EP4107793A1 - Lamp for photochemical reactor with light-emitting diodes - Google Patents

Lamp for photochemical reactor with light-emitting diodes

Info

Publication number
EP4107793A1
EP4107793A1 EP21711302.6A EP21711302A EP4107793A1 EP 4107793 A1 EP4107793 A1 EP 4107793A1 EP 21711302 A EP21711302 A EP 21711302A EP 4107793 A1 EP4107793 A1 EP 4107793A1
Authority
EP
European Patent Office
Prior art keywords
lamp
support
equal
light
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21711302.6A
Other languages
German (de)
French (fr)
Inventor
Thierry Aubert
Rémi LE BEC
Fernand DELGADO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4107793A1 publication Critical patent/EP4107793A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/648Heat extraction or cooling elements the elements comprising fluids, e.g. heat-pipes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • C07C249/06Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes by nitrosation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/44Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a lamp for a photochemical reactor, preferably a lamp suitable for a photochemical immersion reactor, comprising at least one light-emitting diode, useful for carrying out a photochemical reaction, in particular photonitrosation.
  • lactams are widespread in industry.
  • caprolactam and lauryllactam are respectively precursors of polyamides 6 and 12.
  • a process for synthesizing a lactam from a cycloalkane can successively implement two reaction steps.
  • a photonitrosation (or photooximation) of the cycloalkane is carried out using, for example, nitrosyl chloride (NOCI), generally in a two-phase organic solvent / sulfuric acid medium.
  • NOCI nitrosyl chloride
  • An oxime in the form of oxime hydrochloride is thus produced in the organic phase and subsequently extracted by the sulfuric phase.
  • a Beckmann transposition or Beckmann rearrangement of the oxime hydrochloride extracted in concentrated sulfuric medium is carried out to obtain the lactam. This lactam resulting from the transposition of Beckmann is then isolated and purified to produce a product of high purity.
  • Photonitrosation is generally carried out using mercury or sodium vapor lamps immersed in the reaction medium. These sodium or mercury vapor lamps consume a lot of electricity. They also have a short lifespan. In addition, they contain a variable amount of mercury and are therefore doomed to disappear in the long term. It is therefore desirable to replace these lamps, preferably without having to profoundly modify the existing industrial installations, that is to say by lamps having a size similar to that of the sodium or mercury vapor lamps currently in use.
  • Light-emitting diodes have a longer lifespan than sodium or mercury vapor lamps (for example, a mercury vapor lamp can have a lifespan of around 4,000 h, a sodium vapor lamp has a lifespan of around 25,000 h and a light emitting diode has a lifespan of around 50,000 to 100,000 h).
  • a mercury vapor lamp can have a lifespan of around 4,000 h
  • a sodium vapor lamp has a lifespan of around 25,000 h
  • a light emitting diode has a lifespan of around 50,000 to 100,000 h.
  • the heat produced during their use is only evacuated via their power supply, which is arranged on the back of the diodes.
  • the space on which it is possible to act to dissipate the heat produced is thus very limited, in particular when the lamps are immersed in a reaction medium, and light-emitting diodes are therefore more difficult to cool than sodium vapor lamps. or mercury which emit heat in the form of infrared radiation and which can be easily cooled by circulating a coolant around it.
  • WO 2009/153470 relates to a process for preparing lactams in which the photonitrosation step is carried out using light emitting diodes emitting monochromatic light.
  • Document US 2017/0305851 describes a photoirradiation device in which a body comprising a multitude of light-emitting diodes is placed in two transparent containers, the first container comprising a gas and the second a liquid.
  • Document JP 2019126768 describes a photoreaction device comprising two groups of diodes turning on and off independently and separated either by an opaque wall or by a light-absorbing substance, so that the radiation of the lit diodes n do not reach the unlit diodes.
  • the invention relates firstly to a lamp for a photochemical reactor comprising:
  • a support made of a material having a thermal conductivity greater than or equal to 100 W / m.K at 20 ° C and comprising at least one channel configured to contain a coolant;
  • the material of the support is selected from the group consisting of copper, silver, gold, aluminum, silicon carbide, graphite, aluminum-silicon carbide alloys, zinc, and combinations thereof.
  • the support material has a thermal conductivity of greater than or equal to 300 W / m.K at 20 ° C.
  • the lamp further includes a bulb containing the holder, at least one printed circuit, and at least one light emitting diode.
  • the ampoule contains an inert fluid, preferably dinitrogen, the inert gas preferably being in the form of an inert fluid stream.
  • the support has a cross section in the shape of a convex polygon.
  • the convex polygon has 5 to 25 sides.
  • the at least one channel includes a coolant, preferably water.
  • the lamp further comprises a supply line for the coolant fluid comprising a coolant having a temperature less than or equal to 25 ° C, preferably less than or equal to 10 ° C, more preferably less than or equal to 5. ° C.
  • the lamp has a light output greater than or equal to 40%.
  • the invention also relates to a photochemical immersion reactor comprising a reaction liquid and at least one lamp as described above immersed at least in part in said reaction liquid.
  • the invention also relates to a process for preparing a cycloalkanone oxime comprising the photonitrosation of a cycloalkane using a nitrosating agent and at least one lamp as described above.
  • the invention also relates to a process for preparing a lactam comprising:
  • the present invention makes it possible to meet the need expressed above. It more particularly provides a lamp having one or more advantageous properties, preferably all of these properties, among: improved light output, allowing reduced electricity consumption; good light power, allowing, when the lamp is used for a photochemical reaction (for example photonitrosation), a high productivity of the latter; a long service life; relatively low cost and good profitability.
  • the lamp according to the invention can be compatible with existing installations using sodium or mercury vapor lamps and can be used in these installations without or with very little modification thereof. In addition, it does not require a complicated design and can be manufactured relatively simply.
  • This particular assembly allows very good cooling both of the light-emitting diodes and of the printed circuits. Indeed, the coolant liquid is in contact, over a large area, with the material of the support of high thermal conductivity, which allows efficient heat exchange.
  • the invention also has the advantage of being able to be used in a corrosive and / or humid medium, such as reaction media for the photonitrosation of cycloalkanes.
  • FIG.1 shows a photograph of an example of a lamp according to the invention.
  • FIG.2 shows a photograph of another example of a lamp according to the invention.
  • FIG.3 shows the spectrum of a light emitting diode. The wavelength is shown on the x-axis and the relative light intensity (that is, the light intensity divided by the maximum light intensity) is on the y-axis. On this spectrum is represented the spectral width at half height AK, corresponding to the wavelengths for which the relative light intensity is greater than or equal to 0.5.
  • FIG. 4 represents the average spectrum of wavelengths emitted by a white light emitting diode.
  • FIG. 5 shows the cross section of the lamps exemplified according to the mode where there are several channels
  • the invention relates to a lamp, preferably a reactor lamp.
  • the reactor can, for example, be any photochemical reaction reactor (also called a "photochemical reactor"), preferably it is a photonitrosation reactor.
  • the lamp is configured for use in an immersion reactor.
  • immersion reactor is meant a reactor in which the light source necessary for the reaction, ie the lamp, is inside the reactor, at least partially immersed in the reaction medium.
  • the lamp according to the invention comprises a support.
  • This support is made of a material having a thermal conductivity greater than or equal to 100 W / m.K at 20 ° C. Thermal conductivity can be reset using the guarded hot plate method, according to ISO 8302.
  • the backing material can include or consist of the materials below.
  • the backing material may also include or consist of a combination of two or more of the above materials.
  • the support material may have a thermal conductivity greater than or equal to 150 W / mK, or greater than or equal to 200 W / mK, or greater than or equal to 250 W / mK, or greater than or equal to 300 W / mK, or greater or equal to 350 W / mK, or greater than or equal to 380 W / mK, at 20 ° C.
  • the support is made of copper.
  • the support has an elongated shape. This makes it possible to define a main direction (longitudinal) and transverse planes perpendicular to the longitudinal axis of the support.
  • the printed circuit (s) are arranged on the lateral surface of the support.
  • the support includes a longitudinal axis.
  • the support has a cross section in the form of a convex polygon.
  • the carrier includes a longitudinal axis, the cross section to the longitudinal axis being polygonal convex.
  • a “convex polygon” is a simple polygon (that is to say a polygon in which two non-consecutive sides do not intersect and two consecutive sides have only one of their vertices in common) in where any segment joining two vertices of the polygon is included in the set delimited by the polygon.
  • the presence of a support having a cross section in the form of a convex polygon allows an arrangement of the diodes optimizing the direction of the light rays emitted by the diodes.
  • the diodes when the diodes are arranged in a shape comprising concave parts (for example, in a star shape, such as that of the lamp described in the document “47 kw LED Lamp for Photochemical Reaction Processes”, Toshiba review Science and Technology Highlights 2016, p.47), some light rays from the diodes in these concave parts are emitted in the direction of the adjacent diodes (next to or in front) and not in the direction of the rest of the reaction medium. The rays of the adjacent diodes in the concave parts overlap each other, resulting in a loss of photons to perform the reaction.
  • concave parts for example, in a star shape, such as that of the lamp described in the document “47 kw LED Lamp for Photochemical Reaction Processes”, Toshiba review Science and Technology Highlights 2016, p.47
  • some light rays from the diodes in these concave parts are emitted in the direction of the adjacent diodes (next to or in front) and not in the direction of
  • the arrangement of the diodes in a convex polygon shape makes it possible to improve the orientation of the light rays towards the reaction medium and to reduce the superposition of the light fluxes of the diodes, in order to make the maximum number of photons available for the reaction. .
  • the polygon can be regular, or essentially regular (that is, all of its sides have the same length, or essentially the same length, and all of its angles have the same measure, or essentially the same measure) or irregular, preferably it is regular or essentially regular.
  • the convex polygon may have a number of sides greater than or equal to 3, such as a number of sides ranging from 3 to 50, preferably from 4 to 30, more preferably from 5 to 25.
  • the polygon may have a number of sides equal to 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10, or 11, or 12, or 13, or 14 , or 15, or 16, or 17, or 18, or 19, or 20, or 21, or 22, or 23, or 24, or 25.
  • the support comprises at least one channel (or conduit), preferably the support is crossed by said at least one channel.
  • This channel is intended to contain or receive a coolant, preferably a flow of coolant (that is to say a coolant flowing through said channel).
  • At least one channel is essentially parallel, or parallel, to the longitudinal axis of the support.
  • At least one channel is formed, preferably drilled, in the holder.
  • the support comprises a longitudinal axis and the at least one channel passes through the support along this axis.
  • the medium can consist of a single channel or several channels.
  • the medium may have 2 to 40 channels, such as 2 to 5 channels, or 5 to 10 channels, or 10 to 15 channels, or 15 to 20 channels, or 20 to 25 channels, or 25 to 30 channels, or 30 to 35 channels, or 35 to 40 channels.
  • the channel (s) have a specific surface area greater than or equal to 0.5 nr 1 (m 2 / m 3 ), preferably greater than or equal to 1 m -1 , preferably greater than or equal to 5 nr 1 , preferably still greater than or equal to 10 nr 1 , preferably still greater than or equal to 20 nr 1 , more preferably greater than or equal to 50 nr 1 , more preferably greater than or equal to 100 nr 1 , even more preferably greater than or equal to 150 nr 1 .
  • specific surface of the channels is meant the ratio of the area of the internal surface of the channels (defining the contact surface between the interior of the channels and the support) to the apparent volume of the support. Such a specific surface can allow a large contact surface, and therefore heat exchange, between the coolant and the support, and therefore good cooling of the light-emitting diodes and of the printed circuits.
  • the at least one channel comprises a coolant, more preferably the coolant circulates in said channel, more preferably in a continuous flow.
  • the coolant can be any gaseous or liquid fluid known to those skilled in the art.
  • the coolant is a liquid.
  • the coolant is an aqueous solution, more preferably water.
  • the coolant can optionally comprise one or more additives, such as an anti-corrosion agent, an anti-bacterial agent, an anti-algae agent, an antioxidant, etc.
  • the fluid supplied to the support has a temperature less than or equal to 25 ° C.
  • This temperature corresponds to the temperature of the fluid before it has effected heat exchanges with the support (that is to say, the temperature of the fluid entering the support).
  • the fluid entering the support has a temperature less than or equal to 20 ° C, more preferably less than or equal to 15 ° C, more preferably less than or equal to 10 ° C, more preferably less than or equal to 5 ° C.
  • the fluid can for example have an inlet temperature of the support of 0.5 to 5 ° C, or 5 to 10 ° C, or 10 to 15 ° C, or 15 to 20 ° C, or 20 to 25 ° C.
  • the lamp may include a supply line for supplying the coolant to the channel or channels present in the holder.
  • this supply line comprises coolant.
  • the coolant advantageously has a temperature as described above.
  • the lead line can include or be made of one or more materials as described above in relation to the support.
  • the feed line can be copper.
  • the material (s) of the feed line may be the same or different from that (s) of the support.
  • the supply line can be connected to the support via a fluid distributor, which distributes the fluid, preferably evenly, between the different channels.
  • This distributor is assembled with the supply line and with the support by all known conventional means such as welding, gluing, crimping, etc., depending on the nature of the materials of the assembled elements. For example, if the feed line is copper and the support is copper, we will preferably choose solder as the means of assembly.
  • the lamp may also include a coolant fluid collection line to recover the coolant fluid after it has passed through the support.
  • the collection line can comprise or be made of one or more materials as described above in relation to the support.
  • the collection line can be copper.
  • the material (s) of the collection line may be identical or different from that or those of the support, and identical or different from that or those of the supply line.
  • the collection line can be connected to the medium via a fluid manifold, which collects the fluids from the various channels of the medium and sends them to the collection line.
  • This collector is assembled with the collection line and with the support by all known conventional means such as welding, gluing, crimping, etc., depending on the nature of the materials of the assembled elements. For example, if the collection line is made of copper and the support is made of copper, it is preferable to choose solder as the means of assembly.
  • the coolant can be recycled and reused as a coolant, preferably after cooling, for example after passing through a heat exchanger.
  • the lamp comprises at least one printed circuit (or PCB for “printed circuit board”) mounted on the support.
  • PCB printed circuit board
  • the at least one printed circuit can be attached directly to the support (i.e. directly in contact with the support) or one or more parts or intermediate layers can be present between the circuit and the support, provided that said parts or intermediate layers have good thermal conductivity, for example greater than or equal to 0.4 W / mK at 20 ° C (as for example measured according to the ISO 8302 standard by the guarded hot plate method).
  • the circuit can be mounted on the support by any compatible fixing means.
  • Fastening means suitable for mounting the printed circuit on the support are adhesive tape, in particular double-sided adhesive tape, glue, preferably thermally conductive, screws, clips, or combinations thereof.
  • the circuit When the circuit is attached to the support by means of a double-sided adhesive tape, the latter advantageously has good thermal conductivity, for example greater than or equal to 0.4 W / mK at 20 ° C (as for example measured according to the ISO 8302 standard by the guarded hot plate method).
  • the circuit When the circuit is attached to the support by means of glue, the latter advantageously has good thermal conductivity, for example greater than or equal to 0.4 W / mK at 20 ° C (as for example measured according to the ISO 8302 standard by the guarded hot plate method).
  • the PCB can be chosen from all types of printed circuit known to those skilled in the art, in particular printed circuits with a metal core (
  • Non-direct thermal path in English
  • MCPCB Metal Core PCB
  • non-direct thermal path conventional (called technology “non-direct thermal path", (“Non-direct thermal path” in English)
  • non-direct thermal path in English
  • the metal core printed circuits with “direct thermal path” technology such as for example the SinkPAD TM PCB or the TPAD PCB, that is to say without dielectric layer between the LED mounted on the circuit and the metal base of the circuit, which makes it possible to improve the heat transfer between the LED and the lamp holder.
  • the printed circuits are arranged on all or part of at least one external face of the support.
  • the printed circuits are arranged on all or part of all the external faces of the support.
  • the lamp according to the invention comprises at least one light emitting diode.
  • the light emitting diode is mounted on the printed circuit, more preferably directly on the surface of the circuit.
  • the diode can be mounted on the circuit by the technique of components mounted on the surface (or SMT for "surface-mount technology") or by the technology of through-holes (or THT for "through-hole technology”).
  • the light emitting diode can be mounted on the printed circuit board by soldering, soldering, or combinations thereof.
  • the light-emitting diode (s) are arranged so that their radiation-emitting part faces outward (relative to the support).
  • the lamp according to the invention advantageously contains a plurality of light emitting diodes, for example between 50 and 100,000 light emitting diodes.
  • the number of light emitting diodes can depend on different parameters such as the size of the photochemical reactor, the power and wavelength of the LEDs, the desired productivity of the photochemical reaction, etc.
  • the light-emitting diodes are arranged on all or part of at least one external face of the support.
  • the light-emitting diodes are arranged on all or part of all of the external faces of the support.
  • the at least one light-emitting diode preferably emits so-called monochromatic radiation (such a diode also being called “monochromatic diode” in the remainder of the present description).
  • light emitting diode emitting monochromatic radiation is meant a light emitting diode having a spectral width at half height (corresponding to the range of wavelengths having an intensity light greater than or equal to half of the maximum light intensity of the spectrum of the diode, as shown in figure 3) narrow, typically a spectral width at half height of 20 to 90 nm, more preferably 20 to 40 nm .
  • Dominant wavelength or DWL in English
  • DWL peak emission wavelength
  • the monochromatic radiation emitted by at least one light-emitting diode has a dominant wavelength ranging from 550 to 750 nm, more preferably from 580 to 740 nm, and even more preferably from 610 to 670, for example from about 550 to 560 nm, or from 560 to 570 nm, or from 570 to 580 nm, or from 580 to 590 nm, or from 585 to 595 nm, or from 590 to 600 nm, or from 600 to 610 nm, or from 610 to 620 nm, or from
  • the light emitting diodes may be the same or different (for example they may emit at different dominant wavelengths), and are preferably identical.
  • light emitting diodes emit at different dominant lengths, they can all independently emit monochromatic radiation of a dominant wavelength within the ranges mentioned above.
  • the lamp according to the invention advantageously comprises a bulb containing the support, at least one printed circuit and at least one light emitting diode.
  • anoule is meant a gas-tight container.
  • the bulb surrounds the assembly formed by the support, the at least one printed circuit and the at least one light-emitting diode, that is to say that this assembly is positioned at inside the bulb.
  • the bulb is at least partly transparent (for example, over an area corresponding to at least 50%, or at least 80%, of the area of the bulb, preferably over the whole) and, in particular, leaves pass the radiation emitted by light-emitting diodes over at least part of its surface (for example, over an area corresponding to at least 50%, or at least 80%, of its surface, preferably over its entire surface) .
  • the ampoule comprises at least one fluid inlet, for supplying an inert fluid to the ampoule.
  • This fluid inlet can be an opening for a supply line of an inert fluid. More preferably, it comprises at least one fluid outlet, intended for the recovery of inert fluid. This fluid outlet may be an opening for a collection line for the inert fluid.
  • the bulb comprises an opening for the passage of the coolant supply line and / or an opening for the passage of the refrigerant line. collection of the coolant and / or an opening for the passage of the power cables of the light-emitting diodes.
  • the bulb can also include a single opening and / or two openings for the passage of the lines for supplying and collecting all the fluids and for the electric cables.
  • the bulb is advantageously made of glass, for example of borosilicate glass, of soda-lime glass and / or of lead glass.
  • it can be made of acrylic resin, methacrylic resin (PMMA), polystyrene (PS), polyvinyl chloride (PVC), polyester or copolyester, polycarbonate (PC), polyethylene terephthalate (PET), styrene-acrylonitrile copolymer (SAN), and / or any material transparent to the wavelengths emitted by the light-emitting diodes.
  • the ampoule preferably contains an inert fluid. More preferably, the inert fluid is in the form of an inert fluid flow (i.e., the inert fluid flows through the ampoule, entering through the fluid inlet of the ampoule and exiting. by the fluid outlet of the bulb), more preferably in the form of a continuous flow.
  • inert fluid is meant a fluid incapable of reacting with the reagents present in the reactor.
  • the inert fluid is preferably an inert gas.
  • the inert fluid can be selected from the group consisting of dinitrogen, helium, neon, argon, krypton and / or xenon. Particularly preferably, the inert fluid is dinitrogen.
  • the presence of a bulb containing an inert fluid around the whole of the support, of the at least one printed circuit and of the at least one light-emitting diode makes it possible to protect this assembly and in particular makes it possible to reduce, or even avoid, corrosion of the support, the diode and / or the circuit when the lamp may be subjected to a corrosive atmosphere (such as that of the reaction medium for the photonitrosation of a cycloalkane, which may for example contain nitrosyl chloride, hydrochloric acid, nitrogen oxides and / or water).
  • a corrosive atmosphere such as that of the reaction medium for the photonitrosation of a cycloalkane, which may for example contain nitrosyl chloride, hydrochloric acid, nitrogen oxides and / or water.
  • This protection therefore makes it possible to extend the life of the lamp.
  • the lamp according to the invention advantageously has a light output greater than or equal to 30%.
  • the light output corresponds to the ratio of the light power emitted by the lamp (in Watt) to the electric power supplied (or supply power) (in Watt), multiplied by 100.
  • the light power emitted by the lamp can be measured by radiometry, for example using an integrating sphere, for example by following the CIE 127 standard (“Measurement of LEDs”). More preferably, the lamp has a light output greater than or equal to 32%, more preferably greater than or equal to 35%, even more preferably greater than or equal to 38%, even more preferably greater than or equal to 40%.
  • the invention also relates to a reactor comprising at least one lamp as described above.
  • the reactor is an immersion reactor.
  • the lamp is positioned at the center of the reactor. In the event that there is more than one lamp, the lamps are preferably positioned evenly within the reactor volume.
  • the reactor comprises a reaction medium, more preferably a reaction liquid.
  • the at least one lamp is preferably partly immersed in said reaction liquid, and more preferably, fully immersed in said reaction liquid, more preferably without being in contact therewith, for example thanks to the presence of hollow cylinders immersed in the reaction medium, in which the at least one lamp is positioned.
  • the reaction medium comprises at least one cycloalkane, advantageously cyclohexane and / or cyclododecane.
  • the reaction medium can also comprise nitrosyl chloride and / or any other nitrosating agent such as, for example, nitrosyl acid sulfate, trichloronitrosomethane or a mixture of chlorine / nitrogen monoxide; in addition, the reaction medium may comprise sulfuric acid and / or hydrochloric acid and / or water and / or at least one cycloalkanone-oxime (preferably cyclododecanone-oxime and / or cyclohexanone- oxime) and / or a reaction solvent, preferably inert to light and unreactive with the nitrosating agent and the acids present, such as halogenated hydrocarbons such as for example halogenomethanes, preferably chloroform and carbon tetrachloride, and / or hydrocarbons aromatic, such as, for
  • the reactor according to the invention may comprise a body comprising, or consisting of, PVC, PVDF (poly (vinylidene fluoride)), glass steel and / or glass.
  • the glasses that can be used to manufacture the reactor are all types of glass such as borosilicate glasses (Pyrex®, for example), soda-lime glasses, lead glasses, silica glasses and / or glass-ceramics.
  • the lamp as described above can be used to carry out any photochemical reaction such as, for example, photohalogenations, photosulfoxidations, photonitrosations, photocycloadditions, photocyclizations, photooxygenations, photopolymerizations, photochemical rearrangements, photocatalytic reactions, etc.
  • photochemical reaction such as, for example, photohalogenations, photosulfoxidations, photonitrosations, photocycloadditions, photocyclizations, photooxygenations, photopolymerizations, photochemical rearrangements, photocatalytic reactions, etc.
  • the lamp as described above can be used to perform photonitrosation of a cycloalkane, in particular for the preparation of a cycloalkanone oxime and / or a lactam.
  • Cycloalkane photonitrosation is carried out using a nitrosating agent, preferably using nitrosyl chloride (NOCI).
  • NOCI nitrosyl chloride
  • nitrosating agent is meant a species or a compound allowing the substitution, in a molecule, of a nitrosyl group with a hydrogen atom. It can alternatively or additionally be carried out using a gas mixture of NOCI and hydrogen chloride, a gas mixture of nitrogen monoxide and chlorine, a gas mixture of nitrogen monoxide.
  • nitrosyl chloride such as as for example hydrochloric acid mixed with nitric acid or nitrosyl acid sulfate or alkyl nitrites such as ethyl or amyl nitrite.
  • the photonitrosation is advantageously carried out in a two-phase organic solvent / sulfuric acid medium.
  • the temperature and concentration conditions are well known to those skilled in the art and can be such as those described, for example, in documents US Pat. No. 3,734,845, US 3,681, 217 or FR 1331478.
  • An oxime in the form of Oxime hydrochloride is thus generated in the organic phase. This oxime can then be extracted by the sulfuric phase.
  • the cycloalkane is preferably cyclododecane.
  • Cyclododecanone oxime hydrochloride can then be obtained by photonitrosation according to the reaction:
  • the source of photons (h v) is the lamp according to the invention, and more particularly the light emitting diodes.
  • the cycloalkane can be cyclohexane.
  • Cyclohexanone-oxime hydrochloride can then be obtained by photonitrosation.
  • the reactor can be as described above.
  • a second reaction step can then be carried out.
  • this second step comprises a Beckmann transposition of the oxime resulting from the first photonitrosation step.
  • This step is advantageously carried out in a concentrated sulfuric medium.
  • lauryllactam (or dodecalactam) can be obtained from cyclododecanone-oxime (itself preferably obtained from cyclododecane) according to the reaction:
  • Caprolactam can also be obtained by Beckmann transposition of cyclohexanone-oxime hydrochloride.
  • the Beckmann transposition is carried out in a reactor comprising a body comprising glass, preferably a body made of glass.
  • a body comprising glass preferably a body made of glass.
  • the use of glass as a material avoids the corrosion problems usually seen with conventional materials such as metals.
  • the glasses that can be used to manufacture the reactor are all types of glass such as borosilicate glasses (Pyrex®, for example), soda-lime glasses, lead glasses, silica glasses and / or glass-ceramics.
  • the body of the reactor can comprise, or be made of tantalum, and / or glass steel.
  • a 1 pilot lamp is manufactured.
  • the lamp 1 comprises a copper support 2 of conductivity 390 W / mK at 20 ° C.
  • the support 2 has a shape of a straight prism, a length of 230 mm and a cross section in the form of a regular convex decagon (10-sided polygon).
  • the circle circumscribing this decagon has a diameter of 37.3 mm.
  • the support 2 is crossed, in the longitudinal direction and over its entire length, by 8 cylindrical channels 15 (parallel to each other and to the longitudinal axis of the support) with a diameter of 7 mm.
  • One of the channels is positioned in the center of the support and the 7 others are positioned around the central channel, in a circle, and equidistant from each other.
  • the 8 channels are connected, respectively via a fluid distributor and a fluid manifold 10, to a supply line 6 and a collection line 5, intended respectively for supplying the channels with coolant and for recovering the fluid. secondary refrigerant.
  • a fluid distributor and a fluid manifold 10 to a supply line 6 and a collection line 5, intended respectively for supplying the channels with coolant and for recovering the fluid. secondary refrigerant.
  • printed circuits 3 are fixed on a part of the side surface of the support 2, on the 10 sides of the support 2.
  • the printed circuits 3 are fixed on the support 2 by means of a double-sided adhesive tape having a thermal conductivity of 0.4 W / mK at 20 ° C and the printed circuit boards are also screwed at each of their two ends into the copper support by two screws made of polytetrafluoroethylene.
  • Light-emitting diodes 4 with a side of 3.45 mm are soldered on the printed circuits 3 and cover the support 2 over a length of 94 mm. These diodes 4 all have a dominant wavelength of 615 nm. They are available from Created under the reference XPEBRO-L1-0000-00D01 and provide a luminous flux of 107 Im at 350 mA. 32 diodes are arranged on each of the 10 sides of the support, ie 320 LEDs in total.
  • the lamp 1 may include a protective glass bulb 7.
  • the ampoule 7 has a diameter of 44 mm and comprises a fluid inlet 9 and a fluid outlet 8, intended for the circulation of a flow of an inert fluid in said ampoule 7.
  • the ampoule 7 also comprises an opening 11 for the passage of the collection line 5, an opening 13 for the passage of the supply line 6 and an opening 12 for the passage of the supply cables 14 of the diodes 4.
  • Lamp 1 has an electric power supply of 250 W.
  • the measurement of the luminous flux of the lamp 1 was carried out by circulating water at a temperature of 5 ° C as a continuous coolant in the supply line 6, then in the channels of the support 2, then in the collection line 5, then placing the lamp inside a 200 cm integral sphere of the Labsphere brand and measuring the power emitted as a function of the electric power supply.
  • the light output of the lamp 1 tested is therefore between 41 and 45% depending on the electrical power supply.
  • the luminous efficiency of a sodium vapor lamp of the Philips brand and reference MASTER SON-T PIA Plus 250W / 220 E40 was determined by measuring the power emitted by the lamp in the same integrating sphere as for lamp 1.
  • This sodium vapor lamp has an electric power supply of 250 W. It has a 94 mm burner and a 48 mm diameter bulb. This sodium vapor lamp has a light output of 36%.
  • the lamp 1 according to the invention has a higher light output than that of the sodium vapor lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

The invention relates to a lamp (1) for a photochemical reactor, comprising: - a support member (2) made of a material having a thermal conductivity greater than or equal to 100 W/mK at 20°C and comprising at least one channel configured to contain a coolant fluid; - at least one printed circuit (3) mounted on the support member; and - at least one light-emitting diode (4) mounted on the printed circuit (3). The invention also relates to a photochemical reactor comprising such a lamp (1), and to a method for preparing a cycloalkanone oxime or a lactam using such a lamp (1).

Description

Description Description
Titre : Lampe pour réacteur photochimique à base de diodes électroluminescentes Title: Light-emitting diode-based photochemical reactor lamp
Domaine de l’invention Field of the invention
La présente invention concerne une lampe pour réacteur photochimique, de préférence une lampe adaptée pour réacteur photochimique à immersion, comprenant au moins une diode électroluminescente, utile pour la mise en oeuvre d’une réaction photochimique, notamment de photonitrosation. The present invention relates to a lamp for a photochemical reactor, preferably a lamp suitable for a photochemical immersion reactor, comprising at least one light-emitting diode, useful for carrying out a photochemical reaction, in particular photonitrosation.
Arrière-plan technique Technical background
L’utilisation des lactames est très répandue dans l’industrie. Ainsi, le caprolactame et le lauryllactame sont respectivement des précurseurs des polyamides 6 et 12. The use of lactams is widespread in industry. Thus, caprolactam and lauryllactam are respectively precursors of polyamides 6 and 12.
Au niveau industriel, un procédé pour synthétiser un lactame à partir d'un cycloalcane peut mettre en oeuvre successivement deux étapes réactionnelles. Dans une première étape réactionnelle, on effectue une photonitrosation (ou photooximation) du cycloalcane à l'aide, par exemple, de chlorure de nitrosyle (NOCI), généralement en milieu biphasique solvant organique/acide sulfurique. Une oxime sous forme de chlorhydrate d'oxime est ainsi produite en phase organique et ultérieurement extraite par la phase sulfurique. Dans une seconde étape réactionnelle, on effectue une transposition de Beckmann (ou réarrangement de Beckmann) du chlorhydrate d'oxime extrait en milieu sulfurique concentré pour obtenir le lactame. Ce lactame résultant de la transposition de Beckmann est ensuite isolé et purifié pour conduire à un produit de haute pureté. At the industrial level, a process for synthesizing a lactam from a cycloalkane can successively implement two reaction steps. In a first reaction step, a photonitrosation (or photooximation) of the cycloalkane is carried out using, for example, nitrosyl chloride (NOCI), generally in a two-phase organic solvent / sulfuric acid medium. An oxime in the form of oxime hydrochloride is thus produced in the organic phase and subsequently extracted by the sulfuric phase. In a second reaction step, a Beckmann transposition (or Beckmann rearrangement) of the oxime hydrochloride extracted in concentrated sulfuric medium is carried out to obtain the lactam. This lactam resulting from the transposition of Beckmann is then isolated and purified to produce a product of high purity.
La photonitrosation est généralement réalisée à l'aide de lampes à vapeur de mercure ou de sodium immergées dans le milieu réactionnel. Ces lampes à vapeur de sodium ou de mercure sont très consommatrices d’électricité. Elles ont également une durée de vie faible. En outre, elles contiennent une quantité variable de mercure et sont ainsi vouées à disparaître à terme. Il est donc souhaitable de remplacer ces lampes, de préférence sans avoir à modifier profondément les installations industrielles existantes, c’est-à-dire par des lampes ayant un encombrement similaire à celui des lampes à vapeur de sodium ou de mercure actuellement utilisées. Les diodes électroluminescentes (ou LEDs pour « light emitting diodes ») présentent une durée de vie supérieure à celle des lampes à vapeur de sodium ou de mercure (par exemple, une lampe à vapeur de mercure peut avoir une durée de vie de l’ordre de 4000 h, une lampe à vapeur de sodium une durée de vie de l’ordre de 25000 h et une diode électroluminescente une durée de vie de l’ordre de 50000 à 100000 h). Cependant, les diodes électroluminescentes n’émettant pas de rayonnement infrarouge, la chaleur produite lors de leur utilisation n’est évacuée que via leur alimentation électrique, qui est disposée au dos des diodes. L’espace sur lequel il est possible d’agir pour dissiper la chaleur produite est ainsi très restreint, en particulier lorsque les lampes sont immergées dans un milieu réactionnel, et les diodes électroluminescentes sont donc plus difficiles à refroidir que les lampes à vapeur de sodium ou de mercure qui émettent de la chaleur sous forme de rayonnement infrarouge et que l’on peut facilement refroidir en faisant circuler un liquide réfrigérant autour. Photonitrosation is generally carried out using mercury or sodium vapor lamps immersed in the reaction medium. These sodium or mercury vapor lamps consume a lot of electricity. They also have a short lifespan. In addition, they contain a variable amount of mercury and are therefore doomed to disappear in the long term. It is therefore desirable to replace these lamps, preferably without having to profoundly modify the existing industrial installations, that is to say by lamps having a size similar to that of the sodium or mercury vapor lamps currently in use. Light-emitting diodes (or LEDs for "light emitting diodes") have a longer lifespan than sodium or mercury vapor lamps (for example, a mercury vapor lamp can have a lifespan of around 4,000 h, a sodium vapor lamp has a lifespan of around 25,000 h and a light emitting diode has a lifespan of around 50,000 to 100,000 h). However, since light-emitting diodes do not emit infrared radiation, the heat produced during their use is only evacuated via their power supply, which is arranged on the back of the diodes. The space on which it is possible to act to dissipate the heat produced is thus very limited, in particular when the lamps are immersed in a reaction medium, and light-emitting diodes are therefore more difficult to cool than sodium vapor lamps. or mercury which emit heat in the form of infrared radiation and which can be easily cooled by circulating a coolant around it.
Le document WO 2009/153470 concerne un procédé de préparation de lactames dans lequel l’étape de photonitrosation est effectuée à l’aide de diodes électroluminescentes émettant une lumière monochromatique. WO 2009/153470 relates to a process for preparing lactams in which the photonitrosation step is carried out using light emitting diodes emitting monochromatic light.
Le document US 2018/0179148 décrit un système d’alimentation électrique permettant notamment de contrôler l’élévation de température de diodes électroluminescentes et basé sur un refroidissement à l’eau. Le système décrit dans ce document présente une structure compliquée, qui semble difficile à assembler. Document US 2018/0179148 describes an electric power supply system making it possible in particular to control the temperature rise of light-emitting diodes and based on water cooling. The system described in this document has a complicated structure, which seems difficult to assemble.
Le document US 2017/0305851 décrit un dispositif de photoirradiation dans lequel un corps comprenant une multitude de diodes électroluminescentes est placé dans deux récipients transparents, le premier récipient comprenant un gaz et le second un liquide. Document US 2017/0305851 describes a photoirradiation device in which a body comprising a multitude of light-emitting diodes is placed in two transparent containers, the first container comprising a gas and the second a liquid.
Le document JP 2019126768 décrit un dispositif de photoréaction comprenant deux groupes de diodes s’allumant et s’éteignant de manière indépendante et séparés soit par une paroi opaque soit par une substance absorbant la lumière, de manière à ce que le rayonnement des diodes allumées n’atteigne pas les diodes éteintes. Document JP 2019126768 describes a photoreaction device comprising two groups of diodes turning on and off independently and separated either by an opaque wall or by a light-absorbing substance, so that the radiation of the lit diodes n do not reach the unlit diodes.
Le document “47 kw LED Lamp for Photochemical Reaction Processes”, Toshiba review Science and Technology Highlights 2016, p.47, mentionne une lampe LED pour des procédés de photoréaction dans laquelle les diodes sont refroidies à l’aide de canaux d’eau. 70 % de l’énergie fournie étant transformé en chaleur, cette lampe possède un rendement lumineux de 30 %. Il existe un besoin de fournir une lampe ayant une faible consommation d’électricité, une bonne puissance lumineuse et un rendement lumineux élevé, pouvant être utilisée dans les milieux corrosifs tels que les milieux de photonitrosation, économique, rentable et relativement simple à fabriquer. The document “47 kw LED Lamp for Photochemical Reaction Processes”, Toshiba review Science and Technology Highlights 2016, p.47, mentions an LED lamp for photoreaction processes in which the diodes are cooled using water channels. 70% of the energy supplied being transformed into heat, this lamp has a light output of 30%. There is a need to provide a lamp having low power consumption, good light output and high light efficiency, which can be used in corrosive media such as photonitrosation media, economical, cost effective and relatively simple to manufacture.
Résumé de l’invention Summary of the invention
L’invention concerne en premier lieu une lampe pour réacteur photochimique comprenant : The invention relates firstly to a lamp for a photochemical reactor comprising:
- un support en un matériau présentant une conductivité thermique supérieure ou égale à 100 W/m.K à 20°C et comprenait au moins un canal configuré pour contenir un fluide frigoporteur ; a support made of a material having a thermal conductivity greater than or equal to 100 W / m.K at 20 ° C and comprising at least one channel configured to contain a coolant;
- au moins un circuit imprimé monté sur ledit support ; et - at least one printed circuit mounted on said support; and
- au moins une diode électroluminescente montée sur ledit circuit imprimé. - at least one light-emitting diode mounted on said printed circuit.
Dans des modes de réalisation, le matériau du support est choisi dans le groupe constitué du cuivre, de l’argent, de l’or, de l’aluminium, du carbure de silicium, du graphite, des alliages aluminium-carbure de silicium, du zinc, et des combinaisons de ceux-ci. In some embodiments, the material of the support is selected from the group consisting of copper, silver, gold, aluminum, silicon carbide, graphite, aluminum-silicon carbide alloys, zinc, and combinations thereof.
Dans des modes de réalisation, le matériau du support a une conductivité thermique supérieure ou égale à 300 W/m.K à 20°C . In embodiments, the support material has a thermal conductivity of greater than or equal to 300 W / m.K at 20 ° C.
Dans des modes de réalisation, la lampe comprend en outre une ampoule contenant le support, l’au moins un circuit imprimé et l’au moins une diode électroluminescente. In embodiments, the lamp further includes a bulb containing the holder, at least one printed circuit, and at least one light emitting diode.
Dans des modes de réalisation, l’ampoule contient un fluide inerte, de préférence du diazote, le gaz inerte étant de préférence sous forme d’un flux de fluide inerte. In embodiments, the ampoule contains an inert fluid, preferably dinitrogen, the inert gas preferably being in the form of an inert fluid stream.
Dans des modes de réalisation, le support a une section transversale en forme de polygone convexe. In embodiments, the support has a cross section in the shape of a convex polygon.
Dans des modes de réalisation, le polygone convexe a de 5 à 25 côtés. In embodiments, the convex polygon has 5 to 25 sides.
Dans des modes de réalisation, l’au moins un canal comprend un fluide frigoporteur, de préférence de l’eau. In some embodiments, the at least one channel includes a coolant, preferably water.
Dans des modes de réalisation, la lampe comprend en outre une ligne d’amenée du fluide frigoporteur comprenant un fluide frigoporteur ayant une température inférieure ou égale à 25 °C, de préférence inférieure ou égale à 10°C, plus préférentiellement inférieure ou égale à5°C. In some embodiments, the lamp further comprises a supply line for the coolant fluid comprising a coolant having a temperature less than or equal to 25 ° C, preferably less than or equal to 10 ° C, more preferably less than or equal to 5. ° C.
Dans des modes de réalisation, la lampe a un rendement lumineux supérieur ou égal à 40 %. L’invention concerne également un réacteur photochimique à immersion comprenant un liquide réactionnel et au moins une lampe telle que décrite ci-dessus immergée au moins en partie dans ledit liquide réactionnel. In some embodiments, the lamp has a light output greater than or equal to 40%. The invention also relates to a photochemical immersion reactor comprising a reaction liquid and at least one lamp as described above immersed at least in part in said reaction liquid.
L’invention concerne également un procédé de préparation d’une cycloalcanone-oxime comprenant la photonitrosation d’un cycloalcane à l’aide d’un agent nitrosant et d’au moins une lampe telle que décrite ci- dessus. The invention also relates to a process for preparing a cycloalkanone oxime comprising the photonitrosation of a cycloalkane using a nitrosating agent and at least one lamp as described above.
L’invention concerne également un procédé de préparation d’un lactame comprenant : The invention also relates to a process for preparing a lactam comprising:
- la préparation d’une cycloalcanone-oxime selon le procédé décrit ci- dessus ; - the preparation of a cycloalkanone oxime according to the process described above;
- la transposition de Beckmann de la cycloalcanone-oxime. - Beckmann's transposition of cycloalkanone oxime.
La présente invention permet de répondre au besoin exprimé ci- dessus. Elle fournit plus particulièrement une lampe ayant une ou plusieurs propriétés avantageuses, de préférence toutes ces propriétés, parmi : un rendement lumineux amélioré, permettant une consommation d’électricité réduite ; une bonne puissance lumineuse, permettant, lorsque la lampe est utilisée pour une réaction photochimique (par exemple de photonitrosation), une productivité élevée de cette dernière ; une durée de vie élevée ; un coût relativement faible et une bonne rentabilité. En outre, la lampe selon l’invention peut être compatible avec les installations existantes utilisant des lampes à vapeurs de sodium ou de mercure et peut être utilisée dans ces installations sans ou avec très peu de modifications de ces dernières. De plus, elle ne nécessite pas une conception compliquée et peut être fabriquée de manière relativement simple. The present invention makes it possible to meet the need expressed above. It more particularly provides a lamp having one or more advantageous properties, preferably all of these properties, among: improved light output, allowing reduced electricity consumption; good light power, allowing, when the lamp is used for a photochemical reaction (for example photonitrosation), a high productivity of the latter; a long service life; relatively low cost and good profitability. In addition, the lamp according to the invention can be compatible with existing installations using sodium or mercury vapor lamps and can be used in these installations without or with very little modification thereof. In addition, it does not require a complicated design and can be manufactured relatively simply.
Cela est accompli grâce à l’assemblage de la ou des diodes électroluminescentes et du ou des circuits imprimés sur un support fait d’un matériau ayant une conductivité thermique élevée, dans lequel est présent au moins un canal permettant le passage d’un fluide frigoporteur. Cet assemblage particulier permet un très bon refroidissement à la fois des diodes électroluminescentes et des circuits imprimés. En effet, le liquide frigoporteur est en contact, sur une grande surface, avec le matériau du support de haute conductivité thermique, ce qui permet un échange efficace de chaleur. This is accomplished by assembling the light-emitting diode (s) and the printed circuit (s) on a support made of a material having high thermal conductivity, in which is present at least one channel allowing the passage of a refrigerant fluid. . This particular assembly allows very good cooling both of the light-emitting diodes and of the printed circuits. Indeed, the coolant liquid is in contact, over a large area, with the material of the support of high thermal conductivity, which allows efficient heat exchange.
Selon certains modes de réalisation particuliers, l’invention présente également l’avantage de pouvoir être utilisée en milieu corrosif et/ou humide, tel que les milieux réactionnels de photonitrosation des cycloalcanes. Brève description des figures According to certain particular embodiments, the invention also has the advantage of being able to be used in a corrosive and / or humid medium, such as reaction media for the photonitrosation of cycloalkanes. Brief description of the figures
[Fig.1 ] représente un cliché d’un exemple de lampe selon l’invention. [Fig.1] shows a photograph of an example of a lamp according to the invention.
[Fig.2] représente un cliché d’un autre exemple de lampe selon l’invention. [Fig.3] représente le spectre d’une diode électroluminescente. La longueur d’onde figure en abscisse et l’intensité lumineuse relative (c’est-à-dire l’intensité lumineuse divisée par l’intensité lumineuse maximale) figure en ordonnée. Sur ce spectre est représenté la largeur spectrale à mi-hauteur AK, correspondant aux longueurs d’onde pour lesquelles l’intensité lumineuse relative est supérieure ou égale à 0,5. [Fig.2] shows a photograph of another example of a lamp according to the invention. [Fig.3] shows the spectrum of a light emitting diode. The wavelength is shown on the x-axis and the relative light intensity (that is, the light intensity divided by the maximum light intensity) is on the y-axis. On this spectrum is represented the spectral width at half height AK, corresponding to the wavelengths for which the relative light intensity is greater than or equal to 0.5.
[Fig.4] représente le spectre moyen des longueurs d’onde émises par une diode électroluminescente blanche. [Fig. 4] represents the average spectrum of wavelengths emitted by a white light emitting diode.
[Fig. 5] représente la coupe transversale des lampes exemplifiées selon le mode où il y a plusieurs canaux [Fig. 5] shows the cross section of the lamps exemplified according to the mode where there are several channels
Description détaillée detailed description
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. The invention is now described in more detail and in a non-limiting manner in the description which follows.
Lampe Lamp
L’invention concerne une lampe, de préférence une lampe pour réacteur. Le réacteur peut être par exemple tout réacteur de réaction photochimique (appelé aussi « réacteur photochimique »), de préférence il s’agit d’un réacteur de photonitrosation. The invention relates to a lamp, preferably a reactor lamp. The reactor can, for example, be any photochemical reaction reactor (also called a "photochemical reactor"), preferably it is a photonitrosation reactor.
De préférence, la lampe est configurée pour être utilisée dans un réacteur à immersion. Par « réacteur à immersion », on entend un réacteur dans lequel la source de lumière nécessaire à la réaction, c’est-à-dire la lampe, est à l’intérieur du réacteur, immergée au moins en partie dans le milieu réactionnel. Preferably, the lamp is configured for use in an immersion reactor. By "immersion reactor" is meant a reactor in which the light source necessary for the reaction, ie the lamp, is inside the reactor, at least partially immersed in the reaction medium.
La lampe selon l’invention comprend un support. Ce support est fait d’un matériau ayant une conductivité thermique supérieure ou égale à 100 W/m.K à 20°C. La conductivité thermique peut être rresurée selon la méthode de la plaque chaude gardée, selon la norme ISO 8302. The lamp according to the invention comprises a support. This support is made of a material having a thermal conductivity greater than or equal to 100 W / m.K at 20 ° C. Thermal conductivity can be reset using the guarded hot plate method, according to ISO 8302.
Des exemples de matériaux adaptés pour le support selon l’invention sont présentés dans le tableau ci-dessous. [Tableau 1] Examples of materials suitable for the support according to the invention are presented in the table below. [Table 1]
Le matériau du support peut comprendre ou consister en les matériaux ci-dessous. The backing material can include or consist of the materials below.
Le matériau du support peut également comprendre ou consister en une combinaison de deux ou plus des matériaux ci-dessus. The backing material may also include or consist of a combination of two or more of the above materials.
Le matériau du support peut présenter une conductivité thermique supérieure ou égale à 150 W/m.K, ou supérieure ou égale à 200 W/m.K, ou supérieure ou égale à 250 W/m.K, ou supérieure ou égale à 300 W/m.K, ou supérieure ou égale à 350 W/m.K, ou supérieur ou égale à 380 W/m.K, à 20°C. The support material may have a thermal conductivity greater than or equal to 150 W / mK, or greater than or equal to 200 W / mK, or greater than or equal to 250 W / mK, or greater than or equal to 300 W / mK, or greater or equal to 350 W / mK, or greater than or equal to 380 W / mK, at 20 ° C.
De manière particulièrement préférée, le support est en cuivre. Particularly preferably, the support is made of copper.
Typiquement, le support a une forme allongée. Cela permet de définir une direction principale (longitudinale) et des plans transversaux perpendiculaires à l’axe longitudinal du support. De manière préférée, la ou les circuits imprimés sont disposés sur la surface latérale du support. Typically, the support has an elongated shape. This makes it possible to define a main direction (longitudinal) and transverse planes perpendicular to the longitudinal axis of the support. Preferably, the printed circuit (s) are arranged on the lateral surface of the support.
Dans des modes de réalisation, le support comprend un axe longitudinal. In some embodiments, the support includes a longitudinal axis.
De manière particulièrement avantageuse, le support a une section transversale en forme de polygone convexe. Particularly advantageously, the support has a cross section in the form of a convex polygon.
Dans des modes de réalisation, le support comprend un axe longitudinal, la section transversale à l’axe longitudinal étant polygonale convexe. In embodiments, the carrier includes a longitudinal axis, the cross section to the longitudinal axis being polygonal convex.
Un « polygone convexe » est un polygone simple (c’est-à-dire un polygone dans lequel deux côtés non consécutifs ne se sont pas sécants et deux côtés consécutifs n'ont en commun que l'un de leurs sommets) dans lequel tout segment joignant deux sommets du polygone est inclus dans l’ensemble délimité par le polygone. La présence d’un support ayant une section transversale en forme de polygone convexe permet une disposition des diodes optimisant la direction des rayons lumineux émis par les diodes. En effet, lorsque les diodes sont disposées selon une forme comprenant des parties concaves (par exemple, selon une forme d’étoile, telle que celle de la lampe décrite dans le document “47 kw LED Lamp for Photochemical Reaction Processes”, Toshiba review Science and Technology Highlights 2016, p.47), certains rayons lumineux des diodes se trouvant dans ces parties concaves sont émis en direction des diodes adjacentes (à côté ou en face) et non en direction du reste du milieu réactionnel. Les rayons des diodes adjacentes dans les parties concaves se superposent entre eux, ce qui résulte en une perte de photons pour effectuer la réaction. Au contraire, la disposition des diodes selon une forme de polygone convexe permet d’améliorer l’orientation des rayons lumineux vers le milieu de réaction et de réduire la superposition des flux lumineux des diodes, afin de rendre le maximum de photons disponibles pour la réaction. A "convex polygon" is a simple polygon (that is to say a polygon in which two non-consecutive sides do not intersect and two consecutive sides have only one of their vertices in common) in where any segment joining two vertices of the polygon is included in the set delimited by the polygon. The presence of a support having a cross section in the form of a convex polygon allows an arrangement of the diodes optimizing the direction of the light rays emitted by the diodes. Indeed, when the diodes are arranged in a shape comprising concave parts (for example, in a star shape, such as that of the lamp described in the document “47 kw LED Lamp for Photochemical Reaction Processes”, Toshiba review Science and Technology Highlights 2016, p.47), some light rays from the diodes in these concave parts are emitted in the direction of the adjacent diodes (next to or in front) and not in the direction of the rest of the reaction medium. The rays of the adjacent diodes in the concave parts overlap each other, resulting in a loss of photons to perform the reaction. On the contrary, the arrangement of the diodes in a convex polygon shape makes it possible to improve the orientation of the light rays towards the reaction medium and to reduce the superposition of the light fluxes of the diodes, in order to make the maximum number of photons available for the reaction. .
Le polygone peut être régulier, ou essentiellement régulier (c’est-à- dire que tous ses cotés ont la même longueur, ou essentiellement la même longueur, et tous ses angles ont la même mesure, ou essentiellement la même mesure) ou irrégulier, de préférence il est régulier ou essentiellement régulier. Le polygone convexe peut avoir un nombre de côtés supérieurs ou égal à 3, tel qu’un nombre de côtés allant de 3 à 50, de préférence de 4 à 30, plus préférentiellement de 5 à 25. Par exemple, le polygone peut avoir un nombre de côtés égal à 3, ou à 4, ou à 5, ou à 6, ou à 7, ou à 8, ou à 9, ou à 10, ou à 11 , ou à 12, ou à 13, ou à 14, ou à 15, ou à 16, ou à 17, ou à 18, ou à 19, ou à 20, ou à 21 , ou à 22, ou à 23, ou à 24, ou à 25. The polygon can be regular, or essentially regular (that is, all of its sides have the same length, or essentially the same length, and all of its angles have the same measure, or essentially the same measure) or irregular, preferably it is regular or essentially regular. The convex polygon may have a number of sides greater than or equal to 3, such as a number of sides ranging from 3 to 50, preferably from 4 to 30, more preferably from 5 to 25. For example, the polygon may have a number of sides equal to 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10, or 11, or 12, or 13, or 14 , or 15, or 16, or 17, or 18, or 19, or 20, or 21, or 22, or 23, or 24, or 25.
Le support comprend au moins un canal (ou conduit), de préférence le support est traversé par ledit au moins un canal. Ce canal est destiné à contenir ou recevoir un fluide frigoporteur, de préférence un flux de fluide frigoporteur (c’est-à-dire un fluide frigoporteur circulant à travers ledit canal). The support comprises at least one channel (or conduit), preferably the support is crossed by said at least one channel. This channel is intended to contain or receive a coolant, preferably a flow of coolant (that is to say a coolant flowing through said channel).
De manière particulièrement avantageuse, l’au moins un canal est essentiellement parallèle, ou parallèle, à l’axe longitudinal du support. Particularly advantageously, at least one channel is essentially parallel, or parallel, to the longitudinal axis of the support.
Dans des modes de réalisation, l’au moins un canal est formé, de préférence percé, dans le support. In some embodiments, at least one channel is formed, preferably drilled, in the holder.
Dans des modes de réalisation, le support comprend un axe longitudinal et l’au moins un canal traverse le support selon cet axe. Le support peut comprendre un seul canal ou plusieurs canaux. Par exemple, le support peut comprendre de 2 à 40 canaux, tel que de 2 à 5 canaux, ou de 5 à 10 canaux, ou de 10 à 15 canaux, ou de 15 à 20 canaux, ou de 20 à 25 canaux, ou de 25 à 30 canaux, ou de 30 à 35 canaux, ou de 35 à 40 canaux. In some embodiments, the support comprises a longitudinal axis and the at least one channel passes through the support along this axis. The medium can consist of a single channel or several channels. For example, the medium may have 2 to 40 channels, such as 2 to 5 channels, or 5 to 10 channels, or 10 to 15 channels, or 15 to 20 channels, or 20 to 25 channels, or 25 to 30 channels, or 30 to 35 channels, or 35 to 40 channels.
Avantageusement, le ou les canaux ont une surface spécifique supérieure ou égale à 0,5 nr1 (m2/m3), de préférence supérieure ou égale à 1 m -1, de préférence supérieure ou égale à 5 nr1, de préférence encore supérieure ou égale à 10 nr1, de préférence encore supérieure ou égale à 20 nr1, de préférence encore supérieure ou égale à 50 nr1, plus préférentiellement supérieure ou égale à 100 nr1, encore plus préférentiellement supérieure ou égale à 150 nr1. Par « surface spécifique des canaux », on entend le rapport de la superficie de la surface intérieure des canaux (définissant la surface de contact entre l’intérieur des canaux et le support) sur le volume apparent de support. Une telle surface spécifique peut permettre une grande surface de contact, et donc d’échange thermique, entre le fluide frigoporteur et le support, et donc un bon refroidissement des diodes électroluminescentes et des circuits imprimés. Advantageously, the channel (s) have a specific surface area greater than or equal to 0.5 nr 1 (m 2 / m 3 ), preferably greater than or equal to 1 m -1 , preferably greater than or equal to 5 nr 1 , preferably still greater than or equal to 10 nr 1 , preferably still greater than or equal to 20 nr 1 , more preferably greater than or equal to 50 nr 1 , more preferably greater than or equal to 100 nr 1 , even more preferably greater than or equal to 150 nr 1 . By "specific surface of the channels" is meant the ratio of the area of the internal surface of the channels (defining the contact surface between the interior of the channels and the support) to the apparent volume of the support. Such a specific surface can allow a large contact surface, and therefore heat exchange, between the coolant and the support, and therefore good cooling of the light-emitting diodes and of the printed circuits.
La présence de canaux directement percés dans le matériau de haute conductivité thermique du support permet une grande surface de contact (et donc d’échange thermique) entre le fluide frigoporteur circulant dans le canal et le support sur lequel sont montés le ou les circuits imprimés et le ou les diodes électroluminescentes. Cela résulte en un refroidissement amélioré des circuits imprimés et des diodes électroluminescentes, améliorant ainsi le rendement lumineux de la lampe. The presence of channels directly drilled in the material of high thermal conductivity of the support allows a large contact surface (and therefore heat exchange) between the coolant circulating in the channel and the support on which the printed circuit (s) are mounted and the light emitting diode (s). This results in improved cooling of the printed circuit boards and light emitting diodes, thereby improving the light output of the lamp.
De préférence, le au moins un canal comprend un fluide frigoporteur, plus préférentiellement le fluide frigoporteur circule dans ledit canal, de préférence encore selon un flux continu. Le fluide frigoporteur peut être tout fluide gazeux ou liquide connu de l’homme du métier. De préférence, le fluide frigoporteur est un liquide. Il peut être choisi parmi le groupe constitué de l’air, de l’eau, des mélanges aqueux tels que des saumures (solutions aqueuses de chlorure de calcium et/ou de sodium), des eaux glycolées (mélanges eau-monoéthylène glycol ou polypropylène glycol), des mélanges à base d’alcool (en particulier méthanol), des eaux ammoniacales (solutions aqueuses eau-ammoniac), des fluides organiques tels que des hydrocarbures aliphatiques ou aromatiques et des fluides frigoporteurs diphasiques tels que par exemple du dioxyde de carbone à l’état diphasique liquide-vapeur ou du coulis de glace constitué d’une phase liquide (généralement eau-alcool) et de cristaux de glace. De manière préférentielle, le fluide frigoporteur est une solution aqueuse, plus préférentiellement de l’eau. Le fluide frigoporteur peut optionnellement comprendre un ou plusieurs additifs, tels qu’un agent anti-corrosion, un agent anti-bactérien, un agent anti-algues, un antioxydant, etc... Preferably, the at least one channel comprises a coolant, more preferably the coolant circulates in said channel, more preferably in a continuous flow. The coolant can be any gaseous or liquid fluid known to those skilled in the art. Preferably, the coolant is a liquid. It can be chosen from the group consisting of air, water, aqueous mixtures such as brines (aqueous solutions of calcium and / or sodium chloride), glycol water (mixtures of water-monoethylene glycol or polypropylene glycol), alcohol-based mixtures (in particular methanol), ammoniacal waters (aqueous ammonia-water solutions), organic fluids such as aliphatic or aromatic hydrocarbons and two-phase coolants such as, for example, carbon dioxide in the liquid-vapor two-phase state or as an ice slurry consisting of a liquid phase (usually water-alcohol) and ice crystals. Preferably, the coolant is an aqueous solution, more preferably water. The coolant can optionally comprise one or more additives, such as an anti-corrosion agent, an anti-bacterial agent, an anti-algae agent, an antioxidant, etc.
De manière avantageuse, le fluide fourni au support a une température inférieure ou égale à 25 °C. Cette tempe^ture correspond à la température du fluide avant que celui-ci n’ait effectué d’échanges thermiques avec le support (c’est-à-dire à la température du fluide en entrée du support). De préférence encore, le fluide en entrée du support a une température inférieure ou égale à 20 °C, plus préférentiellementinférieure ou égale à 15°C, plus préférentiellement inférieure ou égale à10°C, plus préférentiellement inférieure ou égale à 5°C. Le fUide peut par exemple avoir une température en entrée du support de 0,5 à 5 ° C, ou de 5 à 10 ° C, ou de 10 à 15°C, ou de 15 à 20°C, ou de 20 à 25°C. Advantageously, the fluid supplied to the support has a temperature less than or equal to 25 ° C. This temperature corresponds to the temperature of the fluid before it has effected heat exchanges with the support (that is to say, the temperature of the fluid entering the support). More preferably, the fluid entering the support has a temperature less than or equal to 20 ° C, more preferably less than or equal to 15 ° C, more preferably less than or equal to 10 ° C, more preferably less than or equal to 5 ° C. The fluid can for example have an inlet temperature of the support of 0.5 to 5 ° C, or 5 to 10 ° C, or 10 to 15 ° C, or 15 to 20 ° C, or 20 to 25 ° C.
La lampe peut comprendre une ligne d’amenée pour fournir le fluide frigoporteur au canal ou aux canaux présent(s) dans le support. De préférence, cette ligne d’amenée comprend du fluide frigoporteur. Dans la ligne d’amenée, le fluide frigoporteur a avantageusement une température telle que décrite ci-dessus. La ligne d’amenée peut comprendre ou être faite en un ou plusieurs matériaux tels que décrits ci-dessus en relation avec le support. Par exemple, la ligne d’amenée peut être en cuivre. Le ou les matériaux de la ligne d’amenée peuvent être identiques ou différents de celui ou ceux du support. The lamp may include a supply line for supplying the coolant to the channel or channels present in the holder. Preferably, this supply line comprises coolant. In the supply line, the coolant advantageously has a temperature as described above. The lead line can include or be made of one or more materials as described above in relation to the support. For example, the feed line can be copper. The material (s) of the feed line may be the same or different from that (s) of the support.
La ligne d’amenée peut être connectée au support via un répartiteur de fluide, qui distribue le fluide, de préférence de manière homogène, entre les différents canaux. Ce répartiteur est assemblé avec la ligne d’amenée et avec le support par tous les moyens classiques connus tels que la soudure, la collure, le sertissage, etc., selon la nature des matériaux des éléments assemblés. Par exemple, si la ligne d’amenée est en cuivre et que le support est en cuivre, on choisira de préférence la soudure comme moyen d’assemblage. The supply line can be connected to the support via a fluid distributor, which distributes the fluid, preferably evenly, between the different channels. This distributor is assembled with the supply line and with the support by all known conventional means such as welding, gluing, crimping, etc., depending on the nature of the materials of the assembled elements. For example, if the feed line is copper and the support is copper, we will preferably choose solder as the means of assembly.
La lampe peut également comprendre une ligne de collecte du fluide frigoporteur pour récupérer le fluide frigoporteur après son passage au travers du support. La ligne de collecte peut comprendre ou être faite en un ou plusieurs matériaux tels que décrits ci-dessus en relation avec le support. Par exemple, la ligne de collecte peut être en cuivre. Le ou les matériaux de la ligne de collecte peuvent être identiques ou différents de celui ou ceux du support, et identiques ou différents de celui ou ceux de la ligne d’amenée. The lamp may also include a coolant fluid collection line to recover the coolant fluid after it has passed through the support. The collection line can comprise or be made of one or more materials as described above in relation to the support. For example, the collection line can be copper. The material (s) of the collection line may be identical or different from that or those of the support, and identical or different from that or those of the supply line.
La ligne de collecte peut être connectée au support via un collecteur de fluide, qui rassemble les fluides provenant des différents canaux du support et les envoie dans la ligne de collecte. Ce collecteur est assemblé avec la ligne de collecte et avec le support par tous les moyens classiques connus tels que la soudure, la collure, le sertissage, etc., selon la nature des matériaux des éléments assemblés. Par exemple, si la ligne de collecte est en cuivre et que le support est en cuivre, on choisira de préférence la soudure comme moyen d’assemblage. The collection line can be connected to the medium via a fluid manifold, which collects the fluids from the various channels of the medium and sends them to the collection line. This collector is assembled with the collection line and with the support by all known conventional means such as welding, gluing, crimping, etc., depending on the nature of the materials of the assembled elements. For example, if the collection line is made of copper and the support is made of copper, it is preferable to choose solder as the means of assembly.
Le fluide frigoporteur peut être recyclé et réutilisé en tant que fluide frigoporteur, de préférence après refroidissement, par exemple après passage dans un échangeur de chaleur. The coolant can be recycled and reused as a coolant, preferably after cooling, for example after passing through a heat exchanger.
La lampe comprend au moins un circuit imprimé (ou PCB pour « printed circuit board ») monté sur le support. The lamp comprises at least one printed circuit (or PCB for “printed circuit board”) mounted on the support.
L’au moins un circuit imprimé peut être fixé directement sur le support (c’est-à-dire directement en contact avec le support) ou une ou plusieurs pièces ou couches intermédiaires peuvent être présentes entre le circuit et le support, sous réserve que lesdites pièces ou couches intermédiaires présentent une bonne conductivité thermique, par exemple supérieure ou égale à 0,4 W/m.K à 20°C (tel que par exemple mesurée selon la normeISO 8302 par la méthode de la plaque chaude gardée). Le circuit peut être monté sur le support par tout moyen de fixation compatible. Des moyens de fixation adaptés au montage du circuit imprimé sur le support sont un ruban adhésif, en particulier un ruban adhésif double-face, la colle, de préférence thermoconductrice, des vis, des clips, ou des combinaisons de ceux-ci. Lorsque le circuit est attaché au support au moyen d’un ruban adhésif double face, celui-ci a avantageusement une bonne conductivité thermique, par exemple supérieure ou égale à 0,4 W/m.K à 20°C (telque par exemple mesurée selon la norme ISO 8302 par la méthode de la plaque chaude gardée). Lorsque le circuit est attaché au support au moyen de colle, celle-ci a avantageusement une bonne conductivité thermique, par exemple supérieure ou égale à 0,4 W/m.K à 20°C (tel que parexemple mesurée selon la norme ISO 8302 par la méthode de la plaque chaude gardée). The at least one printed circuit can be attached directly to the support (i.e. directly in contact with the support) or one or more parts or intermediate layers can be present between the circuit and the support, provided that said parts or intermediate layers have good thermal conductivity, for example greater than or equal to 0.4 W / mK at 20 ° C (as for example measured according to the ISO 8302 standard by the guarded hot plate method). The circuit can be mounted on the support by any compatible fixing means. Fastening means suitable for mounting the printed circuit on the support are adhesive tape, in particular double-sided adhesive tape, glue, preferably thermally conductive, screws, clips, or combinations thereof. When the circuit is attached to the support by means of a double-sided adhesive tape, the latter advantageously has good thermal conductivity, for example greater than or equal to 0.4 W / mK at 20 ° C (as for example measured according to the ISO 8302 standard by the guarded hot plate method). When the circuit is attached to the support by means of glue, the latter advantageously has good thermal conductivity, for example greater than or equal to 0.4 W / mK at 20 ° C (as for example measured according to the ISO 8302 standard by the guarded hot plate method).
Le PCB peut être choisi parmi tous les types de circuit imprimé connus de l’homme du métier, en particulier les circuits imprimés à noyau métallique (The PCB can be chosen from all types of printed circuit known to those skilled in the art, in particular printed circuits with a metal core (
« Métal Core PCB », en anglais, ou MCPCB) classiques (dits à technologie « à chemin thermique non directe », (« Non-direct thermal path » en anglais), c’est-à-dire avec une couche diélectrique entre la LED montée sur le circuit et la base métallique du circuit, ou les circuits imprimés à noyau métallique à technologie « à chemin thermique directe » (« Direct Thermal Path » en anglais), tels que par exemple les SinkPAD™ PCB ou les TPAD PCB, c’est- à-dire sans couche diélectrique entre la LED montée sur le circuit et la base métallique du circuit, ce qui permet d’améliorer le transfert de chaleur entre la LED et le support de la lampe. "Metal Core PCB", in English, or MCPCB) conventional (called technology "non-direct thermal path", ("Non-direct thermal path" in English), that is to say with a dielectric layer between the LED mounted on the circuit and the metal base of the circuit, or the metal core printed circuits with "direct thermal path" technology, such as for example the SinkPAD ™ PCB or the TPAD PCB, that is to say without dielectric layer between the LED mounted on the circuit and the metal base of the circuit, which makes it possible to improve the heat transfer between the LED and the lamp holder.
Dans des modes de réalisation, les circuits imprimés sont disposés sur toute ou partie d’au moins une face externe du support. In some embodiments, the printed circuits are arranged on all or part of at least one external face of the support.
Dans des modes de réalisation, les circuits imprimés sont disposés sur toute ou partie de toutes les faces externes du support. In some embodiments, the printed circuits are arranged on all or part of all the external faces of the support.
La lampe selon l’invention comprend au moins une diode électroluminescente. The lamp according to the invention comprises at least one light emitting diode.
De préférence, la diode électroluminescente est montée sur le circuit imprimé, plus préférentiellement directement sur la surface du circuit. La diode peut être montée sur le circuit par la technique des composants montés en surface (ou SMT pour « surface-mount technology ») ou par la technologie des trous traversants (ou THT pour « through-hole technology »). La diode électroluminescente peut être montée sur le circuit imprimé par brasage, par soudage, ou des combinaisons de ceux-ci. La ou les diodes électroluminescentes sont disposées de sorte que leur partie émettrice de rayonnement soit orientée vers l’extérieur (par rapport au support). Preferably, the light emitting diode is mounted on the printed circuit, more preferably directly on the surface of the circuit. The diode can be mounted on the circuit by the technique of components mounted on the surface (or SMT for "surface-mount technology") or by the technology of through-holes (or THT for "through-hole technology"). The light emitting diode can be mounted on the printed circuit board by soldering, soldering, or combinations thereof. The light-emitting diode (s) are arranged so that their radiation-emitting part faces outward (relative to the support).
La lampe selon l’invention contient avantageusement une pluralité de diodes électroluminescentes, par exemple entre 50 et 100000 diodes électroluminescentes. Le nombre de diodes électroluminescentes peut dépendre de différents paramètres tels que la taille du réacteur photochimique, la puissance et la longueur d’onde des LEDs, la productivité souhaitée de la réaction photochimique, etc. The lamp according to the invention advantageously contains a plurality of light emitting diodes, for example between 50 and 100,000 light emitting diodes. The number of light emitting diodes can depend on different parameters such as the size of the photochemical reactor, the power and wavelength of the LEDs, the desired productivity of the photochemical reaction, etc.
Dans des modes de réalisation, les diodes électroluminescentes sont disposées sur toute ou partie d’au moins une face externe du support. In some embodiments, the light-emitting diodes are arranged on all or part of at least one external face of the support.
Dans des modes de réalisation, les diodes électroluminescentes sont disposées sur toute ou partie de toutes les faces externes du support. In some embodiments, the light-emitting diodes are arranged on all or part of all of the external faces of the support.
L’au moins une diode électroluminescente émet de préférence un rayonnement dit monochromatique (une telle diode étant également appelée « diode monochromatique » dans la suite de la présente description). Par « diode électroluminescente émettant un rayonnement monochromatique », on entend une diode électroluminescente ayant une largeur spectrale à mi- hauteur (correspondant à la plage de longueurs d’onde ayant une intensité lumineuse supérieure ou égale à la moitié de l’intensité lumineuse maximale du spectre de la diode, comme illustré dans la figure 3) étroite, typiquement une largeur spectrale à mi-hauteur de 20 à 90 nm, de préférence encore de 20 à 40 nm. The at least one light-emitting diode preferably emits so-called monochromatic radiation (such a diode also being called “monochromatic diode” in the remainder of the present description). By "light emitting diode emitting monochromatic radiation" is meant a light emitting diode having a spectral width at half height (corresponding to the range of wavelengths having an intensity light greater than or equal to half of the maximum light intensity of the spectrum of the diode, as shown in figure 3) narrow, typically a spectral width at half height of 20 to 90 nm, more preferably 20 to 40 nm .
On peut également définir une « longueur d’onde dominante »We can also define a "dominant wavelength"
(« Dominant wavelength » ou DWL en anglais) de la LED, comme la longueur d’onde perçue par l’œil humain dans le diagramme de chromaticité CIE 1931. Dans le cas des LEDs dites monochromatiques qui ont, pour la plupart, un spectre d’émission assez fin, elle ne diffère généralement que de quelques nm de la « longueur d’onde du pic d’émission » (Apeak ou « peak wavelength » en anglais) correspondant à la longueur d’onde dont le flux énergétique relatif est maximum. ("Dominant wavelength" or DWL in English) of the LED, like the wavelength perceived by the human eye in the CIE 1931 chromaticity diagram. In the case of so-called monochromatic LEDs which, for the most part, have a spectrum fairly fine emission, it generally differs only a few nm from the "peak emission wavelength" (Apeak or "peak wavelength" in English) corresponding to the wavelength whose relative energy flux is maximum.
Des exemples de LEDs dites monochromatiques utilisables dans le cadre de l’invention sont indiquées dans le tableau suivant : Examples of so-called monochromatic LEDs that can be used in the context of the invention are shown in the following table:
Tableau 2] Table 2]
On peut également envisager dans le cadre de l’invention d’utiliser des LEDs dites « blanches », dont le spectre moyen est illustré dans la figure 4, associées ou non à des filtres de lumière pour absorber une partie du spectre lumineux, par exemple en fonction de la réaction photochimique envisagée. In the context of the invention, it is also possible to envisage using so-called “white” LEDs, the average spectrum of which is illustrated in FIG. 4, associated or not with light filters to absorb part of the light spectrum, for example. depending on the photochemical reaction envisaged.
Un très grand nombre de réactions photochimiques sont connues de l’homme du métier et les longueurs d’onde nécessaires pour les effectuer varient dans une large gamme allant de l’UV au visible, en fonction du spectre d’absorption de l’espèce photoactive. De nombreux exemples de réactions photochimiques utilisant des LEDs ont déjà été décrites (comme par exemple dans l’article par Cambié étal., Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment, Chem. Rev., 2016, 116, 10276-10341) et toutes les LEDs monochromatiques ou blanches décrites ci-dessus sont utilisables pour effectuer ces réactions. A very large number of photochemical reactions are known to those skilled in the art and the wavelengths necessary to carry out them vary over a wide range from UV to visible, depending on the absorption spectrum of the photoactive species. . Many examples of photochemical reactions using LEDs have already been described (as for example in the article by Cambié et al., Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment, Chem. Rev., 2016, 116, 10276-10341) and all the monochromatic or white LEDs described above can be used to carry out these reactions.
Plus préférentiellement, et en particulier dans le cas d’un réacteur de photonitrosation utilisant le chlorure de nitrosyle comme agent nitrosant, le rayonnement monochromatique émis par l’au moins une diode électroluminescente a une longueur d’onde dominante allant de 550 à 750 nm, plus préférentiellement de 580 à 740 nm, et encore plus préférentiellement de 610 à 670, par exemple d’environ 550 à 560 nm, ou de 560 à 570 nm, ou de 570 à 580 nm, ou de 580 à 590 nm, ou de 585 à 595 nm, ou de 590 à 600 nm, ou de 600 à 610 nm, ou de 610 à 620 nm, ou deMore preferably, and in particular in the case of a photonitrosation reactor using nitrosyl chloride as nitrosating agent, the monochromatic radiation emitted by at least one light-emitting diode has a dominant wavelength ranging from 550 to 750 nm, more preferably from 580 to 740 nm, and even more preferably from 610 to 670, for example from about 550 to 560 nm, or from 560 to 570 nm, or from 570 to 580 nm, or from 580 to 590 nm, or from 585 to 595 nm, or from 590 to 600 nm, or from 600 to 610 nm, or from 610 to 620 nm, or from
620 à 630 nm, ou de 630 à 640 nm, ou de 650 à 670 nm, ou de 670 à 700 nm, ou de 700 à 720 nm, ou de 720 à 740 nm, ou de 740 à 750 nm. 620 to 630 nm, or 630 to 640 nm, or 650 to 670 nm, or 670 to 700 nm, or 700 to 720 nm, or 720 to 740 nm, or 740 to 750 nm.
Lorsque la lampe selon l’invention comprend plus d’une diode électroluminescente, les diodes électroluminescentes peuvent être identiques ou différentes (par exemple elles peuvent émettre à des longueurs d’onde dominantes différentes), et sont de préférence identiques. Lorsque les diodes électroluminescentes émettent à des longueurs dominantes différentes, elles peuvent toutes indépendamment émettre un rayonnement monochromatique d’une longueur d’onde dominante comprise dans les gammes mentionnées ci-dessus. When the lamp according to the invention comprises more than one light emitting diode, the light emitting diodes may be the same or different (for example they may emit at different dominant wavelengths), and are preferably identical. When light emitting diodes emit at different dominant lengths, they can all independently emit monochromatic radiation of a dominant wavelength within the ranges mentioned above.
La lampe selon l’invention comprend avantageusement une ampoule contenant le support, l’au moins un circuit imprimé et l’au moins une diode électroluminescente. Par « ampoule » on entend un récipient étanche aux gaz. Dans le cadre de la présente invention, l’ampoule entoure l’ensemble formé du support, de l’au moins un circuit imprimé et de l’au moins une diode électroluminescente, c’est-à-dire que cet ensemble est positionné à l’intérieur de l’ampoule. L’ampoule est au moins en partie transparente (par exemple, sur une surface correspondant à au moins 50 %, ou à au moins 80 %, de la surface de l’ampoule, de préférence sur la totalité) et, en particulier, laisse passer les rayonnements émis par les diodes électroluminescentes sur au moins une partie de sa surface (par exemple, sur une surface correspondant à au moins 50 %, ou à au moins 80 %, de sa surface, de préférence sur la totalité de sa surface). The lamp according to the invention advantageously comprises a bulb containing the support, at least one printed circuit and at least one light emitting diode. By “ampoule” is meant a gas-tight container. In the context of the present invention, the bulb surrounds the assembly formed by the support, the at least one printed circuit and the at least one light-emitting diode, that is to say that this assembly is positioned at inside the bulb. The bulb is at least partly transparent (for example, over an area corresponding to at least 50%, or at least 80%, of the area of the bulb, preferably over the whole) and, in particular, leaves pass the radiation emitted by light-emitting diodes over at least part of its surface (for example, over an area corresponding to at least 50%, or at least 80%, of its surface, preferably over its entire surface) .
De préférence, l’ampoule comprend au moins une entrée de fluide, destinée à la fourniture d’un fluide inerte à l’ampoule. Cette entrée de fluide peut être une ouverture pour une ligne d’amenée d’un fluide inerte. De préférence encore, elle comprend au moins une sortie de fluide, destinée à la récupération du fluide inerte. Cette sortie de fluide peut être une ouverture pour une ligne de collecte du fluide inerte. Avantageusement, (et de préférence en plus des entrée et sortie de fluide définies ci-dessus), l’ampoule comprend une ouverture pour le passage de la ligne d’amenée du fluide frigoporteur et/ou une ouverture pour le passage de la ligne de collecte du fluide frigoporteur et/ou une ouverture pour le passage des câbles d’alimentation des diodes électroluminescentes. Dans des modes de réalisation, l’ampoule peut aussi comprendre une seule ouverture et/ou deux ouvertures pour le passage des lignes d’amenée et de collecte de tous les fluides et des câbles électriques. Preferably, the ampoule comprises at least one fluid inlet, for supplying an inert fluid to the ampoule. This fluid inlet can be an opening for a supply line of an inert fluid. More preferably, it comprises at least one fluid outlet, intended for the recovery of inert fluid. This fluid outlet may be an opening for a collection line for the inert fluid. Advantageously, (and preferably in addition to the fluid inlet and outlet defined above), the bulb comprises an opening for the passage of the coolant supply line and / or an opening for the passage of the refrigerant line. collection of the coolant and / or an opening for the passage of the power cables of the light-emitting diodes. In some embodiments, the bulb can also include a single opening and / or two openings for the passage of the lines for supplying and collecting all the fluids and for the electric cables.
L’ampoule est avantageusement en verre, par exemple en verre borosilicaté, en verre sodocalcique et/ou en verre au plomb. Alternativement, ou additionnellement, elle peut être en résine acrylique, résine méthacrylique (PMMA), polystyrène (PS), chlorure de polyvinyle (PVC), polyester ou copolyester, polycarbonate (PC), polyéthylène téréphtalate (PET), copolymère styrène-acrylonitrile (SAN), et/ou tout matériau transparent aux longueurs d’onde émises par les diodes électroluminescentes. The bulb is advantageously made of glass, for example of borosilicate glass, of soda-lime glass and / or of lead glass. Alternatively, or additionally, it can be made of acrylic resin, methacrylic resin (PMMA), polystyrene (PS), polyvinyl chloride (PVC), polyester or copolyester, polycarbonate (PC), polyethylene terephthalate (PET), styrene-acrylonitrile copolymer ( SAN), and / or any material transparent to the wavelengths emitted by the light-emitting diodes.
L’ampoule contient de préférence un fluide inerte. De préférence encore, le fluide inerte est sous la forme d’un flux de fluide inerte (c’est-à-dire que le fluide inerte circule à travers l’ampoule, entrant par l’entrée de fluide de l’ampoule et sortant par la sortie de fluide de l’ampoule), plus préférentiellement sous la forme d’un flux continu. Par « fluide inerte » on entend un fluide incapable de réagir avec les réactifs présents dans le réacteur. The ampoule preferably contains an inert fluid. More preferably, the inert fluid is in the form of an inert fluid flow (i.e., the inert fluid flows through the ampoule, entering through the fluid inlet of the ampoule and exiting. by the fluid outlet of the bulb), more preferably in the form of a continuous flow. By “inert fluid” is meant a fluid incapable of reacting with the reagents present in the reactor.
Le fluide inerte est de préférence un gaz inerte. Le fluide inerte peut être choisi dans le groupe constitué du diazote, de l’hélium, du néon, de l’argon, du krypton et/ou du xénon. De manière particulièrement préférée, le fluide inerte est le diazote. The inert fluid is preferably an inert gas. The inert fluid can be selected from the group consisting of dinitrogen, helium, neon, argon, krypton and / or xenon. Particularly preferably, the inert fluid is dinitrogen.
La présence d’une ampoule contenant un fluide inerte autour de l’ensemble du support, du au moins un circuit imprimé et de l’au moins une diode électroluminescente permet de protéger cet ensemble et en particulier permet de réduire, voire d’éviter, la corrosion du support, de la diode et/ou du circuit lorsque la lampe peut être soumise à une atmosphère corrosive (telle que celle du milieu réactionnel de photonitrosation d’un cycloalcane, qui peut par exemple contenir du chlorure de nitrosyle, de l’acide chlorhydrique, des oxydes d’azote et/ou de l’eau). Cette protection permet donc d’allonger la durée de vie de la lampe. La lampe selon l’invention présente avantageusement un rendement lumineux supérieur ou égale à 30 %. Le rendement lumineux, exprimé en pourcentage, correspond au rapport de la puissance lumineuse émise par la lampe (en Watt) sur la puissance électrique fournie (ou puissance d’alimentation) (en Watt), multiplié par 100. La puissance lumineuse émise par la lampe peut être mesurée par radiométrie, par exemple à l’aide d’une sphère intégrante, en suivant par exemple la norme CIE 127 (« Measurement of LEDs ») Plus préférentiellement, la lampe présente un rendement lumineux supérieur ou égal à 32 %, plus préférentiellement supérieur ou égal à 35 %, encore plus préférentiellement supérieur ou égal à 38 %, encore plus préférentiellement supérieur ou égal à 40 %. The presence of a bulb containing an inert fluid around the whole of the support, of the at least one printed circuit and of the at least one light-emitting diode makes it possible to protect this assembly and in particular makes it possible to reduce, or even avoid, corrosion of the support, the diode and / or the circuit when the lamp may be subjected to a corrosive atmosphere (such as that of the reaction medium for the photonitrosation of a cycloalkane, which may for example contain nitrosyl chloride, hydrochloric acid, nitrogen oxides and / or water). This protection therefore makes it possible to extend the life of the lamp. The lamp according to the invention advantageously has a light output greater than or equal to 30%. The light output, expressed as a percentage, corresponds to the ratio of the light power emitted by the lamp (in Watt) to the electric power supplied (or supply power) (in Watt), multiplied by 100. The light power emitted by the lamp can be measured by radiometry, for example using an integrating sphere, for example by following the CIE 127 standard (“Measurement of LEDs”). More preferably, the lamp has a light output greater than or equal to 32%, more preferably greater than or equal to 35%, even more preferably greater than or equal to 38%, even more preferably greater than or equal to 40%.
Réacteur de photonitrosation Photonitrosation reactor
L’invention concerne également un réacteur comprenant au moins une lampe telle que décrite ci-dessus. De préférence, le réacteur est un réacteur a immersion. De manière avantageuse, la lampe est positionnée au centre du réacteur. Dans le cas où il y a plus d’une lampe, les lampes sont positionnées de préférence de manière uniforme dans le volume du réacteur. The invention also relates to a reactor comprising at least one lamp as described above. Preferably, the reactor is an immersion reactor. Advantageously, the lamp is positioned at the center of the reactor. In the event that there is more than one lamp, the lamps are preferably positioned evenly within the reactor volume.
De manière préférée, le réacteur comprend un milieu réactionnel, plus préférentiellement un liquide réactionnel. L’au moins une lampe est de préférence en partie immergée dans ledit liquide réactionnel, et de manière plus préférentielle, immergée en totalité dans ledit liquide réactionnel, de préférence encore sans être en contact avec celui-ci, par exemple grâce à la présence de cylindres creux immergés dans le milieu réactionnel, dans lesquels l’au moins une lampe est positionnée. Preferably, the reactor comprises a reaction medium, more preferably a reaction liquid. The at least one lamp is preferably partly immersed in said reaction liquid, and more preferably, fully immersed in said reaction liquid, more preferably without being in contact therewith, for example thanks to the presence of hollow cylinders immersed in the reaction medium, in which the at least one lamp is positioned.
De préférence, le milieu réactionnel comprend au moins un cycloalcane, avantageusement le cyclohexane et/ou le cyclododécane. Le milieu réactionnel peut aussi comprendre du chlorure de nitrosyle et/ou tout autre agent nitrosant tel que par exemple le sulfate acide de nitrosyle, le trichloronitrosométhane ou le mélange chlore/monoxyde d’azote ; en outre, le milieu réactionnel peut comprendre de l’acide sulfurique et/ou de l’acide chlorhydrique et/ou de l’eau et/ou au moins une cycloalcanone-oxime (de préférence la cyclododécanone-oxime et/ou la cyclohexanone-oxime) et/ou un solvant réactionnel, de préférence inerte à la lumière et non réactif avec l’agent nitrosant et les acides présents, tels que les hydrocarbures halogénés comme par exemple les halogénométhanes, préférentiellement le chloroforme et le tétrachlorure de carbone, et/ou les hydrocarbures aromatiques comme par exemple le benzène et ses dérivés halogénés, et/ou les alkyl- ou aryl-nitriles comme par exemple l’acétonitrile ou le benzonitrile. Preferably, the reaction medium comprises at least one cycloalkane, advantageously cyclohexane and / or cyclododecane. The reaction medium can also comprise nitrosyl chloride and / or any other nitrosating agent such as, for example, nitrosyl acid sulfate, trichloronitrosomethane or a mixture of chlorine / nitrogen monoxide; in addition, the reaction medium may comprise sulfuric acid and / or hydrochloric acid and / or water and / or at least one cycloalkanone-oxime (preferably cyclododecanone-oxime and / or cyclohexanone- oxime) and / or a reaction solvent, preferably inert to light and unreactive with the nitrosating agent and the acids present, such as halogenated hydrocarbons such as for example halogenomethanes, preferably chloroform and carbon tetrachloride, and / or hydrocarbons aromatic, such as, for example, benzene and its halogenated derivatives, and / or alkyl- or aryl-nitriles, such as, for example, acetonitrile or benzonitrile.
Le réacteur selon l’invention, en particulier pour la réaction de photonitrosation, peut comprendre un corps comprenant du, ou constitué de, PVC, du PVDF (poly(fluorure de vinylidène)), de l’acier verré et/ou du verre. Les verres utilisables pour fabriquer le réacteur sont tous les types de verre tels que les verres borosilicates (Pyrex®, par exemple), les verres sodocalciques, les verres au plomb, les verres de silice et/ou les vitrocéramiques. The reactor according to the invention, in particular for the photonitrosation reaction, may comprise a body comprising, or consisting of, PVC, PVDF (poly (vinylidene fluoride)), glass steel and / or glass. The glasses that can be used to manufacture the reactor are all types of glass such as borosilicate glasses (Pyrex®, for example), soda-lime glasses, lead glasses, silica glasses and / or glass-ceramics.
Préparation des cycloalcanone-oximes et/ou lactames et autres réactions photochimiques Preparation of cycloalkanone oximes and / or lactams and other photochemical reactions
La lampe telle que décrite ci-dessus peut être utilisée pour effectuer n’importe quelle réaction photochimique telle que, par exemple, les photohalogénations, les photosulfoxidations, les photonitrosations, les photocycloadditions, les photocyclisations, les photooxygénations, les photopolymérisations, les réarrangements photochimiques, les réactions photocatalytiques, etc. The lamp as described above can be used to carry out any photochemical reaction such as, for example, photohalogenations, photosulfoxidations, photonitrosations, photocycloadditions, photocyclizations, photooxygenations, photopolymerizations, photochemical rearrangements, photocatalytic reactions, etc.
Avantageusement, la lampe telle que décrite ci-dessus peut être utilisée pour effectuer une photonitrosation d’un cycloalcane, notamment pour la préparation d’une cycloalcanone-oxime et/ou d’un lactame. Advantageously, the lamp as described above can be used to perform photonitrosation of a cycloalkane, in particular for the preparation of a cycloalkanone oxime and / or a lactam.
La photonitrosation du cycloalcane s’effectue à l’aide d’un agent nitrosant, de préférence à l'aide de chlorure de nitrosyle (NOCI). Par « agent nitrosant », on entend une espèce ou un composé permettant la substitution, dans une molécule, d'un groupe nitrosyle à un atome d'hydrogène. Elle peut alternativement ou additionnellement s’effectuer à l’aide d’un mélange gazeux de NOCI et de chlorure d’hydrogène, d’un mélange gazeux de monoxyde d'azote et de chlore, d’un mélange gazeux de monoxyde d'azote, de chlore et de chlorure d’hydrogène, et/ou à l’aide de trichloronitrosométhane (par exemple obtenu par réaction du NOCI avec le chloroforme) et/ou à l’aide d’un mélange susceptible de former du chlorure de nitrosyle tel que par exemple l’acide chlorhydrique en mélange avec l’acide nitrique ou le sulfate acide de nitrosyle ou des alkyls nitrites tels que l’éthyl ou l’amyl nitrite . La photonitrosation est avantageusement réalisée en milieu biphasique solvant organique/acide sulfurique. Les conditions de températures et de concentrations sont bien connues de l'homme du métier et peuvent être telles que celles décrites, par exemple, dans les documents US 3,734,845, US 3,681 ,217 ou FR 1331478. Une oxime sous forme de chlorhydrate d'oxime est ainsi générée en phase organique. Cette oxime peut être ensuite extraite par la phase sulfurique. Cycloalkane photonitrosation is carried out using a nitrosating agent, preferably using nitrosyl chloride (NOCI). By “nitrosating agent” is meant a species or a compound allowing the substitution, in a molecule, of a nitrosyl group with a hydrogen atom. It can alternatively or additionally be carried out using a gas mixture of NOCI and hydrogen chloride, a gas mixture of nitrogen monoxide and chlorine, a gas mixture of nitrogen monoxide. , chlorine and hydrogen chloride, and / or using trichloronitrosomethane (for example obtained by reaction of NOCI with chloroform) and / or using a mixture capable of forming nitrosyl chloride such as as for example hydrochloric acid mixed with nitric acid or nitrosyl acid sulfate or alkyl nitrites such as ethyl or amyl nitrite. The photonitrosation is advantageously carried out in a two-phase organic solvent / sulfuric acid medium. The temperature and concentration conditions are well known to those skilled in the art and can be such as those described, for example, in documents US Pat. No. 3,734,845, US 3,681, 217 or FR 1331478. An oxime in the form of Oxime hydrochloride is thus generated in the organic phase. This oxime can then be extracted by the sulfuric phase.
Le cycloalcane est de préférence le cyclododécane. Le chlorhydrate de cyclododécanone-oxime peut alors être obtenu par photonitrosation selon la réaction : The cycloalkane is preferably cyclododecane. Cyclododecanone oxime hydrochloride can then be obtained by photonitrosation according to the reaction:
[Chem. 1] [Chem. 1]
Cyclododécane Chlorhydrate de cyclododécanone-oxime Cyclododecane Cyclododecanone oxime hydrochloride
La source de photons (h v) est la lampe selon l’invention, et plus particulièrement les diodes électroluminescentes. The source of photons (h v) is the lamp according to the invention, and more particularly the light emitting diodes.
Alternativement ou additionnellement, le cycloalcane peut être le cyclohexane. On peut alors obtenir le chlorhydrate de cyclohexanone-oxime par photonitrosation. Alternatively or additionally, the cycloalkane can be cyclohexane. Cyclohexanone-oxime hydrochloride can then be obtained by photonitrosation.
Le réacteur peut être tel que décrit ci-dessus. The reactor can be as described above.
Une seconde étape réactionnelle peut ensuite être effectuée. De préférence, cette seconde étape comprend une transposition de Beckmann de l'oxime issue de la première étape de photonitrosation. Cette étape est avantageusement réalisée en milieu sulfurique concentré. A second reaction step can then be carried out. Preferably, this second step comprises a Beckmann transposition of the oxime resulting from the first photonitrosation step. This step is advantageously carried out in a concentrated sulfuric medium.
Par exemple, le lauryllactame (ou dodécalactame) peut être obtenu à partir de la cyclododécanone-oxime (elle-même de préférence obtenue à partir du cyclododécane) selon la réaction : For example, lauryllactam (or dodecalactam) can be obtained from cyclododecanone-oxime (itself preferably obtained from cyclododecane) according to the reaction:
[Chem. 2] Du caprolactame peut également être obtenu par transposition de Beckmann du chlorhydrate de cyclohexanone-oxime. [Chem. 2] Caprolactam can also be obtained by Beckmann transposition of cyclohexanone-oxime hydrochloride.
De préférence, la transposition de Beckmann est effectuée dans un réacteur comprenant un corps comprenant du verre, de préférence un corps en verre. L’utilisation du verre comme matériau permet d’éviter les problèmes de corrosion habituellement observés avec des matériaux classiques tels que des métaux. Les verres utilisables pour fabriquer le réacteur sont tous les types de verre tels que les verres borosilicates (Pyrex®, par exemple), les verres sodocalciques, les verres au plomb, les verres de silice et/ou les vitrocéramiques. Alternativement, ou additionnellement, le corps du réacteur peut comprendre, ou être constitué de tantale, et/ou d’acier verré. Preferably, the Beckmann transposition is carried out in a reactor comprising a body comprising glass, preferably a body made of glass. The use of glass as a material avoids the corrosion problems usually seen with conventional materials such as metals. The glasses that can be used to manufacture the reactor are all types of glass such as borosilicate glasses (Pyrex®, for example), soda-lime glasses, lead glasses, silica glasses and / or glass-ceramics. Alternatively, or additionally, the body of the reactor can comprise, or be made of tantalum, and / or glass steel.
Exemples Examples
Les exemples suivants illustrent l'invention sans la limiter. The following examples illustrate the invention without limiting it.
Une lampe 1 pilote est fabriquée. A 1 pilot lamp is manufactured.
En référence à la figure 1, la lampe 1 comprend un support 2 en cuivre de conductivité 390 W/m.K à 20°C. Dans cet ©<emple, le support 2 a une forme de prisme droit, une longueur de 230 mm et une section transversale en forme de décagone (polygone à 10 côtés) régulier convexe. Le cercle circonscrit à ce décagone a un diamètre de 37,3 mm. Le support 2 est traversé, dans le sens longitudinal et sur toute sa longueur, par 8 canaux cylindriques 15 (parallèles entre eux et à l’axe longitudinal du support) de diamètre 7 mm. Un des canaux est positionné au centre du support et les 7 autres sont positionnés autour du canal central, selon un cercle, et de manière équidistante les uns par rapport aux autres. Les 8 canaux sont connectés, via respectivement un répartiteur de fluide et un collecteur de fluide 10, à une ligne d’amenée 6 et une ligne de collecte 5, destinées respectivement à l’approvisionnement des canaux en fluide frigoporteur et à la récupération du fluide frigoporteur. A l’extrémité du support 2, du côté de la ligne d’amenée 6, des circuits imprimés 3 sont fixés sur une partie de la surface latérale du support 2, sur les 10 côtés du support 2. Les circuits imprimés 3 sont fixés sur le support 2 au moyen d’un ruban adhésif double face ayant une conductivité thermique de 0,4 W/m.K à 20°C et les plaques des circuits imprimés sont également vissés à chacune de leur deux extrémités dans le support en cuivre par deux vis en polytétrafluoroéthylène. Des diodes électroluminescentes 4 de 3,45 mm de côté sont soudées sur les circuits imprimés 3 et recouvrent le support 2 sur une longueur de 94 mm. Ces diodes 4 ont toutes une longueur d’onde dominante de 615 nm. Elles sont disponibles chez Créé sous la référence XPEBRO-L1-0000-00D01 et fournissent un flux lumineux de 107 Im à 350 mA. 32 diodes sont disposées sur chacun des 10 côtés du support, soit 320 LEDs au total. Referring to Figure 1, the lamp 1 comprises a copper support 2 of conductivity 390 W / mK at 20 ° C. In this example, the support 2 has a shape of a straight prism, a length of 230 mm and a cross section in the form of a regular convex decagon (10-sided polygon). The circle circumscribing this decagon has a diameter of 37.3 mm. The support 2 is crossed, in the longitudinal direction and over its entire length, by 8 cylindrical channels 15 (parallel to each other and to the longitudinal axis of the support) with a diameter of 7 mm. One of the channels is positioned in the center of the support and the 7 others are positioned around the central channel, in a circle, and equidistant from each other. The 8 channels are connected, respectively via a fluid distributor and a fluid manifold 10, to a supply line 6 and a collection line 5, intended respectively for supplying the channels with coolant and for recovering the fluid. secondary refrigerant. At the end of the support 2, on the side of the supply line 6, printed circuits 3 are fixed on a part of the side surface of the support 2, on the 10 sides of the support 2. The printed circuits 3 are fixed on the support 2 by means of a double-sided adhesive tape having a thermal conductivity of 0.4 W / mK at 20 ° C and the printed circuit boards are also screwed at each of their two ends into the copper support by two screws made of polytetrafluoroethylene. Light-emitting diodes 4 with a side of 3.45 mm are soldered on the printed circuits 3 and cover the support 2 over a length of 94 mm. These diodes 4 all have a dominant wavelength of 615 nm. They are available from Created under the reference XPEBRO-L1-0000-00D01 and provide a luminous flux of 107 Im at 350 mA. 32 diodes are arranged on each of the 10 sides of the support, ie 320 LEDs in total.
En référence à la figure 2, la lampe 1 peut comprendre une ampoule de protection 7 en verre. L’ampoule 7 présente un diamètre de 44 mm et comporte une entrée de fluide 9 et une sortie de fluide 8, destinés à la circulation d’un flux d’un fluide inerte dans ladite ampoule 7. L’ampoule 7 comprend également une ouverture 11 pour le passage de la ligne de collecte 5, une ouverture 13 pour le passage de la ligne d’amenée 6 et une ouverture 12 pour le passage des câbles d’alimentation 14 des diodes 4. Referring to Figure 2, the lamp 1 may include a protective glass bulb 7. The ampoule 7 has a diameter of 44 mm and comprises a fluid inlet 9 and a fluid outlet 8, intended for the circulation of a flow of an inert fluid in said ampoule 7. The ampoule 7 also comprises an opening 11 for the passage of the collection line 5, an opening 13 for the passage of the supply line 6 and an opening 12 for the passage of the supply cables 14 of the diodes 4.
La lampe 1 a une puissance électrique d’alimentation de 250 W.Lamp 1 has an electric power supply of 250 W.
La mesure du flux lumineux de la lampe 1 a été réalisée en faisant circuler de l’eau à la température de 5°C comme fluide frigoporteur en continu dans la ligne d’amenée 6, puis dans les canaux du support 2, puis dans la ligne de collecte 5, puis en plaçant la lampe à l’intérieur d’une sphère intégrante de 200 cm de marque Labsphère et en mesurant la puissance émise en fonction de la puissance électrique d’alimentation. The measurement of the luminous flux of the lamp 1 was carried out by circulating water at a temperature of 5 ° C as a continuous coolant in the supply line 6, then in the channels of the support 2, then in the collection line 5, then placing the lamp inside a 200 cm integral sphere of the Labsphere brand and measuring the power emitted as a function of the electric power supply.
Les résultats obtenus sont indiqués dans le tableau suivant : The results obtained are shown in the following table:
[Tableau 3] [Table 3]
Le rendement lumineux de la lampe 1 testée est donc compris entre 41 et 45 % en fonction de la puissance électrique d’alimentation. The light output of the lamp 1 tested is therefore between 41 and 45% depending on the electrical power supply.
Le rendement lumineux d’une lampe à vapeur de sodium de marque Philips et de référence MASTER SON-T PIA Plus 250W/220 E40 a été déterminée en mesurant la puissance émise par la lampe dans la même sphère intégrante que pour la lampe 1. Cette lampe à vapeur de sodium présente une puissance électrique d’alimentation de 250 W. Elle possède un brûleur de 94 mm et une ampoule de diamètre 48 mm. Cette lampe à vapeur de sodium présente un rendement lumineux de 36 %. The luminous efficiency of a sodium vapor lamp of the Philips brand and reference MASTER SON-T PIA Plus 250W / 220 E40 was determined by measuring the power emitted by the lamp in the same integrating sphere as for lamp 1. This sodium vapor lamp has an electric power supply of 250 W. It has a 94 mm burner and a 48 mm diameter bulb. This sodium vapor lamp has a light output of 36%.
On constate donc que, à puissance d’alimentation égale et à dimensions similaires, la lampe 1 selon l’invention a un rendement lumineux supérieur à celui de la lampe à vapeur de sodium. It can therefore be seen that, at the same power supply and with similar dimensions, the lamp 1 according to the invention has a higher light output than that of the sodium vapor lamp.

Claims

Revendications Claims
1. Lampe (1) pour réacteur photochimique comprenant : 1. Lamp (1) for photochemical reactor comprising:
- un support (2) en un matériau présentant une conductivité thermique supérieure ou égale à 100 W/m.K à 20°C et comprenait au moins un canal configuré pour contenir un fluide frigoporteur ; - a support (2) made of a material having a thermal conductivity greater than or equal to 100 W / m.K at 20 ° C and comprising at least one channel configured to contain a coolant;
- au moins un circuit imprimé (3) monté sur ledit support (2) ; et - at least one printed circuit (3) mounted on said support (2); and
- au moins une diode électroluminescente (4) montée sur ledit circuit imprimé (3). - at least one light-emitting diode (4) mounted on said printed circuit (3).
2. Lampe (1) selon la revendication 1 , dans laquelle le matériau du support (2) est choisi dans le groupe constitué du cuivre, de l’argent, de l’or, de l’aluminium, du carbure de silicium, du graphite, des alliages aluminium- carbure de silicium, du zinc, et des combinaisons de ceux-ci. 2. Lamp (1) according to claim 1, wherein the material of the support (2) is selected from the group consisting of copper, silver, gold, aluminum, silicon carbide, graphite, aluminum-silicon carbide alloys, zinc, and combinations thereof.
3. Lampe (1) selon la revendication 1 ou 2, dans lequel le matériau du support (2) a une conductivité thermique supérieure ou égale à 300 W/m.K à 20 °C . 3. Lamp (1) according to claim 1 or 2, wherein the material of the support (2) has a thermal conductivity greater than or equal to 300 W / m.K at 20 ° C.
4. Lampe (1) selon l’une des revendications 1 à 3, comprenant en outre une ampoule (7) contenant le support (2), l’au moins un circuit imprimé (3) et l’au moins une diode électroluminescente (4). 4. Lamp (1) according to one of claims 1 to 3, further comprising a bulb (7) containing the support (2), at least one printed circuit (3) and at least one light emitting diode ( 4).
5. Lampe (1) selon la revendication 4, dans laquelle l’ampoule (7) contient un fluide inerte, de préférence du diazote, le gaz inerte étant de préférence sous forme d’un flux de fluide inerte. 5. Lamp (1) according to claim 4, wherein the bulb (7) contains an inert fluid, preferably dinitrogen, the inert gas preferably being in the form of an inert fluid stream.
6. Lampe (1) selon l’une des revendications 1 à 5, dans laquelle le support (2) a une section transversale en forme de polygone convexe. 6. Lamp (1) according to one of claims 1 to 5, wherein the support (2) has a cross section in the form of a convex polygon.
7. Lampe (1) selon la revendication 6, dans laquelle le polygone convexe a de 5 à 25 côtés. 7. A lamp (1) according to claim 6, wherein the convex polygon has 5 to 25 sides.
8. Lampe (1) selon l’une des revendications 1 à 7, dans laquelle l’au moins un canal comprend un fluide frigoporteur, de préférence de l’eau. 8. Lamp (1) according to one of claims 1 to 7, wherein the at least one channel comprises a coolant, preferably water.
9. Lampe (1) selon la revendication 8, comprenant en outre une ligne d’amenée (6) du fluide frigoporteur comprenant un fluide frigoporteur ayant une température inférieure ou égale à 25 °C, de préférence inférieure ou égale à 10°C, plus préférentiellement inférieure ou égale à 5°C. 9. Lamp (1) according to claim 8, further comprising a supply line (6) of the coolant comprising a coolant having a temperature less than or equal to 25 ° C, preferably less than or equal to 10 ° C, more preferably less than or equal to 5 ° C.
10. Lampe (1) selon l’une des revendications 1 à 9, ayant un rendement lumineux supérieur ou égal à 40 %. 10. Lamp (1) according to one of claims 1 to 9, having a light output greater than or equal to 40%.
11. Réacteur photochimique à immersion comprenant un liquide réactionnel et au moins une lampe (1 ) selon l’une des revendications 1 à 10 immergée au moins en partie dans ledit liquide réactionnel. 11. Photochemical immersion reactor comprising a reaction liquid and at least one lamp (1) according to one of claims 1 to 10 immersed at least in part in said reaction liquid.
12. Procédé de préparation d’une cycloalcanone-oxime comprenant la photonitrosation d’un cycloalcane à l’aide d’un agent nitrosant et d’au moins une lampe (1 ) selon l’une des revendications 1 à 9. 12. A process for preparing a cycloalkanone oxime comprising the photonitrosation of a cycloalkane using a nitrosating agent and at least one lamp (1) according to one of claims 1 to 9.
13. Procédé de préparation d’un lactame comprenant : 13. Process for preparing a lactam comprising:
- la préparation d’une cycloalcanone-oxime selon le procédé de préparation de la revendication 12 ; - the preparation of a cycloalkanone oxime according to the preparation process of claim 12;
- la transposition de Beckmann de la cycloalcanone-oxime. - Beckmann's transposition of cycloalkanone oxime.
EP21711302.6A 2020-02-20 2021-02-22 Lamp for photochemical reactor with light-emitting diodes Pending EP4107793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001693A FR3107612B1 (en) 2020-02-20 2020-02-20 Lamp for photochemical reactor based on light-emitting diodes
PCT/FR2021/050309 WO2021165627A1 (en) 2020-02-20 2021-02-22 Lamp for photochemical reactor with light-emitting diodes

Publications (1)

Publication Number Publication Date
EP4107793A1 true EP4107793A1 (en) 2022-12-28

Family

ID=69903698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21711302.6A Pending EP4107793A1 (en) 2020-02-20 2021-02-22 Lamp for photochemical reactor with light-emitting diodes

Country Status (7)

Country Link
US (1) US11844154B2 (en)
EP (1) EP4107793A1 (en)
JP (1) JP2023515071A (en)
KR (1) KR20220143121A (en)
CN (1) CN115176348A (en)
FR (1) FR3107612B1 (en)
WO (1) WO2021165627A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1331478A (en) 1962-05-22 1963-07-05 Organico Process for the preparation of cycloalkanone oximes and their derivatives
FR1571329A (en) 1967-12-20 1969-06-20
CH533600A (en) 1970-03-17 1973-02-15 Aquitaine Total Organico Continuous photooximation process for cycloalkanes
FR2931478B1 (en) 2008-05-26 2012-08-03 Arkema France PRODUCT FOR PREPARING LACTAMS COMPRISING A PHOTONITROSATION STEP FOLLOWED BY A BECKMANN TRANSPOSITION STEP
JP5359064B2 (en) * 2008-06-30 2013-12-04 東レ株式会社 Method for producing cycloalkanone oxime and photochemical reaction apparatus
FR2940679B1 (en) * 2008-12-31 2016-06-10 Finan Trading Company ELECTROLUMINESCENT DIODE LIGHTING SYSTEM.
CN101655189A (en) * 2009-07-16 2010-02-24 艾迪光电(杭州)有限公司 Hollow liquid cooling LED bar-shaped lamp
ES2788329T3 (en) * 2012-06-27 2020-10-21 Toray Industries Method for producing cycloalkanone oxime
CA2961001C (en) * 2014-09-15 2019-07-16 Nicholas Michael D'onofrio Liquid cooled metal core printed circuit board
JP6137333B2 (en) 2014-10-09 2017-05-31 東レ株式会社 Light irradiation apparatus, photoreaction method using the same, and lactam production method
US10448537B2 (en) 2015-06-11 2019-10-15 Toray Industries, Inc. Power supply device, photochemical reaction device and method in which same is used, and lactam production method
WO2017133995A1 (en) * 2016-02-01 2017-08-10 Basf Se Method for producing c4-c15 lactams
JP2019126768A (en) 2018-01-24 2019-08-01 東レ株式会社 Light reaction device

Also Published As

Publication number Publication date
US11844154B2 (en) 2023-12-12
FR3107612A1 (en) 2021-08-27
US20230099496A1 (en) 2023-03-30
JP2023515071A (en) 2023-04-12
CN115176348A (en) 2022-10-11
KR20220143121A (en) 2022-10-24
WO2021165627A1 (en) 2021-08-26
FR3107612B1 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
Yuan et al. Carbon quantum dots: an emerging material for optoelectronic applications
US10814024B2 (en) Apparatus and method for irradiation
Radiunas et al. Impact of t-butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion
US20090039752A1 (en) Lighting device and lighting system for stimulating plant growth
JP5359063B2 (en) Method for producing cycloalkanone oxime
JP5359064B2 (en) Method for producing cycloalkanone oxime and photochemical reaction apparatus
EP4107793A1 (en) Lamp for photochemical reactor with light-emitting diodes
US9181177B2 (en) Method of producing cycloalkanone oxime
US9932296B2 (en) Method of producing cycloalkanone oxime
CN109956517A (en) Ultraviolet light sterilizing unit and fluid sterilizing unit
EP3205395B1 (en) Photoirradiation device, photoreaction method using same, and method for producing lactam
CN112154026B (en) Microreactor for photocatalytic reactions
BE1018931A5 (en) ILLUMINATION DEVICE AND IN PARTICULAR BULB OR TUBE FOR LED LAMP (LED).
EP0609153A1 (en) Photochemical gas/liquid process for the halogenation of alkylbenzenes
Yun et al. Fabrication of [001]‐Oriented FAPbI3‐Based Photodetector With Excellent Air Stability Via Green Anti‐Solvent Additive Engineering
BE1026973B1 (en) ILLUMINATION MODULE INCLUDING LIGHT DIODES
Dutta et al. Two photon delayed fluorescence emission from aggregates of rubrene in Langmuir-Blodgett films at 77 K
KR101163756B1 (en) Constuction equipment
FR3027656A3 (en) LED LAMP
BE421730A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)