EP4092357B1 - Pompe à chaleur à absorption et processus de circuit à absorption - Google Patents

Pompe à chaleur à absorption et processus de circuit à absorption Download PDF

Info

Publication number
EP4092357B1
EP4092357B1 EP21174059.2A EP21174059A EP4092357B1 EP 4092357 B1 EP4092357 B1 EP 4092357B1 EP 21174059 A EP21174059 A EP 21174059A EP 4092357 B1 EP4092357 B1 EP 4092357B1
Authority
EP
European Patent Office
Prior art keywords
absorber
pump
refrigerant
solution
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21174059.2A
Other languages
German (de)
English (en)
Other versions
EP4092357A1 (fr
Inventor
Klaus Ramming
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGO GmbH Energie und Anlagen
Original Assignee
AGO GmbH Energie und Anlagen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGO GmbH Energie und Anlagen filed Critical AGO GmbH Energie und Anlagen
Priority to EP21174059.2A priority Critical patent/EP4092357B1/fr
Publication of EP4092357A1 publication Critical patent/EP4092357A1/fr
Application granted granted Critical
Publication of EP4092357B1 publication Critical patent/EP4092357B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the invention relates firstly to a sorption heat pump with coolant and liquid solvent, a poor and a rich solution, the poor and rich solutions being single-phase solutions of the solvent and the coolant, as well as with an expeller in which the rich solution absorbs heat supplied from the outside and thereby expels the coolant, an absorber in which the poor solution absorbs the gaseous coolant and thereby releases heat, and a bypass with a circulation pump which returns a partial flow to the absorber after it leaves the absorber.
  • the invention further relates to a sorption cycle process with coolant and liquid solvent, a poor and a rich solution, wherein the poor and the rich solution are single-phase mixtures of the solvent and the coolant, and wherein the rich solution absorbs heat supplied from the outside and thereby expels the coolant, and the poor solution absorbs the coolant in an absorber and thereby releases heat, and wherein after exiting the absorber a partial flow is pumped back into the absorber.
  • Such a sorption heat pump and such a sorption cycle process reveals EN 10 2011 050 309 A1 in the form of an absorption chiller with an electric circulation pump on the absorber.
  • US 5 367 884 A shows a sorption heat pump with coolant and liquid solvent, a poor and a rich solution, the poor and rich solutions being single-phase solutions of the solvent and the coolant, as well as with an expeller in which the rich solution absorbs heat supplied from the outside and thereby expels the coolant, an absorber in which the poor solution absorbs the gaseous coolant and thereby releases heat, and a bypass with a circulation pump which, after leaving the absorber, returns a partial flow to the absorber, the circulation pump being a jet pump with the poor solution flowing into the absorber as the driving medium.
  • the invention is based on the object of reducing the energy requirement for circulation.
  • the object is achieved by a sorption heat pump according to claim 1 and by a cycle process according to claim 10.
  • the circulation pump returns the rich solution.
  • the regulation can be carried out by a throttle element.
  • the solvent is water and the coolant is ammonia.
  • ammonia used as the coolant, usable temperature ranges of down to -60 °C can be achieved.
  • lithium bromide can be used as the solvent and water as the coolant in a cycle process according to the invention.
  • a sorption heat pump according to the invention has a solvent pump that pumps the poor solution flowing out of the expeller at a low pressure to a high pressure before it enters the absorber, a compressor that compresses the coolant flowing out of the expeller to the high pressure and a throttle valve that relaxes the rich solution flowing out of the absorber to the low pressure before it enters the expeller.
  • a sorption heat pump according to the invention uses heat at a low temperature level (as a "classic heat pump") and makes it available as heating heat at a higher temperature level.
  • the compressor is a mechanical compressor.
  • the compressor is a thermal compressor comprising a condenser, refrigerant pump and evaporator. Both types of compressor are generally known.
  • the circulation pump returns the gaseous refrigerant.
  • the gaseous refrigerant is often extracted from the rich solution flowing out of the absorber in a Solution collector to increase efficiency and can be returned to the absorber in the sorption heat pump according to the invention.
  • a sorption heat pump preferably has a solution pump that pumps the rich solution flowing out of the absorber at a low pressure to a high pressure before it enters the expeller, a condenser that liquefies the coolant flowing out of the expeller, an expansion valve that expands the liquefied coolant to the low pressure and an evaporator in which the liquid coolant absorbs heat before it enters the absorber.
  • a sorption heat pump according to the invention acts as a refrigeration machine and extracts heat from a cold room and dissipates it into the environment as waste heat.
  • a sorption heat pump according to the invention configured as a refrigeration machine has a measuring element that measures a level of the driving medium before it enters the circulation pump and a control unit on the circulation pump that controls a flow of the driving medium based on the level.
  • the control unit fulfills the control function of a motor control throttle.
  • the circulated mass flow is set depending on the design of the jet pump and the flow of the driving medium.
  • the invention proposes that the poor solution flowing into the absorber pumps the partial flow as the driving medium of a jet pump.
  • the sorption cycle process according to the invention is carried out in a sorption heat pump according to the invention and is equally characterized by the advantages listed above.
  • the sorption heat pumps described below are operated with water as solvent and ammonia as coolant.
  • the first sorption heat pump 1 has an absorber 3, a throttle valve 4, an expeller 5 and, in parallel, a solvent pump 6 and a mechanical compressor 7 in a circuit closed by pipes 2.
  • the first sorption heat pump 1 is a "classic heat pump”: In the expeller 5, 3.74 kg/s of a rich solution consisting of the solvent and the coolant absorb 1.25 MW of heat from a heat source under a low pressure of 12.9 bar and cool it from 90 °C to 63 °C.
  • the poor solution absorbs the coolant, giving off 1.47 MW of heat to a heating medium and heating it from 90 °C to 120 °C.
  • the rich solution is throttled to low pressure by the throttle valve 4 before it enters the expeller 5 again.
  • the poor solution is expanded to high pressure in a circulation pump 10 designed as a jet pump and draws 0.1 kg/s of the gaseous coolant separating out of the solution collector 9 through a bypass 11.
  • the pressure loss between the overpressure and the high pressure as the driving force of the circulation pump 10 corresponds to the energy used for circulation.
  • the second sorption heat pump 12 has an absorber 14, a solution pump 15, an expeller 16 and, in parallel, a circulation pump 17 designed as a jet pump and a condenser 18, an expansion valve 19 and an evaporator 20 in a circuit closed by pipes 13.
  • the second sorption heat pump 12 is an absorption refrigeration machine: In the expeller 16, a rich solution consisting of the solvent and the coolant absorbs 1.04 MW of heat from a heating medium under a high pressure of 12.3 bar and cools it from 110 °C to 100 °C. From a subsequent rectification column 21, 0.52 kg/s of the expelled coolant flows into the condenser 18, where it is liquefied and releases waste heat to cooling water. The liquid coolant is expanded to a low pressure of 2.7 bar in the expansion valve 19, evaporates in the evaporator 20 and cools a coolant from -5 °C to -10 °C before entering the absorber 14.
  • a measuring element measures a level of the poor solution in the rectification column 21 and regulates the flow flowing out of the rectification column as a driving medium through the circulation pump 17 via a control valve so that the level remains constant.
  • the measuring element and the control valve are not shown.
  • a solution heat exchanger 23 the rich solution absorbs heat from the poor solution between the rectification column 21 and the circulation pump 17 before entering the expeller 16.
  • the low-pressure refrigerant flowing out of the evaporator 20 absorbs heat from the high-pressure liquid refrigerant between condenser 18 and expansion valve 19. Both increase the energetic efficiency of the cycle process according to the invention.
  • FIG. 3 The diagram shown of the third sorption heat pump 25 according to the invention differs from that of the second sorption heat pump 12 only in that the bypass 26 branches off at the top from a solution collector 27 between absorber 28 and solution pump 29.
  • the circulation pump 30 first draws the gaseous coolant that separates from the rich solution from the solution collector 27 and only draws the rich solution when this has been drawn off.
  • the heating medium is cooled from 95 °C to 83 °C and in the evaporator 32, the coolant is cooled from 0 °C to -5 °C.
  • the fourth sorption heat pump 33 differs from the first sorption heat pump 1 in that a "thermal compressor” consisting of condenser 34, refrigerant pump 35 and 36 takes over the function of the mechanical compressor 7.
  • the circulation pump 37 pumps 1.5 kg/s of the liquid refrigerant from the solution collector 38 via the bypass 39 back into the absorber 40.
  • the poor solution Before entering the circulation pump 37, the poor solution absorbs heat from the rich solution in a solution heat exchanger 44 between the solution collector 38 and the throttle valve 45.
  • the poor solution is heated from 59 °C to 76 °C and the rich solution is cooled from 79 °C to 66 °C.
  • the absorber 40 the poor solution absorbs the coolant, transfers 2.06 MW of heat to a heating medium and heats it from 75 °C to 95 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Claims (10)

  1. Pompe à chaleur à sorption (1, 12, 25, 33), avec un fluide frigorigène et un solvant liquide, une solution pauvre et une solution riche, la solution pauvre et la solution riche étant des solutions monophasiques du solvant et du fluide frigorigène ainsi qu'avec
    a. un bouilleur (5, 16, 31, 41), dans lequel la solution riche absorbe de la chaleur alimentée à partir de l'extérieur et expulse à cet effet le fluide frigorigène,
    b. un absorbeur (3, 14, 28, 40), dans lequel la solution pauvre absorbe le fluide frigorigène gazeux et dégage de la chaleur à cet effet,
    c. un collecteur de solution (9, 27, 38) se raccordant sur l'absorbeur (3, 14, 28, 40) pour la solution riche et
    d. une dérivation (11, 22, 26, 39), pourvue d'une pompe de circulation (10, 17, 30, 37), qui ramène à partir du collecteur de solution (9, 27, 38) un flux partiel dans l'absorbeur (3, 14, 28, 40),
    la pompe de circulation (10, 17, 30, 37) étant une pompe à jet avec comme agent propulseur la solution pauvre qui circule dans l'absorbeur (3, 14, 28, 40).
  2. Pompe à chaleur à sorption (1, 25) selon la revendication précédente, caractérisée en ce que la pompe de circulation (10, 30) est conçue pour ramener le fluide frigorigène gazeux.
  3. Pompe à chaleur à sorption (12, 25, 33) selon l'une quelconque des revendications précédentes, caractérisée en ce que la pompe de circulation (17, 30, 37) est conçue pour ramener la solution riche.
  4. Pompe à chaleur à sorption (1, 12, 25, 33) selon l'une quelconque des revendications précédentes, caractérisée en ce que le solvant est de l'eau et le fluide frigorigène est de l'ammoniac.
  5. Pompe à chaleur à sorption (1, 33) selon l'une quelconque des revendications précédentes, caractérisée par une pompe à solvant (6, 43), qui avant l'entrée dans l'absorbeur (3, 40), pompe à une haute pression la solution pauvre s'écoulant à une basse pression hors du bouilleur (5, 41), un compresseur (7), qui compresse à la haute pression le fluide frigorigène s'écoulant hors du bouilleur (5, 41) et une soupape d'étranglement (4, 45), qui avant l'entrée dans le bouilleur (5, 41), détend à la basse pression la solution riche s'écoulant hors de l'absorbeur (3, 40).
  6. Pompe à chaleur à sorption (1) selon la revendication précédente, caractérisée en ce que le compresseur (7) est un compresseur mécanique.
  7. Pompe à chaleur à sorption (33) selon la revendication 5, caractérisée en ce que le compresseur (7) est un compresseur thermique composé d'un condenseur (34), d'une pompe (35) à fluide réfrigérant et d'un évaporateur (36).
  8. Pompe à chaleur à sorption (12, 25) selon l'une quelconque des revendications 1 à 4, caractérisée par une pompe (15, 29) à solution, qui avant l'entrée dans le bouilleur (16, 31), pompe à une haute pression la solution riche s'écoulant à une basse pression hors de l'absorbeur (14, 28), un condensateur (18), qui liquéfie le fluide frigorigène s'écoulant hors du bouilleur (16, 31), une soupape de détente (19), qui détend le fluide frigorigène détendu à la basse pression et un évaporateur (20, 32), dans lequel avant l'entrée dans l'absorbeur (14, 28), le fluide frigorigène absorbe de la chaleur.
  9. Pompe à chaleur à sorption (12, 25) selon la revendication précédente, caractérisée par un élément de mesure qui mesure un niveau de l'agent propulseur, avant l'entrée dans la pompe de circulation (17, 30) et par une unité de réglage sur la pompe de circulation (17, 30), qui règle un flux de l'agent propulseur à l'aide du niveau.
  10. Processus de circuit de sorption, avec un fluide frigorigène et un solvant liquide, et une solution pauvre et une solution riche, la solution pauvre et la solution riche étant des solutions monophasiques du solvant et du fluide frigorigène, et la solution riche absorbant de la chaleur alimentée par l'extérieur et expulsant à cet effet le fluide frigorigène, la solution pauvre absorbant le fluide frigorigène dans un absorbeur (3, 14, 28, 40) et dégageant de la chaleur à cet effet, la solution riche s'écoulant dans un collecteur de solution (9, 27, 38) se raccordant sur l'absorbeur (3, 14, 28, 40) et hors du collecteur de solution (9, 27, 38), un flux partiel étant pompé en retour dans l'absorbeur (3, 14, 28, 40), caractérisé en ce qu'en tant qu'agent propulseur d'une pompe à jet, la solution pauvre s'écoulant dans l'absorbeur (3, 14, 28, 40) pompe le flux partiel.
EP21174059.2A 2021-05-17 2021-05-17 Pompe à chaleur à absorption et processus de circuit à absorption Active EP4092357B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21174059.2A EP4092357B1 (fr) 2021-05-17 2021-05-17 Pompe à chaleur à absorption et processus de circuit à absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21174059.2A EP4092357B1 (fr) 2021-05-17 2021-05-17 Pompe à chaleur à absorption et processus de circuit à absorption

Publications (2)

Publication Number Publication Date
EP4092357A1 EP4092357A1 (fr) 2022-11-23
EP4092357B1 true EP4092357B1 (fr) 2024-05-08

Family

ID=75936853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21174059.2A Active EP4092357B1 (fr) 2021-05-17 2021-05-17 Pompe à chaleur à absorption et processus de circuit à absorption

Country Status (1)

Country Link
EP (1) EP4092357B1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290273A (en) * 1980-02-13 1981-09-22 Milton Meckler Peltier effect absorption chiller-heat pump system
US5033274A (en) * 1989-11-28 1991-07-23 Erickson Donald C Rectification reflux by latent heat exchange with partially depressurized absorbent
US5367884B1 (en) * 1991-03-12 1996-12-31 Phillips Eng Co Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
DE102011050309B4 (de) 2011-05-12 2018-01-11 Ago Ag Energie + Anlagen Kreisprozess zum Betrieb einer Absorptionskältemaschine und Absorptionskältemaschine

Also Published As

Publication number Publication date
EP4092357A1 (fr) 2022-11-23

Similar Documents

Publication Publication Date Title
CH627833A5 (de) Absorptionskaelteverfahren mittels kocherenergie, die einer absorptionskaelteanlage zugefuehrt wird.
EP2059104A2 (fr) Dispositif de refroidissement pour un système informatique
DE102018114762B4 (de) Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
EP3236178B1 (fr) Pompe a chaleur a absorption et procede de circuit a absorption
EP3540332B1 (fr) Pompe à chaleur a absorption et procédé de circuit à absorption
EP2584287B1 (fr) Cycle destiné au fonctionnement d'une machine de refroidissement par absorption et machine de refroidissement par absorption
EP1391665B1 (fr) Appareil frigorifique ou pompe à chaleur à absorption à plusieurs étages et utilisation de cet appareil dans un système de conversion d'énergie
DE102008005076A1 (de) Kältemittelkreis und Verfahren zum Betreiben eines Kältemittelkreises
EP3540333B1 (fr) Pompe à chaleur à absorption et procédé de circuit à absorption
EP4092357B1 (fr) Pompe à chaleur à absorption et processus de circuit à absorption
DE102017100281B3 (de) Absorptionsprozess und -maschine zur Nutzung von industrieller Abwärme
DE4415199A1 (de) Kälteanlage
EP3559564B1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
WO2004008046A1 (fr) Combinaison d'une machine de travail et d'une pompe a chaleur a sorption
DE69921871T2 (de) Absorptionskälteanlage mit Kupplung von Kondensat und Lösung
DE102009039326A1 (de) Wärmepumpe
EP3540334B1 (fr) Transformateur à chaleur et processus de transformation de chaleur
EP3058289A1 (fr) Machine frigorifique à absorption
DE102011050309B4 (de) Kreisprozess zum Betrieb einer Absorptionskältemaschine und Absorptionskältemaschine
DE2801529A1 (de) Kaeltemaschine
EP3355002B1 (fr) Pompe à chaleur a absorption et procédé de circuit à absorption
DE102007062343B4 (de) Verfahren und Anordnung zur Kälteerzeugung nach einem Wasser-Lithiumbromid-Resorptionskälteprozess
EP3623725B1 (fr) Machine à absorption et processus de circuit à absorption
DE10017828A1 (de) Verfahren zum Betreiben einer Sorptionskälteanlage
DE3619547A1 (de) Verfahren und einrichtung zur erzeugung einer kraft aus einer temperaturdifferenz zweier medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20240312

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003637

Country of ref document: DE