EP4103922A1 - Fahrzeugscheibe mit integriertem temperatursensor - Google Patents

Fahrzeugscheibe mit integriertem temperatursensor

Info

Publication number
EP4103922A1
EP4103922A1 EP21700778.0A EP21700778A EP4103922A1 EP 4103922 A1 EP4103922 A1 EP 4103922A1 EP 21700778 A EP21700778 A EP 21700778A EP 4103922 A1 EP4103922 A1 EP 4103922A1
Authority
EP
European Patent Office
Prior art keywords
current path
electrically conductive
vehicle window
contact points
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21700778.0A
Other languages
English (en)
French (fr)
Inventor
Stephan GILLESSEN
Robert Besler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP4103922A1 publication Critical patent/EP4103922A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • B32B2264/1051Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K2007/163Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements provided with specially adapted connectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured

Definitions

  • the invention relates to a vehicle window with a temperature sensor, a vehicle equipped therewith, a method for measuring its temperature and its use.
  • the temperature measured in this way can be used, for example, to control an air conditioning system and to regulate the temperature to a target temperature specified by the driver.
  • the temperature can also be used to control heating of the vehicle window itself, for example by means of integrated heating means or by means of an air flow directed at the vehicle window.
  • the window can be automatically defrosted when the temperature is below freezing point. This procedure is not optimal, however, since the temperature in the interior does not exactly correspond to the temperature of the pane. It would also be possible to measure the temperature of the pane itself using temperature sensors attached to it. However, sensors that need to be retrofitted increase the production costs of the vehicle, increase the space requirement and are sometimes prone to errors.
  • Such coatings can be used, for example, to improve thermal comfort in the interior.
  • the coatings can reflect infrared components of the solar radiation or, as so-called emissivity-reducing coatings (LowE coatings), prevent the radiation of thermal radiation from the vehicle window itself into the interior. When a current flows through the coatings, they can be used to heat the vehicle window.
  • IR protective coatings the coatings can reflect infrared components of the solar radiation or, as so-called emissivity-reducing coatings (LowE coatings), prevent the radiation of thermal radiation from the vehicle window itself into the interior. When a current flows through the coatings, they can be used to heat the vehicle window.
  • Such coatings are well known from a large number of publications.
  • W003 / 024155 W003 / 024155, US20070082219A1, US20070020465A1, WO2013104438 or WO2013104439, which disclose silver-based IR protective coatings or heatable coatings, as well as to EP2141135A1, WO2010115558A1, which are based on transparent, emissive and oxide-inhibiting coatings, WO2011105991 A1 and WO2011105991 .
  • the present invention is based on the object of providing a vehicle window with an integrated temperature sensor, as well as a method for measuring the temperature of such a vehicle window.
  • the temperature sensor is integrated directly into the vehicle window, so that it is not necessary to attach an external sensor at a later date.
  • the temperature sensor enables the true window temperature to be measured. It is formed on a transparent coating and is therefore optically inconspicuous.
  • the vehicle window according to the invention with a temperature sensor comprises at least one substrate and a transparent, electrically conductive coating on a surface of the substrate.
  • a transparent coating is understood to mean a coating which has an average transmission in the visible spectral range of at least 70%, preferably at least 80%, particularly preferably at least 90% and thus does not significantly restrict the view through the pane.
  • the substrate is preferably a pane of glass, in particular made of soda-lime glass, as is customary for vehicle windows.
  • the substrate can also be made of other types of glass, for example aluminosilicate glass, borosilicate glass or quartz glass, or also of transparent plastics, for example polycarbonate (PC) or polymethyl methacrylate (PMMA).
  • the thickness of the substrate is usually from 0.5 mm to 5 mm.
  • the vehicle window is designed as single-pane safety glass (ESG) or as laminated safety glass (VSG).
  • a toughened safety glass is structurally formed only by the glass substrate, which is thermally pre-stressed.
  • the substrate is connected to another pane via a thermoplastic intermediate layer.
  • the substrate can either be the inner pane, which is intended to face the vehicle interior in the installed position, or the outer pane, which is intended to face the external environment in the installed position.
  • the further pane is preferably also a glass pane, in particular made of soda-lime glass.
  • the further pane can, however, also be made from other types of glass, for example aluminosilicate glass, borosilicate glass or quartz glass, or also from transparent plastics, for example PC or PMMA.
  • the thicknesses of the substrate and the further pane are usually from 0.5 mm to 3 mm.
  • the electrically conductive coating is preferably arranged on the interior surface of the substrate. This means that the surface that faces the interior when installed.
  • the coating is preferably arranged on the interior surface of the substrate which faces the intermediate layer and the inner pane. The electrically conductive coating is then protected from corrosion and damage inside the laminated glass.
  • the coating is preferably arranged on the outside surface of the substrate which faces the intermediate layer and the outer pane, being protected from corrosion and damage inside the laminated glass.
  • the coating is preferably arranged as an inner pane on the interior surface of the substrate.
  • the coating there are no requirements for the coating as long as it is electrically conductive.
  • Usual coatings are stacks of several thin layers, the electrical conductivity being provided by one or more electrically conductive individual layers.
  • the layer thicknesses of the individual layers of the thin-layer stack are usually less than 1 ⁇ m. If the coating is applied to an exposed surface of the substrate, for example the interior-side surface in the case of an ESG or a VSG with a substrate as the inner pane, the coating should be corrosion resistant.
  • Each electrically conductive layer is preferably formed on the basis of a transparent conductive oxide (TCO, transparent conductive oxide), in particular on the basis of indium tin oxide (ITO), alternatively, for example, on the basis of indium-zinc mixed oxide (IZO), gallium -doped tin oxide (GZO), fluorine-doped tin oxide (SnC> 2: F) or antimony-doped tin oxide (SnC> 2: Sb).
  • TCO transparent conductive oxide
  • ITO indium tin oxide
  • IZO indium-zinc mixed oxide
  • GZO gallium -doped tin oxide
  • F fluorine-doped tin oxide
  • SnC> 2 antimony-doped tin oxide
  • Sb antimony-doped tin oxide
  • Such coatings are used in particular as emissivity-reducing coatings (LowE coatings), where they reduce the emission of thermal radiation from the window into the interior and
  • conductive layers susceptible to corrosion can also be used.
  • Each electrically conductive layer is preferably formed on the basis of a metal, in particular on the basis of silver, alternatively, for example, on the basis of gold, aluminum or copper.
  • Such coatings are used in particular as IR protective coatings and / or heatable coatings in composite windows, with infrared radiation components of the solar radiation reflecting and / or being electrically contacted so that an electric current can be passed through them in order to heat the vehicle window.
  • the electrical connection is typically made via busbars, which are arranged along two opposite side edges over a large part of the width of the pane and are designed, for example, as strips of metal foil, in particular copper foil, or as a burned-in paste containing glass frits and silver particles, usually printed using the screen printing process.
  • the conductive coating has a linear or approximately linear temperature dependency of the electrical resistance in the temperature range from -30 ° C. to 50 ° C. This is advantageous with regard to an exact calibration of the temperature sensor.
  • the temperature sensor is formed by an area of the electrically conductive coating.
  • a temperature measuring field is formed in the electrically conductive coating.
  • the temperature measuring field is completely electrically isolated from the surrounding electrically conductive coating by a coating-free separating line.
  • the temperature sensor is arranged within the temperature measuring field.
  • the dividing line electrically decouples the temperature sensor from the conductive coating outside the temperature measuring field.
  • the temperature measuring field is completely surrounded by the conductive coating.
  • the dividing line then describes a self-contained shape, for example a rectangle or a different type of polygon or a circle or a different type of oval. In principle, however, it is also possible to form the temperature measuring field on the edge of the conductive coating so that it is only partially surrounded by the rest of the coating. The dividing line then runs between two points on the side edge of the conductive coating.
  • the shape and size of the temperature measuring field can be freely selected. It is advisable, however, to make the temperature measuring field as small as possible in order to guarantee the optical inconspicuousness of the temperature sensor.
  • the temperature measuring field has a size of at most 5 cm 2 , preferably from 0.5 cm 2 to 2 cm 2 .
  • the temperature sensor itself is formed from two electrical contact points and a measuring current path running between them.
  • the electrical contact points are used for the electrical contacting of the temperature sensor, that is, the electrical connection to the voltage source and the evaluation unit.
  • the contact points are preferably designed as a printed and burnt-in electrically conductive paste which contains glass frits and silver particles. The printing is usually done using the screen printing process.
  • the contact points are connected to electrical cables or are intended to be connected to electrical cables via which the electrical connection to the voltage source and the evaluation unit is established. If the electrically conductive coating and the electrical contact points are arranged inside a composite pane, flat conductors in particular are used as electrical cables.
  • an electrically conductive core which is typically designed as a strip of metal foil, in particular copper foil, in an electrically insulating, polymeric sheath.
  • flat conductors can also be used for contacting or rigid, solid connection elements can be attached to the contact points, which in turn are connected to the electrical cable by soldering or welding , Crimping or as a plug connection.
  • the electrical cables connected to the solid connection elements are usually stranded conductors, round conductors or ribbon-like metal mesh educated.
  • the connection of the flat conductor or the solid connection element to the electrical contact points is preferably made by means of a solder mass. Inside composite panes, however, the connection can also be made by purely mechanical pressure or by molten tinning of the copper strip.
  • the measuring current path is formed by an area of the electrically conductive coating and runs between the two electrical contact points. It therefore functions as an electrical conductor between the contact points, the electrical resistance of which is determined, which in turn is temperature-dependent and enables the temperature to be determined.
  • the measuring current path can be designed in different ways in the temperature measuring field. In this way, the areas of the temperature measuring field away from the measuring current path can be free of coating. This can be done, for example, by subsequently removing an originally full-area conductive coating or by masking techniques when applying the coating.
  • the measuring current path is preferably formed by insulation lines which are introduced into the electrically conductive coating and which direct the electrical current along the measuring current path. With the exception of the isolation lines, the entire temperature measuring field is provided with the electrically conductive coating.
  • the entire temperature measuring field suitably structured by isolation lines, forms the measuring current path. It is also possible for an area that forms a self-contained, convex geometric shape, for example a rectangle, to be appropriately structured overall by isolation lines and to form the measuring current path.
  • the measuring current path is only formed by a region of the coating within the temperature measuring field, which is in particular designed to be stretched in a line. It is formed by two parallel insulation lines which run between the contact points so that the measuring current path is electrically connected to the contact points.
  • the isolation lines electrically isolate the measuring current path extending between them from the surrounding electrically conductive coating.
  • the course of the measurement current path can be freely selected by a person skilled in the art according to the requirements in the individual case. It is not subject to any restrictions.
  • the measuring current path has a meandering or loop-like course. In this way, the longest possible measuring current path can be accommodated in the temperature measuring field to save space.
  • the measuring current path can also be linear and extend, for example, along a side edge of the vehicle window.
  • the measuring current path preferably has a length of 1 cm to 20 cm.
  • the width of the measuring current path is preferably from 0.1 mm to 2 mm.
  • the electrical contact points can be connected to a voltage source and are intended to be connected to such a voltage source.
  • the contact points are connected to the voltage source via the electrical cables attached to the contact points.
  • the voltage source is arranged outside the vehicle window and is typically part of the vehicle's electrical system. If an electrical voltage is applied to the contact points by means of the voltage source, an electrical current subsequently flows through the measuring current path between the contact points. Care should be taken to ensure that the voltage that is applied to the contact points for temperature measurement is not so great that the current flow leads to significant heating of the measurement current path and thus falsifies the measurement.
  • the power is preferably from 0.5 pW to 3 pW, particularly preferably from 1 pW to 1.5 pW. This achieves particularly good results, and a significant falsification of the measurement due to heating of the measuring current path can be excluded.
  • the temperature measurement is based on measuring the current strength of the electric current and from this to determine the electrical resistance, which is linked to the current strength and voltage according to Ohm's law. Since the electrical resistance is temperature-dependent, the temperature can be determined from the electrical resistance using suitable calibration data.
  • the calibration data can be in the form of a calibration table or a mathematical calibration function, for example.
  • the electrical contact points can be connected to an evaluation unit and are intended to be connected to such an evaluation unit.
  • the evaluation unit is suitable for measuring the strength of the electrical current, determining the electrical resistance of the measuring current path therefrom and using the calibration data from the electrical resistance to determine the temperature.
  • the evaluation unit comprises at least one current measuring device (also called ammeter or ammeter, colloquially also ammeter) and a processor for comparing the measured current with the calibration data.
  • the evaluation unit typically also includes a memory for storing the calibration data.
  • the evaluation unit is typically integrated into the on-board electrical system or electronics of the vehicle.
  • the vehicle window according to the invention is particularly preferably a windshield, but can also be, for example, a side window, rear window or roof window.
  • Windshields are always designed as composite windows, side windows, rear windows and roof windows can be designed as individual glass panes (in particular thermally pre-stressed ESG) or composite windows.
  • the vehicle window has a peripheral cover print.
  • cover prints are customary for vehicle windows, in particular in the case of windscreens, rear windows and roof windows.
  • the cover print is arranged adjacent to the side edge of the vehicle window, for example with a width of 5 cm to 20 cm, and surrounds the vehicle window like a frame.
  • the cover print is typically formed from an opaque, in particular black, enamel, which is applied to one or more pane surfaces using the screen printing process.
  • the primary purpose of the masking print is to conceal the adhesive bond between the vehicle window and the vehicle body and to protect it from UV radiation.
  • functional elements are often arranged in the area of the cover print in order to hide them, for example electrical connections or sensors.
  • the area of the circumferential, peripheral cover print is opaque and surrounds the transparent area of the vehicle window intended for viewing, which is referred to as the central viewing area in the context of the invention.
  • the area of the vehicle window is thus divided into the opaque area of the cover print and the see-through area.
  • the see-through area has a total transmission of at least 70%, at least in some areas.
  • the term overall transmission refers to the procedure for testing the light transmission of vehicle windows specified by ECE-R 43, Annex 3, Section 9.1.
  • the total transmission is at least 70%, in particular at least in the so-called field of vision A (field of vision A, zone A).
  • Field of vision A is defined there in Appendix 18.
  • the temperature measuring field according to the invention can be arranged completely in the see-through area or in the opaque area of the cover print. It is also possible for the temperature measuring field to be arranged partly in the see-through area and partly in the opaque area of the cover print.
  • at least the electrical contact points are arranged in the area of the cover print. This is advantageous with regard to the optical inconspicuousness of the temperature sensor, since the contact points are typically relatively conspicuous and are electrically contacted via cables. The contact points including the contacting are covered by the masking print.
  • the electrical contact points are arranged in the area of the cover print, while the majority of the measuring current path is arranged in the see-through area.
  • the contact points can be hidden while the temperature is measured in the transparent area, where they cannot be falsified by the effects of the masking pressure.
  • at least 80% of the measuring current path, particularly preferably at least 90% of the measuring current path are arranged in the see-through area.
  • essentially the entire measuring current path is arranged in the see-through area with the exception of short connecting sections which lead from the contact points in the direction of the see-through area.
  • the vehicle window is designed as a single pane of glass, in particular as single-pane safety glass, the electrically conductive coating on the interior surface of the substrate having at least one electrically conductive layer based on a transparent conductive oxide, in particular based on ITO.
  • This configuration is particularly suitable for side windows and rear windows.
  • the vehicle window is designed as a composite window, in particular as a laminated safety glass, the substrate being connected to a further window via a thermoplastic intermediate layer, and the electrically conductive coating on the surface facing the intermediate layer of the substrate is arranged and has at least one electrically conductive layer based on a metal, in particular based on silver.
  • This configuration is particularly suitable for windshields and roof windows, but also for laminated side windows and rear windows.
  • the substrate can be the inner pane or the outer pane.
  • the vehicle window is a windshield, in particular the windshield of a passenger car.
  • the electrically conductive coating has no interruptions in the central field of view A, for example due to laser-cut structuring lines.
  • the electrically conductive coating particularly preferably has no such interruptions in the central field of view B either.
  • the temperature measuring field is arranged outside the field of view A and the field of view B, respectively.
  • Field of vision A and field of vision B are defined in Regulation No. 43 of the United Nations Economic Commission for Europe (UN / ECE) (ECE-R43, "Uniform conditions for the approval of safety glazing materials and their installation in vehicles") (cf. in particular Appendix 18).
  • Windshields typically have a peripheral masking print.
  • the electrically conductive coating preferably covers the entire see-through area, apart from any interruptions or coating-free areas that serve as communication windows or data transmission windows and are arranged outside the central field of view A or B, respectively.
  • the electrical contact points are particularly preferably arranged in the area of the cover print, while the majority of the measurement current path is arranged in the see-through area.
  • the electrically conductive coating has no interruptions outside the temperature measurement field. This configuration is suitable, for example, for side windows.
  • the temperature measuring field has further areas of the electrically conductive coating away from the measuring current path, care must of course be taken that the electrical current used for the measurement flows through the measuring current path and not around the surrounding coating.
  • This can be achieved through the arrangement of the contact points and the measuring current path, the measuring current path representing the shortest connection between the contact points.
  • the contact points can be arranged in the area of two opposite corners of the temperature measurement field and the Measurement current path meander between them.
  • each contact point is preferably electrically isolated from the surrounding electrically conductive coating by a coating-free contact separating line, apart from the measuring current path.
  • the contact separating line begins on one side of the measuring current path (or on the isolation line delimiting the measuring current path), runs once around the contact point and ends on the other side of the measuring current path (or on the other insulation line delimiting the measuring current path).
  • the only electrical connection between the contact points is then the measuring current path.
  • the design is particularly advisable when the two contact points are arranged relatively close to one another, for example in order to hide them on a side edge of the temperature measurement field behind the peripheral cover print.
  • the electrically conductive coating is preferably applied to a large part of the vehicle window - in particular at least 80% of the window surface is provided with the conductive coating.
  • the reflective coating is preferably applied over the entire surface of the substrate surface with the exception of the dividing line according to the invention and any isolation lines and contact dividing lines according to the invention.
  • further areas can be free of coating, in particular an optional circumferential edge area and optional local area which, as communication, sensor or camera windows, are intended to ensure the transmission of electromagnetic radiation through the windshield.
  • the circumferential uncoated edge area has a width of up to 20 cm, for example.
  • the entire substrate surface is preferably coated over the entire area and the coating is then removed again from those areas which should be free of coating.
  • the coating is preferably removed by laser stripping.
  • the stripping can also take place mechanically-abrasively, in particular in the case of flat, non-linear areas such as camera windows or a circumferential stripped edge area.
  • the dividing line according to the invention and any isolation lines and contact dividing lines according to the invention preferably have line widths of less than 500 ⁇ m, in particular preferably from 10 pm to 250 pm, very particularly preferably from 20 pm to 150 pm. This achieves effective electrical insulation and the lines are optically inconspicuous. Said lines are preferably introduced into the conductive coating by laser stripping, which has proven itself for industrial processes because thin lines can be stripped in a short time.
  • the radiation from a laser is focused on the coating and moved along the line to be stripped over the coating.
  • the coating material is removed by the laser radiation.
  • Processes for laser stripping are well known and can be freely selected by the person skilled in the art according to the requirements in the individual case.
  • the laser radiation is typically focused on the coated surface by means of an optical element such as a lens or an objective and moved over the surface by means of a laser scanner.
  • the laser radiation can basically have wavelengths in the UV range, visible range or IR range.
  • the wavelength of the laser radiation is preferably from 150 nm to 2500 nm, particularly preferably from 250 nm to 1200 nm.
  • an Nd-YAG laser which has proven itself for industrial applications can be used.
  • the Nd: YAG laser can be operated at its basic wavelength of 1064 nm or the frequency can be doubled or tripled.
  • other lasers can also be used, for example other solid-state lasers (for example a titanium-sapphire laser or other doped YAG lasers), fiber lasers, semiconductor lasers, excimer lasers or gas lasers.
  • the laser is preferably operated in a pulsed manner. This is particularly advantageous with regard to a high power density and an effective introduction of the insulating lines. Preference is given to using pulses in the nanosecond or picosecond range.
  • the pulse length is preferably less than or equal to 50 ns.
  • the pulse frequency is preferably from 1 kHz to 2000 kHz, particularly preferably from 10 kHz to 1000 kHz. This is particularly advantageous with regard to the power density of the laser during laser stripping.
  • the output power of the radiation from the laser is preferably from 0.1 W to 50 W, for example from 0.3 W to 10 W.
  • the required output power is particularly dependent on the wavelength of the laser radiation used and the degree of absorption of the electrically conductive coating and can be determined by a person skilled in the art can be determined by simple experiments.
  • the radiation of the laser is preferably at a speed of 100 mm / s to 10000 mm / s, particularly preferably from 200 mm / s to 5000 mm / s, very particularly preferably from 300 mm / s to 2000 mm / s over the electrically conductive Layer moves, for example from 500 mm / s to 1000 mm / s. This achieves particularly good results.
  • the invention also comprises a vehicle equipped with a vehicle window according to the invention, a voltage source and an evaluation unit, the electrical contact points being connected to the voltage source and the evaluation unit (electrically, in particular galvanically), an electrical voltage being able to be applied to the contact points so that an electric current flows through the measuring current path, and the evaluation unit is suitable for measuring the current strength of the electric current, determining the electrical resistance of the measuring current path therefrom and using calibration data from the electrical resistance to determine the temperature.
  • the above statements on the vehicle window apply equally to the vehicle.
  • the invention also includes a method for producing a vehicle window according to the invention.
  • the substrate is provided and one of its surfaces is coated over the entire area with the transparent, electrically conductive coating.
  • methods of physical vapor deposition are used here, particularly preferably magnetic field-assisted cathode sputtering (magnetron sputtering).
  • the coating can also be carried out by chemical vapor deposition or vapor deposition.
  • a circumferential edge area can be excluded from the coating or the coating can be subsequently removed again in this edge area, for example mechanically abrasive. This is particularly useful if the coating is susceptible to corrosion and the substrate is later to be connected to another pane to form a composite pane via the coated surface.
  • a circumferential dividing line is introduced into the coating in order to isolate the temperature measuring field from the surrounding coating.
  • a measuring current path is formed in the temperature measuring field, preferably by structuring the coating by means of insulation lines.
  • Electrical contact points are formed at the beginning and end of the measuring current path, preferably by printing and baking a conductive paste containing glass frits and silver particles.
  • the dividing line and the isolation lines are preferably introduced by laser stripping, in particular in a common process step. The contact points can be printed after or before the laser stripping.
  • the vehicle window is typically curved, as is customary in the vehicle sector.
  • the bending of the substrate and any further disk preferably takes place after the conductive coating has been applied and the insulating lines have been introduced.
  • Common glass bending methods such as gravity bending, press bending and / or suction bending can be used.
  • the substrate is preferably laminated to the further window via a thermoplastic film after bending.
  • the lamination takes place, for example, by autoclave processes, vacuum bag processes, vacuum ring processes, calender processes, vacuum laminators or combinations thereof.
  • the panes are usually connected under the action of heat, vacuum and / or pressure.
  • the invention also includes a method for measuring the temperature of a vehicle window according to the invention, wherein
  • the electrical resistance of the measuring current path is determined from the current strength
  • the temperature is determined using calibration data from the electrical resistance.
  • the above remarks on the vehicle window apply equally to the measurement method.
  • the invention also includes the use of a vehicle window according to the invention as a window pane of a motor vehicle, in particular as a windshield, side window, rear window or roof window.
  • the heating of the vehicle window is controlled as a function of the measured temperature. So can at temperatures where there is icing, frost or condensed liquid on the pane are likely to start heating the pane, either for a predetermined period of time or until a target temperature, which is also measured by the temperature sensor, is reached.
  • the limit temperature below which the heating is started is stored in the on-board electronics, which control the automatic heating.
  • the window can be heated, for example, by applying a stream of warm air or by heating elements in the vehicle window itself.
  • the electrically conductive coating is electrically contacted outside the temperature measuring field and serves as a heating element which is heated by current flow after a voltage is applied .
  • the heating current can be introduced as uniformly as possible through so-called busbars, which are arranged along two opposite side edges of the vehicle window and extend over almost the entire width of the coating.
  • the busbars can be designed, for example, as a printed and burned-in paste containing glass frits and silver particles, or as strips of metal foil, in particular copper foil.
  • the measured temperature can, however, also be used for other purposes, for example it can be displayed for information purposes for the driver or it can be used as a basis for an automatic control of the air conditioning system.
  • FIG. 1 shows a plan view of an embodiment of the vehicle window according to the invention
  • FIG. 2 shows a cross section through the vehicle window from FIG. 1,
  • FIG. 6 shows a diagram of the temperature-dependent electrical resistance of an exemplary electrically conductive coating.
  • the vehicle window is the windshield of a passenger car and is designed as a laminated window (VSG, laminated safety glass). It comprises a substrate 1, which forms the inner pane of the composite pane, a further pane 2, which forms the outer pane, and a thermoplastic intermediate layer 3, which connects the inner pane and the outer pane to one another.
  • the substrate 1 is, for example, a pane of soda-lime glass with a thickness of 1.6 mm.
  • the further pane 2 is, for example, a pane of soda-lime glass with a thickness of 2.1 mm.
  • the intermediate layer 3 is formed, for example, from a plasticizer-containing film made of polyvinyl butyral (PVB) with a thickness of 0.76 mm.
  • PVSG laminated safety glass
  • the vehicle window has a peripheral cover print 5, which is formed from a black enamel and is printed on the surface of the further window 2 facing the intermediate layer 3.
  • the cover print 5 makes a circumferential edge area of the vehicle window opaque.
  • the opaque edge area surrounds the transparent central see-through area of the vehicle window.
  • the surface of the substrate 1 facing the intermediate layer 3 is provided with an electrically conductive coating 4.
  • the coating 4 is, for example, a thin-film stack containing several electrically conductive layers based on silver in addition to numerous dielectric layers.
  • the substrate 1 is not coated.
  • the corrosion-prone coating 4 is thereby protected from corrosion in the interior of the composite pane.
  • the edge of the coating 4 is covered by the cover print 5.
  • a temperature measuring field 10 is formed, which the
  • the temperature measuring field 10 can also be arranged completely or partially in the opaque edge region of the cover print 5. Possible configurations of the temperature measuring field 10 are shown in the following figures
  • FIG. 3 shows a first exemplary embodiment of the temperature measuring field 10. It is delimited by a circumferential dividing line 11 by which the temperature measuring field 10 (more precisely the electrically conductive coating 4 within the temperature measuring field 10) is electrically isolated from the surrounding coating 4.
  • the temperature sensor is formed in the temperature measuring field 10 and consists of two electrical contact points 12.1, 12.2 and one that runs between them
  • the contact points 12.1, 12.2 are, for example, made square from a printed and burnt-in conductive paste containing glass frits and silver particles.
  • the measuring current path 14 is formed from a region of the coating 4 which is electrically isolated from the surrounding coating 4 by two parallel isolation lines 13.1, 13.2.
  • the isolation lines 13.1, 13.2 run from the first contact point 12.1 to the second contact point 12.2, the coating 4 located between them forming the measuring current path 14.
  • the contact points 12.1, 12.2 are arranged far away from one another in the area of two opposite corners of the temperature measuring field 10.
  • the measuring current path 14 runs in a meandering manner between the contact points 12.1, 12.2 in order to save space.
  • the 4 shows a second exemplary embodiment of the temperature measuring field 10. It is also delimited by a circumferential dividing line 11.
  • the two electrical contact points 12.1, 12.2 are arranged adjacent to one another in the vicinity of the lower edge of the temperature measuring field.
  • the measuring current path 14 runs like a loop between the contact points 12.1, 12.2.
  • Such a configuration is particularly suitable when the contact points 12.1, 12.2 are to be arranged in the opaque edge area of the cover print 5, while the measuring current path 14 is to be arranged predominantly in the see-through area. Otherwise the configuration corresponds to that from FIG. 3.
  • each contact point 12.1, 12.2 is electrically isolated from the surrounding electrically conductive coating 4 by a contact separating line 15.1, 15.2.
  • the contact dividing lines 15.1, 15.2 run from the first isolation line 13.1 around the respective contact point 12.1, 12.2 to the second isolation line 13.2.
  • the contact points 12.1, 12.2 are thus electrically connected to one another only via the measuring current path 14, so that the electrical current flow is forced via the measuring current path 14.
  • FIG. 5 shows a third exemplary embodiment of the temperature measuring field 10. It is also delimited by a circumferential dividing line 11. The embodiment differs from that of FIGS , 12.2 run, is formed. Instead, a rectangular area, which is delimited at two opposite corners by the contact points 12.1, 12.2, is structured by isolation lines 13 in such a way that it forms the measurement current path 14 as a whole.
  • the temperature measuring field 10 has a circumferential coated area which is not part of the measuring current path 14, but rather surrounds it like a frame. However, it would also be possible to use the entire temperature measuring field 10 as a measuring current path 14 if the contact points 12.1, 12.2 are moved to the corners of the temperature measuring field 10.
  • the design of the measuring current path 14 by means of isolation lines 13 can be freely selected by the person skilled in the art and is not subject to any restrictions.
  • 6 shows the temperature dependency of an exemplary electrically conductive coating 4.
  • the coating 4 is a thin-film stack which contains a plurality of electrically conductive silver layers and a multiplicity of dielectric layers. Such coatings are known per se and are used for windshields as IR protective coatings and / or heatable coatings.
  • the electrical resistance is plotted against the temperature, whereby an approximately linear dependency can be recognized. This temperature dependency enables the temperature to be determined on the basis of the measured resistance if corresponding calibration data are used by the evaluation unit.
  • thermoplastic intermediate layer (2) another pane (3) thermoplastic intermediate layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surface Heating Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Fahrzeugscheibe mit Temperatursensor, umfassend ein Substrat (1) und eine transparente, elektrisch leitfähige Beschichtung (4) auf einer Oberfläche des Substrats (1), wobei - in der elektrisch leitfähigen Beschichtung (4) ein Temperaturmessfeld (10) ausgebildet ist, das durch eine Trennlinie (11) von der umgebenden elektrisch leitfähigen Beschichtung (4) elektrisch isoliert ist, - im Temperaturmessfeld (10) aus einem Bereich der elektrisch leitfähigen Beschichtung (4) ein zwischen zwei elektrischen Kontaktstellen (12.1, 12.2) verlaufender Messstrompfad (14) ausgebildet ist, - die elektrischen Kontaktstellen (12.1, 12.2) mit einer Spannungsquelle verbindbar sind, so dass ein elektrischer Strom durch den Messstrompfad (14) fließt, und - die elektrischen Kontaktstellen (12.1, 12.2) mit einer Auswerteeinheit verbindbar sind, welche geeignet ist, die Stromstärke des elektrischen Stroms zu messen, daraus den elektrischen Widerstand des Messstrompfads (14) zu bestimmen und anhand von Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur zu bestimmen.

Description

Fahrzeugscheibe mit integriertem Temperatursensor
Die Erfindung betrifft eine Fahrzeugscheibe mit Temperatursensor, ein damit ausgestattetes Fahrzeug, ein Verfahren zur Messung ihrer Temperatur und deren Verwendung.
Es ist üblich, die Temperatur des Innenraums eines Fahrzeugs mit in diesem Innenraum befindlichen Temperatursensoren zu messen. Die so gemessene Temperatur kann verwendet werden, um beispielweise eine Klimaanlage zu steuern und die Temperatur auf eine vom Fahrer vorgegebene Zieltemperatur zu regeln.
Prinzipiell kann die Temperatur auch dazu verwendet werden, eine Beheizung der Fahrzeugscheibe selber zu steuern, beispielsweise durch integrierte Heizmittel oder durch einen auf die Fahrzeugscheibe gerichteten Luftstrom. So kann die Scheibe beispielsweise automatisch enteist werden, wenn die Temperatur unterhalb des Gefrierpunkts liegt. Dieses Vorgehen ist allerdings nicht optimal, da die Temperatur im Innenraum nicht genau der Temperatur der Scheibe entspricht. Zwar wäre es auch möglich, die Temperatur der Scheibe selbst durch daran angebrachte Temperatursensoren zu messen. Jedoch erhöhen nachträglich anzubringende Sensoren den Fertigungsaufwand des Fahrzeugs, erhöhen den Platzbedarf und sind mitunter fehleranfällig.
Es ist an sich bekannt, Fahrzeugscheiben mit elektrisch leitfähigen Beschichtungen auszustatten. Solche Beschichtungen können beispielsweise verwendet zur Verbesserung des thermischen Komforts im Innenraum. So können die Beschichtungen als sogenannte IR-Schutzbeschichtungen infrarote Anteile der Sonnenstrahlung reflektieren oder als sogenannte emissivitätsmindernde Beschichtungen (LowE-Beschichtungen) die Abstrahlung von Wärmestrahlung der Fahrzeugscheibe selbst in den Innenraum verhindern. Wenn die Beschichtungen von einem Strom durchflossen werden, können sie verwendet werden, um die Fahrzeugscheibe zu beheizen. Solche Beschichtungen sind aus einer großen Anzahl von Veröffentlichungen hinlänglich bekannt. Lediglich beispielhaft sein auf W003/024155, US20070082219A1 , US20070020465A1, WO2013104438 oder WO2013104439 verwiesen, welche Silber-basierte IR-Schutzbeschichtungen oder heizbare Beschichtungen offenbaren, sowie auf EP2141135A1, WO2010115558A1, WO2011105991 A1 und WO2018206236A1, welche emissivitätsmindernde Beschichtungen auf Basis von transparenten leitfähigen Oxiden offenbaren. Es ist ebenso bekannt, transparente leitfähige Beschichtungen mittels Laserentschichtung zu strukturieren. Dabei werden mit einem Laser dünne linienförmige entschichtete Bereiche in die Beschichtung eingebracht. Diese wurden beispielsweise verwendet, um der beschichteten Scheibe eine Transmission gegenüber elektromagnetische Strahlung zu verleihen, um beispielsweise Mobilfunk- oder GPS-Signale im Fahrzeuginneren empfangen zu können, oder einen Stromfluss zu leiten, um beispielsweise lokale Überhitzungen zu vermeiden. Lediglich beispielhaft sei auf EP2591638B1, EP2335452B1, EP2586610B1, EP2890655B1, WO2014095152A1 und EP2906417B1 verwiesen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Fahrzeugscheibe mit einem integrierten Temperatursensor bereitzustellen, sowie ein Verfahren zur Messung der Temperatur einer solchen Fahrzeugscheibe.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch eine Fahrzeugscheibe gemäß Anspruch 1 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor.
Der Temperatursensor ist direkt in die Fahrzeugscheibe integriert, so dass sich ein nachträgliches Anbringen eines externen Sensors erübrigt. Der Temperatursensor ermöglicht die Messung der wahren Scheibentemperatur. Er ist auf einer transparenten Beschichtung ausgebildet und dadurch optisch unauffällig. Das sind große Vorteile der vorliegenden Erfindung.
Die erfindungsgemäße Fahrzeugscheibe mit Temperatursensor umfasst mindestens ein Substrat und eine transparente, elektrisch leitfähige Beschichtung auf einer Oberfläche des Substrats. Unter einer transparenten Beschichtung wird eine Beschichtung verstanden, die eine mittlere Transmission im sichtbaren Spektra Ibereich von mindestens 70 %, bevorzugt mindestens 80 %, besonders bevorzugt mindestens 90% aufweist und dadurch die Durchsicht durch die Scheibe nicht wesentlich einschränkt.
Das Substrat ist bevorzugt eine Glasscheibe, insbesondere aus Kalk-Natron-Glas, wie es für Fahrzeugscheiben üblich ist. Das Substrat kann aber auch aus anderen Glassorten gefertigt sein, beispielsweise Aluminosilikatglas, Borosilikatglas oder Quarzglas, oder auch aus transparenten Kunststoffen, beispielweise Polycarbonat (PC) oder Polymethylmethacrylat (PMMA). Die Dicke des Substrats beträgt üblicherweise von 0,5 mm bis 5 mm. In bevorzugten Ausgestaltungen ist die Fahrzeugscheibe als Einscheibensicherheitsglas (ESG) oder als Verbundsicherheitsglas (VSG) ausgebildet. Ein ESG wird strukturell nur durch das Glassubstrat ausgebildet, welches thermisch vorgespannt ist. Bei einem VSG ist das Substrat über eine thermoplastische Zwischenschicht mit einer weiteren Scheibe verbunden. Das Substrat kann dabei entweder die Innenscheibe sein, die dafür vorgesehen ist, in Einbaulage dem Fahrzeuginnenraum zugewandt zu sein, oder die Außenscheibe, die dafür vorgesehen ist, in Einbaulage der äußeren Umgebung zugewandt zu sein. Die weitere Scheibe ist bevorzugt ebenfalls eine Glasscheibe, insbesondere aus Kalk-Natron-Glas. Die weitere Scheibe kann aber auch aus anderen Glassorten gefertigt sein, beispielsweise Aluminosilikatglas, Borosilikatglas oder Quarzglas, oder auch aus transparenten Kunststoffen, beispielweise PC oder PMMA. Im Falle von Verbundsicherheitsgläsern betragen die Dicken des Substrats und der weiteren Scheibe üblicherweise von 0,5 mm bis 3 mm.
Im Falle eines ESG ist die elektrisch leitfähige Beschichtung bevorzugt auf der innenraumseitigen Oberfläche des Substrats angeordnet. Damit wir diejenige Oberfläche bezeichnet, die in Einbaulage dem Innenraum zugewandt ist. Im Falle eines VSG, bei dem das Substrat die Außenscheibe ausbildet, ist die Beschichtung bevorzugt auf der innenraumseitigen Oberfläche des Substrats angeordnet, welche der Zwischenschicht und der Innenscheibe zugewandt ist. Die elektrisch leitfähige Beschichtung ist dann im Inneren des Verbundglases vor Korrosion und Beschädigung geschützt. Im Falle eines VSG, bei dem das Substrat die Innenscheibe ausbildet, ist die Beschichtung bevorzugt auf der außenseitigen Oberfläche des Substrats angeordnet, welche der Zwischenschicht und der Außenscheibe zugewandt ist, wobei sie im Inneren des Verbundglases vor Korrosion und Beschädigung geschützt ist. Alternativ ist die Beschichtung bevorzugt auf der innenraumseitigen Oberfläche des Substrats als Innenscheibe angeordnet.
Es bestehen prinzipiell keine Anforderungen an die Beschichtung, solange diese elektrisch leitfähig ist. Übliche Beschichtungen sind Stapel mehrerer Dünnschichten, wobei die elektrische Leitfähigkeit durch eine oder mehrere elektrisch leitfähige Einzelschichten bereitgestellt wird. Die Schichtdicken der einzelnen Schichten des Dünnschichtstapels betragen üblicherweise weniger als 1 pm. Ist die Beschichtung auf eine exponierte Oberfläche des Substrats aufgebracht, beispielsweise die innenraumseitige Oberfläche im Falle eines ESG oder eines VSG mit Substrat als Innenscheibe, so sollte die Beschichtung korrosionsbeständig sein. Jede elektrisch leitfähige Schicht ist dabei bevorzugt auf Basis eines transparenten leitfähigen Oxids (TCO, transparent conductive oxide) ausgebildet, insbesondere auf Basis von Indiumzinnoxid (ITO, indium tin oxide), alternativ beispielsweise auf Basis von Indium-Zink-Mischoxid (IZO), Gallium-dotiertes Zinnoxid (GZO), Fluor dotiertes Zinnoxid (SnC>2:F) oder Antimon-dotiertes Zinnoxid (SnC>2:Sb). Solche Beschichtungen sind insbesondere als emissivitätsmindernde Beschichtungen (LowE- Beschichtungen) gebräuchlich, wobei sie auf der innenraumseitigen Oberfläche der Fahrzeugscheibe die Aussendung von Wärmestrahlung der Scheibe in den Innenraum und die Abstrahlung von Wärme aus dem Innenraum heraus verringern. Ist die Beschichtung auf einer internen Oberfläche einer Verbundscheibe angeordnet, beispielsweise der innenraumseitigen Oberfläche eines Substrats als Außenscheibe eines VSGs oder der außenseitigen Oberfläche eines Substrats als Innenscheibe eines VSGs, so können auch korrosionsanfällige leitfähige Schichten eingesetzt werden. Jede elektrisch leitfähige Schicht ist dabei bevorzugt auf Basis eines Metalls ausgebildet, insbesondere auf Basis von Silber, alternativ beispielsweise auf Basis von Gold, Aluminium oder Kupfer. Solche Beschichtungen sind insbesondere als IR-Schutzbeschichtungen und/oder beheizbare Beschichtungen in Verbundscheiben gebräuchlich, wobei infrarote Strahlungsanteile der Sonnenstrahlung reflektieren und oder elektrisch kontaktiert sind, so dass ein elektrischer Strom durch sie geleitet werden kann, um die Fahrzeugscheibe zu beheizen. Der elektrische Anschluss erfolgt typischerweise über Sammelschienen (sogenannte Busbars), die entlang zweier gegenüberliegender Seitenkanten über einen Großteil der Scheibenbreite angeordnet sind und beispielsweise als Streifen einer Metallfolie, insbesondere Kupferfolie, ausgebildet sind oder als eingebrannte Paste enthaltend Glasfritten und Silberpartikel, üblicherweise aufgedruckt im Siebdruckverfahren.
In einer bevorzugten Ausgestaltung weist die leitfähige Beschichtung im Temperaturbereich von -30°C bis 50°C eine lineare oder näherungsweise lineare Temperaturabhängigkeit des elektrischen Widerstands auf. Das ist vorteilhaft im Hinblick auf eine exakte Kalibrierung des T emperatursensors.
Der Temperatursensor wird durch einen Bereich der elektrisch leitfähigen Beschichtung gebildet. Dazu ist in der elektrisch leitfähigen Beschichtung ein Temperaturmessfeld ausgebildet. Das Temperaturmessfeld ist durch eine beschichtungsfreie Trennlinie von der umgebenden elektrisch leitfähigen Beschichtung vollständig elektrisch isoliert. Der Temperatursensor ist innerhalb des Temperaturmessfelds angeordnet. Die Trennlinie entkoppelt den Temperatursensor elektrisch von der leitfähigen Beschichtung außerhalb des Temperaturmessfelds. In einer bevorzugten Ausgestaltung ist das Temperaturmessfeld vollständig von der leitfähigen Beschichtung umgeben. Die Trennlinie beschreibt dann eine in sich geschlossene Form, beispielsweise ein Rechteck oder ein andersartiges Polygon oder einen Kreis oder ein andersartiges Oval. Grundsätzlich ist es aber auch möglich, das Temperaturmessfeld am Rande der leitfähigen Beschichtung auszubilden, so dass es nur teilweise von der übrigen Beschichtung umgeben ist. Die Trennlinie verläuft dann zwischen zwei Punkten an der Seitenkante der leitfähigen Beschichtung.
Form und Größe des Temperaturmessfelds können frei gewählt werden. Es ist jedoch ratsam, dass Temperaturmessfeld möglichst klein auszugestalten, um die optische Unauffälligkeit des Temperatursensors zu gewährleisten. Das Temperaturmessfeld weist in einer vorteilhaften Ausgestaltung eine Größe von höchstens 5 cm2 auf, bevorzugt von 0,5 cm2 bis 2 cm2.
Der Temperatursensor selbst ist ausgebildet aus zwei elektrischen Kontaktstellen und einem zwischen diesen verlaufenden Messstrompfad. Die elektrischen Kontaktstellen dienen der elektrischen Kontaktierung des Temperatursensors, also dem elektrischen Anschluss an die Spannungsquelle und die Auswerteeinheit. Die Kontaktstellen sind bevorzugt als aufgedruckte und eingebrannte elektrisch leitfähige Paste ausgebildet, welche Glasfritten und Silberpartikel enthält. Das Aufdrucken erfolgt üblicherweise im Siebdruckverfahren. Die Kontaktstellen sind mit elektrischen Kabeln verbunden oder dafür vorgesehen, mit elektrischen Kabeln verbunden zu werden, über welche die elektrische Verbindung zur Spannungsquelle und der Auswerteeinheit hergestellt wird. Sind die elektrisch leitfähige Beschichtung und die elektrischen Kontaktstellen im Innern einer Verbundscheibe angeordnet, so werden als elektrische Kabel insbesondere Flachleiter verwendet. Diese enthalten einen elektrisch leitfähigen Kern, welcher typischerweise als Streifen einer Metallfolie, insbesondere Kupferfolie ausgebildet ist, in einer elektrisch isolierenden, polymeren Ummantelung. Sind die elektrisch leitfähige Beschichtung und die elektrischen Kontaktstellen auf einer exponierten Oberfläche der Fahrzeugscheibe angeordnet, so können ebenfalls Flachleiter zu Kontaktierung verwendet werden oder es können starre, massive Anschlusselemente an den Kontaktstellen angebracht werden, welche wiederum mit dem elektrischen Kabel verbunden sind durch Löten, Schweißen, Crimpen oder als Steckverbindung. Die mit den massiven Anschlusselementen verbundenen elektrischen Kabel sind üblicherweise Litzenleiter, Rundleiter oder bandartiges Metallgewebe ausgebildet. Die Verbindung des Flachleiters oder des massiven Anschlusselements mit den elektrischen Kontaktstellen erfolgt bevorzugt mittels einer Lotmasse. Im Innern von Verbundscheiben kann die Verbindung aber auch durch rein mechanisches Andrücken erfolgen oder über eine aufgeschmolzene Verzinnung des Kupferbandes.
Der Messstrompfad wird durch einen Bereich der elektrisch leitfähigen Beschichtung gebildet und verläuft zwischen den beiden elektrischen Kontaktstellen. Er fungiert also als elektrischer Leiter zwischen den Kontaktstellen, dessen elektrischer Widerstand bestimmt wird, welcher wiederum temperaturabhängig ist und die Bestimmung der Temperatur ermöglicht. Der Messstrompfad kann auf unterschiedliche Art und Weise im Temperaturmessfeld ausgebildet werden. So können die Bereiche des Temperaturmessfeldes abseits des Messstrompfades beschichtungsfrei sein. Dies kann beispielsweise durch eine nachträgliche Entfernung einer ursprünglich vollflächigen leitfähigen Beschichtung erfolgen oder durch Maskierungstechniken beim Aufbringen der Beschichtung. Bevorzugt wird der Messstrompfad aber durch Isolierungslinien ausgebildet, die in die elektrisch leitfähige Beschichtung eingebracht sind und den elektrischen Strom entlang des Messstrom pfads lenken. Bis auf die Isolierungslinien ist das gesamte Temperaturmessfeld dabei mit der elektrisch leitfähigen Beschichtung versehen. Es ist möglich, dass das gesamte, durch Isolierungslinien geeignet strukturierte Temperaturmessfeld den Messstrompfad bildet. Ebenso ist es möglich, dass ein Bereich, der eine in sich geschlossene, konvexe geometrische Form bildet, beispielsweise ein Rechteck, insgesamt durch Isolierungslinien geeignet strukturiert ist und den Messstrompfad bildet. In einer bevorzugten Ausgestaltung wird der Messstrompfad allerdings nur von einem Bereich der Beschichtung innerhalb des Temperaturmessfeldes gebildet, der insbesondere linienartig gestreckt ausgebildet ist. Er wird durch zwei parallele Isolationslinien ausgebildet, welche zwischen den Kontaktstellen verlaufen, so dass der Messstrompfad an die Kontaktstellen elektrisch angeschlossen ist. Die Isolationslinien isolieren den zwischen ihnen sich erstreckenden Messstrompfad elektrisch von der umliegenden elektrisch leitfähigen Beschichtung.
Der Verlauf des Messtrompfads kann vom Fachmann den Anforderungen im Einzelfall entsprechend frei gewählt werden. Er ist keinerlei Einschränkungen unterworfen. In einer vorteilhaften Ausgestaltung weist der Messtrompfad einen mäanderförmigen oder schleifenartigen Verlauf auf. So kann ein möglichst langer Messstrompfad platzsparend im Temperaturmessfeld untergebracht werden. Der Messstrompfad kann prinzipiell aber auch linear sein und sich beispielsweise entlang einer Seitenkante der Fahrzeugscheibe erstrecken.
Je kürzer der Messstrompfad ist, desto optisch unauffälliger kann der Temperatursensor ausgebildet werden. Auf der anderen Seite ermöglicht ein längerer Messstrompfad eine präzisiere Messung von Widerstand und Temperatur. Bevorzugt weist der Messstrompfad eine Länge von 1 cm bis 20 cm auf. Die Breite des Messstrompfads beträgt bevorzugt von 0,1 mm bis 2 mm.
Die elektrischen Kontaktstellen sind mit einer Spannungsquelle verbindbar und dafür vorgesehen, mit einer solchen Spannungsquelle verbunden zu werden. Die Verbindung der Kontaktstellen mit der Spannungsquelle erfolgt über die an den Kontaktstellen angebrachten elektrischen Kabel. Die Spannungsquelle ist außerhalb der Fahrzeugscheibe angeordnet und typischerweise Teil der Bordelektrik des Fahrzeugs. Wird mittels der Spannungsquelle eine elektrische Spannung an die Kontaktstellen angelegt, so fließt in der Folge ein elektrischer Strom durch den Messstrompfad zwischen den Kontaktstellen. Es sollte darauf geachtet werden, dass die Spannung, welche zur Temperaturmessung an die Kontaktstellen angelegt wird, nicht so groß ist, dass der Stromfluss zu einer signifikanten Erwärmung des Messstrompfads führt und dadurch die Messung verfälscht. Die Leistung beträgt bevorzugt von 0,5 pW bis 3 pW, besonders bevorzugt von 1 pW bis 1 ,5 pW. Damit werden besonders gute Ergebnisse erzielt, und eine signifikante Verfälschung der Messung durch Erwärmung des Messstrompfads kann ausgeschlossen werden,
Die Temperaturmessung beruht darauf, die Stromstärke des elektrischen Stroms zu messen und daraus den elektrischen Widerstand, welche mit Stromstärke und Spannung gemäß dem Ohmschen Gesetz verknüpft ist, zu bestimmen. Da der elektrische Widerstand temperaturabhängig ist, kann anhand geeigneter Kalibrationsdaten aus dem elektrische Widerstand die Temperatur bestimmt werden. Die Kalibrationsdaten können beispielsweise in Form einer Kalibrationstabelle oder einer mathematischen Kalibrationsfunktion vorliegen. Die elektrischen Kontaktstellen sind mit einer Auswerteeinheit verbindbar und dafür vorgesehen, mit einer solchen Auswerteeinheit verbunden zu werden. Die Auswerteeinheit ist geeignet, die Stromstärke des elektrischen Stroms zu messen, daraus den elektrischen Widerstand des Messstrompfads zu bestimmen und anhand der Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur zu bestimmen. Die Auswerteeinheit umfasst zumindest eine Strommessvorrichtung (auch Strommessgerät oder Strommesser genannt, umgangssprachlich auch Amperemeter) und einen Prozessor zum Vergleich des gemessenen Stroms mit den Kalibrationsdaten. Die Auswerteeinheit umfasst typischerweise auch einen Speicher zur Speicherung der Kalibrationsdaten. Die Auswerteeinheit ist typischerweise in die Bordelektrik beziehungsweise -elektronik des Fahrzeugs integriert.
Die erfindungsgemäße Fahrzeugscheibe ist besonders bevorzugt eine Windschutzscheibe, kann aber auch beispielsweise eine Seitenscheibe, Heckscheibe oder Dachscheibe sein. Windschutzscheiben sind immer als Verbundscheiben ausgebildet, Seitenscheiben, Heckscheiben und Dachscheiben können als Einzelglasscheiben (insbesondere thermisch vorgespanntes ESG) oder Verbundscheiben ausgebildet sein.
Die Fahrzeugscheibe weist in einer bevorzugten Ausgestaltung einen peripheren Abdeckdruck auf. Solche Abdeckdrucke sind für Fahrzeugscheiben üblich, insbesondere im Falle von Wndschutzscheiben, Heckscheiben und Dachscheiben. Der Abdeckdruck ist angrenzend an die Seitenkante der Fahrzeugscheibe angeordnet, beispielsweise mit einer Breite von 5 cm bis 20 cm, und umgibt die Fahrzeugscheibe rahmenartig. Der Abdeckdruck ist typischerweise aus einem opaken, insbesondere schwarzen Emaille ausgebildet, das im Siebdruckverfahren auf eine oder mehrere Scheibenoberflächen aufgebracht wird. Der Abdeckdruck dient primär dazu, die Verklebung der Fahrzeugscheibe mit der Fahrzeugkarosserie zu verdecken und vor UV-Strahlung zu schützen. Außerdem sind häufig Funktionselemente im Bereich des Abdeckdrucks angeordnet, um sie zu verstecken, beispielsweise elektrische Anschlüsse oder Sensoren. Der Bereich des umlaufenden, peripheren Abdeckdrucks ist opak und umgibt den transparenten, zur Durchsicht vorgesehenen Bereich der Fahrzeugscheibe, der im Sinne der Erfindung als zentraler Durchsichtsbereich bezeichnet wird. Die Fläche der Fahrzeugscheibe ist also aufgeteilt in den opaken Bereich des Abdeckdrucks und den Durchsichtsbereich. In einer vorteilhaften Ausgestaltung weist der Durchsichtsbereich zumindest bereichsweise eine Gesamttransmission von mindestens 70% auf. Der Begriff Gesamttransmission bezieht sich auf das durch ECE-R 43, Anhang 3, § 9.1 festgelegte Verfahren zur Prüfung der Lichtdurchlässigkeit von Kraftfahrzeugscheiben. Im Falle einer Wndschutzscheibe liegt die Gesamttransmission von mindestens 70% insbesondere zumindest im sogenannten Sichtfeld A (Sichtbereich A, Zone A) vor. Das Sichtfeld A und seine technischen Anforderungen sind in der Regelung Nr. 43 der Wirtschaftskommission der Vereinten Nationen für Europa (UN/ECE) (ECE-R43, „Einheitliche Bedingungen für die Genehmigung der Sicherheitsverglasungswerkstoffe und ihres Einbaus in Fahrzeuge“) festgelegt. Dort ist das Sichtfeld A in Anhang 18 definiert.
Das erfindungsgemäße Temperaturmessfeld kann vollständig im Durchsichtsbereich oder im opaken Bereich des Abdeckdrucks angeordnet sein. Ebenso ist es möglich, dass das Temperaturmessfeld teilweise im Durchsichtsbereich und teilweise im opaken Bereich des Abdeckdrucks angeordnet ist. In einer vorteilhaften Ausgestaltung sind zumindest die elektrischen Kontaktstellen im Bereich des Abdeckdrucks angeordnet. Dies ist vorteilhaft im Hinblick auf die optische Unauffälligkeit des Temperatursensors, da die Kontaktstellen typischerweise relativ auffällig sind und über Kabel elektrisch kontaktiert sind. Die Kontaktstellen samt Kontaktierung werden durch den Abdeckdruck verdeckt.
In einer besonders bevorzugten Ausgestaltung sind die elektrischen Kontaktstellen im Bereich des Abdeckdrucks angeordnet sind, während der Großteil des Messstrompfads im Durchsichtsbereich angeordnet ist. So können die Kontaktstellen versteckt werden, während die Messung der Temperatur im Durchsichtsbereich stattfindet, wo sie nicht durch Effekte des Abdeckdrucks verfälscht werden können. Bevorzugt sind mindestens 80% des Messstrompfads, besonders bevorzugt mindestens 90% des Messstrompfads im Durchsichtsbereich angeordnet. Insbesondere ist im Wesentlichen der gesamte Messstrompfad im Durchsichtsbereich angeordnet mit Ausnahme kurzer Verbindungsabschnitte, die von den Kontaktstellen in Richtung des Durchsichtsbereichs führen.
In einer Ausgestaltung der Erfindung ist die Fahrzeugscheibe als Einzelglasscheibe, insbesondere als Einscheibensicherheitsglas ausgebildet, wobei die elektrisch leitfähige Beschichtung auf der innenraumseitigen Oberfläche des Substrats mindestens eine elektrisch leitfähige Schicht auf Basis eines transparenten leitfähigen Oxids aufweist, insbesondere auf Basis von ITO. Diese Ausgestaltung eignet sich insbesondere für Seitenscheiben und Heckscheiben.
In einer weiteren Ausgestaltung der Erfindung ist die Fahrzeugscheibe als Verbundscheibe, insbesondere als Verbundsicherheitsglas ausgebildet ist, wobei das Substrat mit einer weiteren Scheibe über eine thermoplastische Zwischenschicht verbunden ist, und wobei die die elektrisch leitfähige Beschichtung auf der zur Zwischenschicht hingewandten Oberfläche des Substrats angeordnet ist und mindestens eine elektrisch leitfähige Schicht auf Basis eines Metalls aufweist, insbesondere auf Basis von Silber. Diese Ausgestaltung eignet sich insbesondere für Windschutzscheiben und Dachscheiben, aber auch für laminierte Seitenscheiben und Heckscheiben. Das Substrat kann die Innenscheibe oder die Außenscheibe sein.
In einer besonders bevorzugten Ausgestaltung ist die Fahrzeugscheibe eine Windschutzscheibe, insbesondere die Windschutzscheibe eines Personenkraftwagens. Die elektrisch leitfähige Beschichtung weist im zentralen Sichtfeld A keine Unterbrechungen auf, beispielsweise durch gelaserte Strukturierungslinien. Besonders bevorzugt weist die elektrisch leitfähige Beschichtung auch im zentralen Sichtfeld B keine derartigen Unterbrechungen auf. Das Temperaturmessfeld ist außerhalb des Sichtfelds A beziehungsweise des Sichtfelds B angeordnet. Das Sichtfeld A und das Sichtfeld B sind in der Regelung Nr. 43 der Wirtschaftskommission der Vereinten Nationen für Europa (UN/ECE) (ECE-R43, „Einheitliche Bedingungen für die Genehmigung der Sicherheitsverglasungswerkstoffe und ihres Einbaus in Fahrzeuge“) definiert (vgl. insbesondere Anhang 18). Windschutzscheiben weisen typischerweise einen peripheren Abdeckdruck. Die elektrisch leitfähige Beschichtung bedeckt bevorzugt den gesamten Durchsichtsbereich, abgesehen von etwaigen Unterbrechungen oder beschichtungsfreie Bereiche, die als Kommunikationsfenster oder Datenübertragungsfenster dienen und außerhalb des zentralen Sichtfeld A beziehungsweise B angeordnet sind. Besonders bevorzugt sind die elektrischen Kontaktstellen im Bereich des Abdeckdrucks angeordnet, während der Großteil des Messstrom pfads im Durchsichtsbereich angeordnet ist.
In einer weiteren besonders bevorzugten Ausgestaltung weist die elektrisch leitfähige Beschichtung außerhalb des Temperaturmessfelds keine Unterbrechungen auf. Diese Ausgestaltung eignet sich beispielsweise für Seitenscheiben.
Weist das Temperaturmessfeld abseits des Messtrompfads weitere Bereiche der elektrisch leitfähigen Beschichtung auf, so muss natürlich Sorge getragen werden, dass der zur Messung herangezogene elektrische Strom durch den Messstrompfad fließt und nicht um die umliegende Beschichtung. Dies kann durch die Anordnung der Kontaktstellen und des Messstrompfads bewerkstelligt werden, wobei der Messstrompfad die kürzeste Verbindung zwischen den Kontaktstellen darstellt. Beispielsweise können die Kontaktstellen im Bereich zweier entgegengesetzter Ecken des Temperaturmessfelds angeordnet sein und der Messstrompfad sich mäanderartig zwischen ihnen erstrecken. Optional ist es jedoch auch möglich, die Kontaktstellen elektrisch von der umliegenden Beschichtung zu isolieren. Dabei ist jede Kontaktstelle bevorzugt durch eine beschichtungsfreie Kontakttrennlinie von der umgebenden elektrisch leitfähigen Beschichtung elektrisch isoliert ist, abgesehen vom Messstrom pfad. Die Kontakttrennlinie beginnt an der einen Seite des Messstrom pfads (beziehungsweise an der einen den Messstrompfad begrenzenden Isolationslinie), verläuft einmal um die Kontaktstelle herum und endet an der anderen Seite des Messstrom pfads (beziehungsweise an der anderen den Messstrompfad begrenzenden Isolationslinie). Die einzige elektrische Verbindung zwischen den Kontaktstellen ist dann der Messstrom pfad. Die Ausgestaltung ist besonders dann ratsam, wenn die beiden Kontaktstellen relativ nahe beieinander angeordnet sind, beispielsweise um sie an einer Seitenkante des Temperaturmessfelds hinter dem peripheren Abdeckdruck zu verstecken.
Die elektrisch leitfähige Beschichtung ist bevorzugt auf einem Großteil der Fahrzeugscheibe aufgebracht - insbesondere mindestens 80% der Scheibenoberfläche mit der leitfähigen Beschichtung versehen. Bevorzugt ist die Reflexionsbeschichtung vollflächig auf die Substratoberfläche aufgebracht mit Ausnahme der erfindungsgemäßen Trennungslinie und der etwaigen erfindungsgemäßen Isolationslinien und Kontakttrennlinien. Daneben können weitere Bereiche beschichtungsfrei sein, insbesondere ein optionaler umlaufender Randbereich und optionaler lokaler Bereich, die als Kommunikations-, Sensor- oder Kamerafenster die Transmission von elektromagnetischer Strahlung durch die Windschutzscheibe gewährleisten sollen. Der umlaufende unbeschichtete Randbereich weist beispielsweise eine Breite von bis zu 20 cm auf.
Bei der Herstellung der erfindungsgemäßen Fahrzeugscheibe wird bevorzugt die gesamte Substratoberfläche vollflächig beschichtet und anschließend die Beschichtung wieder von denjenigen Bereichen entfernt, die beschichtungsfrei sein sollen. Die Entfernung der Beschichtung erfolgt bevorzugt durch Laserentschichtung. Alternativ kann die Entschichtung auch mechanisch-abrasiv erfolgen, insbesondere im Falle von flächigen, nicht-linienförmigen Bereichen wie Kamerafenster oder ein umlaufender entschichteter Randbereich. Alternativ ist es auch möglich, die Bereiche von vornherein durch Maskierungstechniken von der Beschichtung auszunehmen.
Die erfindungsgemäße Trennlinie und die etwaigen erfindungsgemäßen Isolationslinien und Kontakttrennlinien weisen bevorzugt Linienbreiten von weniger als 500 pm auf, besonders bevorzugt von 10 pm bis 250 pm, ganz besonders bevorzugt von 20 pm bis 150 pm. Dadurch wird eine wirksame elektrische Isolierung erreicht und die Linien sind optisch unauffällig. Die besagten Linien werden bevorzugt durch Laserentschichtung in die leitfähige Beschichtung eingebracht, was sich für industrielle Prozesse bewährt hat, weil dünne Linien mit geringem Zeitaufwand entschichtet werden können.
Bei der Laserentschichtung wird die Strahlung eines Lasers auf die Beschichtung fokussiert und entlang der zu entschichteten Linie über die Beschichtung bewegt. Dabei wird das Beschichtungsmaterial durch die Laserstrahlung entfernt. Verfahren zur Laserentschichtung sind hinlänglich bekannt und können vom Fachmann den Erfordernissen im Einzelfall entsprechend frei gewählt werden. Die Laserstrahlung wird typischerweise mittels eines optischen Elements wie einer Linse oder eines Objektivs auf die beschichtete Oberfläche fokussiert und mittels eines Laserscanners über die Oberfläche bewegt.
Die Laserstrahlung kann grundsätzlich Wellenlängen im UV-Bereich, sichtbaren Bereich oder IR-Bereich aufweisen. Die Wellenlänge der Laserstrahlung beträgt bevorzugt von 150 nm bis 2500 nm, besonders bevorzugt von 250 nm bis 1200 nm. Es kann beispielsweise eine Nd-YAG-Laser verwendet werden, der sich für industrielle Anwendungen bewährt hat. Der Nd:YAG-Laser kann bei seiner Grundwellenlänge von 1064 nm betrieben werden oder auch frequenzverdoppelt oder -verdreifacht. Es können aber auch andere Laser verwendet werden, beispielsweise andere Festkörperlaser (beispielsweise ein Titan-Saphir-Laser oder andere dotierte YAG-Laser), Faserlaser, Halbleiterlaser, Excimerlaser oder Gaslaser.
Der Laser wird bevorzugt gepulst betrieben. Das ist besonders vorteilhaft im Hinblick auf eine hohe Leistungsdichte und eine effektive Einbringung der isolierenden Linien. Bevorzugt werden Pulse im Nano- oder Pikosekundenbereich verwendet. Die Pulslänge beträgt bevorzugt kleiner oder gleich 50 ns. Die Pulsfrequenz beträgt bevorzugt von 1 kHz bis 2000 kHz, besonders bevorzugt von 10 kHz bis 1000 kHz. Das ist besonders vorteilhaft im Hinblick auf die Leistungsdichte des Lasers bei der Laserentschichtung.
Die Ausgangsleistung der Strahlung des Lasers beträgt bevorzugt von 0,1 W bis 50 W, beispielsweise von 0,3 W bis 10 W. Die benötigte Ausgangsleistung ist insbesondere abhängig von der verwendeten Wellenlänge der Laserstrahlung sowie dem Absorptionsgrad der elektrisch leitfähigen Beschichtung und kann vom Fachmann durch einfache Versuche ermittelt werden. Die Strahlung des Lasers wird bevorzugt mit einer Geschwindigkeit von 100 mm/s bis 10000 mm/s, besonders bevorzugt von 200 mm/s bis 5000 mm/s, ganz besonders bevorzugt von 300 mm/s bis 2000 mm/s über die elektrisch leitfähige Schicht bewegt, beispielsweise von 500 mm/s bis 1000 mm/s. Damit werden besonders gute Ergebnisse erzielt.
Die Erfindung umfasst außerdem ein Fahrzeug, ausgestattet mit einer erfindungsgemäßen Fahrzeugscheibe, einer Spannungsquelle und einer Auswerteeinheit, wobei die elektrischen Kontaktstellen mit der Spannungsquelle und der Auswerteeinheit (elektrisch, insbesondere galvanisch) verbunden sind, wobei eine elektrische Spannung an die Kontaktstellen anlegbar ist, so dass ein elektrischer Strom durch den Messstrompfad fließt, und wobei die Auswerteeinheit geeignet ist, die Stromstärke des elektrischen Stroms zu messen, daraus den elektrischen Widerstand des Messstrompfads zu bestimmen und anhand von Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur zu bestimmen. Die vorstehenden Ausführungen zur Fahrzeugscheibe gelten gleichermaßen für das Fahrzeug.
Die Erfindung umfasst außerdem ein Verfahren zur Herstellung einer erfindungsgemäßen Fahrzeugscheibe. Dabei wird das Substrat bereitgestellt und eine seiner Oberflächen vollflächig mit der transparenten elektrisch leitfähigen Beschichtung beschichtet. Hierbei werden insbesondere Methoden der physikalischen Gasphasenabscheidung eingesetzt, besonders bevorzugt die magnetfeldunterstützte Kathodenzerstäubung (Magnetron- Sputtern). Alternativ kann die Beschichtung aber auch durch chemische Gasphasenabscheidung oder Aufdampfen erfolgen. Optional kann ein umlaufender Randbereich von der Beschichtung ausgenommen werden oder die Beschichtung in diesem Randbereich nachträglich wieder entfernt werden, beispielsweise mechanisch-abrasiv. Dies ist insbesondere dann sinnvoll, wenn die Beschichtung korrosionsanfällig ist und das Substrat später über die beschichtete Oberfläche mit einer weiteren Scheibe zu einer Verbundscheibe verbunden werden soll. Durch den beschichtungsfreien Randbereich weist die Beschichtung dann keinen Kontakt zur umgebenden Atmosphäre auf. Wird eine umlaufende Trennlinie in die Beschichtung eingebracht, um das Temperaturmessfeld von der umliegenden Beschichtung zu isolieren. Im Temperaturmessfeld wird ein Messstrompfad ausgebildet, bevorzugt durch Strukturierung der Beschichtung mittels Isolationslinien. An Anfang und Ende des Messstrompfads werden elektrische Kontaktstellen ausgebildet, bevorzugt durch Drucken und Einbrennen einer leitfähigen Paste enthaltend Glasfritten und Silberpartikel. Das Einbringen der Trennlinie und der Isolationslinien erfolgt bevorzugt durch Laserentschichtung, insbesondere in einem gemeinsamen Verfahrensschritt. Das Aufdrucken der Kontaktstellen kann nach oder vor der Laserentschichtung erfolgen.
Die Fahrzeugscheibe ist typischerweise gebogen, wie es im Fahrzeugbereich üblich ist. Die Biegung des Substrats und der etwaigen weiteren Scheibe findet bevorzugt nach dem Aufbringen der leitfähigen Beschichtung und dem Einbringen der isolierenden Linien statt. Es können übliche Glasbiegeverfahren verwendet werden, wie Schwerkraftbiegen, Pressbiegen und/oder Saugbiegen.
Ist die Fahrzeugscheibe eine Verbundscheibe, so wird das Substrat bevorzugt nach dem Biegen mit der weiteren Scheibe über eine thermoplastische Folie laminiert. Die Lamination erfolgt beispielsweise durch Autoklavverfahren, Vakuumsackverfahren, Vakuumringverfahren, Kalanderverfahren, Vakuumlaminatoren oder Kombinationen davon. Die Verbindung der Scheiben erfolgt dabei üblicherweise unter Einwirkung von Hitze, Vakuum und/oder Druck.
Die Erfindung umfasst außerdem ein Verfahren zur Messung der Temperatur einer erfindungsgemäßen Fahrzeugscheibe, wobei
- an die elektrischen Kontaktstellen eine elektrische Spannung angelegt wird, so dass ein elektrischer Strom durch den Messstrompfad fließt,
- die Stromstärke des elektrischen Stroms gemessen wird,
- aus der Stromstärke der elektrische Widerstand des Messstrompfads bestimmt wird und
- anhand von Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur bestimmt wird. Die vorstehenden Ausführungen zur Fahrzeugscheibe gelten gleichermaßen für das Messverfahren.
Die Erfindung umfasst außerdem die Verwendung einer erfindungsgemäßen Fahrzeugscheibe als Fensterscheibe eines Kraftfahrzeugs, insbesondere als Windschutzscheibe, Seitenscheibe, Heckscheibe oder Dachscheibe. In einer vorteilhaften Ausführung wird die Beheizung der Fahrzeugscheibe in Abhängigkeit der gemessenen Temperatur gesteuert. So kann bei Temperaturen, bei denen eine Vereisung, Frost oder kondensierte Flüssigkeit auf der Scheibe wahrscheinlich sind, eine Beheizung der Scheibe in Gang gesetzt werden, entweder über einen vorbestimmten Zeitraum oder bis zum Erreichen einer ebenfalls mit dem Temperatursensor gemessenen Zieltemperatur. Die Grenztemperatur, unterhalb derer die Beheizung in Gang gesetzt wird, ist in der Bordelektronik hinterlegt, welche die automatische Beheizung steuert. Die Beheizung der Scheibe kann beispielsweise durch Beaufschlagung mit einem warmen Luftstrom erfolgen oder durch Heizelemente in der Fahrzeugscheibe selbst. In einer besonders bevorzugten Ausführung ist die elektrisch leitfähige Beschichtung außerhalb des Temperaturmessfeldes elektrisch kontaktiert und dient als Heizelement, welches sich durch Stromfluss nach Anlegen einer Spannung erwärmt. Eine möglichst gleichmäßige Einleitung des Heizstroms kann durch sogenannte Stromsammelschienen ( Busbars ) erfolgen, die entlang zweier gegenüberliegender Seitenkanten der Fahrzeugscheibe angeordnet sind und sich annähernd über die gesamte Breite der Beschichtung erstrecken. Die Stromsammelschienen können beispielsweise als aufgedruckte und eingebrannte Paste enthaltend Glasfritten und Silberpartikel ausgebildet sein oder als Streifen einer Metallfolie, insbesondere Kupferfolie. Die gemessene Temperatur kann aber auch für andere Zwecke verwendet werden, beispielsweise zu Informationszwecken für den Fahrer dargestellt werden oder einer automatischen Steuerung der Klimaanlage zugrunde gelegt werden.
Die Erfindung wird anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein. Es zeigen:
Fig. 1 eine Draufsicht auf eine Ausgestaltung der erfindungsgemäßen Fahrzeugscheibe, Fig. 2 eine, Querschnitt durch die Fahrzeugscheibe aus Fig. 1,
Fig. 3 eine Draufsicht auf eine Ausgestaltung des Temperaturmessfeldes,
Fig. 4 eine Draufsicht auf eine weitere Ausgestaltung des Temperaturmessfeldes,
Fig. 5 eine Draufsicht auf eine weitere Ausgestaltung des Temperaturmessfeldes,
Fig. 6 ein Diagramm des temperaturabhängigen elektrischen Widerstands einer beispielhaften elektrisch leitfähigen Beschichtung.
Fig. 1 und Fig. 2 zeigen je ein Detail einer Ausgestaltung der erfindungsgemäßen Fahrzeugscheibe mit Temperatursensor. Die Fahrzeugscheibe ist die Windschutzscheibe eines Personenkraftwagens und als Verbundscheibe ausgebildet (VSG, Verbundsicherheitsglas). Sie umfasst ein Substrat 1, welches die Innenscheibe der Verbundscheibe bildet, eine weitere Scheibe 2, welche die Außenscheibe bildet, und eine thermoplastische Zwischenschicht 3, welche Innenscheibe und Außenscheibe miteinander verbindet. Das Substrat 1 ist beispielsweise eine Glasscheibe aus Kalk-Natron-Glas mit einer Dicke von 1,6 mm. Die weitere Scheibe 2 ist beispielsweise eine Glasscheibe aus Kalk-Natron-Glas mit einer Dicke von 2,1 mm. Die Zwischenschicht 3 ist beispielsweise aus einer weichmacherhaltigen Folie aus Polyvinylbutyral (PVB) ausgebildet mit einer Dicke von 0,76 mm.
Die Fahrzeugscheibe weist einen peripheren Abdeckdruck 5 auf, welcher aus einem schwarzen Emaille ausgebildet ist und auf der zur Zwischenschicht 3 hingewandten Oberfläche der weiteren Scheibe 2 aufgedruckt ist. Durch den Abdeckdruck 5 ist ein umlaufender Randbereich der Fahrzeugscheibe opak. Der opake Randbereich umgibt den transparenten zentralen Durchsichtsbereich der Fahrzeugscheibe.
Die zur Zwischenschicht 3 hingewandte Oberfläche des Substrats 1 ist mit einer elektrisch leitfähigen Beschichtung 4 versehen. Die Beschichtung 4 ist beispielsweise ein Dünnschichtstapel enthaltend mehrere elektrisch leifähige Schichten auf Basis von Silber neben zahlreichen dielektrischen Schichten. In einem umlaufenden Randbereich mit einer Breite von beispielsweise 5 cm ist das Substrat 1 nicht beschichtet. Die korrosionsanfällige Beschichtung 4 ist dadurch im Innern der Verbundscheibe vor Korrosion geschützt. Die Kante der Beschichtung 4 wird durch den Abdeckdruck 5 verdeckt. Im Durchsichtsbereich ist ein Temperaturmessfeld 10 ausgebildet, welches den
Temperatursensor beinhaltet. Das Temperaturmessfeld 10 kann alternativ aber auch vollständig oder teilweise im opaken Randbereich des Abdeckdrucks 5 angeordnet sein. Mögliche Ausgestaltungen des Temperaturmessfelds 10 sind in den folgenden Abbildungen dargestellt
Fig. 3 zeigt eine erste beispielhafte Ausgestaltung des Temperaturmessfelds 10. Es wird begrenzt durch eine umlaufende Trennlinie 11, durch die das Temperaturmessfeld 10 (genauer gesagt die elektrisch leitfähige Beschichtung 4 innerhalb des Temperaturmessfeldes 10) von der umliegenden Beschichtung 4 elektrisch isoliert ist. Im Temperaturmessfeld 10 ist der Temperatursensor ausgebildet, bestehend aus zwei elektrischen Kontaktstellen 12.1, 12.2 und einen zwischen diesen verlaufenden
Messstrompfad 14. Die Kontaktstellen 12.1, 12.2 sind beispielsweise quadratisch ausgebildet aus einer aufgedruckten und eingebrannten leitfähigen Paste enthaltend Glasfritten und Silberpartikel. Der Messstrompfad 14 wird aus einem Bereich der Beschichtung 4 gebildet, welcher durch zwei parallele Isolationslinien 13.1, 13.2 von der umliegenden Beschichtung 4 elektrisch isoliert ist. Die Isolationslinien 13.1, 13.2 verlaufen von der ersten Kontaktstelle 12.1 bis zur zweiten Kontaktstelle 12.2, wobei die zwischen ihnen befindliche Beschichtung 4 den Messstrompfad 14 bildet. Die Kontaktstellen 12.1, 12.2 sind weit voneinander entfernt angeordnet im Bereich zweier gegenüberliegender Ecken des Temperaturmessfelds 10. Der Messstrompfad 14 verläuft mäanderartig zwischen den Kontaktstellen 12.1, 12.2, um Platz zu sparen.
Auf den Kontaktstellen 12.1, 12.2 sind nicht dargestellte Flachleiter angelötet, die sich über die Seitenkante der Fahrzeugscheibe hinaus erstrecken und den Anschluss des Messstrompfads 14 an die Bordelektrik ermöglichen, insbesondere an eine
Spannungsquelle und eine Auswerteeinheit. Wird mittels der Spannungsquelle eine elektrische Spannung an die Kontaktstellen 12.1, 12.2 angelegt, so fließt ein elektrischer Strom durch den Messstrompfad 14. Mittels der Auswerteeinheit wird die Stromstärke gemessen und aus dieser anhand des Ohmschen Gesetzes der Widerstand ermittelt. Der Widerstand, welcher temperaturabhängig ist, wird mit Kalibrationsdaten verglichen, wodurch die momentane Temperatur der Fahrzeugscheibe bestimmt werden kann.
Fig. 4 zeigt eine zweite beispielhafte Ausgestaltung des Temperaturmessfelds 10. Es wird ebenfalls begrenzt durch eine umlaufende Trennlinie 11. Die beiden elektrischen Kontaktstellen 12.1, 12.2 sind in der Nähe der Unterkante des Temperaturmessfeldes einander benachbart angeordnet. Der Messstrompfad 14 verläuft schleifenartig zwischen den Kontaktstellen 12.1, 12.2. Eine solche Konfiguration eignet sich insbesondere dann, wenn die Kontaktstellen 12.1, 12.2 im opaken Randbereich des Abdeckdrucks 5 angeordnet sein sollen, während der Messstrompfad 14 überwiegend im Durchsichtsbereich angeordnet sein soll. Ansonsten entspricht die Ausgestaltung derjenigen aus Figur 3.
Da die beiden Kontaktstellen 12.1, 12.2 einen geringen Abstand zueinander aufweisen, würde der Strom überwiegend nicht über den Messstrompfad 14 fließen, sondern entlang der direkten Verbindungslinie zwischen den Kontaktstellen 12.1, 12.2. Um dies zu verhindern, ist jede Kontaktstelle 12.1, 12.2 durch eine Kontakttrennlinie 15.1, 15.2 von der umgebenden elektrisch leitfähigen Beschichtung 4 elektrisch isoliert. Die Kontakttrennlinie 15.1, 15.2 verlaufen von der ersten Isolationslinie 13.1 um die jeweilige Kontaktstelle 12.1, 12.2 herum bis zur zweiten Isolationslinie 13.2. Die Kontaktstellen 12.1, 12.2 sind somit elektrisch nur über den Messstrompfad 14 miteinander verbunden, so dass der elektrische Stromfluss über den Messstrompfad 14 erzwungen wird.
Fig. 5 zeigt eine dritte beispielhafte Ausgestaltung des Temperaturmessfelds 10. Es wird ebenfalls begrenzt durch eine umlaufende Trennlinie 11. Der Ausgestaltung unterscheidet sich von denjenigen der Figuren 3 und 4 dadurch, dass der Messstrompfad 14 nicht durch zwei parallele Isolationslinien, die zwischen den Kontaktstellen 12.1, 12.2 verlaufen, gebildet wird. Stattdessen ist ein rechteckiger Bereich, der an zwei gegenüberliegenden Ecken von den Kontaktstellen 12.1, 12.2 begrenzt wird, durch Isolationslinien 13 derart strukturiert, dass er insgesamt den Messstrompfad 14 ausbildet. In der dargestellten Ausgestaltung weist das Temperaturmessfeld 10 einen umlaufenden beschichteten Bereich auf, der nicht Teil des Messstrompfad 14 ist, sondern diesen rahmenartig umgibt. Es wäre aber auch möglich, dass gesamte Temperaturmessfeld 10 als Messstrompfad 14 zu nutzen, wenn die Kontaktstellen 12.1, 12.2 an die Ecken des Temperaturmessfelds 10 verlegt werden. Die Gestaltung des Messstrom pfads 14 durch Isolationslinien 13 kann vom Fachmann frei gewählt werden und ist keinen Einschränkungen unterworfen. Fig. 6 zeigt die Temperaturabhängigkeit einer beispielhaften elektrisch leitfähigen Beschichtung 4. Die Beschichtung 4 ist ein Dünnschichtstapel, welcher mehrere elektrisch leitfähige Silberschichten enthält und eine Vielzahl von dielektrischen Schichten. Solche Beschichtungen sind an sich bekannt und für Windschutzscheiben als IR- Schutzbeschichtungen und/oder beheizbare Beschichtungen gebräuchlich. Aufgetragen ist der elektrische Wderstand gegen die Temperatur, wobei eine näherungsweise lineare Abhängigkeit zu erkennen ist. Diese Temperaturabhängigkeit ermöglicht die Bestimmung der Temperatur auf Grundlage des gemessenen Widerstands, wenn entsprechende Kalibrationsdaten von der Auswerteeinheit herangezogen werden.
Bezugszeichenliste:
(1) Substrat
(2) weitere Scheibe (3) thermoplastische Zwischenschicht
(4) elektrisch leitfähige Beschichtung
(5) Abdeckdruck
(10) Temperaturmessfeld (11) Trennlinie
(12.1) erste elektrische Kontaktstelle
(12.2) zweite elektrische Kontaktstelle
(13) Isolationslinie
(13.1) erste Isolationslinie (13.2) zweite Isolationslinie
(14) Messstrompfad
(15.1) erste Kontakttrennlinie
(15.2) zweite Kontakttrennlinie

Claims

Patentansprüche
1. Fahrzeugscheibe mit Temperatursensor, umfassend ein Substrat (1) und eine transparente, elektrisch leitfähige Beschichtung (4) auf einer Oberfläche des Substrats (1), wobei
- in der elektrisch leitfähigen Beschichtung (4) ein Temperaturmessfeld (10) ausgebildet ist, das durch eine Trennlinie (11) von der umgebenden elektrisch leitfähigen Beschichtung (4) elektrisch isoliert ist,
- im Temperaturmessfeld (10) aus einem Bereich der elektrisch leitfähigen Beschichtung (4) ein zwischen zwei elektrischen Kontaktstellen (12.1, 12.2) verlaufender Messstrompfad (14) ausgebildet ist,
- die elektrischen Kontaktstellen (12.1, 12.2) mit einer Spannungsquelle verbindbar sind, so dass ein elektrischer Strom durch den Messstrompfad (14) fließt, und
- die elektrischen Kontaktstellen (12.1, 12.2) mit einer Auswerteeinheit verbindbar sind, welche geeignet ist, die Stromstärke des elektrischen Stroms zu messen, daraus den elektrischen Widerstand des Messstrom pfads (14) zu bestimmen und anhand von Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur zu bestimmen.
2. Fahrzeugscheibe nach Anspruch 1, welche einen peripheren Abdeckdruck (5) aufweist, der einen zentralen Durchsichtsbereich umgibt, wobei die elektrischen Kontaktstellen (12.1, 12.2) im Bereich des Abdeckdrucks (5) angeordnet sind.
3. Fahrzeugscheibe nach Anspruch 2, wobei der Großteil des Messstrom pfads (14) im Durchsichtsbereich angeordnet ist.
4. Fahrzeugscheibe nach einem der Ansprüche 1 bis 3, wobei der Messstrompfad (14) eine Länge von 1 cm bis 20 cm aufweist.
5. Fahrzeugscheibe nach einem der Ansprüche 1 bis 4, wobei der Messstrompfad (14) durch zwei parallele, zwischen den Kontaktstellen (12.1, 12.2) verlaufende Isolationslinien (13.1, 13.2) ausgebildet wird, welche den Messstrompfad (14) von der umliegenden elektrisch leitfähigen Beschichtung (4) elektrisch isolieren.
6. Fahrzeugscheibe nach einem der Ansprüche 1 bis 5, wobei das Temperaturmessfeld (10) eine Größe von höchstens 5 cm2 aufweist, bevorzugt von 0,5 cm2 bis 2 cm2.
7. Fahrzeugscheibe nach einem der Ansprüche 1 bis 6, die als
Einscheibensicherheitsglas ausgebildet ist, wobei die elektrisch leitfähige
Beschichtung (4) auf der innenraumseitigen Oberfläche des Substrats (1) angeordnet ist und mindestens eine elektrisch leitfähige Schicht auf Basis eines transparenten leitfähigen Oxids aufweist.
8. Fahrzeugscheibe nach einem der Ansprüche 1 bis 6, die als Verbundsicherheitsglas ausgebildet ist, wobei das Substrat (1) mit einer weiteren Scheibe (2) über eine thermoplastische Zwischenschicht (3) verbunden ist, und wobei die die elektrisch leitfähige Beschichtung (4) auf der zur Zwischenschicht (3) hingewandten Oberfläche des Substrats (1) angeordnet ist und mindestens eine elektrisch leitfähige Schicht auf Basis von Silber aufweist.
9. Fahrzeugscheibe nach einem der Ansprüche 1 bis 8, wobei jede Kontaktstelle (12.1, 12.2) durch eine Kontakttrennlinie (15.1, 15.2) von der umgebenden elektrisch leitfähigen Beschichtung (4) elektrisch isoliert ist, abgesehen vom Messstrompfad (14)
10. Fahrzeugscheibe nach einem der Ansprüche 1 bis 9, wobei die Kontaktstellen (12.1, 12.2) als aufgedruckte und eingebrannte elektrisch leitfähige Paste ausgebildet sind, enthaltend Glasfritten und Silberpartikel.
11. Fahrzeugscheibe nach einem der Ansprüche 1 bis 10, wobei der Messstrompfad (14) mäanderförmig oder schleifenartig zwischen den Kontaktstellen (12.1, 12.2) verläuft.
12. Fahrzeug, ausgestattet mit einer Fahrzeugscheibe nach einem der Ansprüche 1 bis 11, einer Spannungsquelle und einer Auswerteeinheit, wobei die elektrischen Kontaktstellen (12.1, 12.2) mit der Spannungsquelle und der Auswerteeinheit verbunden sind, wobei eine elektrische Spannung an die Kontaktstellen (12.1, 12.2) anlegbar ist, so dass ein elektrischer Strom durch den Messstrompfad (14) fließt, und wobei die Auswerteeinheit geeignet ist, die Stromstärke des elektrischen Stroms zu messen, daraus den elektrischen Widerstand des Messstrompfads (14) zu bestimmen und anhand von Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur zu bestimmen.
13. Fahrzeug nach Anspruch 12, wobei die Auswerteeinheit eine Strommessvorrichtung und einen Prozessor zum Vergleich des gemessenen Stroms mit den Kalibrationsdaten umfasst.
14. Verfahren zur Messung der Temperatur einer Fahrzeugscheibe nach einem der
Ansprüche 1 bis 11 , wobei - an die elektrischen Kontaktstellen (12.1, 12.2) eine elektrische Spannung angelegt wird, so dass ein elektrischer Strom durch den Messstrompfad (14) fließt,
- die Stromstärke des elektrischen Stroms gemessen wird,
- aus der Stromstärke der elektrische Widerstand des Messstrompfads (14) bestimmt wird und - anhand von Kalibrationsdaten aus dem elektrischen Widerstand die Temperatur bestimmt wird.
15. Verwendung einer Fahrzeugscheibe nach einem der Ansprüche 1 bis 11 als Fensterscheibe eines Kraftfahrzeugs, insbesondere als Windschutzscheibe, Seitenscheibe, Heckscheibe oder Dachscheibe, wobei die Beheizung der Fahrzeugscheibe in Abhängigkeit der gemessenen Temperatur gesteuert wird.
EP21700778.0A 2020-02-12 2021-01-20 Fahrzeugscheibe mit integriertem temperatursensor Pending EP4103922A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20156850 2020-02-12
PCT/EP2021/051138 WO2021160388A1 (de) 2020-02-12 2021-01-20 Fahrzeugscheibe mit integriertem temperatursensor

Publications (1)

Publication Number Publication Date
EP4103922A1 true EP4103922A1 (de) 2022-12-21

Family

ID=69571939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21700778.0A Pending EP4103922A1 (de) 2020-02-12 2021-01-20 Fahrzeugscheibe mit integriertem temperatursensor

Country Status (6)

Country Link
US (1) US20230073820A1 (de)
EP (1) EP4103922A1 (de)
JP (1) JP7523555B2 (de)
KR (1) KR20220132643A (de)
CN (1) CN113543970A (de)
WO (1) WO2021160388A1 (de)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806118A (en) * 1948-12-31 1957-09-10 Bendix Aviat Corp Control system for eliminating ice from a transparent windshield panel
US6734396B2 (en) 2001-09-07 2004-05-11 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Heatable vehicle window with different voltages in different heatable zones
FR2862961B1 (fr) 2003-11-28 2006-02-17 Saint Gobain Substrat transparent utilisable alternativement ou cumulativement pour le controle thermique, le blindage electromagnetique et le vitrage chauffant.
DE102004050158B3 (de) * 2004-10-15 2006-04-06 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Scheibe mit einer beheizbaren Beschichtung
US7335421B2 (en) 2005-07-20 2008-02-26 Ppg Industries Ohio, Inc. Heatable windshield
FR2927218B1 (fr) * 2008-02-06 2010-03-05 Hydromecanique & Frottement Procede de fabrication d'un element chauffant par depot de couches minces sur un substrat isolant et l'element obtenu
DE102008030825A1 (de) 2008-06-30 2009-12-31 Schott Ag Vorrichtung zur Reflektion von Wärmestrahlung, ein Verfahren zu ihrer Herstellung sowie deren Verwendung
DE102008051730A1 (de) * 2008-10-15 2010-04-22 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparenter Gegenstand mit einem örtlich begrenzten, strukturierten, elektrisch beheizbaren, transparenten Bereich, Verfahren zu seiner Herstellung und seine Verwendung
US8383994B2 (en) * 2008-12-30 2013-02-26 Ppg Industries Ohio, Inc. Transparency having sensors
DE102009033417C5 (de) 2009-04-09 2022-10-06 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Verfahren und Anlage zur Herstellung eines beschichteten Gegenstands mittels Tempern
BR112012021452A2 (pt) 2010-02-26 2016-05-31 Guardian Industries artigos que incluem revestimentos anticondensação e/ou de baixa emissividade e/ou métodos para fabricar os mesmos.
WO2012004280A1 (de) 2010-07-07 2012-01-12 Saint Gobain Glass France Verbundscheibe mit einer elektrisch beheizbaren beschichtung
PL2641452T3 (pl) * 2010-11-18 2016-11-30 Powierzchniowy korpus grzejny z kontrolą temperatury
PL2586610T3 (pl) 2011-10-27 2014-10-31 Saint Gobain Szyba z przepuszczalnością wysokich częstotliwości
PT2803246T (pt) 2012-01-10 2017-06-23 Saint Gobain Placa de vidro transparente com revestimento condutor de eletricidade
PT2803245T (pt) * 2012-01-10 2017-05-22 Saint Gobain Placa de vidro transparente com revestimento condutor de eletricidade
ES2731756T3 (es) 2012-08-28 2019-11-18 Saint Gobain Luna revestida con áreas parcialmente decapadas
US9878597B2 (en) 2012-10-15 2018-01-30 Saint-Gobain Glass France Pane with high-frequency transmission
EP2936926B1 (de) * 2012-12-20 2019-01-16 Saint-Gobain Glass France Scheibe mit elektrischer heizschicht
EP2936925B1 (de) 2012-12-20 2021-05-05 Saint-Gobain Glass France Scheibe mit elektrischer heizschicht
MX2019013437A (es) 2017-05-09 2020-01-14 Saint Gobain Panel que tiene un revestimiento electricamente conductor, con visibilidad reducida de huellas digitales.
US10773811B2 (en) * 2017-12-06 2020-09-15 The Boeing Company Window heating control system and methods of operating the same

Also Published As

Publication number Publication date
KR20220132643A (ko) 2022-09-30
WO2021160388A1 (de) 2021-08-19
JP2023513341A (ja) 2023-03-30
US20230073820A1 (en) 2023-03-09
CN113543970A (zh) 2021-10-22
JP7523555B2 (ja) 2024-07-26

Similar Documents

Publication Publication Date Title
EP2936925B1 (de) Scheibe mit elektrischer heizschicht
EP3135075B1 (de) Elektrisch beheizbare scheibe mit schaltbereich
EP2936926B1 (de) Scheibe mit elektrischer heizschicht
EP2591638B1 (de) Verbundscheibe mit einer elektrisch beheizbaren beschichtung
EP3372052B1 (de) Scheibenanordnung mit beheizbarer verbundscheibe mit kapazitivem schaltbereich
EP2879869B1 (de) Verbundscheibe mit elektrischer kontaktierung
EP3233746B1 (de) Verfahren zur herstellung einer verbundscheibe mit korrosionsgeschützter funktioneller beschichtung
DE60017391T2 (de) Elektrisch beheizbare sonnenschutzbeschichtete autoverglasungsscheibe
EP3189706B1 (de) Scheibe mit elektrischem heizbereich
EP3362284B1 (de) Beheizbare laminierte fahrzeugscheibe mit verbesserter wärmeverteilung
WO2016116372A1 (de) Verbundscheibe mit kapazitivem schaltbereich
WO2015162107A1 (de) Scheibe mit beleuchteter schaltfläche und heizfunktion
EP2325002B2 (de) Verfahren zur Herstellung einer Verbundglasscheibe mit Sensorfenster
EP3034295A1 (de) Verbundscheibe mit korrosionsgeschützter funktioneller beschichtung
WO2021209433A1 (de) Scheibe mit elektrisch beheizbarem kommunikationsfenster für sensoren und kamerasysteme
WO2017102168A1 (de) Verfahren zur reparatur von substraten mit elektrisch leitfähiger beschichtung und laserschnittmuster
EP4103922A1 (de) Fahrzeugscheibe mit integriertem temperatursensor
DE202014010748U1 (de) Verbundscheibe mit korrosionsgeschützter funktioneller Beschichtung
EP4353050A1 (de) Scheibe mit muster-förmiger funktionsbeschichtung
WO2023143945A1 (de) Scheibe mit schaltungsbereich
WO2024012857A1 (de) Flachbandkabel mit temperatursensor, anschlussanordnung und verfahren
WO2024068174A1 (de) Anordnung für fahrerassistenzsystem mit einer beheizbaren fahrzeugverglasung
WO2021209391A1 (de) Verglasung mit sensorschaltfläche
EP4409610A1 (de) Flachbandkabel zur brucherkennung, anschlussanordnung mit verbundscheibe, verfahren zur brucherkennung und verwendung des flachbandkabels
WO2022167434A1 (de) Verbundscheibe mit elektrisch beheizbarem kamerafenster

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS