EP4108180A2 - Visualisierung von 4d-ultraschallkarten - Google Patents

Visualisierung von 4d-ultraschallkarten Download PDF

Info

Publication number
EP4108180A2
EP4108180A2 EP22180642.5A EP22180642A EP4108180A2 EP 4108180 A2 EP4108180 A2 EP 4108180A2 EP 22180642 A EP22180642 A EP 22180642A EP 4108180 A2 EP4108180 A2 EP 4108180A2
Authority
EP
European Patent Office
Prior art keywords
ultrasound
images
tissue
image
medical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22180642.5A
Other languages
English (en)
French (fr)
Other versions
EP4108180A3 (de
Inventor
Andres Claudio Altmann
Assaf Govari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of EP4108180A2 publication Critical patent/EP4108180A2/de
Publication of EP4108180A3 publication Critical patent/EP4108180A3/de
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Definitions

  • the present invention relates generally to medical visualizing methods, and particularly to visualizing ultrasound data acquired using an intra-body medical ultrasound probe.
  • U.S. Patent Application Publication 2020/0214662 describes systems and methods for generating an electromechanical map.
  • the methods include obtaining ultrasound data comprising a series of consecutive image frames and radio frequency (RF) signals corresponding to a tissue location in the heart. Displacements and strains are measured based on the ultrasound data to determine an electromechanical activation in the location.
  • the ultrasound data is converted into a series of isochrone maps, and the series of isochrone maps is combined, to generate the electromechanical map.
  • the electromechanical map illustrates the electromechanical activation and internal wall structures of the heart.
  • U.S. Patent Application Publication 2010/0099991 describes an ultrasonic diagnostic imaging system that produces 3D images of blood flow which depict both the location of blood pools and flow velocity in one image.
  • B mode data is acquired over a volumetric region and inverted to a range of grayscale value which highlights anechoic regions relative to regions of strong echo returns.
  • Flow data is acquired over the same volumetric region and both data sets are volume rendered. The two volume renderings are then merged into a single 3D image in which the B mode pixel values are tinted in accordance with flow at the pixel locations.
  • U.S. Patent 8,090,429 describes systems and methods for co-registering, displaying and quantifying images from numerous different medical modalities, such as CT, MRI and SPECT.
  • co-registration and image fusion is based on multiple user-defined Regions-of-Interest (ROI), which may be subsets of entire image volumes, from multiple modalities, where each ROI may depict data from different image modalities.
  • ROI Regions-of-Interest
  • the user-selected ROI of a first image modality may be superposed over or blended with the corresponding ROI of a second image modality, and the entire second image may be displayed with either the superposed or blended ROI.
  • Embodiments of the present invention that are described hereinafter provide methods and systems that use a probe, such as a catheter, having a two-dimensional (2D) array of ultrasound transducers for producing three-dimensional (3D) or four-dimensional (4D) ultrasound images.
  • 3D ultrasound image refers to an ultrasound image that represents a certain volume in three dimensions.
  • 4D ultrasound catheter refers to a catheter incorporating a 2D array of ultrasound transducers.
  • 4D ultrasound image refers to a time series of 3D ultrasound images of a certain volume acquired by the 2D array.
  • a 4D image can be regarded as a 3D movie, the fourth dimension being time.
  • Another way of describing a 4D image (or rendering) is as a time-dependent 3D image (or rendering).
  • a 4D ultrasound catheter may be referred to as "4D Intracardiac Echocardiography (ICE)" catheter.
  • ICE Intracardiac Echocardiography
  • the catheter also comprises an integral location sensor, such as a magnetic position sensor, that is pre-registered with the 2D array.
  • the 2D array produces a 3D sector-shaped ultrasound beam occupying a defined solid angle; (such a beam is referred to herein as a "wedge,” as opposed to a 1D array "fan”).
  • the 2D array is thus able to image a 2D section of an inner wall of an organ, such as of a cardiac chamber. Because of the integral location sensor, the spatial coordinates of every voxel in the imaged section is known based on the known relative position and orientation on the catheter shaft between the location sensor and the 2D array.
  • Some embodiments of the present invention overlay EP data, such as local activation times (LATs) or bipolar voltages, on a 4D ultrasound image or 3D rendering, the 3D/4D representation generated by a 4D ultrasound catheter. Because the 4D catheter has an integral location sensor and its pre-registration with the 2D array, the two entities, i.e., the EP values and the ultrasound image, are automatically registered in the combined image so that registration of the EP parameters with the ultrasound image is not required.
  • LATs local activation times
  • bipolar voltages bipolar voltages
  • the 4D ultrasound image may show 3D details of a wall of a heart chamber, as well as movement of the wall, so that the combined image shows these details as well as the electrical activity (e.g., the EP data).
  • the combined image may enhance a capability of a clinician to diagnose and decide on a treatment of a cardiac problem related to scars.
  • a user may import strain information from the ultrasound images and use a processor to compare and/or display the imported strain information with the electrical activity. This enables correlation between mechanical and electrical heart functionality.
  • Standard ultrasound images of surfaces of the walls of a heart chamber i.e., the endocardium and the epicardium images
  • the different surfaces are hard to comprehend, even though the images are somewhat displaced in an ultrasound image, as both surfaces depicted in grayscale means it is impossible to clearly see the two surfaces.
  • the endocardium and epicardium images are obtained by a processor segmenting the volume data acquired by the ultrasound probe. If an anatomical map exists, the processor may use the map to identify the different surfaces.
  • Some embodiments of the present invention allow a user of the 4D ultrasound catheter to apply different color palettes to the two images of the surfaces of the chamber wall. This renders the two surfaces clearly differentiable, by, for example, a processor overlaying a colored endocardium image on an epicardium image that is colored differently. The user may also adjust the transparency of the overlay to further enhance the combined image displayed.
  • the system can use this pre-acquired knowledge to color the multiple structures (e.g., the endocardium and the epicardium) in the ultrasound image with different color scales.
  • each area in each of the ultrasound images can be colored with a unique color scale according to its functionality, or used definition, such as using different color palette comprising, for example, warm colors or cold colors.
  • different color palette comprising, for example, warm colors or cold colors.
  • the ultrasound image area of the right atrium can be colored differently (with different color scales, such as red with different intensity according to the gray levels, or different color palettes, such as warm colors vs. cold colors for the endocardium and the epicardium images).
  • Icons for ultrasound catheters do not differentiate between the types of ultrasound catheter used. For example, in contrast to a 1D catheter which produces an ultrasound fan, 2D catheters produce an ultrasound wedge.
  • a processor selects a specific icon to incorporate into an existing 3D surface ultrasound rendering.
  • the processor may display an icon of a 2D catheter producing 4D images, by incorporating a wedge icon in a 3D/4D rendering.
  • images having different functionalities may be acquired, e.g., using different imaging modalities, and, for comparison purposes, these images may be registered. Since they are registered, the images may be combined with each other so that the different elements on the images may be viewed simultaneously. However, each image typically carries much visual information, so that combining the images may quickly lead to information overload.
  • GUI graphical user interface
  • three available images are to be considered that are all registered one with other (e.g., to a coordinate system of a tracking system): a computerized tomography (CT) image, a magnetic resonance imaging (MRI) image, and an ultrasound (US) image.
  • CT computerized tomography
  • MRI magnetic resonance imaging
  • US ultrasound
  • the reviewer combines the three images into one.
  • One disclosed image weighting model which a GUI may apply using a processor, is based on the assumption that the images are positioned at the apices of a triangle, where the triangle is used as a weighting selector. To this end, the reviewer can move a cursor within the triangle to select the weight applied to each image.
  • an EP mapping modality can generate a first representation of LATs in a color map, and a second representation of a bipolar voltages map provided in gray scales. Such a combined EP representation may possess enhanced clinical significance.
  • Fig. 1 is a schematic, pictorial illustration of a catheter-based ultrasound imaging system 20 using a catheter 21 with a distal end assembly 40 comprising a 2D ultrasound array 50 and a location sensor 52, in accordance with an embodiment of the present invention. Integral location sensor 52 is pre-registered with the 2D array 50 of catheter 21.
  • sensor 52 is configured to output signals indicative of a position, direction and orientation of the 2D ultrasound transducer array 52 inside the organ.
  • a processor of the system is configured to register multiple ultrasound image sections using the signal output by the sensor acquired by the 2D ultrasound transducer array 50, one with the other.
  • distal end assembly 40 is fitted at the distal end of a shaft 22 of the catheter.
  • Catheter 21 is inserted through a sheath 23 into a heart 26 of a patient 28 lying on a surgical table 29.
  • the proximal end of catheter 21 is connected to a control console 24.
  • catheter 21 is used for ultrasound-based diagnostic purposes, although the catheter may be further used to perform therapy, such as electrical sensing and/or ablation of tissue in heart 26, using, for example, a tip electrode 56.
  • Physician 30 navigates distal end assembly 40 of catheter 21 to a target location in heart 26 by manipulating shaft 22 using a manipulator 32 near the proximal end of the catheter.
  • 2D ultrasound-array 50 shown in detail in an inset 25, is configured to image a left atrium of heart 26.
  • ultrasound array 50 comprises a 2D array 50 of multiple ultrasound transducers 53.
  • Inset 45 shows ultrasound array 50 navigated to an ostium 54 of a pulmonary vein of the left atrium.
  • 2D array 50 is an array of 32 ⁇ 64 US transducers.
  • the 2D array is able to image a section of the inner wall of the ostium. Because of the integral location sensor, and its pre-registration with the 2D array, the spatial coordinates of every pixel in the imaged section are known by the system. An example of a suitable 2D array is described in D.
  • Control console 24 comprises a processor 39, typically a general-purpose computer, with suitable front end and interface circuits 38 for receiving signals from catheter 21, as well as for, optionally, applying treatment via catheter 21 in heart 26 and for controlling the other components of system 20.
  • Console 24 also comprises a driver circuit 34, configured to drive magnetic field generators 36.
  • console 24 receives position and direction signals from location sensor 52 in response to magnetic fields from external field generators 36.
  • Magnetic field generators 36 are placed at known positions external to patient 28, e.g., below table 29 upon which the patient is lying. These position and direction signals are indicative of the position and direction of 2D ultrasound-array 50 in a coordinate system of the position tracking system.
  • processor 39 may be configured to operate array 52 in a "sweeping mode" to image a whole cardiac camber, as described below.
  • the imaged cardiac chamber e.g., a left atrium
  • processor 39 is presented to physician 30 by processor 39 on a monitor 27, e.g., in as a volume rendering 55.
  • Processor 39 typically comprises a general-purpose computer, which is programmed in software to carry out the functions described herein.
  • the software may be downloaded to the computer in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on non-transitory tangible media, such as magnetic, optical, or electronic memory.
  • system 20 may comprise additional components and perform non-cardiac catheterizations.
  • Fig. 2 is a schematic, pictorial illustration of a visualization of a scarred tissue region 222 in an inner wall 54 section 260 of an organ 254 imaged using ultrasound system 20 of Fig. 1 , in accordance with an embodiment of the present invention.
  • the acquisition is performed using catheter 21 of system 20 of Fig. 1 .
  • a 3D wedge 250 mode of acquisition enables simultaneous acquisition of the 2D section 260.
  • the geometry of ultrasound wedge 250 can be defined in a coordinate system of the location tracking system of system 20.
  • processor 39 derives a tissue color-coded motion map 244 from the acquisition, comprising a color-coded visualized scarred region 233.
  • the processor distinguishes a scar by estimating that the mechanical movement of the tissue therein is different (typically lower or absent) from that of surrounding non-scarred tissue.
  • the processor graphically encodes (e.g., marks, or color codes), also in real time, e.g., on the video image that is displayed, the amounts of motion, to distinguish immobile areas that may be scarred tissue.
  • the processor is configured to identify scarred tissue by comparing the level of tissue motion to a threshold value of expected amount of motion of a healthy tissue.
  • Fig. 3 is a schematic, pictorial illustration of ultrasound intracardiac acquisition using system 20 of Fig. 1 , followed by derivation of a combined tissue motion map 275 overlaying an endocardium image 270 and a respective epicardium 272 image, in accordance with embodiments of the present invention.
  • endocardium image 270 and its respective epicardium image 272 are extracted from an ultrasound acquisition/conventional image (e.g., the cardiac surfaces shown by images 270 and 272 are isolated from one another using an algorithm).
  • an algorithm may apply an algorithm that extends a simulated beam ray from the selected point, such that the ray intersects the first surface and then the second border.
  • Existing algorithms that are used today for segmentation of CT and MRI 3D scans can be also utilized, for example multi-thresholding based on statistical local and global parameters, mathematical morphology, and image filtering.
  • imaged section 360 is color coded in each of the ultrasound images with a unique color scale according to its functionality (e.g., amount of movement).
  • the color code can be correlated to velocity, strain, voltage, thickness, local activation time and/or using another definition, for example by using different color scales, e.g., warm colors vs. cold colors.
  • the user may also adjust the transparency of the overlay 270 to further enhance the combined displayed image.
  • Fig. 4 is a schematic, pictorial illustration showing the incorporation of an icon 402 into a 3D rendering 404, where icon 402 is indicative of the type of ultrasound catheter used to generate the rendering, in accordance with embodiments of the present invention.
  • Fig. 4 shows a 3D rendering of a cardiac chamber 402, derived using system 20 of Fig. 1 , that incorporates an icon 404 indicative of the type of ultrasound catheter 21.
  • a region 403 of the surface rendering is made transparent by processor 39, which further incorporates therein icon 404, to show a wedge beam of 2D catheter 21 that was used for the intracardiac acquisition.
  • Fig. 5 is a schematic, pictorial illustration of a graphical user interface (GUI) 500 configured to generate and display a combined image 508 made by weighting images (502, 504 and 506) from different imaging modalities, in accordance with embodiments of the present invention.
  • GUI 500 may combine EP maps with an image of an imaging modality combining an LAT map, bipolar voltage map and an ultrasound rendering.
  • GUI 500 allows a reviewer of combined image 508 to select the display weighting that is applied to three images, a computerized tomography (CT) image 504, a magnetic resonance imaging (MRI) 506, and an ultrasound (US) image 502 that are all registered one with the other.
  • CT computerized tomography
  • MRI magnetic resonance imaging
  • US ultrasound
  • a disclosed image weighting algorithm 505 used with GUI 500 assumes the images are positioned at the apices of a triangle 507, and a reviewer can move a cursor 509 within the triangle area to select the relative weights ⁇ applied to each image.
  • GUI 500 and method of weighting using a triangle area are shown by way of example. Other implementations are possible, for example, using a circle or a polygon to represent the image-weighting space.
  • Fig. 6 is a flow chart that schematically illustrates a method for deriving and displaying the results of Fig. 2 , in accordance with an embodiment of the present invention.
  • the procedure begins by performing an ultrasound acquisition inside a cardiac chamber, such as shown in Fig. 1 , at a 4D ultrasound acquisition step 602.
  • processor 39 derives a color-coded tissue-motion map that is indicative of scarred tissue regions, such as rendering 244 described in Fig. 2 .
  • the generated map of the tissue region is indicative of respective amounts of motion of tissue locations in the tissue region.
  • the processor identifies, based on the amounts of motion of the tissue locations, that tissue at one or more of the tissue locations comprises scar tissue.
  • processor 39 displays a cardiac tissue motion rendering of step 602 to a user, such as shown with rendering 55 on monitor 27 of Fig. 1 .
  • the presentation may include adding graphical indication, e.g., by coloring or patterning on map the scarred area, or by placing visual markings, to scarred regions encoded in rendering 244.
  • processor 39 performs pattern coding instead of color coding.
  • Fig. 7 is a flow chart that schematically illustrates a method for deriving and displaying the results of Fig. 4 , in accordance with an embodiment of the present invention.
  • the procedure begins by performing an ultrasound acquisition inside a cardiac chamber, such as shown in Fig. 1 , at a 4D ultrasound acquisition step 702.
  • processor 39 isolates endocardium and respective epicardium images of a same imaged section, such as images 270 and 272 of imaged section 360, shown in Fig. 3 , at surfaces image extraction step 704.
  • processor 39 applies different color palettes (e.g., red-based and blue-based) to images 270 and 272, for example, to indicate amounts of motion.
  • different color palettes e.g., red-based and blue-based
  • processor 39 overlays endocardium image 270 on epicardium image 272 to generate a combined image 275.
  • Processor 39 displays combined image 275 to a user at a displaying step 710. Finally, at an adjustment step 712, the user adjusts a level of transparency of image 270 to make combined image 275 more visible.
  • Fig. 8 is a flow chart that schematically illustrates a method for showing the incorporation of icon 404 into a 3D rendering 402, where the icon is indicative of the type of ultrasound catheter 21 used in generating the rendering, in accordance with embodiments of the present invention.
  • the procedure begins by performing an ultrasound acquisition inside a cardiac chamber, such as shown in Fig. 1 , at a 4D ultrasound acquisition step 802.
  • processor 39 derives color coded 3D rendering of cardiac chamber 402, shown in Fig. 4 , at a 3D rendering step 804.
  • processor 39 incorporates icon 404 that shows a wedge ultrasound beam, indicating that a 2D ultrasound catheter, such as catheter 21, was used for acquiring the data at step 802.
  • processor 39 displays the icon-incorporated rendering to a user.
  • Fig. 9 is a flow chart that schematically illustrates a method for deriving and displaying the results of Fig. 5 , in accordance with an embodiment of the present invention.
  • the procedure begins by performing an ultrasound (US) acquisition of a cardiac region, such as inside a cardiac chamber, such as shown in Fig. 1 , at a 4D ultrasound acquisition step 902.
  • US ultrasound
  • processor 39 derives a color-coded US image, such as image 502, of a cardiac region, at an ultrasound imaging step 904.
  • processor 39 uploads to GUI 500 US image 502, CT image 504, and MRI image 506.
  • the images comprise a same cardiac region and are registered one with other by processor 39.
  • processor 39 At a combined image generation step 908, processor 39 generates combined image 508 by weighing US image 502, CT image 504, and MRI image 506, using one of the normalizing weighting methods described above.
  • processor 39 displays combined image 508 to a user.
  • the user adjusts the relative weights (e.g., contributions) of images 502 using GUI 500, 504, and 506, ⁇ U/S , ⁇ CT , and ⁇ MRI , respectively, by moving a cursor in GUI 500, as described above, to make combined image 508 more informative.
  • the relative weights e.g., contributions
  • processors of medical systems receive, from an ultrasound probe that may be provided separately to the medical systems, ultrasound images and signals indicative of respective positions, directions and orientations of a 2D ultrasound transducer array, and process them for various purposes.
  • the methods and systems described herein can also be used in other body organs.
  • the disclosed technique can be used with transesophageal ultrasound (TEE) devices visualizing the heart.
  • TEE transesophageal ultrasound
  • the disclosed technique may be used for invasive ultrasound lung imaging, and for visualizing liver and kidney.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Vascular Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Physiology (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
EP22180642.5A 2021-06-24 2022-06-23 Visualisierung von 4d-ultraschallkarten Pending EP4108180A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/357,303 US20220409167A1 (en) 2021-06-24 2021-06-24 Visualization of 4d ultrasound maps

Publications (2)

Publication Number Publication Date
EP4108180A2 true EP4108180A2 (de) 2022-12-28
EP4108180A3 EP4108180A3 (de) 2023-03-22

Family

ID=82258387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22180642.5A Pending EP4108180A3 (de) 2021-06-24 2022-06-23 Visualisierung von 4d-ultraschallkarten

Country Status (5)

Country Link
US (1) US20220409167A1 (de)
EP (1) EP4108180A3 (de)
JP (1) JP2023004947A (de)
CN (1) CN115517698A (de)
IL (1) IL293950A (de)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005768A1 (en) 1994-08-19 1996-02-29 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US20020065455A1 (en) 1995-01-24 2002-05-30 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
US20030120150A1 (en) 2001-12-21 2003-06-26 Assaf Govari Wireless position sensor
US6618612B1 (en) 1996-02-15 2003-09-09 Biosense, Inc. Independently positionable transducers for location system
US20040068178A1 (en) 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
US20100099991A1 (en) 2006-10-13 2010-04-22 Koninklijke Philips Electronics N.V. 3D Ultrasonic Color Flow Imaging With Grayscale Invert
US8090429B2 (en) 2004-06-30 2012-01-03 Siemens Medical Solutions Usa, Inc. Systems and methods for localized image registration and fusion
US9980786B2 (en) 2016-07-19 2018-05-29 Shifamed Holdings, Llc Medical devices and methods of use
US10537306B2 (en) 2017-03-30 2020-01-21 Shifamed Holdings, Llc Medical tool positioning devices, systems, and methods of use and manufacture
US20200061340A1 (en) 2018-08-23 2020-02-27 Colin Mixter Medical tool positioning devices, systems, and methods of use and manufacture
US20200214662A1 (en) 2017-03-17 2020-07-09 The Trustees Of Columbia University In The City Of New York Non-invasive systems and methods for rendering of cardiac electromechanical activation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073135A1 (en) * 2005-09-13 2007-03-29 Warren Lee Integrated ultrasound imaging and ablation probe
EP2117436A4 (de) * 2007-03-12 2011-03-02 David Tolkowsky Vorrichtungen und verfahren zur durchführung medizinischer verfahren in baumartigen luminalen strukturen
JP5587993B2 (ja) * 2009-06-05 2014-09-10 コーニンクレッカ フィリップス エヌ ヴェ 統合された生検及び治療のためのシステム及び方法
WO2011161684A2 (en) * 2010-06-24 2011-12-29 Uc-Care Ltd. Focused prostate cancer treatment system and method
US11039883B1 (en) * 2011-12-19 2021-06-22 American Medical Technologies, Llc Methods and system for atrial fibrillation ablation using balloon based catheters and utilizing medical images (CT or MRI in segments) based cardiac mapping with optional esophageal temperature monitoring
US9801615B2 (en) * 2012-09-28 2017-10-31 The University Of British Columbia Quantitative elastography with tracked 2D ultrasound transducers
CN105025803B (zh) * 2013-02-28 2018-02-23 皇家飞利浦有限公司 从多个三维视图对大对象的分割
US10194888B2 (en) * 2015-03-12 2019-02-05 Siemens Medical Solutions Usa, Inc. Continuously oriented enhanced ultrasound imaging of a sub-volume
US10713800B2 (en) * 2017-05-26 2020-07-14 Cardioinsight Technologies, Inc. Ultrasound-based geometry determination for electrophysiological mapping
US11793484B2 (en) * 2018-12-03 2023-10-24 3Mensio Medical Imaging B.V. Method, device and system for intracavity probe procedure planning
US20210068788A1 (en) * 2019-09-10 2021-03-11 GE Precision Healthcare LLC Methods and systems for a medical imaging device
EP4069076A4 (de) * 2019-12-05 2023-12-27 Gupta, Arbind Kumar Quantifizierung und visualisierung von herzmuskelfibrose des menschlichen herzens

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005768A1 (en) 1994-08-19 1996-02-29 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US20020065455A1 (en) 1995-01-24 2002-05-30 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US6618612B1 (en) 1996-02-15 2003-09-09 Biosense, Inc. Independently positionable transducers for location system
US20030120150A1 (en) 2001-12-21 2003-06-26 Assaf Govari Wireless position sensor
US20040068178A1 (en) 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
US8090429B2 (en) 2004-06-30 2012-01-03 Siemens Medical Solutions Usa, Inc. Systems and methods for localized image registration and fusion
US20100099991A1 (en) 2006-10-13 2010-04-22 Koninklijke Philips Electronics N.V. 3D Ultrasonic Color Flow Imaging With Grayscale Invert
US9980786B2 (en) 2016-07-19 2018-05-29 Shifamed Holdings, Llc Medical devices and methods of use
US20200214662A1 (en) 2017-03-17 2020-07-09 The Trustees Of Columbia University In The City Of New York Non-invasive systems and methods for rendering of cardiac electromechanical activation
US10537306B2 (en) 2017-03-30 2020-01-21 Shifamed Holdings, Llc Medical tool positioning devices, systems, and methods of use and manufacture
US20200061340A1 (en) 2018-08-23 2020-02-27 Colin Mixter Medical tool positioning devices, systems, and methods of use and manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. WILDES ET AL.: "4-D ICE: A 2-D Array Transducer With Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D Intracardiac Echocardiography", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 63, no. 12, December 2016 (2016-12-01), pages 2159 - 2173, XP011635446, DOI: 10.1109/TUFFC.2016.2615602

Also Published As

Publication number Publication date
IL293950A (en) 2023-01-01
JP2023004947A (ja) 2023-01-17
CN115517698A (zh) 2022-12-27
EP4108180A3 (de) 2023-03-22
US20220409167A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP5460955B2 (ja) 超音波データ収集を示すための電気解剖学的マップの着色
US10299753B2 (en) Flashlight view of an anatomical structure
RU2654608C2 (ru) Ультразвуковая система визуализации и способ для процедуры наведения по изображению
JP5474342B2 (ja) 3−d画像および表面マッピングによる解剖学的モデル化
JP5265091B2 (ja) 2次元扇形超音波イメージの表示
JP5345275B2 (ja) 超音波データと事前取得イメージの重ね合わせ
JP5834094B2 (ja) 心内エコー・カテーテル画像における心臓内の機器および構造の自動識別
EP2411963B1 (de) Verbesserung der medizinischen bildgebung
MX2007003312A (es) Registro de imagenes utilizando ajuste pesado localmente.
MX2007005271A (es) Despliegue de imagen de ultrasonido mejorada.
MXPA06004653A (es) Registro de mapa electroanatomico con imagen pre-adquirida usando ultrasonido.
EP4108181A2 (de) Schätzung der gewebedehnung mittels 4d-ultraschallkatheter
EP4108180A2 (de) Visualisierung von 4d-ultraschallkarten
AU2013251245B2 (en) Coloring electroanatomical maps to indicate ultrasound data acquisition
EP4108182A1 (de) Rekonstruktion einer 4d-schale eines volumens eines organs unter verwendung eines 4d-ultraschallkatheters
US20240000420A1 (en) Systems and methods for cavity imaging in patient organ based on position of 4d ultrasound catheter
US20230190233A1 (en) Visualization of change in anatomical slope using 4d ultrasound catheter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 15/89 20060101ALI20230213BHEP

Ipc: A61B 8/00 20060101ALI20230213BHEP

Ipc: A61B 8/12 20060101ALI20230213BHEP

Ipc: A61B 8/08 20060101AFI20230213BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230915

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR