EP4082355A1 - Verfahren und system zur herstellung einer proteinreichen biomasse mit einem essbaren filamentösen pilz - Google Patents
Verfahren und system zur herstellung einer proteinreichen biomasse mit einem essbaren filamentösen pilz Download PDFInfo
- Publication number
- EP4082355A1 EP4082355A1 EP21171629.5A EP21171629A EP4082355A1 EP 4082355 A1 EP4082355 A1 EP 4082355A1 EP 21171629 A EP21171629 A EP 21171629A EP 4082355 A1 EP4082355 A1 EP 4082355A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protein
- substrate
- rich biomass
- fermentation
- filamentous fungus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 103
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 97
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 97
- 241000233866 Fungi Species 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 114
- 239000012530 fluid Substances 0.000 claims abstract description 19
- 238000011068 loading method Methods 0.000 claims abstract description 16
- 239000007787 solid Substances 0.000 claims abstract description 12
- 238000012544 monitoring process Methods 0.000 claims abstract description 6
- 238000000855 fermentation Methods 0.000 claims description 103
- 230000004151 fermentation Effects 0.000 claims description 102
- 235000013305 food Nutrition 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 235000013372 meat Nutrition 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 12
- 241001465754 Metazoa Species 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 9
- 235000013311 vegetables Nutrition 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000007710 freezing Methods 0.000 claims description 7
- 230000008014 freezing Effects 0.000 claims description 7
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 6
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 6
- 244000061456 Solanum tuberosum Species 0.000 claims description 6
- 241000235349 Ascomycota Species 0.000 claims description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 5
- 241000758405 Zoopagomycotina Species 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 235000021374 legumes Nutrition 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 235000018102 proteins Nutrition 0.000 description 79
- 238000010563 solid-state fermentation Methods 0.000 description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000001569 carbon dioxide Substances 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 230000012010 growth Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- 230000002538 fungal effect Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000011109 contamination Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 235000011194 food seasoning agent Nutrition 0.000 description 6
- 240000006439 Aspergillus oryzae Species 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 235000013601 eggs Nutrition 0.000 description 5
- 235000016709 nutrition Nutrition 0.000 description 5
- 235000013406 prebiotics Nutrition 0.000 description 5
- 239000006041 probiotic Substances 0.000 description 5
- 235000018291 probiotics Nutrition 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 241000234282 Allium Species 0.000 description 4
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 244000075850 Avena orientalis Species 0.000 description 4
- 235000007319 Avena orientalis Nutrition 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 235000014121 butter Nutrition 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000013325 dietary fiber Nutrition 0.000 description 4
- 239000003797 essential amino acid Substances 0.000 description 4
- 235000020776 essential amino acid Nutrition 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000000529 probiotic effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 240000002234 Allium sativum Species 0.000 description 3
- 235000021537 Beetroot Nutrition 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 244000205939 Rhizopus oligosporus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000004611 garlic Nutrition 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 235000013622 meat product Nutrition 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000035764 nutrition Effects 0.000 description 3
- 229940038580 oat bran Drugs 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001592 potato starch Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 108010027322 single cell proteins Proteins 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 235000013599 spices Nutrition 0.000 description 3
- 235000013548 tempeh Nutrition 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- 235000010523 Cicer arietinum Nutrition 0.000 description 2
- 244000045195 Cicer arietinum Species 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 235000019750 Crude protein Nutrition 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 2
- 235000002767 Daucus carota Nutrition 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000567178 Fusarium venenatum Species 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- 244000203593 Piper nigrum Species 0.000 description 2
- 235000008184 Piper nigrum Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 235000000471 Rhizopus oligosporus Nutrition 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 235000009499 Vanilla fragrans Nutrition 0.000 description 2
- 244000263375 Vanilla tahitensis Species 0.000 description 2
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 2
- 235000006886 Zingiber officinale Nutrition 0.000 description 2
- 244000273928 Zingiber officinale Species 0.000 description 2
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 235000012813 breadcrumbs Nutrition 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013376 functional food Nutrition 0.000 description 2
- 235000008397 ginger Nutrition 0.000 description 2
- 235000015220 hamburgers Nutrition 0.000 description 2
- 235000013310 margarine Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- 235000012015 potatoes Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 235000013555 soy sauce Nutrition 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N 2,3-dihydroxypropyl heptadecanoate Chemical compound CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000981138 Allium flavum Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241001513093 Aspergillus awamori Species 0.000 description 1
- 235000007558 Avena sp Nutrition 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 235000003392 Curcuma domestica Nutrition 0.000 description 1
- 244000008991 Curcuma longa Species 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 240000002943 Elettaria cardamomum Species 0.000 description 1
- 244000078127 Eleusine coracana Species 0.000 description 1
- 235000013499 Eleusine coracana subsp coracana Nutrition 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 1
- 235000005135 Micromeria juliana Nutrition 0.000 description 1
- 235000015429 Mirabilis expansa Nutrition 0.000 description 1
- 244000294411 Mirabilis expansa Species 0.000 description 1
- 235000002322 Monascus purpureus Nutrition 0.000 description 1
- 244000113306 Monascus purpureus Species 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 241000221962 Neurospora intermedia Species 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- 108010084695 Pea Proteins Proteins 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000425347 Phyla <beetle> Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 240000005384 Rhizopus oryzae Species 0.000 description 1
- 241000952054 Rhizopus sp. Species 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 235000007315 Satureja hortensis Nutrition 0.000 description 1
- 240000002114 Satureja hortensis Species 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241001489212 Tuber Species 0.000 description 1
- 241000251555 Tunicata Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 229930003270 Vitamin B Natural products 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013614 black pepper Nutrition 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 235000015496 breakfast cereal Nutrition 0.000 description 1
- 235000005300 cardamomo Nutrition 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 235000021544 chips of chocolate Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 235000011869 dried fruits Nutrition 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 206010016165 failure to thrive Diseases 0.000 description 1
- 235000021107 fermented food Nutrition 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005428 food component Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 244000005709 gut microbiome Species 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940072205 lactobacillus plantarum Drugs 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000003264 margarine Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 235000013536 miso Nutrition 0.000 description 1
- 229940057059 monascus purpureus Drugs 0.000 description 1
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000004223 monosodium glutamate Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000011088 parchment paper Substances 0.000 description 1
- 238000009928 pasteurization Methods 0.000 description 1
- 235000019702 pea protein Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 235000021134 protein-rich food Nutrition 0.000 description 1
- 235000002079 ragi Nutrition 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 229940026314 red yeast rice Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000019991 rice wine Nutrition 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000004458 spent grain Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000012414 sterilization procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 235000013976 turmeric Nutrition 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/22—Working-up of proteins for foodstuffs by texturising
- A23J3/26—Working-up of proteins for foodstuffs by texturising using extrusion or expansion
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/20—Proteins from microorganisms or unicellular algae
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/22—Working-up of proteins for foodstuffs by texturising
- A23J3/225—Texturised simulated foods with high protein content
- A23J3/227—Meat-like textured foods
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L31/00—Edible extracts or preparations of fungi; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/185—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/195—Proteins from microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/16—Solid state fermenters, e.g. for koji production
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/12—Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/34—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
Definitions
- the present invention relates to a method for manufacturing a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus.
- the present invention further relates to the protein-rich biomass manufactured by such a method, a food product comprising such a protein-rich biomass, and a system for manufacturing such a protein-rich biomass.
- filamentous fungi Several strains of edible filamentous fungi have been recognized as a traditional source of palatable food by many societies around the globe, especially in Asia. Rhizopus sp. has been used for centuries in the oriental cuisine in the preparation of fermented food such as tempeh. Aspergillus oryzae also has culinary applications for the production of hamanatto, miso and shoyu. Neurospora intermedia is used in the preparation of the Indonesian staple food oncom. Similarly, Monascus purpureus has been used as coloring and flavoring agent in food and beverages, as in the production of red yeast rice and rice wine. Other applications of filamentous fungi include production of ingredients for food and beverage industries, such as enzymes.
- Single-cell protein can also be produced by filamentous fungi.
- An example of SCP currently being available in the market is the filamentous fungus Fusarium venenatum, commercialized under the name Quorn ® , comprising 25% fiber, 13% lipid and 50% protein on dry cell weight basis.
- Fungal fermentation products may be produced either by liquid state, or submerged, fermentation (SMF), or by solid state fermentation (SSF).
- SMF submerged, fermentation
- SSF solid state fermentation
- SMF The most common method of fermenting a substrate using edible filamentous fungi is SMF.
- Mycoprotein is a commonly used term defining protein-rich food made of filamentous fungal biomass and is usually referred to plant-based alternative to meat.
- Mycoprotein in Quorn ® is produced using SMF from the filamentous fungi Fusarium venenatum. Further, a SMF process using potato protein liquor has been described, in which a protein-rich biomass was obtained using airlift bioreactor ( Souza Filho et al, Fermentation, 2017, 3(1), p. 12 ).
- SMF is widely used and constantly developed, large-scale production of edible filamentous fungal biomass using SMF is still commercially unfeasible, primarily due to huge volumes of water required in such a process. Further, SMF is an artificial condition for filamentous fungi because they live in solid state in nature.
- SSF may be used instead.
- the process of SSF is normally carried out by growing fungi on the moist water-insoluble solid substrate substantially in the absence of free liquid, thus avoiding excess water and offering the advantage of low energy consumption along with a high product concentration. Since the required amount of liquid is absorbed by the solid substrate, the growth of microorganisms is improved due to unobstructed transfer of oxygen to the microorganisms.
- SMF is sometimes preferred over SSF due to a simpler downstream processing of metabolites
- SSF offers a number of significant advantages over SMF, such as a reduced water consumption, possibility to use cellulosic waste as a substrate, as well as small fermentation reactors. Considering the above, SSF is more environmentally benign and economical industrial process as compared to SMF.
- SSF is known to introduce the probiotic functionalities to breakfast cereals and similar food products, by cultivating Lactobacillus plantarum strain on oat bran and spent oats after lipid extraction and limited hydrolysis of the raw materials by Aspergillus awamori and Aspergillus oryzae. Further, a study performed in an Erlenmeyer flask using various fungi such as Aspergillus oryzae concluded that fermented oat had superior antioxidant properties relative to the unfermented ones ( Cai, S.,et al., Journal of Agricultural and Food Chemistry, 2012. 60(1), p. 507-513 ).
- the mycoprotein from brand Quorn ® mentioned above has been reported to have numerous nutritional benefits which is obtained by growing a filamentous fungus under liquid state fermentation.
- Hyphal cell-walls contain chitin, 1,3- and 1,6- glucan and are a source of dietary fiber.
- the fiber content itself may work as a prebiotic in gut, cell membranes are rich in polysaturated fats and cytoplasm rich in high quality protein.
- the amino acids of mycoprotein are composed of all essential ones. Therefore, by fermentation it is possible to improve the nutritional properties of the raw materials.
- too high moisture level is associated with bacterial contamination, agglomeration of substrate particles and limited gas transfer.
- the optimal moisture level varies depending on the type of fungus and the nature of substrate. Most of the fungi capable of growing under SSF conditions have water activity of at least 0.8-0.9. For a particular fungus to grow on a specific substrate, a number of factors should be considered, e.g. particle size and shape, macromolecular structure, porosity, and particle consistency of the substrate. Thus, a larger surface area to volume ratio is required to obtain high yields as it facilitates penetration of the substrate by the fungus such that the substrate eventually becomes more accessible for the hydrolytic enzymes. If the surface area is insufficient, enzyme diffusion becomes the rate limiting step of the SSF.
- the present invention thus provides such a method and system, not only having low water requirement, but also being readily up-scalable.
- the method for manufacturing a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus comprises the steps of:
- a function in the context of the present invention is intended to mean that a change in the value of the at least one parameter above a predefined threshold triggers an amendment in the set of conditions. In other words, if no change in the value of the at least one parameter is detected, or if the change is below the predefined threshold, the set of conditions will remain unamended.
- animal in the context of the present invention is meant being suitable for human and/or animal consumption.
- animal is understood species belonging to the fauna, such as vertebrates and invertebrates.
- the at least one substrate in step a) may be selected from a group consisting of root vegetables and residues and derivatives thereof, grains and residues and derivatives thereof, legumes and residues and derivatives thereof, marine organisms and residues and derivatives thereof, potato protein liquor (PPL), distillers dried grain with solubles (DDGS) as well as precursors and residue thereof, and mixtures thereof.
- derivatives includes extracts.
- root vegetables include but are not limited to potato, cassava, beetroot, carrot, or the like.
- grains include but are not limited to barley, oat, wheat, rye, corn, or the like.
- Examples of legumes include but are not limited to soya bean, pea, chickpea, or the like.
- marine organisms include but are not limited to algae, sea squirt or the like.
- the substrates mentioned above may be used in combinations to achieve an effective synergistic effect to promote the growth of edible filamentous fungi.
- the substrates mentioned above may be combined with each other and with at least one strain of edible filamentous fungus in order to achieve the desired functionality in the targeted protein-rich biomass.
- Using industrial byproducts like PPL and DDGS provides the advantage of contributing to the circular economy.
- the substrate may be DDGS or a mixture of root vegetables and grains.
- the substrate mixture may be combination of DDGS with soya beans or pea protein.
- Such a substrate mixture is particularly suitable for producing fish feed.
- Other preferred combinations of different substrates particularly suitable for manufacturing a protein-rich biomass for human consumption include beetroots and potatoes, oat bran and carrots, and barley and cassava.
- the ratio between the substrates may be from 1:1 to 1:16, more preferably from 1:2 to 1:4.
- An essential feature of the present invention is the relatively high total solid loading of the substrate of at least 20%. Further, the total solid loading of the substrate may be below 80%. As indicated by such a high total solid loading, the method of the present invention is a SSF process, which greatly reduces the utilization of water. The method of the present invention produces no effluent like wastewater for further treatment and hence is an environmentally benign and contributes to the circular economy.
- the high total solid loading is preferably achieved by soaking the substrate in liquid for a time period from 10 to 120 min, and then filtering off the excess liquid.
- the at least one substrate may already contain a sufficient amount of liquid in order to enable growth of the at least edible filamentous fungus.
- the method of the present invention may comprise a step a") of pretreating the at least one substrate. If present, step a") occurs before step a).
- a pretreating may be boiling, steaming, soaking, drying, chopping, mixing, crushing, peeling or any combinations thereof.
- the method according to the present invention may further comprise step b') of adjusting pH value of the substrate to be from 3 to 7, preferably from 4.8 to 6.8, more preferably from 5.6 to 6.2 If present, step b') occurs before step b).
- the pH value may be adjusted by addition of suitable acidic agents, such as hydrochloric acid, or alkaline agents, such as sodium hydroxide and/or potassium hydroxide.
- Inoculation of the at least one substrate mentioned above with at least one strain of an edible filamentous fungus in step b) may be performed by any suitable method, such as mixing the at least one substrate with the edible filamentous fungus, sprinkling the edible filamentous fungus on top of the substrate, or combination of both of these methods.
- the ratio between the edible filamentous fungus and the substrate may be from 1:1 to 1:10000, more preferably from 1:35 to 1:50.
- step d) may be performed under aerobic or anaerobic conditions and may occur within a fermentation reactor.
- a set of conditions is determined and set, wherein the set of conditions comprises at least one of humidity level, flow rate of a second gaseous fluid, temperature, light intensity, and pH.
- the humidity level may be within the range from 20 to 100% Rh. When adjusting the humidity level to be within the specified range, it may be necessary to increase humidity level by adding water vapor, or to decrease the humidity level by removing water vapor. Humidification or dehumidification may be performed using any conventional method known in the art.
- the set of conditions mentioned above may further comprise a flow rate of a second gaseous fluid.
- the second gaseous fluid may be air, oxygen (O 2 ) or nitrogen (N 2 ).
- the second gaseous fluid is air.
- the air flow rate may be set to a first value being at least 0.25 vvm (volume gas flow per unit of bed volume per minute).
- the set of conditions may comprise temperature, that may be set to be in the range from 25°C to 50°C, preferably from 30°C to 45°C, more preferably from 35°C to 40°C.
- the set of conditions comprises two of humidity level, air flow rate and temperature, more preferably all three of humidity level, air flow rate and temperature.
- the inoculated substrate is fermented starting with the set of conditions obtained in step c) while continuously monitoring at least one parameter, thus obtaining a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus.
- the at least one parameter may be at least one of the level of at least one first gaseous fluid, a temperature, a humidity level, light intensity and pH. Further, the at least one parameter may be any other parameter being relevant for fermentation process.
- the at least one parameter is preferably measured in proximity of the inoculated substrate.
- the at least one first gaseous fluid may be carbon dioxide (CO 2 ), ammonia (NH 3 ), oxygen (O 2 ) or nitrogen (N 2 ).
- the at least one parameter being continuously monitored during step d) is the level of CO 2 .
- the at least one parameter mentioned above will change depending on the propagation phase of the at least one edible filamentous fungus.
- the set of conditions is amended as a function of the at least one parameter.
- the method of the present invention is adapted to the propagation phase of the at least one edible filamentous fungus.
- the air flow rate set in step c) may be automatically adjusted as a function of the level of CO 2 monitored in step d).
- the air flow rate set in step d) may automatically be adjusted to a second value, that may be in the range of 0.5-4 vvm.
- the second value is greater than the first value.
- Step d) may be performed during a time period from 10 h to 80 h, preferably from 24 h to 72 h, more preferably from 40 h to 50 h, depending on the type and amount of the inoculated substrate, the strain of the at least edible filamentous fungus, and the set of conditions defined in step c).
- the time period mentioned above comprises a plurality of time intervals, wherein the set of conditions is different during at least two time intervals.
- the temperature may be raised and lowered repeatedly during the time period of step d), e.g. such that the temperature has a first value during the first time interval, a second value during the second interval, a third value during the third time interval and so on.
- the duration of the time intervals may be same or different.
- the method of the present invention may further comprise step c') of robot-assisted loading the at least one inoculated substrate into a fermentation chamber and/or step e) of robot-assisted unloading of the protein-rich biomass from the fermentation chamber.
- step c') of robot-assisted loading the at least one inoculated substrate into a fermentation chamber and/or step e) of robot-assisted unloading of the protein-rich biomass from the fermentation chamber.
- the method may further comprise step a') of adding at least one binder, wherein the step a') occurs simultaneously with step a).
- the binder may be selected from the group consisting of methyl cellulose, potato starch gel, kappa carrageenan, sodium alginate, corn starch and combinations thereof.
- the method according to the present invention may comprise step f) of heat treatment of the protein-rich biomass, wherein step f) occurs immediately after step d).
- This step may be performed in order to reduce the nucleic acid (RNA) content.
- the temperature may be raised to 65°C for a period of 20-30 minutes.
- the RNA degrades into monomers and diffuses out of cells leaving the RNA content of fungus well below 2% by weight.
- the method according to the present invention may further comprise step g) of freezing the protein-rich biomass. If present, step g) is performed before step e), i.e. before unloading the protein-rich biomass from the fermentation chamber.
- the freezing cycles may be performed by reducing the temperature down to -70°C for up to 2 hours. Preferably, the freezing is conducted at a temperature from -50°C to -40°C for up to 1 hour.
- the method of the present invention may comprise step h) of drying the protein rich biomass.
- Step h) may be performed as follows:
- step g) and step h) may be performed in any order.
- the method of the present invention comprises step i) of post-fermentation sterilization procedure, e.g. pasteurization or microwave heating to yield a safe final protein-rich biomass having a long shelf life.
- post-fermentation sterilization procedure e.g. pasteurization or microwave heating
- the at least one strain of an edible filamentous fungus is selected from a group consisting of Ascomycota or Zygomycota.
- the at least one edible filamentous fungus is at least one of Aspergillus oryzae, Aspergillus genii, Mucor, Rhizopus oligosporus, R. Oryzae.
- Aspergillus oryzae Aspergillus genii, Mucor, Rhizopus oligosporus, R. Oryzae.
- the method of the present invention allows for a large scale SSF manufacturing of protein-rich biomass comprising at least one fermented substrate and at least one strain of edible filamentous fungus, resulting in high production capacity of several tons a day.
- the method of the present invention provides uniform mass transfer of air, distribution of temperature and humidity during propagation of at least one edible filamentous fungus.
- the method of the present invention may be completely automated, wherein each of the steps described above is performed without human interaction.
- the method of the present invention is highly cost efficient since it uses the cheap substrates and negligible amount of water.
- the present invention further relates to a protein-rich biomass manufactured by the method described above.
- the protein-rich biomass according to the present invention thus comprises at least one fermented substrate and at least one strain of edible filamentous fungus.
- the protein-rich biomass of the present invention may comprise the substrate that has not been fermented, i.e. the starting substrate in unamended form.
- the protein-rich biomass of the present invention may have a high protein content of at least 10%, preferably at least 20%, more preferably at least 30%.
- the protein-rich biomass may comprise up to 60% protein.
- the protein-rich biomass obtained by the process of the present invention is highly nutritious and may comprise at least one amino acid, at least one prebiotic substance, at least one probiotic substance, at least one mineral, at least one vitamin, at least one dietary fiber or combinations thereof.
- the at least one amino acid may be one of the essential amino acids.
- the protein-rich biomass comprises at least five essential amino acids, preferably at least eight essential amino acids. In other words, the protein-rich biomass may have the desirable essential amino acid pattern for human consumption.
- the probiotic substance may be good gut bacteria, e.g. Lactobacilli.
- the prebiotic substance may be L-carnitine, e.g. in the amount of 2-10% or 0.5-3 mg/L.
- the vitamin may be vitamin B, in particular vitamin B 2 , B 9 , B 12 , choline and combination thereof.
- the mineral may be zinc, iron, manganese, sodium, phosphorus, and combination thereof.
- the protein-rich biomass of the present invention is normally low in fat and high in polyunsaturated fatty acids like omega-3 and omega-6, and/or high in mobilized phenolic antioxidants.
- the functionality of the protein-rich biomass of the present invention is increased manyfold in terms of total phenolic content (TPC), readily bioavailable minerals, soluble fibers, flavonoids, amount of probiotics and prebiotics and antioxidant activity.
- the protein-rich biomass described above may be used for human and/or animal consumption without further processing or modifications.
- the protein-rich biomass may be used in a food product for human and/or animal consumption.
- the protein-rich biomass may be processed such that it is developed into a product resembling meat, e.g. by means of heat treatment.
- the present invention further relates to a method for manufacturing a food product resembling meat, the method comprising the step of: j) providing a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus.
- the method for manufacturing a food product resembling meat further comprises at least one of the steps:
- the protein-rich biomass is preferably a textured and highly functional edible protein-rich biomass being obtained by the method of the present invention by fermenting the above mentioned substrates individually or in combination together with an edible fungus or combination of fungi from Ascomycota phylum and/or Zygomycota.
- the obtained biomass is densely packed with edible mycelia of particular fungi which cascades intricately into the substrate and hence provides a well textured and resilient structure which closely resembles meat.
- the obtained functional biomass may be chopped and dried at 40-80°C, more preferably between 55-70°C for 10-90 minutes to achieve brown meat like chunks which may be rehydrated to be developed into a number of meat analogues by mixing it with additives, seasoning, variety of spices and varied heat treatment over a period of time.
- step k) of heat treating the protein-rich biomass may be performed.
- Heat treatment according to step k) may be performed at a temperature range from 60 to 120 °C for 5-45 min in a plurality of cycles applying different temperatures and time intervals in each cycle.
- the number of cycles may be two, three or four.
- step I) may be performed, preferably by the use of an extruder e.g. twin-screw co-rotating system.
- the protein-rich biomass may be extruded between 60-120 °C in a continuous process, which introduces the texture into the biomass by affecting the tertiary structure of the protein component of the biomass.
- the extrusion process according to step I) specifically enhances the qualities like tensile strength, integrity index and layer structure of the biomass fibers . This in turn enhances the chewiness of the food product leading to its resemblance with a conventional meat product.
- the method for manufacturing a food product resembling meat may comprise step k), step I) or both step k) and I). Further, the method for manufacturing a food product resembling meat may comprise additional steps of adding supplementary ingredients such as binders or seasoning.
- a food product comprising the protein-rich biomass of the present invention may be pellets, flakes, a burger patty, a meat ball, a nugget, a sausage, a fritter, a cookie, bread, or the like.
- the food product of the present invention may further comprise a conventional food additive, such as seasoning, butter, egg, milk, or the like.
- the present invention relates to a system for manufacturing a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus.
- the system of the present invention comprises at least one fermentation reactor arranged for receiving at least one substrate to be fermented and at least one strain of an edible filamentous fungus.
- the fermentation reactor may have any suitable shape and size, depending on the desired production capacity and space available for the fermentation reactor.
- the term "reactor" encompasses a closed space such as a chamber or a room.
- the at least one fermentation reactor comprises at least one sensor being selected from a group comprising a gas sensor, a temperature sensor, and a humidity sensor.
- the temperature sensor incorporated in the fermentation reactor may have a detection range of -70°C to 300°C.
- the fermentation reactor comprises at least one gas sensor, at least one temperature sensor, and at least one humidity sensor.
- the at least one gas sensor may be a CO 2 sensor, a O2 sensor, a NH 3 sensor or a N 2 sensor.
- the CO 2 sensor incorporated in the fermentation reactor may have a detection range from 500 to 50000 ppm.
- the fermentation reactor may comprise four gas sensors, each detecting one of the gases mentioned above.
- Each of the gas sensor, the temperature sensor and the humidity sensor may communicate with an operator or with a control system as will be described in greater detail below.
- the at least one fermentation reactor of the present invention further comprises at least one fermentation surface, on which the fermentation process of the inoculated substrate occurs.
- the fermentation surface may be a tray, a container, a plate, or any type of box.
- the fermentation surface preferably comprises a bottom portion extending horizontally, and elevated edge portions extending vertically.
- the area of the bottom portion may be from 0.5 m 2 to 3 m 2 .
- the vertical extension of the elevated edge portion may be from 0.5 cm to 50 cm.
- the shape of the bottom portion of the at least one fermentation surface may be circular, triangular, rectangular, or polygonal, and depends on the shape and size of the fermentation reactor.
- the fermentation reactor comprises a plurality of fermentation surfaces.
- plural in the context of the present invention is understood at least two.
- the plurality of the fermentation surfaces is preferably arranged horizontally and in parallel to each other in a stacked manner.
- the plurality of the fermentation surfaces may be arranged vertically.
- the distance between each two fermentation surfaces may be from 5 to 25 mm.
- Each fermentation surface of the plurality of the fermentation surfaces may have the shape being same as or different from the shape of the other fermentation surfaces.
- the fermentation reactor of the present invention further comprises at least one duct arranged in proximity of the at least one fermentation surface, wherein the at least one duct is arranged for supplying at least one of at least one second gaseous fluid, heat, and water vapor into the fermentation reactor.
- the at least one second gaseous fluid may be air, oxygen (O 2 ) or nitrogen (N 2 ).
- the at least one duct is arranged above the at least one fermentation surface, such that a good contact is obtained between the medium supplied through the at least one duct and the inoculated substrate arranged on the at least one fermentation surface.
- the fermentation reactor preferably comprises a plurality of ducts, wherein at least one duct is assigned to each fermentation surface.
- the size and shape of the cross-section of the duct depends on the size of the fermentation surface, and should be designed such that a sufficient amount of air, heat, water vapor or combination thereof is supplied to the fermentation surface in order to achieve optimal propagation of the at least one edible filamentous fungus.
- the system of the present invention may further comprise a robot-assisted loading device arranged upstream of the at least one fermentation reactor and/or a robot-assisted unloading device arranged downstream of the at least one fermentation reactor.
- the robot-assisted loading device may be arranged for performing at least one of steps a), b) and c) of the method described above.
- the robot-assisted loading device may be arranged for loading the at least one substrate to be fermented on the at least one fermentation surface, and for adding the at least one of the edible filamentous fungus to the substrate.
- the robot-assisted unloading device according to the present invention may be arranged for unloading the protein-rich biomass upon completion of step d), step f) or step g) above.
- the system according to the present invention further comprises a control system being in communication with the at least one sensor, wherein the control system is arranged to control supply of the at least one of at least one second gaseous fluid, heat or water vapor into the fermentation reactor via the at least one duct in response to an input provided by the at least one sensor.
- a control system being in communication with the at least one sensor, wherein the control system is arranged to control supply of the at least one of at least one second gaseous fluid, heat or water vapor into the fermentation reactor via the at least one duct in response to an input provided by the at least one sensor.
- an optimal growth of the at least one edible filamentous fungus is obtained in all the stages of the propagation.
- the control system automatically increases the air flow rate, as described above.
- Sterilization of the fermentation device may be done in several cycles by performing the following steps:
- steps d), g) and f) may all be performed in the fermentation reactor.
- the system may comprise a plurality of fermentation reactors, and a control unit arranged to independently monitor and control each fermentation reactor within the plurality of fermentation reactors.
- Fig. 1 The method for manufacturing a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus according to the present invention is depicted in Fig. 1 . As may be seen, the method comprises the steps of:
- the inoculated substrate is fermented starting with the set of conditions obtained in step c) while continuously monitoring at least one parameter, thus obtaining a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus.
- the at least one parameter mentioned above will change depending on the propagation phase of the at least one edible filamentous fungus.
- the set of conditions is amended as a function of the at least one parameter.
- the method of the present invention is adapted to the propagation phase of the at least one edible filamentous fungus.
- the method of the present invention depicted in Fig. 1 comprises step c') of robot-assisted loading the at least one inoculated substrate into a fermentation chamber and step e) of robot-assisted unloading of the protein-rich biomass from the fermentation chamber.
- the method depicted in Fig. 1 further comprises step g) of freezing the protein-rich biomass and step h) of drying the protein rich biomass.
- the protein-rich biomass according to the present invention may be used for human and/or animal consumption without further processing or modifications.
- the protein-rich biomass may be used in a food product for human and/or animal consumption, as depicted in Fig. 1 and as has been described above.
- DDGS is soaked in cold water for 20-120 minutes. Once dissolved, draining is performed such that only the absorbed water is present in the DDGS.
- the substrate should be slightly moist and crumply. Due to remaining moisture, no additional water needs to be added.
- the substrate is spread onto a fermentation surface, acidic or alkaline agents are added prior to inoculation to adjust the pH value.
- First half of the edible filamentous fungus is evenly stirred into the substrate, the second half is evenly sprinkled on top.
- the ratio between the edible filamentous fungus and the substrate is approximately 1:40.
- the temperature is set to 35°C, more preferably around 35 °C, pH of fermentation medium is set to 4.8, humidity is set to 85% Rh and air flow rate set at a minimum of 0.25 vvm.
- the airflow is adjusted automatically based on the CO 2 concentration detected in the fermentation reactor. When the CO 2 levels are in the range of 20000-30000 ppm, the installed sensors spontaneously attune the air flow rate to between 0.5-4 vvm.
- the substrate is fermented for at least 24 hours and more preferably for 40 to 50 hours.
- the protein-rich biomass is heat-treated at 65 °C for 20-30 minutes in the above described fermentation reactor.
- the RNA degrades into monomers and diffuses out of cells leaving the RNA content of fungus well below 2% by weight.
- the thus obtained protein-rich biomass is subsequently frozen in the fermentation reactor.
- the freezing cycles are performed by reducing the temperature down to -50 to -40°C for up to 1 hour.
- the texture of the protein-rich biomass may be enhanced by using an extrusion device prior to preparing the desirable food product.
- the root vegetables are pretreated with heat (e.g. boiling or steaming) for 30 minutes after appropriate size reduction.
- the root vegetables are then allowed to steam off and cool down to room temperature. Once they are cooled down, they are chopped into pieces.
- the second, grain-based, substrate does not require pretreatment.
- the root vegetables and the grain-based substrate are mixed. Due to the moisture remaining in the root vegetables, no additional water will be added.
- the substrate is spread onto a fermentation surface, acidic or alkaline agents are added prior to inoculation to adjust the pH value.
- First half of the edible filamentous fungus is evenly stirred into the substrate, the second half is evenly sprinkled on top.
- the ratio between the edible filamentous fungus and the substrate is approximately 1:40.
- the temperature is set at between 30-40°C, more preferably around 35 °C, pH of fermentation medium is set to 5, humidity is set to 85% Rh and air flow rate set at a minimum of 0.25 vvm.
- the airflow is adjusted automatically based on the CO 2 concentration detected in the fermentation reactor. When the CO 2 levels are in the range of 20000-30000 ppm, the installed sensors spontaneously attune the air flow rate to between 0.5-4 vvm.
- the substrate is fermented for at least 48 hours.
- the protein-rich biomass is heat-treated at 65 °C for 20-30 minutes in the above described fermentation reactor.
- the RNA degrades into monomers and diffuses out of cells leaving the RNA content of fungus well below 2% by weight.
- the thus is subsequently frozen in the fermentation reactor.
- the freezing cycles are performed by reducing the temperature down to -50 to -40°C for up to 1 hour.
- the protein-rich biomass of the present invention consists of densely grown and consistently cascading mycelium.
- the protein content of the fermented product lies between 10-60% crude protein. The details are presented in Table 1.
- Table 1 Contents Example 1 2 3 4 Substrate Potatoes Oat bran and beetroot (1:1) Rolled oats DDGS Edible filamentous fungus A. oryzae A.
- a textured and highly functional edible protein-rich biomass is obtained by the method of the present invention by fermenting the above mentioned substrates individually or in combination together with an edible fungus or combination of fungi from Ascomycota phylum and/or Zygomycota.
- the obtained biomass is densely packed with edible mycelia of particular fungi which cascades intricately into the substrate and hence provides a well textured and resilient structure which closely resembling meat.
- the obtained functional biomass was chopped and dried at 60°C for 65 minutes to achieve brown meat like chunks which may be rehydrated to be developed into a number of meat analogues by mixing it with additives, seasoning, variety of spices and varied heat treatment over a period of time.
- Seasoning will be added in differing amounts and may include the following ingredients: salt, onion, garlic, yellow onion, spring onion, egg or the vegan replacement, soy sauce, black pepper, basil, binder(s) such as methyl cellulose, potato starch gel, kappa carrageenan, sodium alginate and combination thereof.
- Seasoning will be added in differing amounts and may include the following ingredients: salt, pepper white and black, brown sugar, white sugar, roasted onion, garlic, ginger, nutmeg, turmeric, binder(s) such as corn starch, potato starch gel, methyl cellulose and combinations thereof.
- Fig. 2 illustrates a system 1 for manufacturing a protein-rich biomass comprising at least one fermented substrate and at least one strain of an edible filamentous fungus.
- the system 1 comprises a fermentation reactor 2 arranged for receiving at least one substrate to be fermented and at least one strain of an edible filamentous fungus.
- the fermentation reactor 2 depicted in Fig. 2 has a rectangular cross-section.
- the fermentation reactor 2 comprises three sensors 3, 3' and 3" being a gas sensor, a temperature sensor, and a humidity sensor.
- the fermentation reactor 2 further comprises three fermentation surfaces 4, on which the fermentation process of the inoculated substrate occurs.
- the fermentation surfaces 4 are arranged horizontally and in parallel to each other in a stacked manner.
- the fermentation reactor 2 further comprises three ducts 5 arranged in proximity of each of the fermentation surfaces 4, wherein the ducts 5 are arranged for supplying at least one of at least one second gaseous fluid, heat, and water vapor into the fermentation reactor.
- the at least one second gaseous fluid may be air, oxygen (O 2 ) or nitrogen (N 2 ).
- the ducts 5 are arranged above the fermentation surfaces 4, such that a good contact is obtained between the medium supplied through the ducts 5 and the inoculated substrate arranged on the fermentation surfaces 4.
- the system 1 further comprises a control system 6 being in communication with the sensors 3, 3' and 3", wherein the control system is arranged to control supply of the at least one of at least one second gaseous fluid, heat or water vapor into the fermentation reactor via the ducts 5 in response to an input provided by the sensors 3, 3' and 3".
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Nutrition Science (AREA)
- Polymers & Plastics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Analytical Chemistry (AREA)
- Sustainable Development (AREA)
- Molecular Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Computer Hardware Design (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21171629.5A EP4082355A1 (de) | 2021-04-30 | 2021-04-30 | Verfahren und system zur herstellung einer proteinreichen biomasse mit einem essbaren filamentösen pilz |
US18/558,029 US20240247227A1 (en) | 2021-04-30 | 2022-04-25 | A method and a system for manufacturing a protein-rich biomass comprisng edible filamentous fungus |
EP22725229.3A EP4307913A1 (de) | 2021-04-30 | 2022-04-25 | Verfahren und system zur herstellung einer proteinreichen biomasse mit essbarem fadenpilz |
PCT/EP2022/060852 WO2022229072A1 (en) | 2021-04-30 | 2022-04-25 | A method and a system for manufacturing a protein-rich biomass comprising edible filamentous fungus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21171629.5A EP4082355A1 (de) | 2021-04-30 | 2021-04-30 | Verfahren und system zur herstellung einer proteinreichen biomasse mit einem essbaren filamentösen pilz |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4082355A1 true EP4082355A1 (de) | 2022-11-02 |
Family
ID=75746517
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21171629.5A Withdrawn EP4082355A1 (de) | 2021-04-30 | 2021-04-30 | Verfahren und system zur herstellung einer proteinreichen biomasse mit einem essbaren filamentösen pilz |
EP22725229.3A Pending EP4307913A1 (de) | 2021-04-30 | 2022-04-25 | Verfahren und system zur herstellung einer proteinreichen biomasse mit essbarem fadenpilz |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22725229.3A Pending EP4307913A1 (de) | 2021-04-30 | 2022-04-25 | Verfahren und system zur herstellung einer proteinreichen biomasse mit essbarem fadenpilz |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240247227A1 (de) |
EP (2) | EP4082355A1 (de) |
WO (1) | WO2022229072A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024188894A1 (en) * | 2023-03-10 | 2024-09-19 | Planted Foods Ag | Method of making a food product using microbial growth and products thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140342036A1 (en) * | 2011-12-12 | 2014-11-20 | Nestec S.A. | Vegetable-based minced meat alternative |
EP2835058A1 (de) * | 2013-08-07 | 2015-02-11 | Stichting Eco Consult | Fleischersatzzusammensetzung und Verfahren zur Bereitstellung davon |
US20150166945A1 (en) * | 2012-06-06 | 2015-06-18 | Novozymes Bioag A/S | Solid state bioreactor adapted for automation |
WO2020232347A1 (en) * | 2019-05-16 | 2020-11-19 | Mycotechnology, Inc. | Myceliated protein compositions having improved texture and methods for making |
-
2021
- 2021-04-30 EP EP21171629.5A patent/EP4082355A1/de not_active Withdrawn
-
2022
- 2022-04-25 US US18/558,029 patent/US20240247227A1/en active Pending
- 2022-04-25 WO PCT/EP2022/060852 patent/WO2022229072A1/en active Application Filing
- 2022-04-25 EP EP22725229.3A patent/EP4307913A1/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140342036A1 (en) * | 2011-12-12 | 2014-11-20 | Nestec S.A. | Vegetable-based minced meat alternative |
US20150166945A1 (en) * | 2012-06-06 | 2015-06-18 | Novozymes Bioag A/S | Solid state bioreactor adapted for automation |
EP2835058A1 (de) * | 2013-08-07 | 2015-02-11 | Stichting Eco Consult | Fleischersatzzusammensetzung und Verfahren zur Bereitstellung davon |
WO2020232347A1 (en) * | 2019-05-16 | 2020-11-19 | Mycotechnology, Inc. | Myceliated protein compositions having improved texture and methods for making |
Non-Patent Citations (6)
Title |
---|
CAI, S., JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 60, no. 1, 2012, pages 507 - 513 |
GMOSER, R. ET AL., BIOENGINEERED, vol. 11, no. 1, 2020, pages 582 - 598 |
K H STEINKRAW: "Solid-state (Solid-Substrate) Food/Beverage Fermentations Involving Fungi", ACTA BIOTEHNOLOGICY, 1 January 1984 (1984-01-01), pages 83 - 88, XP055115684, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/store/10.1002/abio.370040202/asset/370040202_ftp.pdf?v=1&t=hukwgh22&s=36acbb9b16986cb8b34a7541cad4134d06afd7cf> [retrieved on 20140429] * |
SOUZA FILHO ET AL., FERMENTATION, vol. 3, no. 1, 2017, pages 12 |
SOUZA FILHO ET AL., FUNGAL BIOLOGY AND BIOTECHNOLOGY, vol. 5, no. 1, 2018, pages 5 |
W. GRAJEK: "Production of protein by thermophilic fungi from sugar-beet pulp in solid-state fermentation", BIOTECHNOLOGY AND BIOENGINEERING, vol. 32, no. 2, 5 July 1988 (1988-07-05), US, pages 255 - 260, XP055359736, ISSN: 0006-3592, DOI: 10.1002/bit.260320218 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024188894A1 (en) * | 2023-03-10 | 2024-09-19 | Planted Foods Ag | Method of making a food product using microbial growth and products thereof |
Also Published As
Publication number | Publication date |
---|---|
EP4307913A1 (de) | 2024-01-24 |
US20240247227A1 (en) | 2024-07-25 |
WO2022229072A1 (en) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nout et al. | A review: Recent developments in tempeh research | |
US4367240A (en) | Protein-containing food material | |
Onwurafor et al. | Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour | |
US9301539B2 (en) | Vegetable-based minced meat alternative | |
JP2002524097A (ja) | 食料調製において使用する接合菌類ケカビ目真菌 | |
CN102907626A (zh) | 一种脱水丹贝的制作方法 | |
WO2020074782A1 (en) | Food product comprising fungal mycelium material | |
Wang et al. | Fungal solid-state fermentation of crops and their by-products to obtain protein resources: The next frontier of food industry | |
US20240247227A1 (en) | A method and a system for manufacturing a protein-rich biomass comprisng edible filamentous fungus | |
CN109722392B (zh) | 能够促进枯草芽孢杆菌产芽孢的培养基及其应用 | |
AU2021295115A1 (en) | Novel food | |
Steinkraus | Indigenous fermented-food technologies for small-scale industries | |
Steinkraus | Microbial biomass protein grown on edible substrates: the indigenous fermented foods | |
Steinkraus | Traditional food fermentations as industrial resources | |
JP4304319B2 (ja) | 米糠を基質とした麹培養方法と玄米麹 | |
Santos | Optimisation of phytase production by Aspergillus niger using solid state fermentation | |
KR830001704B1 (ko) | 단백질 함유 식품의 제조방법 | |
NL2032406B1 (en) | Method for the production of a protein matrix composition having a textured structure | |
WO2024210084A1 (ja) | 穀物タンパク質組成物および/または食品粉砕物で麹を固体培養した食肉様麹菌体とその製造方法 | |
FI130956B1 (en) | METHOD FOR PREPARING MEAT SUBSTITUTE COMPOSITION AND RELATED PRODUCTS | |
JP6618097B2 (ja) | 食用酵素組成物の製造方法 | |
WO2023228987A1 (ja) | ビタミンbを高含有する麹菌発酵物 | |
KR20180128231A (ko) | 종균 배양액을 이용한 기정떡의 제조방법 | |
Moriki et al. | Effect of Lactobacillus fermentum Fermentation on the Nutritional and Anti-Nutritional Quality of Sorghum (Samsorg 17) for Chicken Feed Production | |
Sadler | Fungal protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230502 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20231101 |