EP4091757A1 - Method for treating at least one layer or part of a component and device for carrying out the method - Google Patents

Method for treating at least one layer or part of a component and device for carrying out the method Download PDF

Info

Publication number
EP4091757A1
EP4091757A1 EP22162360.6A EP22162360A EP4091757A1 EP 4091757 A1 EP4091757 A1 EP 4091757A1 EP 22162360 A EP22162360 A EP 22162360A EP 4091757 A1 EP4091757 A1 EP 4091757A1
Authority
EP
European Patent Office
Prior art keywords
laser beam
component
area
layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22162360.6A
Other languages
German (de)
French (fr)
Inventor
Andreas Michalowski
Reiner Ramsayer
Fabian Nyenhuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP4091757A1 publication Critical patent/EP4091757A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the invention relates to a method for treating at least one layer or a region of a component using a laser beam to produce an amorphous layer or an amorphous region, and a device for carrying out the method according to the invention.
  • a method for treating at least one layer of a component with the features of the preamble of claim 1 is from DD 217 738 A1 known.
  • the known method which is used to produce an amorphous layer on the surface of the metallic component, a laser beam is guided over the surface of the component and the material of the component is melted on the surface.
  • the atoms In order to produce the amorphous layer, it is necessary that when the melted layer solidifies, the atoms cannot arrange themselves in a regular crystal structure and only have a short-range order, but not a long-range order. This requires that a very high cooling rate of more than 10 6 Kelvin per second is achieved.
  • the method according to the invention for treating at least one layer or a region of a component to produce an amorphous layer or an amorphous region in the component with the features of claim 1 has the advantage that it can be used to produce almost any 3-dimensional structure or Forming forms of amorphously solidified material in a material of a component that is transparent to the wavelength of the laser beam, without additional cooling measures being necessary for increasing the cooling rate during solidification of the material melted by the laser beam.
  • the method according to the invention according to the teaching of claim 1 proposes that the laser beam has laser pulses with a repetition rate in the megahertz or gigahertz range, that a material transparent to the wavelength of the laser beam is used as the material, and that the area of action of the laser beam takes place in the component by a fixed relocation of the focus area of the laser beam in relation to a direction running in the direction of propagation of the laser beam in the component.
  • the invention is based on the idea of keeping the energy input into the material of the component during melting of the material so low or limiting it in terms of time that a sufficiently high cooling rate is achieved even without cooling measures, which leads to an amorphous solidification of the material. This is caused by the fact that only a relatively small amount of thermal energy has to be dissipated due to the low energy input.
  • the volume melted by the laser beam is determined by the non-linear focal volume, which can be influenced by the spatial and temporal intensity distribution of the laser pulse.
  • energy deposition and generation of an amorphous volume is also possible below the Abbe limit.
  • the melted and subsequently solidified volumes mentioned have a diameter, depending on the wavelength of the laser beam, of a few 100 nm to a few micrometers, typically between 500 nm and 5 ⁇ m. It is advantageous if the lateral deviation is less than 10 ⁇ m when the laser beam is moved relative to the component.
  • Tracking of the focal plane (in a direction running in the direction of propagation of the laser beam) is only conditionally or not necessary for transparent materials, since with many transparent materials the absorbing volume becomes opaque or at least opaque over time during solidification, and the absorption of subsequent pulses already takes place at the boundaries of the processing volume, causing it to grow in the direction of the laser beam.
  • the laser beam acts successively on different layers or areas in the component running in the direction of propagation of the laser beam. This is particularly advantageous if the material does not become opaque during the amorphous solidification. In addition, this enables precise coupling of the energy into the area to be melted.
  • the laser beam first acts on the layer or region furthest away from the component surface on the side of the laser beam and the subsequent layers or Areas on which the laser beam acts gradually have a smaller distance to the component surface.
  • pulse packets with 10 to 1000 laser pulses, preferably between 50 and 200 laser pulses, are preferably used.
  • the interval between two laser pulses is between 10 picoseconds and 100 nanoseconds, preferably around 500 picoseconds.
  • the thickness of a melted layer or a melted region of the component is less than 10 ⁇ m, preferably less than 2 ⁇ m. This makes it possible to achieve homogeneous amorphous areas or layers over the entire volume.
  • the focus diameter of the laser beam is between 1 ⁇ m and 1000 ⁇ m, preferably between 100 ⁇ m and 1000 ⁇ m.
  • the invention also includes a device for carrying out the method according to the invention described so far, which is characterized in that a laser beam device is provided for generating laser pulses in the gigahertz range and scanner optics for guiding the laser beam into the area of at least one layer of the component . Furthermore, the device includes an adjustment device for adjusting the laser beam relative to the surface of the component.
  • the adjustment device is designed as a 5-axis adjustment system.
  • FIGURE shows a schematic representation of a device for generating amorphous volumes on a component.
  • the single FIGURE shows a device 100 for generating at least one amorphous volume 1 in the area of a component BT.
  • the component BT is shown purely by way of example as a plate-shaped or flat component BT that lies or is positioned on a work surface 5 .
  • the device 100 has a laser beam device 10 which is designed in the form of an ultra-short pulse laser.
  • the laser beam device 10 generates a laser beam LS with pulse packets at a repetition rate of approximately 1.6 gigahertz.
  • the pulse packets each comprise between approximately 20 and 1000 laser pulses, preferably approximately between 50 and 250 laser pulses.
  • the pulse duration of the laser pulses is between 100 femtoseconds and 50 picoseconds.
  • the component BT consists of a material that is transparent to the wavelength of the laser beam LS. Glass or monocrystalline insulators and/or semiconductors such as crystalline silicon oxide, which is used in the production of quartz wafers, are intended here in particular. Applications with alkali metals are also conceivable, some of which are transparent to UV light.
  • the energy input which is on the order of magnitude of one nanojoule to a few microjoules per laser pulse, creates an amorphous volume with a diameter of less than 10 ⁇ m.
  • the device 10 also includes an adjustment device 20 for the relative movement between the laser beam LS and the surface O des Component BT, which is designed as a 5-axis adjustment device 20.
  • the component BT or the surface O of the component BT is arranged in operative connection with the surrounding air or possibly with a protective gas atmosphere.
  • the device 100 includes an optical device 30 for influencing or guiding the laser beam LS, usually in the form of a scanner.
  • the energy input by the laser beam LS is started in the region of that layer S of the material of the component BT which is the greatest distance from the surface O of the component BT on the side facing the laser beam LS or in the direction of propagation of the laser beam LS , i.e. in the area of the deepest layer S.
  • a corresponding lateral movement of the laser beam LS then takes place relative to the component BT.
  • the material of the component BT becomes opaque during amorphous solidification, the 3-dimensional structure of the volume 1 expands on the previously solidified layer S towards the surface O after solidification and subsequent repeated energy input.
  • the focus can also be set to the area of the next layer S in the direction of the surface O.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Behandlung wenigstens einer Schicht (S) oder eines Bereichs eines Bauteils (BT), bei dem ein Laserstrahl (LS) auf die wenigstens eine Schicht (S) oder den Bereich einwirkt und das Material des Bauteils (BT) im Einwirkbereich des Laserstrahls (LS) derart aufschmelzt, das bei oder durch Abkühlung das aufgeschmolzene Material amorph erstarrt.The invention relates to a method for treating at least one layer (S) or an area of a component (BT), in which a laser beam (LS) acts on the at least one layer (S) or the area and the material of the component (BT) in The area affected by the laser beam (LS) melts in such a way that the melted material solidifies amorphously during or through cooling.

Description

Technisches Gebiettechnical field

Die Erfindung betrifft ein Verfahren zur Behandlung wenigstens einer Schicht oder eines Bereichs eines Bauteil mittels eines Laserstrahls zur Erzeugung einer amorphen Schicht oder eines amorphen Bereichs, sowie eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens.The invention relates to a method for treating at least one layer or a region of a component using a laser beam to produce an amorphous layer or an amorphous region, and a device for carrying out the method according to the invention.

Stand der TechnikState of the art

Ein Verfahren zur Behandlung wenigstens einer Schicht eines Bauteils mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus der DD 217 738 A1 bekannt. Bei dem bekannten Verfahren, das zur Erzeugung einer amorphen Schicht an der Oberfläche des metallischen Bauteils dient, wird ein Laserstrahl über die Oberfläche des Bauteils geführt und das Material des Bauteils an der Oberfläche aufgeschmolzen. Zur Erzeugung der amorphen Schicht ist es erforderlich, dass beim Erstarren der aufgeschmolzenen Schicht sich die Atome nicht in einer regelmäßigen Kristallstruktur anordnen können und lediglich über eine Nahordnung, nicht aber über eine Fernordnung verfügen. Dazu ist es erforderlich, dass eine sehr hohe Abkühlgeschwindigkeit von mehr als 106 Kelvin pro Sekunde erzielt wird. Hierzu schlägt es aus der genannten Schrift bekannte Verfahren vor, das Bauteil während seiner Oberflächenbehandlung zumindest im Bereich der behandelten Oberfläche mit Wasser als Kühlmedium zu überdecken, um die benötigte hohe Abkühlgeschwindigkeit bzw. den benötigten Wärmeabfluss über das Wasser zu erzielen. Das aus der genannten Schrift bekannte Verfahren benötigt durch die erforderliche Kühlung somit einen relativ hohen vorrichtungstechnischen Aufwand.A method for treating at least one layer of a component with the features of the preamble of claim 1 is from DD 217 738 A1 known. In the known method, which is used to produce an amorphous layer on the surface of the metallic component, a laser beam is guided over the surface of the component and the material of the component is melted on the surface. In order to produce the amorphous layer, it is necessary that when the melted layer solidifies, the atoms cannot arrange themselves in a regular crystal structure and only have a short-range order, but not a long-range order. This requires that a very high cooling rate of more than 10 6 Kelvin per second is achieved. For this purpose, it proposes methods known from the cited document to cover the component during its surface treatment, at least in the area of the treated surface, with water as a cooling medium in order to achieve the required high cooling rate or the required heat dissipation via the water. The method known from the cited document therefore requires a relatively high outlay in terms of device technology due to the required cooling.

Offenbarung der ErfindungDisclosure of Invention

Das erfindungsgemäße Verfahren zur Behandlung wenigstens einer Schicht oder eines Bereichs eines Bauteils zur Erzeugung einer amorphen Schicht oder eines amorphen Bereichs in dem Bauteil mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass es dazu verwendet werden kann, nahezu beliebige 3-dimensionale-Strukturen bzw. Formen von amorph erstarrtem Material in einem für die Wellenlänge des Laserstrahls transparenten Material eines Bauteils auszubilden, ohne dass hierzu zusätzliche Kühlmaßnahmen zur Erhöhung der Abkühlgeschwindigkeit beim Erstarren des durch den Laserstrahl aufgeschmolzenen Materials erforderlich sind.The method according to the invention for treating at least one layer or a region of a component to produce an amorphous layer or an amorphous region in the component with the features of claim 1 has the advantage that it can be used to produce almost any 3-dimensional structure or Forming forms of amorphously solidified material in a material of a component that is transparent to the wavelength of the laser beam, without additional cooling measures being necessary for increasing the cooling rate during solidification of the material melted by the laser beam.

Hierzu schlägt es das erfindungsgemäße Verfahren gemäß der Lehre des Anspruchs 1 vor, dass der Laserstrahl Laserimpulse mit einer Repetitionsrate im Megaherz- oder Gigaherz-Bereich aufweist, dass als Material ein für die Wellenlänge des Laserstrahls transparentes Material verwendet wird, und dass der Einwirkbereich des Laserstrahls in dem Bauteil durch eine Festverlegung des Fokusbereichs des Laserstrahls in Bezug zur einer in Ausbreitungsrichtung des Laserstrahls im Bauteil verlaufenden Richtung erfolgt.For this purpose, the method according to the invention according to the teaching of claim 1 proposes that the laser beam has laser pulses with a repetition rate in the megahertz or gigahertz range, that a material transparent to the wavelength of the laser beam is used as the material, and that the area of action of the laser beam takes place in the component by a fixed relocation of the focus area of the laser beam in relation to a direction running in the direction of propagation of the laser beam in the component.

Der Erfindung liegt die Idee zugrunde, den Energieeintrag in das Material des Bauteils beim Aufschmelzen des Materials derart gering zu halten bzw. zeitlich zu beschränken, dass auch ohne Kühlmaßnahmen eine hinreichend große Abkühlgeschwindigkeit erzielt wird, die zu einer amorphen Erstarrung des Materials führt. Dies wird dadurch bewirkt, dass durch den geringen Energieeintrag auch nur eine relativ geringe Wärmeenergiemenge abzuführen ist. Zur Erzeugung der amorphen Erstarrung des Materials ist es erforderlich, dass beim Erstarren der aufgeschmolzenen Schicht oder des aufgeschmolzenen Bereichs sich die Atome nicht in einer regelmäßigen Kristallstruktur anordnen können, sodass lediglich eine Nahordnung, nicht aber eine Fernordnung der Atome vorhanden ist. Dazu ist es erforderlich, dass eine sehr hohe Abkühlgeschwindigkeit von mehr 106 K pro Sekunde erzielt wird. Dies wird durch die räumlich stark lokalisierte Absorption und Wärmeeinbringung bei der kurzzeitigen Anwendung einer sehr hohen Repetitionsrate der Laserimpulse ermöglicht, wodurch Abkühlraten von mehr als 106 K pro Sekunde, vorzugsweise mehr als 109 K pro Sekunde gegenüber dem restlichen, nicht erwärmten Material erzielbar sind.The invention is based on the idea of keeping the energy input into the material of the component during melting of the material so low or limiting it in terms of time that a sufficiently high cooling rate is achieved even without cooling measures, which leads to an amorphous solidification of the material. This is caused by the fact that only a relatively small amount of thermal energy has to be dissipated due to the low energy input. In order to produce the amorphous solidification of the material, it is necessary for the atoms not to be able to arrange themselves in a regular crystal structure during the solidification of the melted layer or the melted area, so that there is only a short-range order, but not a long-range order of the atoms. This requires a very high cooling rate of more than 10 6 K per second to be achieved. This is due to the spatially strongly localized absorption and heat input during the short-term application of a very high repetition rate of the laser pulses allows, whereby cooling rates of more than 10 6 K per second, preferably more than 10 9 K per second compared to the rest of the unheated material can be achieved.

Das von dem Laserstrahl aufgeschmolzene Volumen wird durch das nichtlineare fokale Volumen bestimmt, welches sich durch die räumliche und zeitliche Intensitätsverteilung des Laserpulses beeinflussen lässt. Somit ist eine Energiedeponierung und Erzeugung eines amorphen Volumens auch unterhalb des Abbe-Limits möglich. Die erwähnten aufgeschmolzenen und anschließend erstarrten Volumina weisen einen Durchmesser, abhängig von der Wellenlänge des Laserstrahls, von einigen 100 nm bis wenigen Mikrometern, typischerweise zwischen 500 nm bis 5 µm, auf. Von Vorteil ist es, wenn beim Relativbewegen des Laserstrahls zum Bauteil die laterale Abweichung weniger als 10 µm beträgt. Dabei ist eine Nachführung der Fokusebene (in einer in Ausbreitungsrichtung des Laserstrahls verlaufenden Richtung) bei transparenten Materialien nur bedingt bzw. nicht notwendig, da bei vielen transparenten Materialien das absorbierende Volumen bei der Erstarrung intransparent oder zumindest zeitlich intransparent wird, und die Absorption nachfolgender Pulse bereits an den Grenzen des Bearbeitungsvolumens stattfindet, wodurch dieses in Richtung des Laserstrahls wächst.The volume melted by the laser beam is determined by the non-linear focal volume, which can be influenced by the spatial and temporal intensity distribution of the laser pulse. Thus, energy deposition and generation of an amorphous volume is also possible below the Abbe limit. The melted and subsequently solidified volumes mentioned have a diameter, depending on the wavelength of the laser beam, of a few 100 nm to a few micrometers, typically between 500 nm and 5 μm. It is advantageous if the lateral deviation is less than 10 µm when the laser beam is moved relative to the component. Tracking of the focal plane (in a direction running in the direction of propagation of the laser beam) is only conditionally or not necessary for transparent materials, since with many transparent materials the absorbing volume becomes opaque or at least opaque over time during solidification, and the absorption of subsequent pulses already takes place at the boundaries of the processing volume, causing it to grow in the direction of the laser beam.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens zur Behandlung wenigstens einer Schicht oder eines Bereichs eines Bauteils sind in den Unteransprüchen aufgeführt.Advantageous developments of the method according to the invention for treating at least one layer or a region of a component are listed in the dependent claims.

Zur Erzeugung einer 3-dimensionalen amorphen Struktur innerhalb des Bauteils kann es vorgesehen sein, dass der Laserstrahl nacheinander auf verschiedene, in Ausbreitungsrichtung des Laserstrahls verlaufende Schichten oder Bereiche im Bauteil einwirkt. Dies ist vor allem dann vorteilhaft, wenn bei der amorphen Erstarrung des Materials dieses nicht intransparent wird. Außerdem wird dadurch eine präzise Einkopplung der Energie in den aufzuschmelzenden Bereich ermöglicht.In order to produce a 3-dimensional amorphous structure within the component, it can be provided that the laser beam acts successively on different layers or areas in the component running in the direction of propagation of the laser beam. This is particularly advantageous if the material does not become opaque during the amorphous solidification. In addition, this enables precise coupling of the energy into the area to be melted.

Hierzu ist es besonders bevorzugt vorgesehen, dass der Laserstrahl zunächst auf die von der Bauteiloberfläche auf der Seite des Laserstrahls am weitesten entfernte Schicht oder Bereich einwirkt und die nachfolgenden Schichten oder Bereiche, auf die der Laserstrahl einwirkt, sukzessiv einen geringeren Abstand zur Bauteiloberfläche aufweisen.For this purpose, it is particularly preferably provided that the laser beam first acts on the layer or region furthest away from the component surface on the side of the laser beam and the subsequent layers or Areas on which the laser beam acts gradually have a smaller distance to the component surface.

Besonders bevorzugt sind Repetitionsraten der Laserimpulse zwischen 50 Megahertz und 20 Gigahertz, vorzugsweise 1,6 Gigahertz.Repetition rates of the laser pulses between 50 megahertz and 20 gigahertz, preferably 1.6 gigahertz, are particularly preferred.

Weiterhin finden bevorzugt Pulspakete mit 10 bis 1000 Laserimpulsen, vorzugsweise zwischen 50 bis 200 Laserimpulsen, Verwendung.Furthermore, pulse packets with 10 to 1000 laser pulses, preferably between 50 and 200 laser pulses, are preferably used.

Der Abstand zwischen zwei Laserimpulsen beträgt zwischen 10 Pikosekunden und 100 Nanosekunden, vorzugsweise etwa 500 Pikosekunden.The interval between two laser pulses is between 10 picoseconds and 100 nanoseconds, preferably around 500 picoseconds.

Bevorzugt ist es darüber hinaus, wenn die Dicke einer aufgeschmolzenen Schicht oder eines aufgeschmolzenen Bereichs des Bauteils weniger als 10 µm, vorzugsweise weniger als 2 µm, beträgt. Dadurch lassen sich über das gesamte Volumen homogene amorphe Bereiche bzw. Schichten erzielen.It is also preferred if the thickness of a melted layer or a melted region of the component is less than 10 μm, preferably less than 2 μm. This makes it possible to achieve homogeneous amorphous areas or layers over the entire volume.

Weiterhin ist es von Vorteil, wenn der Fokusdurchmesser des Laserstrahls zwischen 1 µm und 1000 µm, vorzugsweise zwischen 100 µm und 1000 µm, beträgt.Furthermore, it is advantageous if the focus diameter of the laser beam is between 1 μm and 1000 μm, preferably between 100 μm and 1000 μm.

Weiterhin umfasst die Erfindung auch eine Vorrichtung zum Durchführen des soweit beschriebenen erfindungsgemäßen Verfahrens, die dadurch gekennzeichnet ist, dass eine Laserstrahleinrichtung zur Erzeugung von Laserimpulsen im Gigahertz-Bereich und eine Scanner-Optik zum Leiten des Laserstrahls in den Bereich wenigstens einer Schicht des Bauteils vorgesehen ist. Weiterhin umfasst die Vorrichtung eine Verstelleinrichtung zur Verstellung des Laserstrahls relativ zur Oberfläche des Bauteils.The invention also includes a device for carrying out the method according to the invention described so far, which is characterized in that a laser beam device is provided for generating laser pulses in the gigahertz range and scanner optics for guiding the laser beam into the area of at least one layer of the component . Furthermore, the device includes an adjustment device for adjusting the laser beam relative to the surface of the component.

Obwohl bereits zur Verstellung des Laserstrahls relativ zur Oberfläche des Bauteils 3-Achs-Verstellsysteme hinreichend sind, ist es besonders vorteilhaft, wenn die Verstelleinrichtung als 5-Achs-Verstellsystem ausgebildet ist.Although 3-axis adjustment systems are already sufficient for adjusting the laser beam relative to the surface of the component, it is particularly advantageous if the adjustment device is designed as a 5-axis adjustment system.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung sowie anhand der Zeichnung.Further advantages, features and details of the invention result from the following description of preferred embodiments of the invention and from the drawing.

Kurze Beschreibung der ZeichnungBrief description of the drawing

Die einzige Figur zeigt in einer schematischen Darstellung eine Vorrichtung zur Erzeugung amorpher Volumina an einem Bauteil.The only FIGURE shows a schematic representation of a device for generating amorphous volumes on a component.

Ausführungsform der Erfindungembodiment of the invention

In der einzigen Figur ist eine Vorrichtung 100 zur Erzeugung wenigstens eines amorphen Volumens 1 im Bereich eines Bauteils BT dargestellt. Das Bauteil BT ist rein beispielhaft als plattenförmiges bzw. ebenes Bauteil BT dargestellt, das auf einer Arbeitsfläche 5 liegt bzw. positioniert ist.The single FIGURE shows a device 100 for generating at least one amorphous volume 1 in the area of a component BT. The component BT is shown purely by way of example as a plate-shaped or flat component BT that lies or is positioned on a work surface 5 .

Zur Erzeugung des amorphen Volumens 1 innerhalb des Bauteils BT weist die Vorrichtung 100 eine Laserstrahleinrichtung 10 auf, die in Form eines Ultrakurzpulslasers ausgebildet ist. Die Laserstrahleinrichtung 10 erzeugt einen Laserstrahl LS mit Pulspaketen bei einer Repetitionsrate von etwa 1,6 Gigahertz. Die Pulspakete umfassen dabei jeweils etwa zwischen 20 und 1000 Laserimpulsen, vorzugsweise etwa zwischen 50 und 250 Laserimpulsen. Die Pulsdauer der Laserimpulse beträgt zwischen 100 Femtosekunden und 50 Pikosekunden.In order to generate the amorphous volume 1 within the component BT, the device 100 has a laser beam device 10 which is designed in the form of an ultra-short pulse laser. The laser beam device 10 generates a laser beam LS with pulse packets at a repetition rate of approximately 1.6 gigahertz. The pulse packets each comprise between approximately 20 and 1000 laser pulses, preferably approximately between 50 and 250 laser pulses. The pulse duration of the laser pulses is between 100 femtoseconds and 50 picoseconds.

Das Bauteil BT besteht aus einem für die Wellenlänge des Laserstrahls LS transparentem Material. Gedacht ist hier insbesondere an Gläser bzw. monokristalline Isolatoren und/oder Halbleiter wie kristallines Siliziumoxid, das der Herstellung von Quarz-Wafern dient. Auch sind Anwendungen bei Alkalimetallen denkbar, die teilweise für UV-Licht transparent sind.The component BT consists of a material that is transparent to the wavelength of the laser beam LS. Glass or monocrystalline insulators and/or semiconductors such as crystalline silicon oxide, which is used in the production of quartz wafers, are intended here in particular. Applications with alkali metals are also conceivable, some of which are transparent to UV light.

Der Energieeintrag, der beispielsweise in der Größenordnung von einem Nanojoule bis einigen Mikrojoule pro Laserimpuls liegt, erzeugt ein amorphes Volumen mit einem Durchmesser von weniger als 10 µm.The energy input, which is on the order of magnitude of one nanojoule to a few microjoules per laser pulse, creates an amorphous volume with a diameter of less than 10 µm.

Die Vorrichtung 10 umfasst darüber hinaus eine Verstelleinrichtung 20 zur Relativbewegung zwischen dem Laserstrahl LS und der Oberfläche O des Bauteils BT, die als 5-Achs-Verstelleinrichtung 20 ausgebildet ist. Das Bauteil BT bzw. die Oberfläche O des Bauteils BT ist während der Einwirkung des Laserstrahls LS in Wirkverbindung mit der umgebenden Luft oder ggf. mit einer Schutzgasatmosphäre angeordnet. Weiterhin umfasst die Vorrichtung 100 eine Optikeinrichtung 30 zur Beeinflussung bzw. Führung des Laserstrahls LS, üblicherweise in Form eines Scanners.The device 10 also includes an adjustment device 20 for the relative movement between the laser beam LS and the surface O des Component BT, which is designed as a 5-axis adjustment device 20. During the action of the laser beam LS, the component BT or the surface O of the component BT is arranged in operative connection with the surrounding air or possibly with a protective gas atmosphere. Furthermore, the device 100 includes an optical device 30 for influencing or guiding the laser beam LS, usually in the form of a scanner.

Zur Erzeugung des Volumens 1 wird er Energieeintrag durch den Laserstrahl LS im Bereich derjenigen Schicht S des Materials des Bauteils BT begonnen, der von der Oberfläche O des Bauteils BT auf der dem Laserstrahl LS zugewandten Seite bzw. in Ausbreitungsrichtung des Laserstrahls LS betrachtet den größten Abstand aufweist, d.h. im Bereich der tiefsten Schicht S. In diesem Bereich findet dann, je nach lateraler Ausdehnung der zu erzeugenden amorphen Schicht S, anschließend eine entsprechende seitliche Bewegung des Laserstrahls LS relativ zum Bauteil BT statt. Falls das Material des Bauteils BT beim amorphen Erstarren intransparent wird, baut sich nach er Erstarrung und anschließendem wiederholten Energieeintrag die 3-dimensionale Struktur des Volumens 1 auf der zuvor erstarrten Schicht S in Richtung zur Oberfläche O aus. Alternativ kann der Fokus auch auf den Bereich der in Richtung der Oberfläche O nächstliegenden Schicht S eingestellt werden.To generate the volume 1, the energy input by the laser beam LS is started in the region of that layer S of the material of the component BT which is the greatest distance from the surface O of the component BT on the side facing the laser beam LS or in the direction of propagation of the laser beam LS , i.e. in the area of the deepest layer S. In this area, depending on the lateral extent of the amorphous layer S to be produced, a corresponding lateral movement of the laser beam LS then takes place relative to the component BT. If the material of the component BT becomes opaque during amorphous solidification, the 3-dimensional structure of the volume 1 expands on the previously solidified layer S towards the surface O after solidification and subsequent repeated energy input. Alternatively, the focus can also be set to the area of the next layer S in the direction of the surface O.

Die soweit beschriebene Vorrichtung 100 kann in vielfältiger Art und Weise abgewandelt bzw. modifiziert werden, ohne vom Erfindungsgedanken abzuweichen.The device 100 described so far can be altered or modified in many ways without departing from the spirit of the invention.

Claims (10)

Verfahren zur Behandlung wenigstens einer Schicht (S) oder eines Bereichs eines Bauteils (BT), bei dem ein Laserstrahl (LS) auf die wenigstens eine Schicht (S) oder den Bereich einwirkt und das Material des Bauteils (BT) im Einwirkbereich des Laserstrahls (LS) derart aufschmelzt, dass bei oder durch Abkühlung das aufgeschmolzene Material amorph erstarrt,
dadurch gekennzeichnet,
dass der Laserstrahl (LS) Laserimpulse mit einer Repetitionsrate im Megahertz- oder Gigahertz-Bereich aufweist, dass als Material für das Bauteil (BT) ein für die Wellenlänge des Laserstrahls (LS) transparentes Material verwendet wird, und dass der Einwirkbereich des Laserstrahls (LS) durch eine Festlegung des Fokusbereichs des Laserstrahls (LS) in Richtung einer in Ausbreitungsrichtung des Laserstrahls (LS) im Bauteil (BT) verlaufenden Richtung erfolgt.
Method for treating at least one layer (S) or an area of a component (BT), in which a laser beam (LS) acts on the at least one layer (S) or the area and the material of the component (BT) in the area of action of the laser beam ( LS) melts in such a way that the melted material solidifies amorphously during or through cooling,
characterized,
that the laser beam (LS) has laser pulses with a repetition rate in the megahertz or gigahertz range, that a material that is transparent to the wavelength of the laser beam (LS) is used as the material for the component (BT), and that the effective area of the laser beam (LS ) by defining the focus area of the laser beam (LS) in a direction running in the direction of propagation of the laser beam (LS) in the component (BT).
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zur Erzeugung einer 3-dimensionalen amorphen Struktur bzw. Volumens (1) im Bauteil (BT) der Laserstrahl (LS) nacheinander auf verschiedene, in Ausbreitungsrichtung des Laserstrahls (LS) verlaufende Schichten (S) oder Bereiche im Bauteil (BT) einwirkt.
Method according to claim 1,
characterized,
that to produce a 3-dimensional amorphous structure or volume (1) in the component (BT), the laser beam (LS) acts successively on different layers (S) or areas in the component (BT) running in the direction of propagation of the laser beam (LS).
Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass der Laserstrahl (LS) zunächst auf die von der Oberfläche (O) des Bauteils (BT) auf der Seite des Laserstrahls (LS) am weitesten entfernte Schicht (S) oder Bereich einwirkt und die nachfolgenden Schichten (S) oder Bereiche, auf die der Laserstrahl (LS) einwirkt, sukzessiv einen geringeren Abstand zur Oberfläche (O) des Bauteils (BT) aufweisen.
Method according to claim 2,
characterized,
that the laser beam (LS) first acts on the layer (S) or area furthest from the surface (O) of the component (BT) on the side of the laser beam (LS) and the subsequent layers (S) or areas on which the laser beam (LS) acts, successively have a smaller distance to the surface (O) of the component (BT).
Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Repetitionsrate zwischen 50 Megahertz und 20 Gigahertz, vorzugsweise 1,6 Gigahertz, beträgt.
Method according to one of claims 1 to 3,
characterized,
that the repetition rate is between 50 megahertz and 20 gigahertz, preferably 1.6 gigahertz.
Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass Pulspakete mit 10 bis 1000 Laserimpulsen erzeugt werden, vorzugsweise Pulspakete mit 50 bis 250 Laserimpulsen.
Method according to one of claims 1 to 4,
characterized,
that pulse packets are generated with 10 to 1000 laser pulses, preferably pulse packets with 50 to 250 laser pulses.
Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass der Abstand zwischen zwei Laserimpulsen zwischen 10 Pikosekunden und 100 Nanosekunden, vorzugsweise etwa 500 Pikosekunden, beträgt.
Method according to one of claims 1 to 5,
characterized,
that the distance between two laser pulses is between 10 picoseconds and 100 nanoseconds, preferably about 500 picoseconds.
Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Dicke einer aufgeschmolzenen Schicht (S) oder eines aufgeschmolzenen Bereichs des Bauteils (BT) weniger als 10 Mikrometer, vorzugsweise weniger als 2 Mikrometer, beträgt.
Method according to one of claims 1 to 6,
characterized,
that the thickness of a melted layer (S) or a melted region of the component (BT) is less than 10 micrometers, preferably less than 2 micrometers.
Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass der Fokusdurchmesser des Laserstrahls (LS) zwischen 1µm und 1000µm, vorzugsweise zwischen 100µm und 1000µm beträgt.
Method according to one of claims 1 to 7,
characterized,
that the focal diameter of the laser beam (LS) is between 1 μm and 1000 μm, preferably between 100 μm and 1000 μm.
Vorrichtung (100) zum Durchführen eines Verfahrens nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Laserstrahleinrichtung (10) zur Erzeugung von Laserimpulsen im Gigahertz-Bereich und einer Scanner-Optik (30) zum Leiten des Laserstrahls (LS) in den Bereich wenigstens einer Schicht (S) oder Bereichs des Bauteils (BT), sowie mit einer Verstelleinrichtung (20) zur Verstellung des Laserstrahls (LS) relativ zur Oberfläche (O) des Bauteils (BT).Device (100) for carrying out a method according to one of Claims 1 to 8, characterized by a laser beam device (10) for generating laser pulses in the gigahertz range and a scanner optics (30) for guiding the laser beam (LS) into the area at least a layer (S) or area of the component (BT), and with an adjustment device (20) for adjusting the laser beam (LS) relative to the surface (O) of the component (BT). Vorrichtung nach Anspruch 9,
dadurch gekennzeichnet,
dass die Verstelleinrichtung (20) als 5-Achs-Verstellsystem ausgebildet ist.
Device according to claim 9,
characterized,
that the adjustment device (20) is designed as a 5-axis adjustment system.
EP22162360.6A 2021-04-13 2022-03-16 Method for treating at least one layer or part of a component and device for carrying out the method Pending EP4091757A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021203609.0A DE102021203609A1 (en) 2021-04-13 2021-04-13 Process for treating at least one layer or a region of a component and device for carrying out the process

Publications (1)

Publication Number Publication Date
EP4091757A1 true EP4091757A1 (en) 2022-11-23

Family

ID=80785133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22162360.6A Pending EP4091757A1 (en) 2021-04-13 2022-03-16 Method for treating at least one layer or part of a component and device for carrying out the method

Country Status (2)

Country Link
EP (1) EP4091757A1 (en)
DE (1) DE102021203609A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD217738A1 (en) 1983-10-03 1985-01-23 Ilmenau Tech Hochschule PROCESS FOR SURFACE TREATMENT OF PARTS
US20090280623A1 (en) * 2008-05-07 2009-11-12 Sumco Corporation Method Of Producing Semiconductor Wafer
US20170189999A1 (en) * 2014-07-14 2017-07-06 Corning Incorporated Method and system for arresting crack propagation
WO2019236616A1 (en) * 2018-06-05 2019-12-12 Electro Scientific Industries, Inc. Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD217738A1 (en) 1983-10-03 1985-01-23 Ilmenau Tech Hochschule PROCESS FOR SURFACE TREATMENT OF PARTS
US20090280623A1 (en) * 2008-05-07 2009-11-12 Sumco Corporation Method Of Producing Semiconductor Wafer
US20170189999A1 (en) * 2014-07-14 2017-07-06 Corning Incorporated Method and system for arresting crack propagation
WO2019236616A1 (en) * 2018-06-05 2019-12-12 Electro Scientific Industries, Inc. Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same

Also Published As

Publication number Publication date
DE102021203609A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
EP3221727B1 (en) System for asymmetric optical beam shaping
DE102014213775B4 (en) Method and device for laser-based processing of flat, crystalline substrates, in particular of semiconductor substrates
EP1871566B1 (en) Method for finely polishing/structuring thermosensitive dielectric materials by a laser beam
DE112007000608T5 (en) Laser processing and laser processing system
DE102012207220A1 (en) Method for machining a workpiece with laser radiation
DE102008031937A1 (en) Multibeam laser device
DE102005047082A1 (en) Method for microstructuring surfaces of a workpiece and its use
WO2020254639A1 (en) Method and device for processing a workpiece with a processing beam composed of at least two beam profiles
EP4091757A1 (en) Method for treating at least one layer or part of a component and device for carrying out the method
DE19646332C2 (en) Method for changing the optical behavior on the surface and / or within a workpiece by means of a laser
WO2012159963A1 (en) Method for homogenizing the laser beam profile in processes using a laser guided by a liquid jet and corresponding device
EP3854515A1 (en) Method for processing brittle materials
DE102019220188A1 (en) Method and device for the surface treatment of metallic surfaces
DE102019220167A1 (en) Method for polishing and / or smoothing a metallic surface of a workpiece and workpiece with a polished and / or smoothed surface
DE102021109579B4 (en) METHOD AND APPARATUS FOR MAKING MODIFICATIONS WITH A LASER BEAM IN A MATERIAL WITH A CURVED SURFACE
DE102020134751A1 (en) Process for cutting a workpiece
WO2022128214A1 (en) Apparatus and method for cutting a material
DE10232815B4 (en) Method for modifying dielectric material properties
EP4185559A1 (en) Device and method for curing a transparent material
DE102020134198A1 (en) Device and method for separating a material
DE102007020704A1 (en) Device for processing a workpiece using a laser beam comprises a beam shaping unit for shaping the intensity profile of the laser beam leaving an aperture and a screen arranged in the beam path between the aperture and the processing plane
DE102020134197A1 (en) Device and method for separating a material
DE102021203880A1 (en) Process for producing a fine-grained surface layer on a metallic surface of a component
DE102022122964A1 (en) Device and method for processing a material
DE102022127259A1 (en) Method and device for imaging a beam onto an object and method for making an opening in a workpiece by means of this method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230523

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231113