrichtung durchgeführt.According to a particularly preferred embodiment, the approach of the road milling machine in the working direction to the obstacle in the ground according to step b) is also carried out automatically by the control device. It can be provided here that the control device positions the road milling machine as close as possible to the obstacle. On the one hand, the milling drum should be lifted as close as possible in front of the obstacle in order to keep as little as possible any protruding residues of the soil to be milled, which subsequently have to be removed manually or mechanically. On the other hand, it should be ensured that neither the obstacle nor the milling drum are damaged by a collision. Due to the geometry of the milling drum, it should be noted that the road milling machine can approach obstacles at varying degrees depending on the milling depth. Due to the circular diameter of the milling drum, it must be excavated earlier at high milling depths and later at lower milling depths to keep it out of contact with the obstacle. It is therefore preferably provided that the position in the working direction at which the milling drum is lifted out is determined taking into account the position of the obstacle, the milling depth and in particular the geometry of the milling drum in order to keep it out of contact with the obstacle. In particular, this position is determined automatically by the control device, so that step b) of approaching the road milling machine in the working direction to the obstacle in the ground is also carried out automatically by the control device and without intervention by the operator. In this case, the operator can concentrate completely on milling the ground according to step a). All further steps b) to e), which deal with the avoidance due to the obstacle, are preferably carried out automatically by the control device.

Da die Straßenfräsmaschine während den Schritten c) und d) weniger bis kein Fräsgut vom Boden abträgt, ist es bevorzugt vorgesehen, dass während des Durchführens dieser Schritte eine Fördereinrichtung der Straßenfräsmaschine, insbesondere selbsttätig, außer Betrieb gesetzt wird. Dies kann ebenfalls von der Steuereinrichtung durchgeführt werden. Auf diese Weise muss während des Durchführens dieser Schritte nicht noch zusätzlich auf das fehlerfreie und verlustarme Übertragen des Fräsgutes auf ein Transportfahrzeug geachtet werden. Entsprechende Fehlerquellen werden dadurch reduziert und die Arbeitssicherheit erhöht. Darüber hinaus wird die Fördereinrichtung bevorzugt in Schritt e) selbsttätig wieder aktiviert, um den Fräsvorgang reibungslos fortzusetzen.Since the road milling machine removes less or no milled material from the ground during steps c) and d), it is preferably provided that a conveyor device is installed while these steps are being carried out the road milling machine is put out of operation, especially automatically. This can also be carried out by the control device. In this way, while these steps are being carried out, additional attention does not have to be paid to the error-free and low-loss transfer of the milled material to a transport vehicle. Corresponding sources of error are thereby reduced and occupational safety is increased. In addition, the conveyor device is preferably automatically reactivated in step e) in order to continue the milling process smoothly.

Um einen einfachen, schnellen und nahtlosen Übergang der Fräsarbeiten vor dem Hindernis und nach dem Hindernis zu gewährleisten, ist es bevorzugt vorgesehen, dass zum Fortsetzen des Abfräsens des Bodens gemäß Schritt e) selbsttätig dieselben Maschineneinstellungen, insbesondere bezüglich Frästiefe und/oder Vorschubgeschwindigkeit und/oder Betrieb der Fördereinrichtung, eingestellt werden, insbesondere wie sie in Schritt a) vorlagen. Die Fräsarbeiten sollen in Arbeitsrichtung hinter dem Hindernis also mit denselben Maschineneinstellungen fortgesetzt werden, die vor dem Hindernis eingestellt waren. Entsprechend werden die jeweiligen Einstellungen von der Steuereinrichtung gespeichert und im Schritt e) selbsttätig wiederhergestellt.In order to ensure a simple, quick and seamless transition of the milling work before the obstacle and after the obstacle, it is preferably provided that the same machine settings are automatically used to continue milling the soil according to step e), in particular with regard to milling depth and / or feed speed and / or Operation of the conveyor device can be set, in particular as they were in step a). The milling work should continue in the working direction behind the obstacle with the same machine settings that were set in front of the obstacle. Accordingly, the respective settings are saved by the control device and automatically restored in step e).

Um auch auf dem Hindernis möglichst wenig Fräsgut zu hinterlassen, ist es bevorzugt vorgesehen, dass der Heckschild während des Überfahrens des Hindernisses gemäß Schritt d) in der ausgehobenen Positionen entweder am ungefrästen Boden und dem Hindernis anliegend oder mit einem Sicherheitsabstand, beispielsweise 2 cm, über diesem schwebend gehalten wird. Auf diese Weise wird ein Großteil des Fräsgutes im in Arbeitsrichtung vor dem Hindernis liegenden Fräsbett aus diesem heraustransportiert, dann vom Heckschild über das Hindernis befördert und bis zum erneuten Ansetzen der Fräswalze im Fräswalzenkasten behalten. Sobald die Fräsarbeiten in Arbeitsrichtung hinter dem Hindernis wieder einsetzen, kann das Fräsgut dann ganz normal auf die Fördereinrichtung transportiert und entsorgt werden. Das erneute Ansetzen der Fräswalze in Arbeitsrichtung hinter dem Hindernis kann dabei grundsätzlich genauso ablaufen, wie am Beginn einer neuen Frässpur. Um auch am Beginn der neuen Frässpur in Arbeitsrichtung hinter dem Hindernis ein möglichst sauberes Fräsbett zu hinterlassen, kann es allerdings bevorzugt vorgesehen sein, dass das Absenken des Heckschildes bis zur vorgegebenen Frästiefe in Arbeitsrichtung hinter dem Hindernis derart gesteuert wird, dass die Unterkante des Heckschildes während des Absenkens einer der vorliegend beschriebenen Trajektorien in umgekehrter Richtung folgt. Hierbei kann es sich grundsätzlich um eine beliebige der vorstehend beschriebenen Trajektorien handeln. Insbesondere handelt es sich um dieselbe Trajektorie wie während des Aushebens. Die Steuerung des Absenkens des Heckschildes und der Vorschubgeschwindigkeit der Straßenfräsmaschine erfolgt also derart, dass die entsprechende Trajektorie genau andersherum durchlaufen wird. Auf diese Weise bleibt sowohl vor als auch hinter dem Hindernis möglichst wenig Fräsgut zurück, welches in aufwendigen Nacharbeiten entfernt werden muss.In order to leave as little milled material as possible on the obstacle, it is preferably provided that the rear shield is in the excavated position either resting against the unmilled ground and the obstacle or with a safety distance, for example 2 cm, while driving over the obstacle according to step d). this is kept floating. In this way, a large part of the material to be milled is transported out of the milling bed in front of the obstacle in the working direction, then transported over the obstacle by the rear blade and kept in the milling drum box until the milling drum is repositioned. As soon as the milling work begins again in the working direction behind the obstacle, the milled material can then be transported to the conveyor and disposed of as normal. The repositioning of the milling drum in the working direction behind the obstacle can basically proceed in the same way as at the start of a new milling track. In order to leave the cleanest possible milling bed behind the obstacle at the beginning of the new milling track in the working direction, it can preferably be provided that the lowering of the rear shield is controlled to the predetermined milling depth in the working direction behind the obstacle in such a way that the lower edge of the rear shield is during the lowering of one of the trajectories described here follows in the opposite direction. In principle, this can be any of the trajectories described above. In particular, it is the same trajectory as during excavation. The lowering of the rear shield and the feed speed of the road milling machine are controlled in such a way that the corresponding trajectory is carried out exactly the other way around. This way you stay both in front of and behind The obstacle leaves behind as little milled material as possible, which has to be removed in complex rework.

Das Verfahren lässt sich weiter verbessern, wenn ein Speichern von Hindernisbreiten im Ablauf des Verfahrens erfolgt. Die Hindernisbreite bezeichnet vorliegend die Erstreckung des Hindernisses in Fahr- bzw. Fräsrichtung der Straßenfräsmaschine. Dies kann beispielsweise für mehrfach zu überfahrende Hindernisse und/oder Hindernisse mit Standardbreiten, wie beispielsweise Kanaldeckel etc., sinnvoll sein. In diesem Fall kann der Bediener beispielsweise per manueller Auslösung das Erreichen eines solchen Hindernisses mit gespeicherter Breite signalisieren. Damit steht die Strecke fest, über die die Fräswalze und der Heckschild gemäß den vorstehenden Angaben gehoben werden sollen. Innbesondere entfällt zudem die Notwendigkeit, dass der Fahrer auch das Absenken auslösen muss. Ergänzend oder alternativ kann auch ein Offset vorgesehen sein. Dieser bezeichnet einen, insbesondere auch manuell definierbaren, Abstand in Fräsrichtung vor und hinter dem Hindernis. Dieser kann individuell pro Hindernis vom Bediener festgelegt werden oder aber auch als definierte Größe in einer Speichereinrichtung, hinterlegt sein.The process can be further improved if obstacle widths are saved during the process. In this case, the obstacle width refers to the extent of the obstacle in the travel or milling direction of the road milling machine. This can be useful, for example, for obstacles that have to be driven over several times and/or obstacles with standard widths, such as manhole covers, etc. In this case, the operator can signal, for example, by manual triggering that such an obstacle with a saved width has been reached. This determines the distance over which the milling drum and the rear shield should be lifted according to the above information. In particular, there is no longer any need for the driver to trigger the lowering. Additionally or alternatively, an offset can also be provided. This denotes a distance, in particular also manually definable, in the milling direction in front of and behind the obstacle. This can be set individually for each obstacle by the operator or can also be stored as a defined size in a memory device.

Die Lösung der eingangs genannten Aufgabe gelingt ebenfalls mit einer Straßenfräsmaschine zum Abfräsen eines Bodens in einer Arbeitsrichtung. Die erfindungsgemäße Straßenfräsmaschine umfasst einen gegenüber dem Boden höhenverstellbaren Fräswalzenkasten. Diese Höhenverstellung kann über eine Verstelleinrichtung erreicht werden, die derart ausgebildet ist, dass der Fräswalzenkasten relativ zum Maschinenrahmen ganz oder teilweise höhenverstellbar ist. Ergänzend oder alternativ kann der Maschinenrahmen über vertikal verstellbare Hubeinrichtungen mit den auf dem Bodenuntergrund ablaufenden Fahreinrichtungen verbunden sein. In diesem Fall wird der Fräswalzenkasten somit zusammen mit dem Maschinenrahmen in Vertikalrichtung verstellt. Der Fräswalzenkasten weist einen Frontschild, zwei Seitenschildern (je eines stirnseitig der Fräswalze) und einen gegenüber dem Maschinenrahmen höhenverstellbaren Heckschild auf und kann einen Niederhalter aufweisen. Darüber hinaus umfasst sie eine im Fräswalzenkasten um eine, insbesondere horizontale und quer zur Arbeitsrichtung verlaufende, Rotationsachse rotierbar gelagerte Fräswalze und eine Steuereinrichtung. Die erfindungsgemäße Straßenfräsmaschine zeichnet sich dadurch aus, dass die Steuereinrichtung zur Durchführung des vorstehend beschriebenen Verfahrens ausgebildet ist, wobei wenigstens der Schritt c) selbsttätig von der Steuereinrichtung durchgeführt wird derart, dass das Ausheben der Fräswalze zeitlich vor dem Ausheben des Heckschildes aus dem Boden durchgeführt wird, wobei sich die Straßenfräsmaschine zwischen dem Ausheben der Fräswalze und dem Ausheben des Heckschildes weiter in Arbeitsrichtung bewegt. Sämtliche vorstehend für das Verfahren genannten Merkmale, Wirkungen und Vorteile gelten daher im übertragenen Sinne ebenfalls für die erfindungsgemä-ße Straßenfräsmaschine und umgekehrt. Es wird lediglich zur Vermeidung von Wiederholungen auf die jeweils anderen Ausführungen Bezug genommen.The task mentioned at the beginning can also be solved with a road milling machine for milling a floor in one working direction. The road milling machine according to the invention comprises a milling drum box which is height-adjustable relative to the ground. This height adjustment can be achieved via an adjusting device which is designed in such a way that the milling drum box is completely or partially height-adjustable relative to the machine frame. Additionally or alternatively, the machine frame can be connected to the driving devices running on the ground via vertically adjustable lifting devices. In this case, the milling drum box is adjusted in the vertical direction together with the machine frame. The milling drum box has a front shield, two side shields (one on the front of the milling drum) and a rear shield that is height-adjustable relative to the machine frame and can have a hold-down device. In addition, it comprises a milling drum rotatably mounted in the milling drum box about a rotation axis, in particular horizontal and transverse to the working direction, and a control device. The road milling machine according to the invention is characterized in that the control device is designed to carry out the method described above, with at least step c) being carried out automatically by the control device in such a way that the milling drum is lifted out before the rear shield is lifted out of the ground , whereby the road milling machine continues to move in the working direction between lifting the milling drum and lifting the rear shield. All of the features, effects and advantages mentioned above for the method therefore also apply in a figurative sense to the method according to the invention road milling machine and vice versa. Reference is only made to the other statements to avoid repetition.

Wie eingangs bereits erwähnt, kann die Fräswalze entweder innerhalb des Fräswalzenkastens und relativ zu diesem höhenverstellbar ausgebildet sein, oder die Fräswalze ist zusammen mit dem Fräswalzenkasten höhenverstellbar ausgebildet. Je nachdem, wie die Fräswalze der Straßenfräsmaschine höhenverstellt wird, kann es vorteilhaft sein, dass der Heckschild und insbesondere die Unterkante des Heckschildes, tiefer absenkbar ausgebildet ist, als die Fräswalze und insbesondere deren unterer Scheitelpunkt. Der untere Scheitelpunkt der Fräswalze ist auf die größten Schneidkreise der Fräswalze bezogen. Mit anderen Worten ist bevorzugt vorgesehen, dass die Straßenfräsmaschine eine Verstelleinrichtung zur Höhenverstellung des Heckschildes aufweist, die derart ausgebildet ist, dass der Heckschild bis unter den unteren Scheitelpunkt der Fräswalze hinaus verstellbar ist, insbesondere um mindestens 10 %, bevorzugt um mindestens 20 %, besonders bevorzugt um mindestens 30 %, des Durchmessers der Fräswalze. Hierdurch wird insbesondere sichergestellt, dass der Heckschild noch in Arbeitsposition sein kann, während die Fräswalze bereits ausgehoben wird beziehungsweise wurde, auch wenn die Fräswalze grundsätzlich zusammen mit dem gesamten Fräswalzenkasten höhenverstellt wird. In diesem Fall wird vom Heckschild eine Gegenbewegung zur Kompensation durchgeführt, bei der der Heckschild vertikal unter die Fräswalze und insbesondere auch unter deren unteren Scheitelpunkt hinaus verstellt wird.As already mentioned at the beginning, the milling drum can either be designed to be height-adjustable within the milling drum box and relative to it, or the milling drum is designed to be height-adjustable together with the milling drum box. Depending on how the height of the milling drum of the road milling machine is adjusted, it can be advantageous for the rear shield and in particular the lower edge of the rear shield to be designed to be lowerable lower than the milling drum and in particular its lower apex. The lower apex of the milling drum is related to the largest cutting circles of the milling drum. In other words, it is preferably provided that the road milling machine has an adjusting device for adjusting the height of the rear shield, which is designed such that the rear shield can be adjusted below the lower apex of the milling drum, in particular by at least 10%, preferably by at least 20%, in particular preferably by at least 30% of the diameter of the milling drum. This ensures in particular that the rear shield can still be in the working position while the milling drum is or has already been lifted, even if the height of the milling drum is basically adjusted together with the entire milling drum box. In this case, the rear shield carries out a countermovement for compensation, in which the rear shield is adjusted vertically below the milling drum and in particular below its lower apex.

Die Erfindung wird nachstehend anhand der in den Figuren gezeigten Ausführungsbeispiele näher erläutert. Es zeigen schematisch:

Figur 1:
eine Seitenansicht einer Straßenfräsmaschine;
Figur 2:
eine Draufsicht auf einen Fräswalzenkasten und eine Fräswalze;
Figuren 3-9:
einen zeitlichen Ablauf von Fräsarbeiten bei einem im zu fräsenden Boden befindlichen Hindernis;
Figur 10:
eine Detailansicht gemäß Ausschnitt X aus Figur 5;
Figur 11:
eine Detailansicht gemäß Figur 10 mit angehobener Fräswalze;
Figur 12:
eine einstufige Trajektorie;
Figur 13:
eine weitere einstufige Trajektorie mit in Richtung der Vorderkante des Aushubbereiches verschobener Verlagerungsstelle;
Figur 14:
eine weitere einstufige Trajektorie mit einer Verlagerungsstelle, die der Vorderkante des Aushubbereiches entspricht;
Figur 15:
eine mehrstufige Trajektorie;
Figur 16:
eine mehrstufige Trajektorie mit schrägen Abschnitten;
Figur 17:
eine einstufige, schräge Trajektorie;
Figur 18:
eine Trajektorie, bei der die Unterkante des Heckschildes im Wesentlichen an der Oberfläche der Rampe im Aushubbereich anliegt;
Figur 19:
eine Sensoreinrichtung mit einem Sensor;
Figur 20:
eine Sensoreinrichtung mit mehreren Sensoren;
Figur 21:
den Einfluss der Frästiefe auf die Position des Aushebens der Fräswalze; und
Figur 22:
ein Ablaufdiagramm des Verfahrens.
The invention is explained in more detail below using the exemplary embodiments shown in the figures. It shows schematically:
Figure 1:
a side view of a road milling machine;
Figure 2:
a top view of a milling drum box and a milling drum;
Figures 3-9:
a time sequence of milling work in the event of an obstacle in the ground to be milled;
Figure 10:
a detailed view according to section X Figure 5 ;
Figure 11:
a detailed view according to Figure 10 with raised milling drum;
Figure 12:
a single-stage trajectory;
Figure 13:
a further single-stage trajectory with the displacement point shifted towards the front edge of the excavation area;
Figure 14:
another single-stage trajectory with a displacement point corresponding to the leading edge of the excavation area;
Figure 15:
a multi-stage trajectory;
Figure 16:
a multi-stage trajectory with oblique sections;
Figure 17:
a single-stage, oblique trajectory;
Figure 18:
a trajectory in which the lower edge of the rear shield essentially rests on the surface of the ramp in the excavation area;
Figure 19:
a sensor device with a sensor;
Figure 20:
a sensor device with several sensors;
Figure 21:
the influence of the milling depth on the position of lifting the milling drum; and
Figure 22:
a flowchart of the procedure.

Gleiche beziehungsweise gleich wirkende Bauteile sind mit den gleichen Bezugsziffern bezeichnet. Sich wiederholende Bauteile sind nicht in jeder Figur gesondert bezeichnet.Identical or identically acting components are designated with the same reference numbers. Repetitive components are not designated separately in each figure.

Figur 1 zeigt eine Straßenfräsmaschine 1, hier eine Straßenfräse beziehungsweise Kaltfräse vom Mittelrotortyp, zum Abfräsen eines Bodens 8 in Arbeitsrichtung a. Die Straßenfräsmaschine 1 weist einen Maschinenrahmen 3 und einen Fahrerstand 2 auf. Der Maschinenrahmen 3 wird über Hubsäulen 15 getragen, die den Maschinenrahmen 3 mit den Fahreinrichtungen 6 verbinden, die im gezeigten Ausführungsbeispiele als Kettenlaufwerke ausgebildet sind, bei denen es sich allerdings ebenfalls um Räder handeln kann. Über die Hubsäulen 15 kann der Maschinenrahmen 3 gegenüber dem Boden 8 höhenverstellt bzw. in Vertikalrichtung verstellt werden. Die Straßenfräsmaschine 1 umfasst darüber hinaus einen Antriebsmotor 4, bei dem es sich typischerweise um einen Dieselverbrennungsmotor handelt, der allerdings ebenfalls beispielsweise ein Elektromotor sein kann. Auch ein hybrider Antrieb ist möglich. Als primäre Arbeitseinheit weist die Straßenfräsmaschine 1 eine Fräswalze 9 auf, die um eine Rotationsachse 10 rotierbar in einem Fräswalzenkasten 7 gelagert ist. Im Betrieb der Straßenfräsmaschine 1 rotiert die Fräswalze 9 um die Rotationsachse 10 und fräst dabei Bodenmaterial vom Boden 8 ab. Dieses losgelöste Fräsgut wird aus dem Fräswalzenkasten 7 auf eine Fördereinrichtung 5 übertragen, die typischerweise ein Förderband umfasst, und die dazu ausgebildet ist, das Fräsgut auf ein nicht dargestelltes Transportfahrzeug zum Abtransport zu überladen. Der Fräswalzenkasten 7 kann in Vertikalrichtung ortsfest am Maschinenrahmen 7 angeordnet sein. Alternativ kann auch eine Verstelleinrichtung vorgesehen sein, die derart ausgebildet ist, dass der Fräswalzenkasten in Vertikalrichtung verstellbar relativ zum Maschinenrahmen ist. In diesem Fall könnte auch auf die Hubeinrichtungen 15 verzichtet werden. Im Fahrerstand 2 befindet sich im gezeigten Ausführungsbeispiel eine Steuereinrichtung 18, die beispielsweise Teil des Bordcomputers der Straßenfräsmaschine 1 ist. Insbesondere ist die Steuereinrichtung 18 mit Eingabemitteln ausgestattet, über die ein Bediener Steuerbefehle an die Steuereinrichtung 18 zur Steuerung der Straßenfräsmaschine 1 eingeben kann. Darüber hinaus ist die Steuereinrichtung 18 mit einer Anzeigeeinrichtung 26 verbunden, beispielsweise einem Display. Die Anzeigeeinrichtung 26 kann auch gleichzeitig als Eingabemittel ausgebildet sein, beispielsweise als Touchscreen. Figure 1 shows a road milling machine 1, here a road milling machine or cold milling machine of the center rotor type, for milling a floor 8 in working direction a. The road milling machine 1 has a machine frame 3 and an operator's cab 2. The machine frame 3 is carried via lifting columns 15, which connect the machine frame 3 to the driving devices 6, which in the exemplary embodiment shown are designed as chain drives, which, however, can also be wheels. The machine frame 3 can be adjusted in height relative to the floor 8 or adjusted in the vertical direction via the lifting columns 15. The road milling machine 1 also includes a drive motor 4, which is typically a diesel internal combustion engine, but can also be an electric motor, for example. A hybrid drive is also possible. As the primary working unit, the road milling machine 1 has a milling drum 9, which is mounted in a milling drum box 7 so that it can rotate about an axis of rotation 10. When the road milling machine 1 is in operation, the milling drum 9 rotates about the axis of rotation 10 and thereby mills ground material from the ground 8. This detached milled material is transferred from the milling roller box 7 to a conveyor device 5, which typically comprises a conveyor belt and which is designed to load the milled material onto a transport vehicle (not shown) for removal. The milling drum box 7 can be arranged stationary on the machine frame 7 in the vertical direction. Alternatively, an adjusting device can also be provided, which is designed such that the milling drum box can be adjusted in the vertical direction relative to the machine frame. In this case, the lifting devices 15 could also be dispensed with. In the exemplary embodiment shown, there is a control device 18 in the driver's cab 2, which is, for example, part of the on-board computer of the road milling machine 1. In particular, the control device 18 is equipped with input means via which an operator can input control commands to the control device 18 for controlling the road milling machine 1. In addition, the control device 18 has a display device 26 connected, for example a display. The display device 26 can also be designed as an input means, for example as a touchscreen.

In Figur 2 ist eine Draufsicht auf die im Fräswalzenkasten 7 angeordnete Fräswalze 9 gezeigt. Ein Abschluss in Vertikalrichtung nach oben bzw. ein Deckel ist in Fig. 2 aus Deutlichkeitsgründen nicht gezeigt. Die Fräswalze 9 weist eine Vielzahl von Fräswerkzeugen 11, beispielsweise Fräsmeißeln, auf. Die Fräswerkzeuge 11 sind dabei über den Außenmantel der hohlzylindrischen Fräswalze 9 verteilt angeordnet, beispielsweise in Wendeln. Insgesamt umgibt der Fräswalzenkasten 7 die Fräswalze 9 haubenartig und ist im Wesentlichen lediglich in Richtung des Bodens 8, sprich, nach unten, geöffnet ausgebildet (im Front- und/oder Heckschild kann hierzu ergänzend ferner eine Materialdurchtrittsöffnung vorgesehen sein). In Arbeitsrichtung a vorne ist der Fräswalzenkasten 7 durch einen Frontschild 13 verschlossen. Der Frontschild 13 kann einen Niederhalter umfassen. Der Niederhalter kann auch als separates Element in Arbeitsrichtung a vor dem Frontschild 13 angeordnet sein. Insbesondere wenn die Fräswalze 9 in umgekehrter Rotationsrichtung bezüglich der Fahreinrichtungen 6 rotiert, verhindert der vor der Fräswalze 9 auf den Boden 8 drückende Niederhalter das Ausbrechen von größeren Schollen aus dem Boden 8. Seitlich wird der Fräswalzenkasten 7 durch Seitenschilder 12 begrenzt, die auf dem Boden 8 neben der Fräswalze 9 gleitend mitgeführt werden und ein Austreten von Fräsgut seitlich aus dem Fräswalzenkasten 7 verhindern. In Arbeitsrichtung a hinten wird der Fräswalzenkasten 7 von einem Heckschild 14 abgeschlossen. Der Heckschild 14 streift das auf dem Boden 8 liegende Fräsgut ab und sorgt dafür, dass dieses mit dem Fräswalzenkasten 7 mittransportiert und aus diesem heraus kanalisiert abtransportiert wird. Auf diese Weise wird ein möglichst sauberes Fräsbett hinterlassen. Grundsätzlich können sowohl der Frontschild 13, die Seitenschilde 12 und der Heckschild 14 jeweils für sich höhenverstellbar ausgebildet sein. Aus Übersichtlichkeitsgründen ist lediglich eine Verstelleinrichtung 28 zur Höhenverstellung des Heckschildes 14 dargestellt. Diese umfasst beispielsweise einen oder mehrere, insbesondere doppelt wirkende Hydraulikzylinder. Über die Verstelleinrichtung 28 ist der Heckschild 14 höhenverstellbar, insbesondere relativ zum Maschinenrahmen 3 und/oder zur Fräswalze 9 und/oder zum Boden 8 ausgebildet.In Figure 2 a top view of the milling drum 9 arranged in the milling drum box 7 is shown. A closure in the vertical direction upwards or a lid is in Fig. 2 not shown for clarity reasons. The milling drum 9 has a large number of milling tools 11, for example milling cutters. The milling tools 11 are arranged distributed over the outer jacket of the hollow cylindrical milling drum 9, for example in spirals. Overall, the milling drum box 7 surrounds the milling drum 9 in a hood-like manner and is essentially designed to be open only in the direction of the base 8, i.e. downwards (in addition, a material passage opening can also be provided in the front and/or rear shield). In the working direction a at the front, the milling drum box 7 is closed by a front plate 13. The front shield 13 can include a hold-down device. The hold-down device can also be arranged as a separate element in the working direction a in front of the front plate 13. In particular, when the milling drum 9 rotates in the opposite direction of rotation with respect to the driving devices 6, the hold-down device pressing on the ground 8 in front of the milling drum 9 prevents larger clods from breaking out of the ground 8. The milling drum box 7 is delimited on the side by side plates 12, which are on the ground 8 can be slid along next to the milling drum 9 and prevent milled material from escaping laterally from the milling drum box 7. In the working direction a, the milling drum box 7 is closed off by a rear shield 14. The rear shield 14 wipes off the milled material lying on the floor 8 and ensures that it is transported with the milling drum box 7 and channeled away from it. In this way, the cleanest possible milling bed is left behind. In principle, the front shield 13, the side shields 12 and the rear shield 14 can each be designed to be height-adjustable. For reasons of clarity, only one adjusting device 28 for adjusting the height of the rear shield 14 is shown. This includes, for example, one or more, in particular double-acting, hydraulic cylinders. The rear shield 14 is height-adjustable via the adjusting device 28, in particular relative to the machine frame 3 and/or to the milling drum 9 and/or to the floor 8.

Die Figuren 3-9 veranschaulichen den zeitlichen Ablauf bei Fräsarbeiten und einem im zu fräsenden Boden 8 befindlichen Hindernis 16. Bei dem Hindernis 16 kann es sich beispielsweise um einen Kanaldeckel, einen Schacht oder einen sonstigen Einbau im Boden 8 handeln. Insbesondere soll das Hindernis 16 durch die Fräsarbeiten nicht beschädigt oder zerstört werden. Gleichzeitig soll auch die Fräswalze 9 beziehungsweise deren Fräswerkzeuge 11 vor Beschädigung durch eine Kollision mit dem Hindernis 16 bewahrt werden. Figur 3 zeigt dabei die Situation vor Beginn der Fräsarbeiten. Die Fräswalze 9 ist in einer ausgehobenen Position über dem Boden 8 angeordnet. Sie wird dann rotierend in den Boden 8 abgesenkt, während sich die Straßenfräsmaschine 1 in Arbeitsrichtung a über den Boden 8 bewegt. Die Fräswalze 9 trägt hierdurch den Boden 8 ab und eine Frässpur entsteht. Diese Situation ist in Figur 4 gezeigt. Die Straßenfräsmaschine 1 wird bis knapp vor das Hindernis 16 in Arbeitsrichtung a an dieses herangefahren. Figur 5 zeigt die Situation, in der die Straßenfräsmaschine 1 vor dem Hindernis 16 positioniert und angehalten wurde. Um eine Kollision zwischen der Fräswalze 9 und dem Hindernis 16 zu verhindern, wird die Fräswalze 9 dann um mindestens die vorgegebene Frästiefe der Frässpur vertikal nach oben angehoben, wie dies in Figur 6 dargestellt ist. Erfindungsgemäß verbleibt der Heckschild 14 hierbei vorerst in seiner Arbeitsposition und wird daher nicht gleichzeitig mit der Fräswalze 9 vom Boden 8 vertikal nach oben verstellt. Gegenüber der Fräswalze 9 kann der Heckschild 14 hierfür gegebenenfalls vertikal nach unten verstellt werden. Als nächstes überfährt die Straßenfräsmaschine 1 mit der Fräswalze 9 das Hindernis 16 derart, dass die Fräswalze 9 das Hindernis 16 nicht berührt. Wie genau der Heckschild 14 hierbei aus der Frässpur ausgehoben werden kann, wird nachstehend noch näher erläutert. Die Situation des Überfahrens des Hindernisses 16 bei angehobener Fräswalze 9 und ausgehobenem Heckschild 14 ist in Figur 7 dargestellt. Figur 8 wiederum zeigt bereits den nächsten Arbeitsschritt, bei dem die Fräswalze 9 in Arbeitsrichtung a hinter dem Hindernis 16 wieder in den Boden 8 abgesenkt wird und eine neue, in Arbeitsrichtung a hinter dem Hindernis 16 liegende Frässpur fräst. Diese Fräsarbeiten hinter dem Hindernis 16 können dann gemäß Figur 9 wie üblich fortgesetzt werden. Die Erfindung ermöglicht es hierbei, dass sowohl in Arbeitsrichtung a vor als auch hinter dem Hindernis 16 nur minimale Nacharbeiten notwendig sind, um beispielsweise nicht abgefrästes Bodenmaterial oder liegengebliebenes Fräsgut zu entfernen.The Figures 3-9 illustrate the timing of milling work and an obstacle 16 located in the ground 8 to be milled. The obstacle 16 can be, for example, a manhole cover, a shaft or another installation in the ground 8. In particular, the obstacle 16 should not be damaged or destroyed by the milling work. At the same time, the milling drum 9 or its milling tools 11 should also be protected from damage caused by a collision with the obstacle 16. Figure 3 shows the situation before the milling work began. The milling drum 9 is arranged in a raised position above the ground 8. she will then rotatingly lowered into the ground 8 while the road milling machine 1 moves over the ground 8 in the working direction a. The milling drum 9 thereby removes the soil 8 and a milling track is created. This situation is in Figure 4 shown. The road milling machine 1 is moved up to just in front of the obstacle 16 in the working direction a. Figure 5 shows the situation in which the road milling machine 1 was positioned and stopped in front of the obstacle 16. In order to prevent a collision between the milling drum 9 and the obstacle 16, the milling drum 9 is then raised vertically upwards by at least the predetermined milling depth of the milling track, as shown in Figure 6 is shown. According to the invention, the rear shield 14 initially remains in its working position and is therefore not adjusted vertically upwards from the ground 8 at the same time as the milling drum 9. Compared to the milling drum 9, the rear shield 14 can, if necessary, be adjusted vertically downwards. Next, the road milling machine 1 moves over the obstacle 16 with the milling drum 9 in such a way that the milling drum 9 does not touch the obstacle 16. How exactly the rear shield 14 can be lifted out of the milling track will be explained in more detail below. The situation of driving over the obstacle 16 with the milling drum 9 raised and the rear plate 14 raised is in Figure 7 shown. Figure 8 in turn shows the next work step, in which the milling drum 9 is lowered back into the ground 8 behind the obstacle 16 in the working direction a and mills a new milling track behind the obstacle 16 in the working direction a. This milling work behind the obstacle 16 can then be carried out accordingly Figure 9 continue as usual. The invention makes it possible for only minimal rework to be necessary both in the working direction a in front of and behind the obstacle 16, for example in order to remove unmilled ground material or milled material that has been left lying around.

In Figur 10 ist der Ausschnitt X aus Figur 5 vergrößert dargestellt. Im zeitlichen Ablauf der Fräsarbeiten wurde die Straßenfräsmaschine 1 beziehungsweise die Fräswalze 9 gerade vor dem Hindernis 16 positioniert. Bis vor das Hindernis 16 hat die Fräswalze 9 eine Frässpur in einer Frästiefe FT abgetragen. Wie in Figur 11 gezeigt, wird die Fräswalze 9 nun aus der Frässpur um mindestens die Frästiefe FT vertikal angehoben. Zusätzlich zur Frästiefe FT kann die Fräswalze 9 um einen Sicherheitsabstand, beispielsweise 2 cm, angehoben werden. Auf diese Weise ist sichergestellt, dass die Fräswerkzeuge 11 der Fräswalze 9 nicht in Berührung mit dem Hindernis 16 kommen. Wie ebenfalls in Figur 11 dargestellt, befindet sich der Heckschild 14 immer noch in seiner Arbeitsposition. Insbesondere ist die Unterkante 19 des Heckschildes 14 noch in Kontakt mit dem Fräsbettboden 27. Von der Situation in Figur 11 ausgehend, wird das Ausheben des Heckschildes 14 derart gesteuert, dass die Unterkante 19 des Heckschildes 14 einer der in den nachstehend näher beschriebenen Figuren 12-18 gezeigten Trajektorien T folgt.In Figure 10 is the section X Figure 5 shown enlarged. During the milling work, the road milling machine 1 or the milling drum 9 was positioned just in front of the obstacle 16. Up to the obstacle 16, the milling drum 9 has removed a milling track at a milling depth FT. As in Figure 11 shown, the milling drum 9 is now raised vertically from the milling track by at least the milling depth FT. In addition to the milling depth FT, the milling drum 9 can be raised by a safety distance, for example 2 cm. In this way it is ensured that the milling tools 11 of the milling drum 9 do not come into contact with the obstacle 16. As also in Figure 11 shown, the rear shield 14 is still in its working position. In particular, the lower edge 19 of the rear shield 14 is still in contact with the milling bed base 27. From the situation in Figure 11 starting, the lifting of the rear shield 14 is controlled in such a way that the lower edge 19 of the rear shield 14 is one of those described in more detail below Figures 12-18 shown trajectories T follows.

In Figur 12 ist ein Fall gezeigt, bei dem der Heckschild 14 gleichzeitig mit der Fräswalze 19 ausgehoben wird. Durch das Ausheben der Fräswalze 9 entsteht in Arbeitsrichtung a vor dem Hindernis 16 ein Aushubbereich AB, dessen Form im Wesentlichen dem Umfang der Fräswalze 9 beziehungsweise deren Schneidkreisen entspricht, und der vom Fräsbettboden 27 bis zum ungefrästen Boden 8 verläuft. Diejenige Linie quer zur Arbeitsrichtung a, an der die Frästiefe FT noch maximal ist, allerdings dann in Arbeitsrichtung a abzunehmen beginnt, wird als Vorderkante VK des Aushubbereiches AB bezeichnet. Wie aus einem Vergleich der Figuren 11 und 12 hervorgeht, liegt die Vorderkante VK des Aushubbereiches AB direkt vertikal unter der Rotationsachse 10 der Fräswalze 9 an derjenigen Position, an der die Fräswalze 9 aus der Frässpur ausgehoben wird. Der Abstand zwischen der Rotationsachse 10 der Fräswalze 9 und dem Heckschild 14 in Arbeitsrichtung a wird als x bezeichnet. Figur 12 zeigt nun denjenigen Fall, dass der Heckschild 14 gleichzeitig mit der Fräswalze 9 ausgehoben wird, sprich, die Verlagerungsstelle V1, an der der Heckschild 14 aus der Frässpur ausgehoben wird, ist um den Abstand x von der Vorderkante VK des Aushubbereiches AB entfernt. Darüber hinaus wird die Unterkante 19 des Heckschildes 14 entlang einer einstufigen, rechtwinkligen Trajektorie T geführt.In Figure 12 A case is shown in which the rear shield 14 is lifted out at the same time as the milling drum 19. By lifting the milling drum 9, an excavation area AB is created in the working direction a in front of the obstacle 16, the shape of which essentially corresponds to the circumference of the milling drum 9 or its cutting circles, and which runs from the milling bed floor 27 to the unmilled floor 8. The line transverse to the working direction a, where the milling depth FT is still maximum, but then begins to decrease in the working direction a, is referred to as the front edge VK of the excavation area AB. As from a comparison of the Figures 11 and 12 As can be seen, the front edge VK of the excavation area AB lies directly vertically below the axis of rotation 10 of the milling drum 9 at the position at which the milling drum 9 is lifted out of the milling track. The distance between the axis of rotation 10 of the milling drum 9 and the rear shield 14 in the working direction a is referred to as x. Figure 12 now shows the case that the rear shield 14 is lifted out at the same time as the milling drum 9, i.e. the displacement point V 1 at which the rear shield 14 is lifted out of the milling track is removed by the distance x from the front edge VK of the excavation area AB. In addition, the lower edge 19 of the rear shield 14 is guided along a single-stage, rectangular trajectory T.

Figur 13 zeigt einen Fall, in dem die Unterkanten 19 des Heckschildes 14 an einer Verlagerungsstelle V2 ausgehoben wird, wobei die Verlagerungsstelle V2 einen Abstand y von der Vorderkante VK des Aushubbereiches AB entfernt ist, wobei der Abstand y kleiner ist als der Abstand x. Hierfür ist es notwendig, dass der Heckschild 14 nach dem Ausheben der Fräswalze 9 in Arbeitsposition verbleibt und die Straßenfräsmaschine 1 sich zwischen dem Ausheben der Fräswalze 9 und dem Ausheben des Heckschildes 14 in Arbeitsrichtung a weiter bewegt, konkret um die Differenz des Abstandes x minus den Abstand y. Erst nachdem sich die Straßenfräsmaschine 1 um diese Differenz weiter in Arbeitsrichtung a bewegt hat, wird der Heckschild 14 an der Verlagerungsstelle V2 ausgehoben. Dies hat den Vorteil, dass der Heckschild 14 noch bis zur Verlagerungsstelle V2 seine Funktion erfüllt und das im Fräswalzenkasten 17 angesammelte lose Fräsgut mit dem Fräswalzenkasten 7 mittransportiert. Auf diese Weise verbleibt nach dem Anheben des Heckschildes 14 weniger Fräsgut auf dem Fräsbettboden 27. Auch in der Figur 13 wird die Unterkanten 19 des Heckschildes 14 entlang einer einstufigen, rechtwinkligen Trajektorie T geführt. Figure 13 shows a case in which the lower edges 19 of the rear shield 14 are excavated at a displacement point V 2 , the displacement point V 2 being a distance y from the front edge VK of the excavation area AB, the distance y being smaller than the distance x. For this it is necessary that the rear shield 14 remains in the working position after the milling drum 9 has been lifted and the road milling machine 1 continues to move in the working direction a between the lifting of the milling drum 9 and the lifting of the rear shield 14, specifically by the difference in the distance x minus the Distance y. Only after the road milling machine 1 has moved further in working direction a by this difference is the rear shield 14 lifted at the displacement point V 2 . This has the advantage that the rear shield 14 still fulfills its function up to the displacement point V 2 and transports the loose milled material collected in the milling drum box 17 with the milling drum box 7. In this way, after the rear shield 14 has been raised, less milled material remains on the milling bed base 27. Also in the Figure 13 the lower edges 19 of the rear shield 14 are guided along a single-stage, rectangular trajectory T.

In Figur 14 ist ein Fall gezeigt, bei dem der Heckschild 14 an einer Verlagerungsstelle V3 aus der Frässpur ausgehoben wird, wobei die Verlagerungsstelle V3 der Vorderkante VK des Aushubbereiches AB entspricht. Mit anderen Worten ist der Abstand y im Falle der Figur 14 gleich null. Der Heckschild 14 wird also nach dem Ausheben der Fräswalze 9 aus der Frässpur bis zur Vorderkante VK des Aushubbereiches AB in Arbeitsposition beibehalten und erst an der Vorderkante VK ebenfalls aus der Frässpur ausgehoben. Der Heckschild 14 wird also an derselben Position in Arbeitsrichtung a aus der Frässpur ausgehoben wie die Fräswalze 9. Da sich die Frästiefe FT in Arbeitsrichtung a hinter der Vorderkante VK zu verringern beginnt, ist es notwendig, den Heckschild 14 spätestens an der Vorderkante VK auszuheben. Die Trajektorie T, entlang der die Unterkante 19 des Heckschildes 14 geführt wird, kann in unterschiedlicher Weise an die Geometrie der Rampe R im Aushubbereich AB angepasst sein. Die in Figur 14 gezeigte Trajektorie T ist wieder einstufig und rechtwinklig ausgebildet.In Figure 14 a case is shown in which the rear shield 14 is excavated from the milling track at a displacement point V 3 , the displacement point V 3 corresponding to the front edge VK of the excavation area AB. In other words, the distance is y in the case of Figure 14 equals zero. The rear shield 14 is therefore maintained in the working position after the milling drum 9 has been lifted out of the milling track up to the front edge VK of the excavation area AB and only at the front edge VK as well excavated from the milling track. The rear shield 14 is therefore lifted out of the milling track at the same position in the working direction a as the milling drum 9. Since the milling depth FT in the working direction a begins to decrease behind the front edge VK, it is necessary to lift the rear shield 14 at the front edge VK at the latest. The trajectory T, along which the lower edge 19 of the rear shield 14 is guided, can be adapted in different ways to the geometry of the ramp R in the excavation area AB. In the Figure 14 Trajectory T shown is again single-stage and rectangular.

Weitere Beispiele für anders geformte Trajektorien T gehen aus den Figuren 15-18 hervor. Zwar sind in den Figuren 15-18 lediglich Fälle gezeigt, bei denen der Heckschild 14 an der der Vorderkante VK entsprechenden Verlagerungsstelle V3 ausgehoben wird. Es sind erfindungsgemäß allerdings ebenfalls Fälle umfasst, bei denen die Formen der Trajektorien T der Figuren 15-18 ausgehend von einer Verlagerungsstelle V2 im Abstand y von der Vorderkante VK des Aushubbereiches AB zum Einsatz kommen, und bei denen der Abstand y insbesondere nicht null ist. So zeigt beispielsweise Figur 15 eine mehrstufige Trajektorie T, im vorliegenden Fall eine zweistufige Trajektorie T. Selbstverständlich kann die Trajektorie T optional auch eine höhere Anzahl an Stufen umfassen. Darüber hinaus handelt es sich im gezeigten Beispiel der Figur 15 um rechtwinklige Stufen, die dadurch zustande kommen, dass die vertikale Höhenverstellung des Heckschildes 14 frei von einer Überlagerung mit der Vorschubbewegung der Straßenfräsmaschine 1 durchgeführt wird. Die Höhenverstellung des Heckschildes 14 wird mit anderen Worten immer dann durchgeführt, wenn die Straßenfräsmaschine 1 stillsteht und sich nicht in Arbeitsrichtung a bewegt. In Figur 16 ist ein Fall dargestellt, bei der ebenfalls eine mehrstufige Trajektorie T vorliegt, wobei die einzelnen Stufen allerdings einen stumpfen Winkel aufweisen. Hierzu wird die Höhenverstellung des Heckschildes 14 in Vertikalrichtung mit einer Bewegung der Straßenfräsmaschine 1 in Arbeitsrichtung a überlagert, sodass insgesamt eine schräg nach vorne und oben gerichtete Trajektorie T entsteht. Auch hier wird, wie bei den anderen Ausführungsbeispielen mit mehrstufiger Trajektorie T, die Höhenverstellung des Heckschildes 14 in Vertikalrichtung nicht in einer einzigen Bewegung von der Arbeitsposition bis zur ausgehobenen Position hindurch verstellt, sondern intervallartig. Insbesondere sind zwischen vertikalen Bewegungsabschnitten des Heckschildes 14 weitere Abschnitte vorhanden, in denen die Unterkante 19 des Heckschildes 14 lediglich in Arbeitsrichtung a mit der Straßenfräsmaschine 1 durch deren Vorschub mitbewegt wird, wodurch die horizontalen Anteile der Trajektorie T entstehen. Figur 17 wiederum zeigt erneut eine einstufige Trajektorie T, wobei diese allerdings schräg ausgebildet ist. Die Trajektorie T gemäß Figur 17 umfasst also eine einzige durchgehende Bewegung des Heckschildes 14 in Vertikalrichtung von der Arbeitsposition bis in die ausgehobene Position. Die Vertikalverstellung des Heckschildes 14 ist dabei durchgängig von der Bewegung der Straßenfräsmaschine 1 in Arbeitsrichtung a überlagert, so dass sich insgesamt die schräge Bewegungsbahn ergibt. Der Winkel der schrägen Trajektorie T gegenüber einer Horizontalen, insbesondere dem Fräsbettboden 27, ist dabei derart gewählt, dass die Trajektorie T von der Vorderkante des Aushubbereiches AB bis zum in Arbeitsrichtung a der Vorderkante VK gegenüberliegenden Ende des Aushubbereiches AB verläuft. Insbesondere wird der Winkel derart gewählt, dass die Unterkante 19 des Heckschildes 14 an der Vorderkante VK und an dem in Arbeitsrichtung a der Vorderkante VK gegenüberliegenden Ende des Aushubbereiches AB anliegt oder mit einem vorgegebenen Sicherheitsabstand über diesem schwebt. Mit anderen Worten verläuft die Trajektorie T vom in Arbeitsrichtung a vorderen Ende der Rampe R bis zum in Arbeitsrichtung a hinteren Ende der Rampe R. In Figur 18 schließlich ist eine Trajektorie T gezeigt, deren Verlauf an den Aushubbereich AB beziehungsweise die Rampe R angepasst ist. Unter Berücksichtigung der Geometrie der Fräswalze 9 sowie der Vorschubgeschwindigkeit der Straßenfräsmaschine 1 und insbesondere auch deren Beschleunigung, wird die Unterkante 19 des Heckschildes 14 derart entlang der Trajektorie T geführt, dass die Unterkante 19 der Oberfläche der Rampe R folgt und diese dabei entweder berührt oder in einem vorgegebenen Sicherheitsabstand über diesem schwebt.Further examples of differently shaped trajectories T can be found in the Figures 15-18 out. Although there are in the Figures 15-18 only cases are shown in which the rear shield 14 is lifted at the displacement point V 3 corresponding to the front edge VK. However, according to the invention, cases are also included in which the shapes of the trajectories T der Figures 15-18 starting from a displacement point V 2 at a distance y from the front edge VK of the excavation area AB, and in which the distance y is in particular not zero. For example, shows Figure 15 a multi-stage trajectory T, in the present case a two-stage trajectory T. Of course, the trajectory T can optionally also include a higher number of stages. In addition, the example shown is the Figure 15 about rectangular steps, which come about because the vertical height adjustment of the rear shield 14 is carried out without interference with the feed movement of the road milling machine 1. In other words, the height adjustment of the rear shield 14 is always carried out when the road milling machine 1 is stationary and does not move in working direction a. In Figure 16 A case is shown in which there is also a multi-stage trajectory T, although the individual stages have an obtuse angle. For this purpose, the height adjustment of the rear shield 14 in the vertical direction is superimposed on a movement of the road milling machine 1 in the working direction a, so that overall an obliquely forward and upward trajectory T is created. Here too, as in the other exemplary embodiments with a multi-stage trajectory T, the height adjustment of the rear shield 14 in the vertical direction is not adjusted in a single movement from the working position to the raised position, but rather at intervals. In particular, there are further sections between vertical movement sections of the rear shield 14, in which the lower edge 19 of the rear shield 14 is only moved in the working direction a with the road milling machine 1 by its feed, which creates the horizontal parts of the trajectory T. Figure 17 again shows a single-stage trajectory T, although this is oblique. The trajectory T according to Figure 17 So includes a single continuous movement of the rear shield 14 in the vertical direction from the working position to the raised position. The vertical adjustment of the rear shield 14 is continuously superimposed by the movement of the road milling machine 1 in the working direction a, so that the overall oblique movement path results. The angle of the oblique trajectory T relative to a horizontal, in particular the milling bed base 27, is selected such that the trajectory T runs from the front edge of the excavation area AB to the end of the excavation area AB opposite the front edge VK in the working direction a. In particular, the angle is chosen such that the lower edge 19 of the rear shield 14 rests on the front edge VK and on the end of the excavation area AB opposite the front edge VK in the working direction a or hovers above it with a predetermined safety distance. In other words, the trajectory T runs from the front end of the ramp R in the working direction a to the rear end of the ramp R in the working direction a. In Figure 18 Finally, a trajectory T is shown, the course of which is adapted to the excavation area AB or the ramp R. Taking into account the geometry of the milling drum 9 and the feed speed of the road milling machine 1 and in particular its acceleration, the lower edge 19 of the rear shield 14 is guided along the trajectory T in such a way that the lower edge 19 follows the surface of the ramp R and either touches it or in it hovers above it at a predetermined safety distance.

Figur 19 zeigt eine Draufsicht auf den Fräswalzenkasten 7 in Anlehnung an Figur 2. Im Arbeitsbetrieb der Fräswalze 9 fräst diese den Boden 8 in Arbeitsrichtung a ab, wodurch die Frässpur 29 entsteht. Die Frässpur 29 entsteht dabei über die gesamte Fräsbreite FB der Fräswalze 9. Die Fräsbreite FB entspricht dabei im Wesentlichen der Ausdehnung der Fräswalze 9 entlang der Rotationsachse 10. In Arbeitsrichtung a vor der Fräswalze 9 und ebenfalls vor dem Fräswalzenkasten 7 ist im gezeigten Ausführungsbeispiel eine Sensoreinrichtung 17 angeordnet, die dazu ausgebildet ist, Hindernisse 16 im Boden 8 und insbesondere innerhalb der Fräsbreite FB zu detektieren. Hierfür ist die Sensoreinrichtung 17 derart ausgebildet, dass sie einen Erfassungsbereich EB aufweist, der die gesamte Fräsbreite FB abdeckt. In Figur 20 ist an Ausführungsbeispiel dargestellt, in dem die Sensoreinrichtung 17 mehrere einzelne Sensoren umfasst. Jeder einzelne der Sensoren weist einen Erfassungsbereich EB auf, der kleiner ist als die Fräsbreite FB. Insgesamt jedoch ist die Sensoreinrichtung 17 wieder derart ausgebildet, dass die Gesamtheit der Erfassungsbereiche EB sämtlicher Sensoren der Sensoreinrichtung 17 die gesamte Fräsbreite FB abdecken. Die Sensoreinrichtung 17 kann zusätzlich dazu ausgebildet sein, die Erstreckung E des Hindernisses 16 in Arbeitsrichtung a zu erfassen beziehungsweise zu ermitteln. Dies ist in Figur 19 beispielsweise anhand eines runden Hindernisses 16 gezeigt, beispielsweise einem Kanaldeckel. In Figur 20 ist dies im Falle von nicht runden, beispielsweise rechteckigen Hindernissen 16 gezeigt, beispielsweise Einbauschächten. Die Erstreckung E des Hindernisse 16 ist, wie insbesondere aus Figur 20 hervorgeht, immer auf die Arbeitsrichtung a bezogen. Sie verläuft von der in Arbeitsrichtung a vorderen Kante des Hindernisses 16 bis zu der in Arbeitsrichtung a hinteren Kante des Hindernisses 16. Wird diese Erstreckung E und damit die Kanten des Hindernisse 16 bei der Steuerung der Straßenfräsmaschine 1 wie vorstehend beschrieben berücksichtigt, so kann effizient verhindert werden, dass die Fräswalze 9 mit dem Hindernis 16 in Kontakt kommt. Figure 19 shows a top view of the milling drum box 7 based on Figure 2 . When the milling drum 9 is in operation, it mills the ground 8 in the working direction a, whereby the milling track 29 is created. The milling track 29 is created over the entire milling width FB of the milling drum 9. The milling width FB essentially corresponds to the extent of the milling drum 9 along the axis of rotation 10. In the working direction a in front of the milling drum 9 and also in front of the milling drum box 7 there is a sensor device in the exemplary embodiment shown 17 arranged, which is designed to detect obstacles 16 in the ground 8 and in particular within the milling width FB. For this purpose, the sensor device 17 is designed such that it has a detection area EB that covers the entire milling width FB. In Figure 20 is shown in an exemplary embodiment in which the sensor device 17 comprises several individual sensors. Each of the sensors has a detection area EB that is smaller than the milling width FB. Overall, however, the sensor device 17 is again designed in such a way that the entirety of the detection areas EB of all sensors of the sensor device 17 cover the entire milling width FB. The sensor device 17 can additionally be designed to detect or determine the extent E of the obstacle 16 in the working direction a. This is in Figure 19 for example shown using a round obstacle 16, for example a manhole cover. In Figure 20 This is shown in the case of non-round, for example rectangular obstacles 16, for example installation shafts. The extent E of the obstacles 16 is how in particular Figure 20 emerges, always related to the working direction a. It runs from the front edge of the obstacle 16 in the working direction a to the rear edge of the obstacle 16 in the working direction a. If this extension E and thus the edges of the obstacle 16 are taken into account when controlling the road milling machine 1 as described above, it can be efficiently prevented that the milling drum 9 comes into contact with the obstacle 16.

In Figur 21 ist gezeigt, welchen Einfluss die Frästiefe auf die Position hat, an der die Fräswalze 9 aus der Frässpur 29 ausgehoben werden muss, um einen Kontakt zwischen dem Hindernis 16 und der Fräswalze 9 zu vermeiden. Insbesondere sind gestrichelt zwei verschiedene Positionen von Fräswalzen 9 gezeigt, die sich in unterschiedlichen Frästiefen FT1 und FT2 befinden, wobei die Frästiefe FT1 größer ist als die Frästiefe FT2. Aus den unterschiedlichen Frästiefen FT1, FT2 ergeben sich unterschiedliche Abstände A1, A2 zwischen der jeweilige Rotationsachse 10 der Fräswalzen 9 und dem Hindernis 16, in denen die Fräswalze 9 aus der Frässpur 29 ausgehoben werden muss. Insbesondere kann die Fräswalze 9 bei geringerer Frästiefe FT2 in einem geringeren Abstand A2 vor dem Hindernis 16 aus der Frässpur 29 ausgehoben werden als bei einer höheren Frästiefe FT1. Die Stra-ßenfräsmaschine 1 kann also bei einer geringeren Frästiefe FT näher an das Hindernis 16 heranfahren als bei einer höheren Frästiefe FT. Dieser Parameter wird daher, zusammen mit der Geometrie der Fräswalze 9, von der Steuereinrichtung 18 mit berücksichtigt, wenn diese selbsttätig die Position des Aushebens der Fräswalze 9 bestimmt.In Figure 21 It is shown what influence the milling depth has on the position at which the milling drum 9 has to be lifted out of the milling track 29 in order to avoid contact between the obstacle 16 and the milling drum 9. In particular, two different positions of milling drums 9 are shown in dashed lines, which are located at different milling depths FT 1 and FT 2 , the milling depth FT 1 being greater than the milling depth FT 2 . The different milling depths FT 1 , FT 2 result in different distances A 1 , A 2 between the respective axis of rotation 10 of the milling rollers 9 and the obstacle 16, in which the milling roller 9 must be lifted out of the milling track 29. In particular, the milling drum 9 can be lifted out of the milling track 29 at a smaller milling depth FT 2 at a smaller distance A 2 in front of the obstacle 16 than at a higher milling depth FT 1 . The road milling machine 1 can therefore move closer to the obstacle 16 at a lower milling depth FT than at a higher milling depth FT. This parameter, together with the geometry of the milling drum 9, is therefore taken into account by the control device 18 when it automatically determines the position of the lifting of the milling drum 9.

In Figur 22 ist ein Ablaufdiagramm des Verfahrens 20 zur Steuerung der Straßenfräsmaschine 1 bei einem im zu fräsenden Boden 8 befindlichen Hindernis 16 gezeigt. Das Verfahren 20 beginnt mit dem Abfräsen 21 des Bodens 8 in einer vorgegebenen Frästiefe FT in Arbeitsrichtung a während des ganz normalen Arbeitsbetriebes der Straßenfräsmaschine 1. Es folgt ein Annähern 22 der Straßenfräsmaschine 1 an das im Boden 8 befindliche Hindernis 16. Dies kann entweder vom Bediener durchgeführt werden, oder beispielsweise ebenfalls selbsttätig durch die Steuereinrichtung 18, insbesondere wenn eine Sensoreinrichtung 17 vorhanden ist, die das im Boden 8 befindliche Hindernis 16 detektieren kann. Die Straßenfräsmaschine 1 wird vor dem Hindernis 16 positioniert. Als nächstes erfolgt das Ausheben 23 der Fräswalze 9 und des Heckschildes 14 aus dem Boden 8 vor dem Hindernis 16. Hierbei ist es erfindungsgemäß vorgesehen, dass das Ausheben 23 der Fräswalze 9 zeitlich vor dem Ausheben 23' des Heckschildes 14 aus dem Boden 8 durchgeführt wird, und dass sich die Straßenfräsmaschine 1 zwischen dem Ausheben 23 der Fräswalze 9 und dem Ausheben 23' des Heckschildes 14 weiter in Arbeitsrichtung a bewegt. Hierdurch wird der Abstand y zwischen der Vorderkante VK des Aushubbereiches AB und der Verlagerungsstelle V2/3 des Heckschildes 14 verkürzt. Es folgt sodann das Überfahren 24 des Hindernisses 16, wobei die Fräswalze 9 außer Kontakt mit dem Hindernis 16 bleibt. Schlussendlich erfolgt ein Absenken 25 der Fräswalze 9 und des Heckschildes 14 bis zur vorgegebenen Frästiefe FT in Arbeitsrichtung a hinter dem Hindernis 16, sodass der Fräsvorgang fortgesetzt werden kann. Sowohl das Ausheben 23, 23', das Überfahren 24 und das Absenken 25 kann selbsttätig durch die Steuereinrichtung 18 durchgeführt werden. Dies kann beispielsweise durch einen einzigen Steuerbefehl des Bedieners ausgelöst werden oder alternativ ebenfalls durch die Detektion des Hindernisse 16 durch die Sensoreinrichtung 17. Durch das hierin beschriebene Verfahren 20 wird der Bediener der Straßenfräsmaschine im Arbeitsbetrieb von sich an Hindernissen 16 immer wiederholenden Steuervorgängen entlastet. Gleichzeitig wird weniger Fräsgut im Fräsbett zurückgelassen, sodass notwendige Nacharbeiten durch das erfindungsgemäße Verfahren 20 verringert werden. Insgesamt lässt sich daher der Fräsvorgang der Straßenfräsmaschine 1 wirtschaftlicher und effizienter gestalten.In Figure 22 a flowchart of the method 20 for controlling the road milling machine 1 is shown in the event of an obstacle 16 located in the ground 8 to be milled. The method 20 begins with the milling 21 of the ground 8 at a predetermined milling depth FT in the working direction a during the normal operation of the road milling machine 1. This is followed by an approach 22 of the road milling machine 1 to the obstacle 16 located in the ground 8. This can be done either by the operator be carried out, or for example also automatically by the control device 18, in particular if a sensor device 17 is present which can detect the obstacle 16 located in the floor 8. The road milling machine 1 is positioned in front of the obstacle 16. Next, the milling drum 9 and the rear shield 14 are lifted out of the ground 8 in front of the obstacle 16. Here, it is provided according to the invention that the milling drum 9 is lifted out 23 'before the rear shield 14 is lifted out of the ground 8 , and that the road milling machine 1 moves further in working direction a between the lifting 23 of the milling drum 9 and the lifting 23 'of the rear shield 14. This causes the distance y between the front edge VK of the excavation area AB and the displacement point V 2/3 of the rear shield 14 shortened. This is then followed by driving over 24 of the obstacle 16, with the milling drum 9 remaining out of contact with the obstacle 16. Finally, the milling drum 9 and the rear shield 14 are lowered 25 to the predetermined milling depth FT in the working direction a behind the obstacle 16, so that the milling process can be continued. Both the lifting 23, 23 ', the driving over 24 and the lowering 25 can be carried out automatically by the control device 18. This can be triggered, for example, by a single control command from the operator or, alternatively, also by the detection of the obstacle 16 by the sensor device 17. The method 20 described herein relieves the operator of the road milling machine of constantly repeating control processes on obstacles 16 during work. At the same time, less milled material is left behind in the milling bed, so that necessary rework is reduced by the method 20 according to the invention. Overall, the milling process of the road milling machine 1 can therefore be made more economical and efficient.

Claims (14)

  1. Method (20) for controlling a road milling machine (1) comprising a milling drum (9) and a rear blade (14) when there is an obstacle (16) located in the ground (8) to be milled, comprising the following steps:
    a) milling (21) the ground (8) at a predetermined milling depth (FT) along a working direction (a);
    b) advancing (22) the road milling machine (1) in the working direction (a) towards the obstacle (16) located in the ground (8);
    c) raising (23, 23') the milling drum (9) and the rear blade (14) out of the ground (8) in the working direction (a) in front of the obstacle (16);
    d) moving over (24) the obstacle (16) in such a way that the milling drum (9) remains out of contact with the obstacle (16); and
    e) lowering (25) the milling drum (9) and the rear blade (14) to the predetermined milling depth (FT) in the working direction (a) behind the obstacle (16) and continuing the milling (21) of the ground (8),
    characterized in that
    the road milling machine (1) is controlled in such a way that in step c) the raising (23) of the milling drum (9) is carried out before the raising (23) of the rear blade (14) out of the ground (8), wherein the road milling machine (1) continues to move in the working direction (a) between the raising (23) of the milling drum (9) and the raising (23) of the rear blade (14).
  2. Method (20) according to claim 1,
    wherein the raising (23) of the milling drum (9) leaves an excavation area (AB) in which the milling depth (FT) of the milled track begins to decrease in the working direction (a) as a result of the raising (23) of the milling drum (9), wherein the excavation area (AB) has a front edge (VK) at its deepest point,
    characterized in that
    the raising (23') of the rear blade (14) takes place at a displacement point (V2) along the working direction (a) which is at a distance (y) from the front edge (VK) of the excavation area (AB) which is smaller than a distance (x) of the rear blade (14) from an axis of rotation (10) of the milling drum (9), or
    the raising (23') of the rear blade (14) takes place at a displacement point (V3) along the working direction (a) which is on the front edge (VK).
  3. Method (20) according to any one of the preceding claims,
    characterized in that
    the raising (23') of the rear blade (14) is controlled in such a way that a lower edge (19) of the rear blade (14) facing the ground (8) follows a predetermined trajectory (T) during the raising (23'), taking into account the advancement speed and in particular the acceleration of the road milling machine (1).
  4. Method (20) according to the preceding claim,
    characterized in that
    the trajectory (T) has at least one of the following features:
    - it comprises exclusively one movement transverse to the working direction (a) vertically upwards, which in particular is not superimposed with a traveling movement of the road milling machine (1) in the working direction (a), and a subsequent movement horizontally in the working direction (a);
    - it comprises a plurality of step-wise movements transverse to the working direction (a) vertically upwards, wherein the lower edge (19) is moved horizontally in the working direction (a) between the steps, and wherein the step-wise vertical movements are in particular not superimposed with a traveling movement of the road milling machine (1) in the working direction (a);
    - it comprises at least one tilted movement, simultaneously transverse to the working direction (a) vertically upwards and horizontally in the working direction (a);
    - it follows a ramp (R) in the excavation area (AB) created by the raising (23) of the milling drum (9) in such a way that the lower edge (19) substantially abuts the surface of the ramp (R) over the entire excavation area (AB).
  5. Method (20) according to any one of the preceding claims,
    characterized in that
    at least one sensor device (17) is arranged in front of the milling drum (9) in the working direction (a), which detects obstacles (16) in the ground (8) to be milled, wherein the at least one sensor device (17) comprises in particular an inductive, capacitive or magnetic sensor; for example, a metal detector, an optical sensor, for example a camera or a thermal imaging camera, or a sound sensor, for example an ultrasonic sensor.
  6. Method (20) according to any one of the preceding claims,
    characterized in that
    in order to carry out steps c), d) and e), an extension (E) of the obstacle (16) in the working direction (a) is input in advance by the operator, or in that the extension (E) of the obstacle (16) in the working direction (a) is determined by the sensor device (17).
  7. Method (20) according to any one of the preceding claims,
    characterized in that
    steps c), d) and e) are carried out automatically, triggered by a single control command from an operator or by the detection of an obstacle (16) by the sensor device (17).
  8. Method (20) according to any one of claims 5 - 7,
    characterized in that
    the operator is shown a representation of the obstacle (16) on a display device (26) produced from data obtained from the sensor device (17), and in that the operator can specify on the display device (26) the front and rear edges of the obstacle (16) in the working direction (a), wherein steps c), d) and e) are then carried out in such a way that the milling drum (9) remains out of contact with the edges of the obstacle (16) specified by the operator.
  9. Method (20) according to any one of claims 5-8,
    characterized in that
    the position in the working direction (a) at which the raising (23) of the milling drum (9) is carried out is determined taking into account the position of the obstacle (16), the milling depth (FT) and in particular also the geometry of the milling drum (9) in order to keep it out of contact with the obstacle (16).
  10. Method (20) according to any one of the preceding claims,
    characterized in that
    during steps c) and d) a conveyor device (5) of the road milling machine (1) is put out of operation, in particular automatically.
  11. Method (20) according to any one of the preceding claims,
    characterized in that
    to continue the milling (21) of the ground (8) according to step e), the same machine settings, in particular with regard to milling depth (FT) and/or advancement speed and/or operation of the conveyor device (5), are automatically set as in step a).
  12. Method (20) according to any one of claims 3 - 11,
    characterized in that
    the lowering (25) of the rear blade (14) to the predetermined milling depth (FT) in the working direction (a) behind the obstacle (16) is controlled in such a way that the lower edge (19) of the rear blade (14) follows a trajectory (T), in particular the same trajectory (T) is following during the lowering (25) as during the raising (23), in the opposite direction.
  13. Road milling machine (1) for milling a ground (8) in a working direction (a), having
    - a machine frame (3) supported by travel devices (6),
    - a milling drum case (7) mounted on the machine frame (3) having a front blade (13), two side blades (12) and a rear blade (14) which is height-adjustable relative to the machine frame (3),
    - a milling drum (9) mounted rotatably about an axis of rotation (10) in the milling drum case (7), and
    - a control device (18),
    characterized in that
    the control device (18) is designed to carry out the method (20) according to any one of the preceding claims, wherein step c) is carried out automatically by the control device (18) in such a way that the raising (23) of the milling drum (9) is carried out before the raising (23) of the rear blade out of the ground (8), wherein the road milling machine (1) continues to move in the working direction (a) between the raising(23) of the milling drum (9) and the raising (23) of the rear blade (14).
  14. Road milling machine (1) according to claim 13,
    characterized in that
    it has an adjusting device (28) for adjusting the height of the rear blade (14), which is designed in such a way that the rear blade (14) can be adjusted to below the lower apex of the milling drum (9), in particular by at least 10%, preferably by at least 20%, particularly preferably by at least 30%, of the diameter of the milling drum (9).
EP22177023.3A 2021-06-03 2022-06-02 Road miller and method for controlling a road miller Active EP4108831B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021114397.7A DE102021114397A1 (en) 2021-06-03 2021-06-03 Method for controlling a road milling machine and road milling machine

Publications (2)

Publication Number Publication Date
EP4108831A1 EP4108831A1 (en) 2022-12-28
EP4108831B1 true EP4108831B1 (en) 2024-03-27

Family

ID=81877924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22177023.3A Active EP4108831B1 (en) 2021-06-03 2022-06-02 Road miller and method for controlling a road miller

Country Status (4)

Country Link
US (1) US20220389671A1 (en)
EP (1) EP4108831B1 (en)
CN (1) CN115434223B (en)
DE (1) DE102021114397A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117206579B (en) * 2023-11-09 2024-01-26 四川省场道工程有限公司 Annular wall groove milling device and annular wall groove milling method for airport pavement repair

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024123B4 (en) * 2006-05-22 2010-02-25 Wirtgen Gmbh Self-propelled construction machine, as well as methods for processing of ground surfaces
US7717521B2 (en) * 2007-07-09 2010-05-18 Hall David R Metal detector for an asphalt milling machine
DE102007038677B4 (en) * 2007-08-15 2009-09-17 Wirtgen Gmbh Scraper device, as well as construction machine
DE102010014695A1 (en) * 2010-04-12 2011-10-13 Dynapac Gmbh Method for milling off surface covering i.e. road surface covering, involves adjusting milling roller by controller according to stored milled profile, and selecting stored profile or another profile by operator according to requirement
DE102011114710A1 (en) * 2011-09-30 2013-04-04 Bomag Gmbh Side shield assembly for a milling device, use of a side shield assembly and milling device with a side shield assembly
CN104074816B (en) * 2014-06-23 2016-05-25 湖南三一路面机械有限公司 A kind of milling machine Control system of gate and milling machine
US9938673B2 (en) * 2016-02-18 2018-04-10 Caterpillar Paving Products Inc. System and method for controlling auger of paving machine
DE102016015499A1 (en) 2016-12-23 2018-06-28 Bomag Gmbh Ground milling machine, in particular road milling machine, and method for operating a ground milling machine
DE102017010919B4 (en) * 2017-11-24 2023-08-03 Bomag Gmbh Method for controlling a height adjustment of a moldboard of a ground milling machine and ground milling machine

Also Published As

Publication number Publication date
CN115434223B (en) 2023-12-22
US20220389671A1 (en) 2022-12-08
DE102021114397A1 (en) 2022-12-08
EP4108831A1 (en) 2022-12-28
CN115434223A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
DE102006024123B4 (en) Self-propelled construction machine, as well as methods for processing of ground surfaces
EP2650443B1 (en) Road milling machine with control means for producing parallelism of the machine frame with the ground
EP2455544B1 (en) Soil or pavement milling machine and method for milling soils or traffic surfaces
EP2037042B1 (en) Road milling machine or machine for exploiting deposits
DE112012005425T5 (en) Milling machine and milling process with automatic cutting transition
EP2977514B1 (en) Soil cultivation machine and method for cutting soils or traffic surfaces
EP2987911B1 (en) Self-propelled milling machine, and method for unloading milled goods
EP3029200B1 (en) Self-propelled construction machine and method for operating the same
DE102017010919B4 (en) Method for controlling a height adjustment of a moldboard of a ground milling machine and ground milling machine
EP2698475B1 (en) Self-propelled construction machine and method for operating the same
DE2630457A1 (en) BLANKER MILLING MACHINE
DE102016015499A1 (en) Ground milling machine, in particular road milling machine, and method for operating a ground milling machine
DE102012012395A1 (en) road milling machine
EP2050875A2 (en) Road milling device
DE102017012124B4 (en) Method for controlling the elevation of a hold-down device of a ground milling machine and ground milling machine
DE102015002426A1 (en) Ground milling machine and method for adjusting the scraper blade of a ground milling machine
WO2020135923A1 (en) Method for regulating the height of a side blade of a ground milling machine, and ground milling machine
EP4108831B1 (en) Road miller and method for controlling a road miller
EP1793041A1 (en) Mould board device for the milling drum of a construction machine
DE102015003153A1 (en) Self-propelled construction machine
DE112015000925T5 (en) System for controlling the driving speed in a longwall shearer
EP3926096B1 (en) Soil compacting device for compacting a subgrade layer, asphalt roller and method of operating a soil compacting device
DE102014014704B4 (en) Ground milling machine and method for pivoting a driving device of a ground milling machine
DE102016002294B4 (en) Ground milling machine, method for controlling a safety shutdown device of a milling drum of a ground milling machine and control unit
EP3524736A1 (en) Soil working machine with servicing panel providing a storage area and a seat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000657

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240322