EP4077595A1 - Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates - Google Patents

Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates

Info

Publication number
EP4077595A1
EP4077595A1 EP20819768.1A EP20819768A EP4077595A1 EP 4077595 A1 EP4077595 A1 EP 4077595A1 EP 20819768 A EP20819768 A EP 20819768A EP 4077595 A1 EP4077595 A1 EP 4077595A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
ppm
weight
izm
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20819768.1A
Other languages
German (de)
French (fr)
Inventor
Christophe Bouchy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4077595A1 publication Critical patent/EP4077595A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J35/615
    • B01J35/635
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • middle distillates that is to say in cuts that can be incorporated into the kerosene and / or gas oil pool
  • various methods of producing middle distillates based on the use of oil, natural gas or even renewable resources can be implemented.
  • Middle distillate bases can thus be produced from a paraffinic feed obtained from a feed obtained from renewable sources, and in particular from vegetable oils or animal fats, crude or having undergone a prior treatment, as well as mixtures of such fillers.
  • said feeds derived from renewable sources contain chemical structures of the triglyceride or esters or free fatty acids type, the structure and the length of the hydrocarbon chain of the latter being compatible with the hydrocarbons present in the middle distillates.
  • Said feeds from renewable sources produce, after hydrotreatment, paraffinic feeds, free of sulfur compounds and aromatic compounds.
  • These paraffinic fillers are typically composed of linear paraffins having a number of carbon atoms between 9 and 25.
  • Middle Distillates can also be produced from natural gas, coal, or renewable sources through the Fischer-Tropsch synthesis process.
  • the so-called low temperature Fischer-Tropsch synthesis using cobalt catalysts makes it possible to produce essentially linear paraffinic compounds having a very variable number of carbon atoms, typically from 1 to 100 carbon atoms or even more. Separation steps can make it possible to recover paraffinic charges having a number of carbon atoms between 9 and 25.
  • middle distillate bases obtained after hydrotreatment of vegetable oils or after the low temperature Fischer-Tropsch synthesis process cannot generally be incorporated as such into the kerosene or gas oil pool, in particular because of insufficient cold properties.
  • the high molecular weight paraffins which are linear or very weakly branched and which are present in these middle distillate bases lead to high pour points and therefore to freezing phenomena for uses at low temperature.
  • the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule and the boiling point of which is equal to approximately 340 ° C, i.e. typically included in the middle distillate cut is approximately + 37 ° C which makes its use impossible, the specification being -15 ° C for diesel.
  • these linear paraffins or very little branched must be completely or partially eliminated.
  • This operation can be carried out by extraction with solvents such as propane or methyl ethyl ketone, this is called dewaxing with propane or with methyl ethyl ketone (MEK).
  • solvents such as propane or methyl ethyl ketone
  • MEK methyl ethyl ketone
  • Bifunctional catalysts involve a Bronsted acid phase (eg zeolite) and a hydro / dehydrogenating phase (eg platinum) and generally a matrix (eg alumina).
  • the appropriate choice of the acid phase helps promote isomerization of long linear paraffins and minimize cracking.
  • zeolites ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 makes their use particularly suitable for obtaining catalysts that are selective towards isomerization. .
  • the activity of the catalyst is also an important parameter. Increasing the activity of the catalyst improves the overall operation of the process from the point of view of its productivity or energy consumption. It is therefore desirable to develop catalysts that are the most active and the most selective as possible towards isomerization.
  • the activity of bifunctional isomerization catalysts is largely dependent on the activity of the Bronsted acid phase (for example a zeolite), and therefore on its acidity, used in said catalysts.
  • the acidity of the zeolitic phase is ultimately a function of the number of Bronsted acid sites in said phase and also of their strength (C. Marcilly, acid-base catalysis, volume 1, 2003).
  • a means of increasing the activity of a bifunctional isomerization catalyst can therefore be to increase the acidity of the zeolitic phase involved in said catalyst by increasing the density of acid sites of the zeolitic phase, all other things being equal.
  • the isomerization selectivity of the catalysts increases when the number of acid sites of the ZSM-12 zeolite decreases (by increasing the Si / Al ratio of the zeolite used). This increase in selectivity is then done to the detriment of the activity of the catalyst.
  • Another means of improving the isomerization selectivity of the catalyst may consist in partially neutralizing the Bronsted acid sites of the zeolite with cations (W. Wang et al., Catalysis Science and Technology, 9, 2019, 4162).
  • Application FR 3 074 428 A teaches a process for preparing bifunctional catalysts using an IZM-2 zeolite. Said preparation process makes it possible both to preferentially localize the hydrogenating function on the surface and / or in the microporosity of the IZM-2 zeolite and to distribute the hydrogenating function homogeneously in the catalyst.
  • the alkali and / or alkaline earth content in the catalysts of the examples is not disclosed.
  • An object of the present invention relates to a process for the isomerization of paraffinic feedstocks, preferably obtained from hydrotreated vegetable and / or animal oils or from the low temperature Fischer-Trospch synthesis, said process using a bifunctional catalyst comprising at least one metal.
  • the catalyst being characterized in that the total weight content of alkaline and / or alkaline earth elements is less than 200 ppm by weight relative to to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm, preferably less than 90 ppm by weight, more preferably less than 85 ppm by weight, more preferably less than 80 ppm by weight , very preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight.
  • the weight contents provided are considered relative to the dry mass of solid.
  • the dry mass of solid corresponds to the mass of the solid after calcination in air for two hours at 1000 ° C. in a muffle furnace.
  • the different ranges of parameters for a given step such as the pressure ranges and the temperature ranges can be used alone or in combination.
  • a preferred pressure value range can be combined with a more preferred temperature value range.
  • the present invention relates to a process for the isomerization of paraffinic feeds operating at a temperature between 200 ° C and 500 ° C, at a total pressure between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen between 0 , 3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of feed introduced per kilogram of catalyst and using a catalyst comprising and preferably consisting of at least one metal from group VIII of the classification periodic elements, at least one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkali and / or alkaline earth elements is less than 200 ppm by weight relative to the total mass of said catalyst , preferably less than 150 ppm, more preferably less than 200 ppm by weight relative to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm, of preferably less than 90 ppm by weight, more preferably less than 85 ppm by weight more preferably less than 80
  • An advantage of the present invention is to provide a process for the isomerization of a paraffinic feed using a catalyst comprising at least one IZM-2 zeolite, said catalyst having a reduced alkali and / or alkaline-earth content making it possible to improve the activity of the catalyst while retaining maximum isomerization selectivity.
  • the total weight content of alkali and / or alkaline earth in said catalyst is measured by atomic absorption spectroscopy on a Flame Atomic Absorption Spectrometer (SAAF) VARIAN Spectr'AA 240FS device after dissolving the solid by mineralization of said solid by wet process.
  • mineralization of the solid means the dissolution of said solid which is typically carried out in concentrated aqueous solutions of perchloric, hydrofluoric and hydrochloric acid. It can be carried out at temperature on a hot plate or by microwave.
  • the present invention relates to a process for the isomerization of paraffinic feeds operating at a temperature of between 200 ° C and 500 ° C, at a total pressure of between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of feed introduced per kilogram of catalyst and per hour and using a catalyst comprising at least one metal from the group VIII of the Periodic Table of the Elements, at least one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkaline and / or alkaline earth elements is less than 200 ppm by weight relative to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm by weight relative to the total mass of said catalyst, preferably less than 90 ppm by weight, preferably less ure at 85 ppm by weight more preferably less than 80 ppm by weight, very preferably less than 75
  • the isomerization process is carried out at a temperature between 200 ° C and 500 ° C, at a total pressure between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen of between between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilograms of feed introduced per kilogram of catalyst and per hour.
  • said process is carried out at a temperature between 200 and 450 ° C, and more preferably between 220 and 430 ° C, at a total pressure between 0.6 and 6 MPa, at a partial pressure of hydrogen. between 0.4 and 4.8 MPa, at an hourly space velocity advantageously between 0.2 and 7 h-1 and preferably between 0.5 and 5 h-1.
  • the isomerization process comprises bringing a paraffinic feed into contact with at least said catalyst according to the invention present in a catalytic reactor.
  • the paraffins of said paraffinic filler have a number of carbon atoms of between 9 and 25, preferably between 10 and 25 and very preferably between 10 and 22.
  • the paraffin content in said filler used in the process according to the invention is advantageously greater than 90% by weight, preferably greater than 95% by weight, even more preferably greater than 98% by weight.
  • the percentage by weight of isoparaffins is less than 15%, preferably less than 10% and very preferably less than 5%.
  • said paraffinic filler used in the process according to the invention can be produced from renewable resources.
  • said paraffinic filler is produced from renewable resources chosen from vegetable oils, algal or algal oils, fish oils and fats of vegetable or animal origin, or mixtures of such fillers.
  • Said vegetable oils can advantageously be crude or refined, totally or in part, and obtained from plants chosen from rapeseed, sunflower, soya, palm, olive, coconut, copra, castor oil, cotton. , peanut, linseed and crambe oils and all oils obtained, for example, from sunflower or rapeseed by genetic modification or hybridization, this list not being exhaustive.
  • Said animal fats are advantageously chosen from bacon and fats composed of residues from the food industry or from catering industries. Frying oils, various animal oils such as fish oils, tallow, lard can also be used.
  • the renewable resources from which the paraffinic filler used in the process according to the invention is produced essentially contain chemical structures of the triglyceride type that a person skilled in the art also knows under the name tri ester of fatty acids as well as fatty acids. free, whose fatty chains contain a number of carbon atoms between 9 and 25.
  • a tri fatty acid ester is thus composed of three fatty acid chains. These fatty acid chains in the form of a tri ester or in the form of free fatty acids have a number of unsaturations per chain, also called the number of carbon-carbon double bonds per chain, generally between 0 and 3 but which may be higher in particular for oils obtained from algae which generally have a number of unsaturations per chain of 5 to 6.
  • the molecules present in said renewable resources used in the present invention therefore exhibit a number of unsaturations, expressed per triglyceride molecule, advantageously between 0 and 18.
  • the level of unsaturation, expressed in number of unsaturations per hydrocarbon fatty chain is advantageously between 0 and 6.
  • Renewable resources generally also contain various impurities and in particular heteroatoms such as nitrogen.
  • the nitrogen contents in vegetable oils are generally between 1 ppm and 100 ppm by weight approximately, depending on their nature. They can reach up to 1% by weight on specific loads.
  • Said paraffinic filler used in the process according to the invention is advantageously produced from renewable resources according to processes known to those skilled in the art.
  • One possible route is the catalytic transformation of said renewable resources into deoxygenated paraffinic effluent in the presence of hydrogen and in particular hydrotreatment.
  • said paraffinic feed is produced by hydrotreating said renewable resources.
  • These processes for hydrotreating renewable resources are already well known and are described in numerous patents.
  • said paraffinic feedstock used in the process according to the invention can advantageously be produced, preferably by hydrotreatment then by gas / liquid separation, from said renewable resources such as for example in patent FR 2 910 483 or in patent FR 2 950895.
  • said paraffinic feed used in the process according to the invention can also be a paraffinic feed produced by a process involving a step of upgrading by the Fischer-Tropsch route.
  • synthesis gas (CO + H2) is catalytically converted into oxygenates and essentially linear hydrocarbons in gaseous, liquid or solid form. Said products obtained constitute the feed for the process according to the invention.
  • Synthesis gas (CO + H2) is advantageously produced from natural gas, coal, biomass, any source of hydrocarbon compounds or a mixture of these sources.
  • the paraffinic fillers obtained, according to a Fischer-Tropsch synthesis process, from a synthesis gas (C0 + H2) produced from renewable resources, natural gas or coal can be used in the process according to the invention.
  • said paraffinic filler produced by Fischer-Tropsch synthesis and used in the process according to the invention mainly comprises n-paraffins.
  • said filler comprises an n-paraffin content greater than 60% by weight relative to the total mass of said filler.
  • Said feed may also comprise a content of oxygenates preferably less than 10% by weight, a content of unsaturated products, that is to say preferably of olefinic products, preferably less than 20% by weight and an iso-content. paraffins preferably less than 10% by weight relative to the total mass of said filler.
  • said filler comprises an n-paraffin content greater than 70% by weight and even more preferably greater than 80% by weight relative to the total mass of said filler.
  • the paraffins of said paraffinic filler have a number of carbon atoms between 9 and 25, preferably between 10 and 25 and very preferably between 10 and 22.
  • said paraffinic feed produced by Fischer-Tropsch synthesis is free from heteroatomic impurities such as, for example, sulfur, nitrogen or metals.
  • the present invention relates to the use of a catalyst comprising, and preferably consisting of, at least one IZM-2 zeolite preferably containing silicon atoms and optionally aluminum atoms, at least one matrix and at least one metal from group VIII of the Periodic Table of the Elements, said catalyst being characterized in that the total weight content of alkali and / or alkaline earth elements in said catalyst is less than 200 ppm by weight relative to the total mass of said catalyst and greater than 20 ppm by weight.
  • said catalyst has a total weight content of alkali and / or alkaline earth elements less than 150 ppm by weight relative to the total mass of said catalyst, preferably less than 100 ppm, preferably less than 90 ppm, preferably less at 85 ppm by weight, preferably less than 80 ppm by weight, more preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and preferably greater than 30 ppm by weight.
  • the alkaline and / or alkaline earth elements are preferably chosen from lithium, sodium, potassium, berylium, magnesium, barium, and calcium and preferably sodium and potassium and very preferably sodium.
  • said catalyst has a total weight content of sodium elements less than 150 ppm by weight relative to the total mass of said catalyst, preferably less than 100 ppm, more preferably less than 90 ppm, preferably less than 85 ppm by weight. weight, preferably less than 80 ppm by weight, more preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight .
  • said catalyst does not include added alkali and / or alkaline earth elements, other than those associated with the zeolite and / or with the matrix used in said catalyst.
  • Said catalyst according to the invention advantageously comprises, and preferably consists of:
  • a total weight content of alkali and / or alkaline earth element of less than 200 ppm relative to the total mass of said catalyst preferably less than 150 ppm, preferably less than 100 ppm, preferably less than 90 ppm by weight, preferably less than 85 ppm by weight more preferably less than 80 ppm by weight, very preferably less at 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight,
  • Zeolite IZM-2 at least one matrix, preferably alumina, providing 100% complement in the catalyst.
  • Zeolite IZM-2 at least one matrix, preferably alumina, providing 100% complement in the catalyst.
  • the catalyst comprises an IZM-2 zeolite.
  • the IZM-2 zeolite has an X-ray diffraction pattern including at least the lines listed in Table 1.
  • IZM-2 has a crystal structure.
  • the characteristic reticular equidistances d hW of the sample are calculated by the Bragg relationship.
  • ) on d hW is calculated using the Bragg relation as a function of the absolute error D (2Q) assigned to the measurement of 2Q.
  • An absolute error D (2Q) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity l rei assigned to each value of d hki is measured from the height of the corresponding diffraction peak.
  • the X-ray diffraction diagram of the IZM-2 zeolite contained in the catalyst according to the invention comprises at least the lines at the values of d hki given in Table 1.
  • the mean values of the d hki are indicated. inter-reticular distances in Angstroms ( ⁇ ). Each of these values must be affected by the measurement error A (d hki ) between ⁇ 0.6 ⁇ and ⁇ 0.01 ⁇ .
  • Table 1 represents the mean values of the d hki and relative intensities measured on an X-ray diffraction diagram of the calcined crystalline solid IZM-2.
  • the relative intensity l rei is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction pattern: ff ⁇ 15; £ 15 f ⁇ 30; 30 £ mf ⁇ 50; £ 50 ⁇ 65; £ 65 F ⁇ 85; FF 3 85.
  • Said IZM-2 solid advantageously has a chemical composition expressed on an anhydrous basis, in terms of moles of oxides, defined by the following general formula: X02: aY203: bM2 / nO, in which X represents at least one tetravalent element, Y represents at least one trivalent element and M is at least one alkali metal and / or one alkaline earth metal of valence n.
  • a represents the number of moles of Y203 and a is between 0 and 0.5, very preferably between 0 and 0.05 and even more preferably between and 0.0016 and 0, 02 and b represents the number of moles of M2 / nO and is between 0 and 1, preferably between 0 and 0.5 and even more preferably between 0.005 and 0.5.
  • X is chosen from silicon, germanium, titanium and the mixture of at least two of these tetravalent elements, very preferably X is silicon and Y is preferably chosen from aluminum, boron, iron, indium and gallium, very preferably Y is aluminum.
  • M is preferably chosen from lithium, sodium, potassium, calcium, magnesium and the mixture of at least two of these metals and very preferably M is sodium.
  • X represents silicon
  • said crystallized solid IZM-2 is then an entirely silicic solid when the element Y is absent from the composition of said solid IZM-2.
  • element X a mixture of several elements X, in particular a mixture of silicon with another element X chosen from germanium and titanium, preferably germanium.
  • said crystallized solid IZM-2 is then a crystallized metallosilicate exhibiting an X-ray diffraction pattern identical to that described in Table 1 when it is in its form. calcined.
  • said crystallized solid IZM-2 is then a crystallized aluminosilicate exhibiting an X-ray diffraction pattern identical to that described in Table 1 when in its calcined form.
  • said solid IZM-2 used in the support of the catalyst used in the process according to the invention advantageously exhibits a chemical composition expressed by the following general formula (I): X02: aY203: bM2 / nO : cR: dH20 in which R represents an organic species comprising two quaternary nitrogen atoms, X represents at least one tetravalent element, Y represents at least one trivalent element and M is an alkali metal and / or an alkaline earth metal of valence not ; a, b, c and d respectively representing the number of moles of Y203, M2 / nO, R and H20 and a is between 0 and 0.5, b is between 0 and 1, c is between 0 and 2 and d is between 0 and 2.
  • This formula and the values taken by a, b, c and d are those for which said solid IZM-2 is preferably found in its calcined form.
  • said solid IZM-2 in its crude synthetic form, advantageously exhibits a chemical composition expressed by the following general formula: X02: aY203: bM2 / nO: cR: dH20 (I) in which R represents an organic species comprising two quaternary nitrogen atoms, X represents at least one tetravalent element, Y represents at least one trivalent element and M is an alkali metal and / or an alkaline earth metal of valence n; a, b, c and d respectively representing the number of moles of Y203, M2 / nO, R and H20 and a is between 0 and 0.5, b is between 0 and 1, c is between 0.005 and 2 and preferably between 0.01 and 0.5, and d is between 0.005 and 2 and preferably between 0.01 and 1.
  • the value of a is between 0 and 0.5, very preferably between 0 and 0.05 and even more preferably between 0.0016 and 0.02.
  • b is between 0 and 1
  • very preferably b is between 0 and 0.5 and even more preferably b is between 0.005 and 0.5.
  • the value of c is between 0.005 and 2, advantageously between 0.01 and 0.5.
  • the value taken by d is between 0.005 and 2, preferably between 0.01 and 1.
  • said solid IZM-2 advantageously comprises at least the species organic R having two quaternary nitrogen atoms such as that described below or its decomposition products or its precursors.
  • the element R is 1,6-bis (methylpiperidinium) hexane.
  • Said organic species R which acts as a structuring agent, can be eliminated by conventional means known from the state of the art, such as heat and / or chemical treatments.
  • an aqueous mixture comprising at least one source of at least one SiO 2 oxide, optionally at least one source of at least one Al 2 O 3 oxide, is reacted. , optionally at least one source of at least one alkali metal and / or alkaline earth metal of valence n, and preferably at least one organic species R comprising two quaternary nitrogen atoms, the mixture preferably having the following molar composition:
  • SiO 2 / Al 2 O 3 at least 2, preferably at least 20, more preferably 60 to 600,
  • H2O / SI02 1 to 100, preferably 10 to 70,
  • R / Si 02 0.02 to 2, preferably from 0.05 to 0.5
  • M2 / n0 / Si02 0 to 1, preferably 0.005 and 0.5, where M is one or more alkali metal (s) and / or alkaline earth metal (s) chosen from lithium, sodium, potassium, calcium, magnesium and a mixture of at least two of these metals , preferably M is sodium.
  • the element R is 1,6-bis (methylpiperidinium) hexane.
  • the Si / Al molar ratio of the IZM-2 zeolite can also be adjusted to the desired value by post-treatment methods of the IZM-2 zeolite obtained after synthesis. Such methods are known to those skilled in the art, and make it possible to carry out dealumination or desilication of the zeolite.
  • the Si / Al molar ratio of the IZM-2 zeolite forming part of the composition of the catalyst according to the invention is adjusted by an appropriate choice of the conditions for the synthesis of said zeolite.
  • IZM-2 zeolites whose overall atomic ratio, silicon / aluminum (Si / Al), is greater than about 3 and more preferably IZM-2 zeolites whose Si / Al ratio.
  • Al is between 5 and 200 and even more preferably between 10 and 150.
  • an aqueous mixture comprising a silicon oxide, optionally alumina, 1,6-bis (methylpiperidinium) hexane dibromide and sodium hydroxide.
  • an aqueous mixture comprising a silicon oxide, optionally alumina and 1,6-bis (methylpiperidinium) hexane dihydroxide is reacted.
  • the process for preparing said crystallized solid IZM-2 advantageously consists in preparing an aqueous reaction mixture called a gel and containing at least one source of at least one oxide X02, optionally at least one source of at least one oxide Y203, at least one organic species R, optionally at least one source of at least one alkali metal and / or alkaline earth metal of valence n.
  • the amounts of said reagents are advantageously adjusted so as to confer on this gel a composition allowing its crystallization in crystallized solid IZM-2 in its crude synthetic form of general formula (I) X02: aY203: bM2 / nO: cR: dH20, where a, b, c and d meet the criteria defined above when c and d are greater than 0.
  • the gel is then subjected to a hydrothermal treatment until said crystallized solid IZM-2 is formed.
  • the gel is advantageously placed under hydrothermal conditions under an autogenous reaction pressure, optionally by adding gas, for example nitrogen, at a temperature between 120 ° C and 200 ° C, preferably between 140 ° C and 180 ° C, and even more preferably between 160 and 175 ° C until the formation of crystals of solid IZM-2 under its crude synthetic form.
  • the time required to obtain crystallization generally varies between 1 hour and several months depending on the composition of the reagents in the gel, the stirring and the reaction temperature. Preferably, the crystallization time varies between 2 hours and 21 days.
  • the reaction is generally carried out with stirring or in the absence of stirring, preferably in the presence of stirring.
  • seeds may be advantageous to add seeds to the reaction mixture in order to reduce the time required for crystal formation and / or the total crystallization time. It may also be advantageous to use seeds in order to promote the formation of said crystallized solid IZM-2 to the detriment of impurities.
  • Such seeds advantageously comprise crystalline solids, in particular crystals of solid IZM-2.
  • the seed crystals are generally added in a proportion of between 0.01 and 10% of the mass of the oxide X02 used in the reaction mixture.
  • the solid phase is advantageously filtered, washed, dried and then calcined.
  • the calcination step is advantageously carried out by one or more heating steps carried out at a temperature between 100 and 1000 ° C, preferably between 400 and 650 ° C, for a period of between a few hours and several days, preferably between 3 hours and 48 hours.
  • the calcination is carried out in two consecutive heating steps.
  • said solid IZM-2 obtained is advantageously that exhibiting the X-ray diffraction diagram including at least the lines listed in Table 1. It is devoid of water as well as of the species. organic R present in the solid IZM-2 in its crude synthetic form.
  • the IZM-2 zeolite can typically contain from 2000 to 8000 ppm of alkali and / or alkaline earth element and preferably of sodium.
  • the solid IZM-2 entering into the composition of the support of the catalyst according to the invention is advantageously washed with at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the solid IZM-2.
  • the M / Y atomic ratio is generally advantageously less than 0.1 and preferably less than 0.05 and even more preferably less than 0.01. This washing step can be carried out at any step in the preparation of the catalyst or catalyst support, that is to say after the step of preparing the IZM-2 solid, after the step of shaping the solid.
  • the washing step is carried out before the step of shaping the solid IZM-2.
  • the washing step is preferably carried out by immersing the solid with stirring in an aqueous solution of at least one ammonium salt.
  • the ammonium salt can be chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HCO3, ammonium acetate NH4H3C202 or else sulphate of Ammonium (NH4) 2SO4.
  • the period of immersion of the solid in the solution can typically vary from 15 minutes to several hours.
  • the concentration of ammonium salt (s) in the solution is typically between 0.1 mol per liter and 10 moles per liter.
  • the washing is preferably carried out at a temperature between room and 100 ° C.
  • the ratio between the volume of solution involved (in ml) and the mass of zeolite involved (in grams) is preferably between 1 and 100.
  • the solid is filtered off, washed with deionized water and then dried.
  • the IZM-2 zeolite is calcined in order to obtain it in its proton form.
  • the calcination conditions are typically the same as those used to calcine the solid at the end of the hydrothermal treatment step.
  • the zeolite can typically contain less than 200 ppm and preferably more than 20 ppm, or even more than 30 ppm of alkali and / or alkaline earth element and preferably of sodium.
  • the catalyst comprises at least one matrix.
  • Said matrix can advantageously be amorphous or crystalline.
  • said matrix is advantageously chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture or else one can also choose the aluminates.
  • alumina is used as a matrix.
  • said matrix contains alumina in all its forms known to those skilled in the art, such as, for example, aluminas of the alpha, gamma, eta, delta type. Said aluminas differ by their specific surface and their pore volume.
  • the alkali and / or alkaline earth content of the matrix is variable and depends on the method of obtaining said matrix as is well known for alumina for example (Handbook of Porous Solids, 2008, Wiley-VCH chapter 4.7.2 .).
  • the support for the catalyst used in the invention comprises and preferably consists of said matrix and said IZM-2 zeolite.
  • the content of alkali and / or alkaline earth element in the matrix can advantageously be adjusted by any method known to those skilled in the art to obtain a catalyst in accordance with the invention.
  • the matrix or the precursor of the matrix can thus be washed by bringing into contact an aqueous solution whose pH is less than or equal to the zero charge point of said matrix, as illustrated for an alumina matrix in Catalysis Supports and Supported Catalysts, Butterworth Publishers (1987).
  • boehmite can be washed by contacting said solid with an aqueous solution of ammonium nitrate.
  • the duration of immersion of the solid in the solution can typically vary from 15 minutes to several hours.
  • the concentration of ammonium salt (s) in the solution is typically between 0.1 mol per liter and 10 moles per liter. Washing is preferably carried out at a temperature between room and 100 ° C.
  • the ratio between the volume of solution engaged (in ml) and the mass of the boehmite engaged (in grams) is preferably between 1 and 100. To reduce the alkali and / or alkaline earth content to the desired level it may be necessary to necessary to repeat the washing step several times. After the last washing, the solid is filtered, washed with deionized water, then dried and calcined.
  • the matrix can typically contain less than 200 ppm and preferably more than 20 ppm, or even more than 30 ppm, of alkali and / or alkaline earth element and preferably of sodium. .
  • the catalyst comprises at least one metal from group VIII preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum is chosen.
  • group VIII preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum is chosen.
  • said catalyst comprises a group VIII metal content of between 0.01 and 5% by weight relative to the total mass of said catalyst and preferably of between 0.1 and 4% by weight.
  • the noble metal content of said catalyst is advantageously between 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and preferably between 0.1 and 4% by weight. very preferably between 0.1 and 2% by weight relative to the total mass of said catalyst.
  • the catalyst of the invention can also advantageously contain at least one metal chosen from metals of groups II IA, IVA and VI IB chosen from gallium, indium, tin and rhenium.
  • the metal content chosen from the metals of groups NIA, IVA and Vil B is preferably between 0.01 and 2%, preferably between 0.05 and 1% by weight relative to the total mass of said catalyst. .
  • the dispersion of the metal (s) of group VIII determined by chemisorption, for example by H2 / 02 titration or by chemisorption of carbon monoxide, is between 10% and 100%, preferably between 20% and 100% and even more preferably between 30% and 100%.
  • the macroscopic distribution coefficient of the metal (s) of group VIII, obtained from its (their) profile determined by Castaing microprobe, defined as the ratio of the concentrations of the metal (s) of group VIII to core of the grain with respect to the edge of this same grain is between 0.7 and 1.3, preferably between 0.8 and 1.2. The value of this ratio, close to 1, testifies to the homogeneity of the distribution of the metal (s) from group VIII in the catalyst.
  • the catalyst according to the invention can advantageously be prepared according to all the methods well known to those skilled in the art.
  • the various constituents of the support or of the catalyst can be shaped by mixing step to form a paste then extrusion of the paste obtained, or else by mixing powders then pelletizing, or else by any other known agglomeration process.
  • a powder containing alumina can be in different shapes and sizes.
  • the shaping is carried out by mixing and extrusion.
  • said IZM-2 zeolite can be introduced during the dissolution or suspension of alumina compounds or alumina precursors such as bohemite for example.
  • Said IZM-2 zeolite can be, without this being limiting, for example in the form of powder, ground powder, suspension or suspension which has undergone a deagglomeration treatment.
  • said zeolite can advantageously be placed in suspension, acidified or not, at a concentration adjusted to the final IZM-2 content targeted in the catalyst according to the invention.
  • This suspension commonly called a slip is then mixed with the alumina compounds or alumina precursors.
  • additives can advantageously be implemented to facilitate shaping and / or improve the final mechanical properties of the supports, as is well known to those skilled in the art.
  • additives mention may in particular be made of cellulose, carboxymethyl-cellulose, carboxy-ethyl-cellulose, tall oil (tall oil), xanthan gums, surfactants, agents. flocculants such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc.
  • Water can advantageously be added or removed to adjust the viscosity of the paste to be extruded. This step can advantageously be carried out at any stage of the mixing step.
  • a predominantly solid compound and preferably an oxide or a hydrate.
  • a hydrate is preferably used and even more preferably an aluminum hydrate is used. The loss on ignition of this hydrate is advantageously greater than 15%.
  • the extrusion of the paste resulting from the kneading step can advantageously be carried out by any conventional tool, available commercially.
  • the paste resulting from the mixing is advantageously extruded through a die, for example using a piston or a single or twin extrusion screw.
  • the extrusion can advantageously be carried out by any method known to those skilled in the art.
  • the catalyst supports according to the invention are generally in the form of cylindrical or polylobed extrudates such as bilobed, trilobed, polylobed in straight or twisted shape, but can optionally be manufactured and used in the form of crushed powders, tablets, etc. rings, balls and / or wheels.
  • the supports for the catalyst according to the invention are in the form of spheres or extrudates.
  • the support is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes may be cylindrical (which may or may not be hollow) and / or twisted cylindrical and / or multilobed (2, 3, 4 or 5 lobes for example) and / or rings.
  • the multilobed form is advantageously used in a preferred manner.
  • the support thus obtained can then be subjected to a drying step.
  • Said drying step is advantageously carried out by any technique known to those skilled in the art.
  • the drying is carried out under air flow.
  • Said drying can also be carried out under a flow of any oxidizing, reducing or inert gas.
  • the drying is advantageously carried out at a temperature between 50 and 180 ° C, preferably between 60 and 150 ° C and very preferably between 80 and 130 ° C.
  • Said support optionally dried, then preferably undergoes a calcination step.
  • Said calcination step is advantageously carried out in the presence of molecular oxygen, for example by carrying out an air sweep, at a temperature advantageously greater than 200 ° C and less than or equal to 1100 ° C.
  • Said calcination step can advantageously be carried out in a traversed bed, in a lickbed bed or in a static atmosphere.
  • the furnace used can be a rotary rotary furnace or be a vertical furnace with radial traversed layers.
  • said calcination step is carried out between more than one hour at 200 ° C to less than one hour at 1100 ° C.
  • Calcination can advantageously be carried out in the presence of water vapor and / or in the presence of an acidic or basic vapor.
  • the calcination can be carried out under partial pressure of ammonia.
  • Post-calcination treatments can optionally be carried out, so as to improve the properties of the support, in particular the textural properties.
  • the support of the catalyst according to the present invention can be subjected to a hydrothermal treatment in a confined atmosphere.
  • hydrothermal treatment in a confined atmosphere means treatment by autoclaving in the presence of water at a temperature above room temperature, preferably above 25 ° C, preferably above 30 ° C.
  • the support can advantageously be impregnated, prior to its passage in the autoclave (autoclaving being carried out either in vapor phase or in liquid phase, this vapor or liquid phase of the autoclave possibly being acidic. or not).
  • This impregnation, prior to autoclaving may advantageously be acidic or not.
  • This impregnation, prior to autoclaving can advantageously be carried out dry or by immersing the support in an acidic aqueous solution.
  • dry impregnation is meant bringing the support into contact with a volume of solution less than or equal to the total pore volume of the support.
  • the impregnation is carried out dry.
  • the autoclave is preferably an autoclave with a rotating basket such as that defined in patent application EP 0 387 109 A.
  • the temperature during autoclaving can be between 100 and 250 ° C for a period of time between 30 minutes and 3 hours.
  • the mixture of the matrix and the shaped IZM-2 zeolite constitutes the catalyst support.
  • the alkali and / or alkaline earth content of the support can also be adjusted by any method known to those skilled in the art to obtain a catalyst in accordance with the invention.
  • washing treatments can also be carried out in order to reduce the alkali and / or alkaline earth content of the support.
  • the operating conditions for washing are typically the same as those described for washing the zeolite.
  • the support is then again calcined after washing, preferably under the same conditions as those described for washing the zeolite.
  • the deposition of the metal from group VIII of the Periodic Table of the Elements all the deposition techniques known to those skilled in the art and all the precursors of such metals may be suitable. Dry impregnation deposition techniques or in excess of a solution containing the metal precursors can be used, in the presence of competitors or not.
  • the introduction of the metal can be carried out at any stage of the preparation of the catalyst: on the IZM-2 zeolite and / or on the matrix, in particular before the shaping step, during the shaping step, or after the shaping step, on the catalyst support.
  • the deposition of the metal takes place after the shaping step.
  • an anion exchange can be carried out with hexachloroplatinic acid and / or hexachloropalladic acid, preferably in the presence of a competing agent, for example hydrochloric acid, the deposition generally being followed by calcination, for example at a temperature between 350 and 550 ° C and for a period of between 1 and 4 hours.
  • a competing agent for example hydrochloric acid
  • the metal (s) of group VIII is (are) deposited mainly on the matrix and the said metal (s) present (s) a good dispersion and a good macroscopic distribution across the grain of catalyst.
  • the metal (s) from group VIII, preferably platinum and / or palladium, by cation exchange so that the said metal (s) are themselves (in ) t deposited mainly on the zeolite.
  • the precursor can for example be chosen from:
  • X being a halogen chosen from the group formed by chlorine, fluorine, bromine and iodine, X preferably being chlorine, and "acac" representing the acetylacetonate group (of gross formula C5H702), derived from acetylacetone .
  • the metal (s) of group VIII is (are) deposited (s) mainly on the zeolite and the said metal (s) present (s) a good dispersion and a good macroscopic distribution across the grain of catalyst.
  • the impregnation solution can advantageously also comprise at least one ammonium salt chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HC03, acetate ammonium NH4H3C202 alone or as a mixture, the molar ratio between the ammonium salt and the noble metal of the precursor being between 0.1 and 400.
  • at least one ammonium salt chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HC03, acetate ammonium NH4H3C202 alone or as a mixture, the molar ratio between the ammonium salt and the noble metal of the precursor being between 0.1 and 400.
  • the catalyst of the invention also contains at least one metal chosen from the metals of groups NIA, IVA and VI IB, all the techniques for depositing such a metal known to those skilled in the art and all the precursors such metals may be suitable.
  • the metal (s) from group VIII and that (those) from groups NIA, IVA and VII B can be added, either separately or simultaneously in at least one unitary step.
  • at least one metal from groups NIA, IVA and VII B is added separately, it is preferable that it is added after the metal from group VIII.
  • the additional metal chosen from metals from groups NIA, IVA and VII B can be introduced via compounds such as, for example, chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B.
  • compounds such as, for example, chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B.
  • chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B for example in in the case of indium, nitrate or chloride is advantageously used and in the case of rhenium, perrhenic acid is advantageously used.
  • the additional metal chosen from the metals of groups NIA, IVA and VIIB can also be introduced in the form of at least one compound organic chosen from the group consisting of complexes of said metal, in particular polyketone complexes of the metal and hydrocarbylmetals such as alkyls, cycloalkyls, aryls, alkylaryls and arylalkyls of metals.
  • the introduction of the metal is advantageously carried out using a solution of the organometallic compound of said metal in an organic solvent.
  • Organohalogen compounds of the metal can also be employed.
  • organic compounds of metals there may be mentioned in particular tetrabutyltin, in the case of tin, and triphenylindium, in the case of indium.
  • the compound of the metal NIA, IVA and / or VIIB used is generally chosen from the group consisting of the halide, the metal nitrate, acetate, tartrate, carbonate and oxalate.
  • the introduction is then advantageously carried out in aqueous solution. But it can also be introduced using a solution of an organometallic compound of the metal, for example tetrabutyltin. In this case, before proceeding with the introduction of at least one metal from group VIII, calcination in air will be carried out.
  • intermediate treatments such as, for example, calcination and / or reduction can be applied between the successive deposits of the different metals.
  • the catalyst according to the invention is preferably reduced.
  • This reduction step is advantageously carried out by treatment under hydrogen at a temperature of between 150 ° C and 650 ° C and a total pressure of between 0.1 and 25 MPa.
  • a reduction consists of a plateau at 150 ° C for two hours then a rise in temperature to 450 ° C at a rate of 1 ° C / min then a plateau of two hours at 450 ° C; throughout this reduction step, the hydrogen flow rate is 1000 normal m3 of hydrogen per tonne of catalyst and the total pressure kept constant at 0.2 MPa.
  • Any ex-situ reduction method can advantageously be envisaged.
  • a prior reduction of the final catalyst ex situ, under a stream of hydrogen can be carried out, for example at a temperature of 450 ° C. to 600 ° C., for a period of 0.5 to 4 hours.
  • Said catalyst also advantageously comprises sulfur.
  • the catalyst of the invention contains sulfur
  • the latter can be introduced at any stage of the preparation of the catalyst: before or after the shaping stage, and / or drying and / or calcination, before and / or after the introduction of the metal (s) mentioned above, or alternatively by sulfurization in situ and / or ex situ before the catalytic reaction.
  • in situ sulfurization the reduction, if the catalyst has not been reduced beforehand, takes place before the sulfurization.
  • the reduction and then the sulfurization are also carried out.
  • the sulfurization is preferably carried out in the presence of hydrogen using any sulfurizing agent well known to those skilled in the art, such as, for example, dimethyl sulfide or hydrogen sulfide.
  • the catalysts according to the invention come in different shapes and sizes. They are generally used in the form of cylindrical and / or polylobed extrudates such as bilobed, trilobed, polylobed of straight and / or twisted shape, but can optionally be manufactured and employed in the form of crushed powders, tablets, rings, balls and / or wheels.
  • the catalysts used in the process according to the invention have the form of spheres or extrudates.
  • the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes may be cylindrical (which may or may not be hollow) and / or twisted cylindrical and / or multilobed (2, 3, 4 or 5 lobes for example) and / or rings.
  • the multilobed form is advantageously used in a preferred manner.
  • the deposition of the metal does not change the shape of the support.
  • Example 1 synthesis of the IZM-2 zeolite
  • the IZM-2 zeolite was synthesized in accordance with the teaching of patent FR 2 918 050 B.
  • the molar composition of the mixture is as follows: 1 SiO 2; 0.0042 AI203; 0.1666 Na20; 0.1666 1.6bis (methylpiperidinium) hexane; 33.3333 H2O. The mixture is stirred vigorously for half an hour.
  • the mixture is then transferred, after homogenization, into an autoclave of the PARR type.
  • the autoclave is heated for 5 days at 170 ° C. with stirring in the spit (30 revolutions / min).
  • the product obtained is filtered, washed with deionized water to reach a neutral pH and then dried overnight at 100 ° C. in an oven.
  • the solid is then introduced into a muffle furnace to be calcined there in order to remove the structuring agent.
  • the calcination cycle includes a rise in temperature up to 200 ° C, a plateau at this temperature of two hours, a rise in temperature up to 550 ° C followed by a plateau of eight hours at this temperature and finally a return at room temperature.
  • the temperature rises are carried out with a ramp of 2 ° C / min.
  • the solid thus obtained after calcination contains a sodium content measured by atomic absorption of 3695 ppm.
  • the solid thus obtained is then refluxed for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M).
  • This refluxing step is carried out four times with a fresh solution of ammonium nitrate, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100 ° C.
  • a calcination step is carried out at 550 ° C for ten hours (temperature rise ramp of 2 ° C / min) in a crossed bed in dry air (2 normal liters per hour and per gram of solid).
  • the solid thus obtained was analyzed by X-ray diffraction and identified as being constituted by zeolite IZM-2.
  • the solid thus obtained contains a sodium content measured by atomic absorption of 142 ppm.
  • the IZM-2 / alumina support is obtained by mixing and extruding the IZM-2 zeolite prepared according to Example 1 with a first batch of boehmite supplied by the company AXENS containing 287 ppm by weight of sodium.
  • the kneaded dough is extruded through a trilobed die with a diameter of 1.8 mm.
  • the extrudates are calcined at 550 ° C for two hours (temperature rise ramp of 5 ° C / min) in a crossed bed in dry air (2 normal liters per hour and per gram solid).
  • the support does not undergo a washing step.
  • the weight content of the IZM-2 zeolite in the support after calcination is 24% by weight.
  • the sodium content in the support measured by atomic absorption is 252 ppm by weight.
  • Example 3 preparation of an isomerization catalyst A.
  • Catalyst A is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared according to Example 2 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2.
  • NH3 4 (NO3) platinum nitrate tetramine Pt
  • NH3 4 platinum nitrate tetramine Pt
  • a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions: temperature rise to ambient to 150 ° C at 5 ° C / min, hold for one hour at 150 ° C,
  • the Pt content measured by FX on the calcined catalyst is 0.3% by weight relative to the total mass of said catalyst, its distribution coefficient measured by Castaing microprobe of 0.6.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content by weight in the catalyst measured by atomic absorption is 255 ppm.
  • the textural properties of catalyst A were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed.
  • Catalyst A has a specific surface area of 294 m 2 / g, a total pore volume of 0.64 ml / g and a median diameter of 14 nm.
  • This support is obtained by washing the first IZM-2 / alumina support described in Example 2.
  • the IZM-2 / alumina support described in Example 2 is washed with an aqueous solution of ammonium nitrate.
  • the support is placed in contact with an aqueous solution of ammonium nitrate in an Erlenmeyer flask on a stirring table for 24 hours.
  • the volume of solution is set at 8 ml per gram of support and the ammonium nitrate concentration is set at 0.15 M.
  • the solution is withdrawn and then the solid is rinsed with twice the exchange volume d distilled water then left to dry overnight in an oven at 110 ° C.
  • the solid is then calcined in a crossed bed under dry laboratory air (1 normal liter per hour and per gram of solid) in a tube furnace under the following conditions:
  • the sodium content in the support measured by atomic absorption is 40 ppm by weight.
  • Example 5 preparation of an isomerization catalyst B.
  • Catalyst B is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared according to Example 4 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2.
  • NH3 4 (NO3) platinum nitrate tetramine Pt
  • carrier typically 20 grams of carrier is used which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
  • the Pt content measured by FX on the calcined catalyst is 0.3% by weight relative to the total mass of catalyst, its distribution coefficient measured by Castaing microprobe of 0.5.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 42 ppm by weight.
  • the textural properties of catalyst B were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half of the volume of nitrogen is adsorbed.
  • Catalyst B has a specific surface of 300 m 2 / g, a total pore volume of 0.65 ml / g and a median diameter of 13 nm.
  • Catalyst C is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by impregnating in excess of the IZM-2 / alumina support prepared according to Example 2 with an aqueous solution containing hexachloroplatinic acid. The concentration of hexachloroplatinic acid in the solution is 2.55 10-3 mol / l.
  • the impregnation solution is then drawn off and the solid is rinsed with 160 ml of distilled water.
  • the solid is then placed to dry in a ventilated oven overnight at 110 ° C. and a calcination step is finally carried out under a flow of dry air (2 normal liters per hour and per gram of solid) in a tube furnace under the conditions following:
  • the Pt content measured by FX on the calcined catalyst is 0.2% by weight relative to the total mass of catalyst, its distribution coefficient measured by Castaing microprobe of 1.0.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 180 ppm by weight.
  • the textural properties of catalyst C were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed.
  • Catalyst C has a specific surface area of 292 m 2 / g, a total pore volume of 0.65 ml / g and a median diameter of 14 nm.
  • Example 7 preparation of an isomerization catalyst D.
  • Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by impregnating excess IZM-2 / alumina support prepared according to Example 4 with an aqueous solution containing hexachloroplatinic acid. The concentration of hexachloroplatinic acid in the solution is 2.55 10-3 mol / l.
  • the impregnation solution is then drawn off and the solid is rinsed with 160 ml of distilled water.
  • the solid is then left to dry in a ventilated oven overnight at 110 ° C. and a calcination step is finally carried out under a flow of dry air (2 normal liters per hour and per gram of solid) in a tube furnace under the conditions following:
  • the Pt content measured by FX on the calcined catalyst is 0.2% by weight relative to the total mass of the catalyst, its distribution coefficient measured by Castaing microprobe of 1.0.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 37 ppm by weight.
  • the textural properties of catalyst D were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour and then at 350 ° C for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed.
  • Catalyst D has a specific surface area of 285 m 2 / g, a total pore volume of 0.65 ml / g and a median diameter of 13 nm.
  • Example 8 Evaluation of the catalytic properties of catalysts C, B and D in accordance with the invention and A not in accordance with the invention, in isomerization of a paraffinic feed.
  • the catalysts were tested for isomerization of a paraffinic feed composed of n-hexadecane. The tests were carried out in a micro-unit implementing a fixed bed reactor and working in downdraft without recycling. The analysis of hydrocarbon effluents is carried out online by gas chromatography. Once loaded into the unit, the catalyst undergoes a first drying step under nitrogen under the following conditions:
  • the temperature has dropped to 230 ° C., and the catalyst is contacted with n-hexadecane under the following conditions:
  • the conversion is changed by varying the temperature; and at each temperature level two analyzes of the effluent are carried out, which makes it possible to calculate the catalytic performance and to verify the stability of the catalytic performance for said temperature level.
  • the temperature is varied between 230 and 350 ° C in a temperature step of 5 ° C.
  • the effluent analysis is carried out entirely through an on-line GC system.
  • the temperature necessary to achieve 50% conversion acts as a descriptor of the activity of the catalyst while the maximum yield obtained in hexadecane isomers acts as a descriptor of the isomerizing properties of the catalyst.
  • Table 2 represents the catalytic performances of catalysts A, B, C and D in hydroconversion of n-hexadecane.
  • Catalysts A and B are distinguished only by their residual sodium content, while the deposition protocol and the amount of platinum deposited are the same. It can be seen that the decrease in the sodium content from 255 ppm to 42 ppm in the catalyst makes it possible to significantly improve its catalytic activity: the temperature necessary to reach 50% conversion is 11 ° C lower for catalyst B than for catalyst B. catalyst A. Remarkably, the isomerization selectivity of the two catalysts is the same since the maximum isomer yield is identical (85%). Decreasing the sodium content increases the catalytic activity while retaining the isomerizing properties of the catalyst.
  • Catalysts C and D are distinguished only by their residual sodium content, while the deposition protocol and the amount of platinum deposited are the same. It is noted that the reduction in the sodium content from 180 ppm to 37 ppm in the catalyst allows significantly improve its catalytic activity: the temperature necessary to achieve 50% conversion is 8 ° C lower for catalyst B than for catalyst A. Remarkably, the isomerization selectivity of the two catalysts is the same since the yield maximum in isomers is the same (83%). The reduction in the sodium content makes it possible to increase the catalytic activity while retaining the isomerizing properties of the catalyst.

Abstract

The present invention relates to a process for the isomerization of paraffinic feedstocks operating at a temperature of between 200°C and 500°C, at a total pressure of between 0.45 MPa and 7 MPa, at a hydrogen partial pressure of between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilograms of feedstock introduced per kilogram of catalyst and per hour and using a catalyst comprising at least one metal from group VIII of the Periodic Table of the Elements, at least one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkali metal and/or alkaline-earth metal elements is less than 200 ppm by weight relative to the total mass of said catalyst, preferably less than 150 ppm, preferably less than 100 ppm, preferably less than 90 ppm by weight, preferably less than 85 ppm by weight, more preferably less than 80 ppm by weight, very preferably less than 75 ppm by weight and more preferably still less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight.

Description

UTILISATION D’UN CATALYSEUR A BASE D’IZM-2 AYANT UNE FAIBLE TENEUR EN ALCALIN POUR L’ISOMERISATION DE CHARGES PARAFFINIQUES EN DISTILLATS USE OF AN IZM-2 BASED CATALYST WITH LOW ALKALINE CONTENT FOR ISOMERIZATION OF PARAFFINIC LOADS IN DISTILLATES
MOYENS MEANS
Domaine technique Technical area
Afin de répondre à la demande en bases distillais moyens, c’est-à-dire en coupe incorporable au pool kérosène et/ou gazole, diverses méthodes de production de distillais moyens basées sur l’utilisation du pétrole, de gaz naturel ou encore de ressources renouvelables peuvent être mises en œuvre. In order to meet the demand for middle distillates, that is to say in cuts that can be incorporated into the kerosene and / or gas oil pool, various methods of producing middle distillates based on the use of oil, natural gas or even renewable resources can be implemented.
Les bases distillais moyens peuvent ainsi être produites à partir d'une charge paraffinique obtenue à partir d'une charge issue de sources renouvelables, et en particulier d'huiles végétales ou des graisses animales, brutes ou ayant subi un traitement préalable, ainsi que les mélanges de telles charges. En effet, lesdites charges issues de sources renouvelables contiennent des structures chimiques de type triglycérides ou esters ou acides gras libres, la structure et la longueur de chaîne hydrocarbonée de ces derniers étant compatibles avec les hydrocarbures présents dans les distillais moyens. Lesdites charges issues de sources renouvelables produisent, après hydrotraitement, des charges paraffiniques, exemptes de composés soufrés et de composés aromatiques. Ces charges paraffiniques sont typiquement composées de paraffines linéaires ayant un nombre d’atomes de carbone compris entre 9 et 25. Middle distillate bases can thus be produced from a paraffinic feed obtained from a feed obtained from renewable sources, and in particular from vegetable oils or animal fats, crude or having undergone a prior treatment, as well as mixtures of such fillers. In fact, said feeds derived from renewable sources contain chemical structures of the triglyceride or esters or free fatty acids type, the structure and the length of the hydrocarbon chain of the latter being compatible with the hydrocarbons present in the middle distillates. Said feeds from renewable sources produce, after hydrotreatment, paraffinic feeds, free of sulfur compounds and aromatic compounds. These paraffinic fillers are typically composed of linear paraffins having a number of carbon atoms between 9 and 25.
Les bases distillais moyens peuvent aussi être produites à partir de gaz naturel, charbon, ou sources renouvelables par l’intermédiaire du procédé de synthèse de Fischer-Tropsch. En particulier la synthèse de Fischer-Tropsch dite basse température utilisant des catalyseurs au cobalt permet de produire des composés essentiellement paraffiniques linéaires ayant un nombre d’atomes de carbone très variable, typiquement de 1 à 100 atomes de carbone voire plus. Des étapes de séparation peuvent permettre de récupérer des charges paraffiniques ayant un nombre d’atomes de carbone compris entre 9 et 25. Middle Distillates can also be produced from natural gas, coal, or renewable sources through the Fischer-Tropsch synthesis process. In particular, the so-called low temperature Fischer-Tropsch synthesis using cobalt catalysts makes it possible to produce essentially linear paraffinic compounds having a very variable number of carbon atoms, typically from 1 to 100 carbon atoms or even more. Separation steps can make it possible to recover paraffinic charges having a number of carbon atoms between 9 and 25.
Toutefois, ces bases distillais moyens obtenues après hydrotraitement des huiles végétales ou après le procédé de synthèse de Fischer-Tropsch basse température ne peuvent généralement pas être incorporées telles quelles au pool kérosène ou gazole notamment en raison de propriétés à froid insuffisantes. En effet, les paraffines de haut poids moléculaire qui sont linéaires ou très faiblement branchées et qui sont présentes dans ces bases distillais moyens conduisent à des points d'écoulement hauts et donc à des phénomènes de figeage pour des utilisations à basse température. Par exemple, le point d’écoulement d’un hydrocarbure linéaire contenant 20 atomes de carbone par molécule et dont le température d’ébullition égale à 340°C environ c’est à dire typiquement comprise dans la coupe distillais moyens, est de +37°C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gazole. Afin de diminuer les valeurs des points d'écoulement, ces paraffines linéaires ou très peu branchées doivent être entièrement ou partiellement éliminées. However, these middle distillate bases obtained after hydrotreatment of vegetable oils or after the low temperature Fischer-Tropsch synthesis process cannot generally be incorporated as such into the kerosene or gas oil pool, in particular because of insufficient cold properties. In fact, the high molecular weight paraffins which are linear or very weakly branched and which are present in these middle distillate bases lead to high pour points and therefore to freezing phenomena for uses at low temperature. For example, the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule and the boiling point of which is equal to approximately 340 ° C, i.e. typically included in the middle distillate cut, is approximately + 37 ° C which makes its use impossible, the specification being -15 ° C for diesel. In order to reduce the values of the pour points, these linear paraffins or very little branched must be completely or partially eliminated.
Cette opération peut s'effectuer par extraction par des solvants tels que le propane ou la méthyl-éthyl cétone, on parle alors de déparaffinage au propane ou à la méthyl éthyl-cétone (MEK). Cependant, ces techniques sont coûteuses, longues et pas toujours aisées à mettre en œuvre. This operation can be carried out by extraction with solvents such as propane or methyl ethyl ketone, this is called dewaxing with propane or with methyl ethyl ketone (MEK). However, these techniques are expensive, long and not always easy to implement.
Le craquage sélectif des chaînes paraffiniques linéaires les plus longues qui conduit à la formation de composés de poids moléculaire plus faible dont une partie peut être éliminée par distillation constitue une solution pour diminuer les valeurs des points d'écoulement. Compte tenu de leur sélectivité de forme les zéolithes sont parmi les catalyseurs les plus utilisés pour ce type de procédé. Le catalyseur le plus utilisé dans la catégorie déparaffinage par craquage sélectif est la zéolithe ZSM-5, de type structural MFI, qui présente une porosité tridimensionnelle, avec des pores moyens (ouverture à 10 atomes d'oxygènes 10MR). Toutefois, le craquage occasionné dans de tels procédés conduit à la formation de quantités importantes de produits de poids moléculaires plus faibles, tels que du butane, propane, éthane et méthane, ce qui réduit considérablement le rendement en produits recherchés.The selective cracking of the longest linear paraffinic chains which leads to the formation of compounds of lower molecular weight, a part of which can be removed by distillation, constitutes a solution for reducing the values of the pour points. Given their shape selectivity, zeolites are among the most widely used catalysts for this type of process. The most widely used catalyst in the selective cracking dewaxing category is ZSM-5 zeolite, with structure type MFI, which has three-dimensional porosity, with medium pores (opening at 10 oxygen atoms 10MR). However, the cracking caused in such processes leads to the formation of large quantities of products of lower molecular weight, such as butane, propane, ethane and methane, which considerably reduces the yield of the desired products.
Une autre solution pour améliorer la tenue à froid consiste à isomériser les paraffines linéaires longues en minimisant au maximum le craquage. Ceci peut être réalisé par la mise en œuvre de procédé d’hydroisomérisation employant des catalyseurs bifonctionnels. Les catalyseurs bifonctionnels mettent en jeu une phase acide de Bronsted (par exemple une zéolithe) et une phase hydro/déshydrogénante (par exemple du platine) et généralement une matrice (par exemple de l’alumine). Le choix approprié de la phase acide permet de favoriser l’isomérisation des paraffines linéaires longues et de minimiser le craquage. Ainsi la sélectivité de forme des zéolithes monodimensionnelles à pores moyens (10MR) comme les zéolithes ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 rend leur utilisation particulièrement adaptée pour obtenir des catalyseurs sélectifs envers l’isomérisation. Ces exemples illustrent la recherche continue effectuée pour développer des catalyseurs toujours plus performants pour l’isomérisation des paraffines linéaires longues, en minimisant la formation de produits de craquage par la mise en œuvre de zéolithes appropriées. Another solution for improving the cold resistance consists in isomerizing the long linear paraffins while minimizing cracking as much as possible. This can be achieved by implementing a hydroisomerization process employing bifunctional catalysts. Bifunctional catalysts involve a Bronsted acid phase (eg zeolite) and a hydro / dehydrogenating phase (eg platinum) and generally a matrix (eg alumina). The appropriate choice of the acid phase helps promote isomerization of long linear paraffins and minimize cracking. Thus the shape selectivity of one-dimensional medium-pore zeolites (10MR) such as zeolites ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 makes their use particularly suitable for obtaining catalysts that are selective towards isomerization. . These examples illustrate the ongoing research carried out to develop ever more efficient catalysts for the isomerization of long linear paraffins, while minimizing the formation of cracking products by the use of appropriate zeolites.
En plus de la sélectivité envers l’isomérisation, l’activité du catalyseur est également un paramètre important. Augmenter l’activité du catalyseur permet d’améliorer le fonctionnement global du procédé du point de vue de sa productivité ou de sa consommation énergétique. Il est donc souhaitable de développer des catalyseurs les plus actifs et les plus sélectifs possibles envers l’isomérisation. L’activité des catalyseurs bifonctionnels d’isomérisation est pour une large part dépendante de l’activité de la phase acide de Bronsted (par exemple une zéolithe), et donc de son acidité, mise en œuvre dans lesdits catalyseurs. L’acidité de la phase zéolithique est in fine fonction du nombre de sites acides de Bronsted de ladite phase et également de leur force (C. Marcilly, catalyse acido-basique, volume 1, 2003). Un moyen pour augmenter l’activité d’un catalyseur bifonctionnel d’isomérisation peut donc être d’augmenter l’acidité de la phase zéolithique engagée dans ledit catalyseur en augmentant le densité de sites acides de la phase zéolithique, toutes choses égales par ailleurs. In addition to the selectivity towards isomerization, the activity of the catalyst is also an important parameter. Increasing the activity of the catalyst improves the overall operation of the process from the point of view of its productivity or energy consumption. It is therefore desirable to develop catalysts that are the most active and the most selective as possible towards isomerization. The activity of bifunctional isomerization catalysts is largely dependent on the activity of the Bronsted acid phase (for example a zeolite), and therefore on its acidity, used in said catalysts. The acidity of the zeolitic phase is ultimately a function of the number of Bronsted acid sites in said phase and also of their strength (C. Marcilly, acid-base catalysis, volume 1, 2003). A means of increasing the activity of a bifunctional isomerization catalyst can therefore be to increase the acidity of the zeolitic phase involved in said catalyst by increasing the density of acid sites of the zeolitic phase, all other things being equal.
Il est cependant également bien connu que pour un catalyseur bifonctionnel d’isomérisation, le rapport entre le nombre de sites de la phase hydro/déshydrogénante et le nombre de sites de la phase acide a un impact sur sa sélectivité en isomérisation. Une diminution trop importante de ce rapport entraîne une diminution de la sélectivité en isomérisation du catalyseur. Ceci a par exemple été reporté pour l’isomérisation du n-décane sur des catalyseurs à base de platine et de zéolithe USY (F. Alvarez et coll. , Journal of Catalysis, 162, 1996, 179). Plus récemment cela a également été reporté pour l’isomérisation du n- hexadécane sur des catalyseurs à base de platine, de zéolithe USY ou de zéolithe BEA (P. Mendes et coll., AlChE Journal, 63, 7, 2017, 2864). However, it is also well known that for a bifunctional isomerization catalyst, the ratio between the number of sites of the hydro / dehydrogenating phase and the number of sites of the acid phase has an impact on its isomerization selectivity. Too great a decrease in this ratio results in a decrease in the isomerization selectivity of the catalyst. This has for example been reported for the isomerization of n-decane on catalysts based on platinum and USY zeolite (F. Alvarez et al., Journal of Catalysis, 162, 1996, 179). More recently this has also been reported for the isomerization of n-hexadecane on catalysts based on platinum, USY zeolite or BEA zeolite (P. Mendes et al., AlChE Journal, 63, 7, 2017, 2864).
Ceci a aussi été reporté pour l’isomérisation du n-hexadécane sur des catalyseurs à base de platine et de zéolithe ZSM-12 (S. Mehla et coll., Journal of Porous Materials, 20, 2013, 1023). La sélectivité en isomérisation des catalyseurs augmente lorsque le nombre de sites acides de la zéolithe ZSM-12 diminue (par augmentation du rapport Si/Al de la zéolithe employée). Cette augmentation de sélectivité se fait alors au détriment de l’activité du catalyseur. Un autre moyen pour améliorer la sélectivité en isomérisation du catalyseur peut consister à neutraliser partiellement les sites acides de Bronsted de la zéolithe par des cations (W. Wang et coll., Catalysis Science and Technology, 9, 2019, 4162). This has also been reported for the isomerization of n-hexadecane on catalysts based on platinum and ZSM-12 zeolite (S. Mehla et al., Journal of Porous Materials, 20, 2013, 1023). The isomerization selectivity of the catalysts increases when the number of acid sites of the ZSM-12 zeolite decreases (by increasing the Si / Al ratio of the zeolite used). This increase in selectivity is then done to the detriment of the activity of the catalyst. Another means of improving the isomerization selectivity of the catalyst may consist in partially neutralizing the Bronsted acid sites of the zeolite with cations (W. Wang et al., Catalysis Science and Technology, 9, 2019, 4162).
L’augmentation de l’activité du catalyseur bifonctionnel et la maximisation de sa sélectivité en isomérisation requièrent donc des exigences contradictoires en termes de densité de sites acides pour la zéolithe engagée dans le catalyseur. Increasing the activity of the bifunctional catalyst and maximizing its isomerization selectivity therefore require conflicting requirements in terms of the density of acid sites for the zeolite engaged in the catalyst.
Récemment, la demanderesse dans ses travaux a mis au point une nouvelle zéolithe, la zéolithe IZM-2 telle que décrite dans la demande FR 2 918 050 A, ainsi qu’un procédé de conversion de charges paraffiniques longues ayant un nombre d'atomes de carbone compris entre 9 et 25 mettant en œuvre un catalyseur comprenant ladite zéolite IZM-2 tel que décrit dans la demande de brevet FR 2 984 911 A, ledit procédé permettant d'améliorer la sélectivité envers la production en base distillais moyens en limitant la production de produits craqués légers ne pouvant pas être incorporés dans un pool gazole et/ou kérosène. Dans l’exemple illustratif de la demande de brevet FR 2 984 911 A, seul un solide IZM-2 présentant un rapport molaire global Si/Al de 53 est utilisé dans la formulation du catalyseur. Ce rapport molaire global Si/Al a été calculé à partir des résultats de caractérisation par fluorescence X. La teneur en alcalins et/ou alcalino-terreux présents dans ledit catalyseur n’est pas divulguée. Recently, the Applicant in its work has developed a new zeolite, the IZM-2 zeolite as described in application FR 2 918 050 A, as well as a process for converting long paraffinic charges having a number of atoms of carbon included between 9 and 25 using a catalyst comprising said zeolite IZM-2 as described in patent application FR 2 984 911 A, said process making it possible to improve the selectivity towards the production of middle distillates by limiting the production of products light crackers that cannot be incorporated into a diesel and / or kerosene pool. In the illustrative example of patent application FR 2 984 911 A, only an IZM-2 solid having an overall Si / Al molar ratio of 53 is used in the formulation of the catalyst. This overall Si / Al molar ratio was calculated from the results of characterization by X-ray fluorescence. The content of alkalis and / or alkaline-earth metals present in said catalyst is not disclosed.
La demande FR 3 074 428 A enseigne un procédé de préparation de catalyseurs bifonctionnels mettant en œuvre une zéolithe IZM-2. Ledit procédé de préparation permet à la fois de localiser préférentiellement la fonction hydrogénante sur la surface et/ou dans la microporosité de la zéolithe IZM-2 et de répartir de manière homogène la fonction hydrogénante dans le catalyseur. La teneur en alcalins et/ou alcalino-terreux dans les catalyseurs des exemples n’est pas divulguée. Application FR 3 074 428 A teaches a process for preparing bifunctional catalysts using an IZM-2 zeolite. Said preparation process makes it possible both to preferentially localize the hydrogenating function on the surface and / or in the microporosity of the IZM-2 zeolite and to distribute the hydrogenating function homogeneously in the catalyst. The alkali and / or alkaline earth content in the catalysts of the examples is not disclosed.
Les travaux de recherche effectués par le demandeur l'ont conduit à découvrir que, de façon surprenante, l'utilisation dans un procédé d'isomérisation d'une charge paraffinique d'un catalyseur comprenant au moins une zéolithe IZM-2, ledit catalyseur présentant une teneur réduite en alcalins et/ou alcalino-terreux permet d’améliorer l’activité du catalyseur tout en conservant sa sélectivité en isomérisation. The research work carried out by the applicant has led him to discover that, surprisingly, the use in a process for the isomerization of a paraffinic feedstock of a catalyst comprising at least one IZM-2 zeolite, said catalyst having a reduced alkali and / or alkaline-earth metal content makes it possible to improve the activity of the catalyst while retaining its selectivity for isomerization.
Un objet de la présente invention concerne un procédé d'isomérisation de charges paraffiniques, de préférence issues des huiles végétales et/ou animales hydrotraitées ou de la synthèse Fischer-Trospch basse température, ledit procédé mettant en œuvre un catalyseur bifonctionnel comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids. Dans la suite de ce document, les teneurs pondérales fournies sont considérées par rapport à la masse sèche de solide. La masse sèche de solide correspond à la masse du solide après calcination sous air durant deux heures à 1000°C en four à moufle. An object of the present invention relates to a process for the isomerization of paraffinic feedstocks, preferably obtained from hydrotreated vegetable and / or animal oils or from the low temperature Fischer-Trospch synthesis, said process using a bifunctional catalyst comprising at least one metal. from group VIII of the Periodic Table of the Elements, at least one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkaline and / or alkaline earth elements is less than 200 ppm by weight relative to to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm, preferably less than 90 ppm by weight, more preferably less than 85 ppm by weight, more preferably less than 80 ppm by weight , very preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight. In the remainder of this document, the weight contents provided are considered relative to the dry mass of solid. The dry mass of solid corresponds to the mass of the solid after calcination in air for two hours at 1000 ° C. in a muffle furnace.
Dans le sens de la présente invention, les différents modes de réalisation présentés peuvent être utilisés seuls ou en combinaison les uns avec les autres, sans limitation de combinaison lorsque c’est techniquement réalisable. For the purposes of the present invention, the various embodiments presented can be used alone or in combination with each other, without limitation of combination when technically feasible.
Dans le sens de la présente invention, les différentes plages de paramètres pour une étape donnée tels que les plages de pression et les plages de température peuvent être utilisées seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeur préférée de pression peut être combinée avec une plage de valeur de température plus préférée. In the sense of the present invention, the different ranges of parameters for a given step such as the pressure ranges and the temperature ranges can be used alone or in combination. For example, within the meaning of the present invention, a preferred pressure value range can be combined with a more preferred temperature value range.
Résumé de l’invention Summary of the invention
La présente invention concerne un procédé d'isomérisation de charges paraffiniques opérant à une température comprise entre 200°C et 500°C, à une pression totale comprise entre 0,45 MPa et 7 MPa, à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 kilogramme de charge introduite par kilogramme de catalyseur et mettant en œuvre un catalyseur comprenant et de préférence constitué par au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieur à 30 ppm en poids. The present invention relates to a process for the isomerization of paraffinic feeds operating at a temperature between 200 ° C and 500 ° C, at a total pressure between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen between 0 , 3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of feed introduced per kilogram of catalyst and using a catalyst comprising and preferably consisting of at least one metal from group VIII of the classification periodic elements, at least one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkali and / or alkaline earth elements is less than 200 ppm by weight relative to the total mass of said catalyst , preferably less than 150 ppm, more preferably less than 200 ppm by weight relative to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm, of preferably less than 90 ppm by weight, more preferably less than 85 ppm by weight more preferably less than 80 ppm by weight, very preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight.
Un avantage de la présente invention est de fournir un procédé d'isomérisation d'une charge paraffinique utilisant un catalyseur comprenant au moins une zéolithe IZM-2, ledit catalyseur présentant une teneur réduite en alcalins et/ou alcalino-terreux permettant d’améliorer l’activité du catalyseur tout en conservant une sélectivité en isomérisation maximale. Dans toute la suite du texte, la teneur pondérale totale en alcalin et/ou alcalinoterreux dans ledit catalyseur est mesurée par spectroscopie d’absorption atomique sur un appareil Spectromètre d’Absorption Atomique Flamme (SAAF) VARIAN Spectr’AA 240FS après mise en solution du solide par minéralisation dudit solide par voie humide. On entend par minéralisation du solide, la dissolution dudit solide qui est typiquement effectuée dans des solutions aqueuses concentrées en acide perchlorique, fluorhydrique et chlorhydrique. Elle peut être effectuée en température sur plaque chauffante ou par micro-ondes. Liste desAn advantage of the present invention is to provide a process for the isomerization of a paraffinic feed using a catalyst comprising at least one IZM-2 zeolite, said catalyst having a reduced alkali and / or alkaline-earth content making it possible to improve the activity of the catalyst while retaining maximum isomerization selectivity. Throughout the remainder of the text, the total weight content of alkali and / or alkaline earth in said catalyst is measured by atomic absorption spectroscopy on a Flame Atomic Absorption Spectrometer (SAAF) VARIAN Spectr'AA 240FS device after dissolving the solid by mineralization of said solid by wet process. The term “mineralization of the solid” means the dissolution of said solid which is typically carried out in concentrated aqueous solutions of perchloric, hydrofluoric and hydrochloric acid. It can be carried out at temperature on a hot plate or by microwave. List of
Description des modes de réalisation Description of the embodiments
Conformément à l’invention, la présente invention concerne un procédé d'isomérisation de charges paraffiniques opérant à une température comprise entre 200°C et 500°C, à une pression totale comprise entre 0,45 MPa et 7 MPa, à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 kilogramme de charge introduite par kilogramme de catalyseur et par heure et mettant en œuvre un catalyseur comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids. In accordance with the invention, the present invention relates to a process for the isomerization of paraffinic feeds operating at a temperature of between 200 ° C and 500 ° C, at a total pressure of between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of feed introduced per kilogram of catalyst and per hour and using a catalyst comprising at least one metal from the group VIII of the Periodic Table of the Elements, at least one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkaline and / or alkaline earth elements is less than 200 ppm by weight relative to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm by weight relative to the total mass of said catalyst, preferably less than 90 ppm by weight, preferably less ure at 85 ppm by weight more preferably less than 80 ppm by weight, very preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater at 30 ppm by weight.
Le procédé d’isomérisation The isomerization process
Conformément à l’invention, le procédé d’isomérisation est mis en œuvre à une température comprise entre 200°C et 500°C, à une pression totale comprise entre 0,45 MPa et 7 MPa, à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 kilogramme de charge introduite par kilogramme de catalyseur et par heure. De préférence, ledit procédé est effectué à une température comprise entre 200 et 450°C, et de manière plus préférée entre 220 et 430°C, à une pression totale comprise entre 0,6 et 6 MPa, à une pression partielle d’hydrogène comprise entre 0,4 et 4,8 MPa, à une vitesse spatiale horaire avantageusement comprise entre 0,2 et 7 h-1 et de manière préférée, entre 0,5 et 5 h- 1. Selon l’invention, le procédé d'isomérisation comprend la mise en contact d’une charge paraffinique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique. In accordance with the invention, the isomerization process is carried out at a temperature between 200 ° C and 500 ° C, at a total pressure between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen of between between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilograms of feed introduced per kilogram of catalyst and per hour. Preferably, said process is carried out at a temperature between 200 and 450 ° C, and more preferably between 220 and 430 ° C, at a total pressure between 0.6 and 6 MPa, at a partial pressure of hydrogen. between 0.4 and 4.8 MPa, at an hourly space velocity advantageously between 0.2 and 7 h-1 and preferably between 0.5 and 5 h-1. According to the invention, the isomerization process comprises bringing a paraffinic feed into contact with at least said catalyst according to the invention present in a catalytic reactor.
Les paraffines de ladite charge paraffinique présentent un nombre d'atomes de carbone compris entre 9 et 25, de préférence compris entre 10 et 25 et de manière très préférée entre 10 et 22. La teneur en paraffines dans ladite charge mise en œuvre dans le procédé selon l'invention est avantageusement supérieure à 90% poids, de préférence supérieure à 95% poids, de manière encore plus préférée supérieure à 98% poids. Au sein desdites paraffines, le pourcentage massique d’isoparaffines est inférieur à 15%, de manière préférée inférieur à 10% et de manière très préférée inférieur à 5%. The paraffins of said paraffinic filler have a number of carbon atoms of between 9 and 25, preferably between 10 and 25 and very preferably between 10 and 22. The paraffin content in said filler used in the process according to the invention is advantageously greater than 90% by weight, preferably greater than 95% by weight, even more preferably greater than 98% by weight. Within said paraffins, the percentage by weight of isoparaffins is less than 15%, preferably less than 10% and very preferably less than 5%.
Selon un premier mode de réalisation, ladite charge paraffinique utilisée dans le procédé selon l'invention peut être produite à partir de ressources renouvelables. According to a first embodiment, said paraffinic filler used in the process according to the invention can be produced from renewable resources.
De préférence, ladite charge paraffinique est produite à partir de ressources renouvelables choisies parmi les huiles végétales, les huiles d'algues ou algales, les huiles de poissons et les graisses d'origine végétale ou animale, ou des mélanges de telles charges. Preferably, said paraffinic filler is produced from renewable resources chosen from vegetable oils, algal or algal oils, fish oils and fats of vegetable or animal origin, or mixtures of such fillers.
Lesdites huiles végétales peuvent avantageusement être brutes ou raffinées, totalement ou en partie, et issues des végétaux choisis parmi le colza, le tournesol, le soja, le palmier, l'olive, la noix de coco, le coprah, le ricin, le coton, les huiles d'arachides, de lin et de crambe et toutes les huiles issues par exemple du tournesol ou du colza par modification génétique ou hybridation, cette liste n'étant pas limitative. Lesdites graisses animales sont avantageusement choisies parmi le lard et les graisses composées de résidus de l'industrie alimentaire ou issus des industries de la restauration. Les huiles de fritures, les huiles animales variées comme les huiles de poisson, le suif, le saindoux peuvent également être utilisées. Said vegetable oils can advantageously be crude or refined, totally or in part, and obtained from plants chosen from rapeseed, sunflower, soya, palm, olive, coconut, copra, castor oil, cotton. , peanut, linseed and crambe oils and all oils obtained, for example, from sunflower or rapeseed by genetic modification or hybridization, this list not being exhaustive. Said animal fats are advantageously chosen from bacon and fats composed of residues from the food industry or from catering industries. Frying oils, various animal oils such as fish oils, tallow, lard can also be used.
Les ressources renouvelables à partir desquelles est produite la charge paraffinique utilisée dans le procédé selon l'invention contiennent essentiellement des structures chimiques de type triglycérides que l'homme du métier connaît également sous l'appellation tri ester d'acides gras ainsi que des acides gras libres, dont les chaînes grasses contiennent un nombre d'atomes de carbone compris entre 9 et 25. The renewable resources from which the paraffinic filler used in the process according to the invention is produced essentially contain chemical structures of the triglyceride type that a person skilled in the art also knows under the name tri ester of fatty acids as well as fatty acids. free, whose fatty chains contain a number of carbon atoms between 9 and 25.
La structure et la longueur de chaîne hydrocarbonée de ces derniers sont compatibles avec les hydrocarbures présents dans le gazole et le kérosène, c'est à dire la coupe distillais moyens. Un tri ester d'acide gras est ainsi composé de trois chaînes d'acides gras. Ces chaînes d'acide gras sous forme de tri ester ou sous forme d'acide gras libres, possèdent un nombre d'insaturations par chaîne, également appelé nombre de doubles liaisons carbone- carbone par chaîne, généralement compris entre 0 et 3 mais qui peut être plus élevé notamment pour les huiles issues d'algues qui présentent généralement un nombre d'insaturations par chaînes de 5 à 6. The structure and length of the hydrocarbon chain of the latter are compatible with the hydrocarbons present in gas oil and kerosene, ie the middle distillate cut. A tri fatty acid ester is thus composed of three fatty acid chains. These fatty acid chains in the form of a tri ester or in the form of free fatty acids have a number of unsaturations per chain, also called the number of carbon-carbon double bonds per chain, generally between 0 and 3 but which may be higher in particular for oils obtained from algae which generally have a number of unsaturations per chain of 5 to 6.
Les molécules présentes dans lesdites ressources renouvelables utilisées dans la présente invention présentent donc un nombre d'insaturations, exprimé par molécule de triglycéride, avantageusement compris entre 0 et 18. Dans ces charges, le taux d'insaturation, exprimé en nombre d'insaturations par chaîne grasse hydrocarbonée, est avantageusement compris entre 0 et 6. The molecules present in said renewable resources used in the present invention therefore exhibit a number of unsaturations, expressed per triglyceride molecule, advantageously between 0 and 18. In these charges, the level of unsaturation, expressed in number of unsaturations per hydrocarbon fatty chain is advantageously between 0 and 6.
Les ressources renouvelables comportent généralement également différentes impuretés et notamment des hétéroatomes tels que l'azote. Les teneurs en azote dans les huiles végétales sont généralement comprises entre 1 ppm et 100 ppm poids environ, selon leur nature. Elles peuvent atteindre jusqu'à 1% poids sur des charges particulières. Renewable resources generally also contain various impurities and in particular heteroatoms such as nitrogen. The nitrogen contents in vegetable oils are generally between 1 ppm and 100 ppm by weight approximately, depending on their nature. They can reach up to 1% by weight on specific loads.
Ladite charge paraffinique utilisée dans le procédé selon l'invention est avantageusement produite à partir de ressources renouvelables selon des procédés connus de l'homme du métier. Une voie possible est la transformation catalytique desdites ressources renouvelables en effluent paraffinique désoxygéné en présence d'hydrogène et en particulier, l'hydrotraitement. Said paraffinic filler used in the process according to the invention is advantageously produced from renewable resources according to processes known to those skilled in the art. One possible route is the catalytic transformation of said renewable resources into deoxygenated paraffinic effluent in the presence of hydrogen and in particular hydrotreatment.
De préférence, ladite charge paraffinique est produite par hydrotraitement desdites ressources renouvelables. Ces procédés d'hydrotraitement de ressources renouvelables sont déjà bien connus et sont décrits dans de nombreux brevets. A titre d'exemple, ladite charge paraffinique utilisée dans le procédé selon l'invention peut avantageusement être produite, de préférence par hydrotraitement puis par séparation gaz/liquide, à partir desdites ressources renouvelables comme par exemple dans le brevet FR 2 910 483 ou dans le brevet FR 2 950895. Preferably, said paraffinic feed is produced by hydrotreating said renewable resources. These processes for hydrotreating renewable resources are already well known and are described in numerous patents. By way of example, said paraffinic feedstock used in the process according to the invention can advantageously be produced, preferably by hydrotreatment then by gas / liquid separation, from said renewable resources such as for example in patent FR 2 910 483 or in patent FR 2 950895.
Selon un deuxième mode de réalisation, ladite charge paraffinique utilisée dans le procédé selon l'invention peut aussi être une charge paraffinique produite par un procédé mettant en jeu une étape de valorisation par la voie Fischer-Tropsch. Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide. Lesdits produits obtenus constituent la charge du procédé selon l'invention. Le gaz de synthèse (CO+H2) est avantageusement produit à partir de gaz naturel, de charbon, de biomasse, de toute source de composés hydrocarbonés ou d'un mélange de ces sources. Ainsi, les charges paraffiniques obtenues, selon un procédé de synthèse Fischer-Tropsch, à partir d'un gaz de synthèse (C0+H2) produit à partir de ressources renouvelables, de gaz naturel ou de charbon peuvent être utilisées dans le procédé selon l'invention. De préférence, ladite charge paraffinique produite par synthèse Fischer-Tropsch et utilisée dans le procédé selon l'invention comprend majoritairement des n-paraffines. Ainsi, ladite charge comprend une teneur en n-paraffines supérieure à 60% poids par rapport à la masse totale de ladite charge. Ladite charge peut également comprendre une teneur en produits oxygénés de préférence inférieure à 10% poids, une teneur en insaturés, c'est-à-dire de préférence en produits oléfiniques, de préférence inférieure à 20% en poids et une teneur en iso-paraffines de préférence inférieure à 10% en poids par rapport à la masse totale de ladite charge. According to a second embodiment, said paraffinic feed used in the process according to the invention can also be a paraffinic feed produced by a process involving a step of upgrading by the Fischer-Tropsch route. In the Fischer-Tropsch process, synthesis gas (CO + H2) is catalytically converted into oxygenates and essentially linear hydrocarbons in gaseous, liquid or solid form. Said products obtained constitute the feed for the process according to the invention. Synthesis gas (CO + H2) is advantageously produced from natural gas, coal, biomass, any source of hydrocarbon compounds or a mixture of these sources. Thus, the paraffinic fillers obtained, according to a Fischer-Tropsch synthesis process, from a synthesis gas (C0 + H2) produced from renewable resources, natural gas or coal can be used in the process according to the invention. Preferably, said paraffinic filler produced by Fischer-Tropsch synthesis and used in the process according to the invention mainly comprises n-paraffins. Thus, said filler comprises an n-paraffin content greater than 60% by weight relative to the total mass of said filler. Said feed may also comprise a content of oxygenates preferably less than 10% by weight, a content of unsaturated products, that is to say preferably of olefinic products, preferably less than 20% by weight and an iso-content. paraffins preferably less than 10% by weight relative to the total mass of said filler.
De manière très préférée, ladite charge comprend une teneur en n-paraffines supérieure à 70% poids et de manière encore plus préférée supérieure à 80% poids par rapport à la masse totale de ladite charge. Les paraffines de ladite charge paraffinique présentent un nombre d'atomes de carbone compris entre 9 et 25, de préférence compris entre 10 et 25 et de manière très préférée entre 10 et 22. Very preferably, said filler comprises an n-paraffin content greater than 70% by weight and even more preferably greater than 80% by weight relative to the total mass of said filler. The paraffins of said paraffinic filler have a number of carbon atoms between 9 and 25, preferably between 10 and 25 and very preferably between 10 and 22.
De préférence, ladite charge paraffinique produite par synthèse Fischer-Tropsch est exempte d'impuretés hétéroatomiques telles que, par exemple, le soufre, l'azote ou des métaux. Preferably, said paraffinic feed produced by Fischer-Tropsch synthesis is free from heteroatomic impurities such as, for example, sulfur, nitrogen or metals.
Catalyseur Catalyst
La présente invention porte sur l’utilisation d’un catalyseur comprenant, et de préférence constitué par, au moins une zéolithe IZM-2 contenant de préférence des atomes de silicium et éventuellement des atomes d'aluminium, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur et supérieure à 20 ppm en poids. The present invention relates to the use of a catalyst comprising, and preferably consisting of, at least one IZM-2 zeolite preferably containing silicon atoms and optionally aluminum atoms, at least one matrix and at least one metal from group VIII of the Periodic Table of the Elements, said catalyst being characterized in that the total weight content of alkali and / or alkaline earth elements in said catalyst is less than 200 ppm by weight relative to the total mass of said catalyst and greater than 20 ppm by weight.
De préférence, ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 100 ppm, de manière préférée inférieure à 90 ppm, de préférence inférieure à 85 ppm en poids, de manière préférée inférieure à 80 ppm en poids, de manière plus préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et de préférence supérieure à 30 ppm en poids. Les éléments alcalins et/ou alcalinoterreux sont de préférence choisis parmi le lithium, le sodium, le potassium, le berylium, le magnésium, le barium, et le calcium et de préférence le sodium et le potassium et de manière très préférée le sodium. Preferably, said catalyst has a total weight content of alkali and / or alkaline earth elements less than 150 ppm by weight relative to the total mass of said catalyst, preferably less than 100 ppm, preferably less than 90 ppm, preferably less at 85 ppm by weight, preferably less than 80 ppm by weight, more preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and preferably greater than 30 ppm by weight. The alkaline and / or alkaline earth elements are preferably chosen from lithium, sodium, potassium, berylium, magnesium, barium, and calcium and preferably sodium and potassium and very preferably sodium.
De préférence, ledit catalyseur présente une teneur pondérale totale en éléments sodium inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 100 ppm, de manière préférée inférieure à 90 ppm, de préférence inférieure à 85 ppm en poids, de manière préférée inférieure à 80 ppm en poids, de manière plus préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids. Preferably, said catalyst has a total weight content of sodium elements less than 150 ppm by weight relative to the total mass of said catalyst, preferably less than 100 ppm, more preferably less than 90 ppm, preferably less than 85 ppm by weight. weight, preferably less than 80 ppm by weight, more preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight .
De préférence, ledit catalyseur ne comprend pas d’éléments alcalins et/ou alcalinoterreux ajoutés, autres que ceux associés à la zéolithe et/ou à la matrice utilisées dans ledit catalyseur. Preferably, said catalyst does not include added alkali and / or alkaline earth elements, other than those associated with the zeolite and / or with the matrix used in said catalyst.
Ledit catalyseur selon l'invention comprend avantageusement, et de préférence est constitué de : Said catalyst according to the invention advantageously comprises, and preferably consists of:
- de 1 à 90% poids, de préférence de 3 à 80% poids et de manière plus préférée de 4 à 60% et de manière encore plus préférée de 6 à 50% poids de la zéolithe IZM-2 par rapport à la masse totale du catalyseur selon l’invention, - from 1 to 90% by weight, preferably from 3 to 80% by weight and more preferably from 4 to 60% and even more preferably from 6 to 50% by weight of the IZM-2 zeolite relative to the total mass of the catalyst according to the invention,
- de 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids d'au moins un métal du groupe VIII de la classification périodique des éléments, de préférence le platine par rapport à la masse totale du catalyseur, - 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and very preferably between 0.1 and 2% by weight of at least one metal from group VIII of the periodic table of elements, preferably platinum relative to the total mass of the catalyst,
- éventuellement de 0,01 à 2%, de préférence de 0,05 à 1% poids d'au moins un métal additionnel choisi dans le groupe formé par les métaux des groupes NIA, IVA et VI I B par rapport à la masse totale du catalyseur, - optionally from 0.01 to 2%, preferably from 0.05 to 1% by weight of at least one additional metal chosen from the group formed by the metals of groups NIA, IVA and VI IB relative to the total mass of the catalyst,
- éventuellement une teneur en soufre, de préférence telle que le rapport du nombre de moles de soufre sur le nombre de moles de(s) métal(ux) du groupe VIII soit compris entre 0,3 et 3, - optionally a sulfur content, preferably such that the ratio of the number of moles of sulfur to the number of moles of metal (s) of group VIII is between 0.3 and 3,
- d’une teneur pondérale totale en élément alcalin et/ou alcalino-terreux inférieure à 200 ppm par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids,- With a total weight content of alkali and / or alkaline earth element of less than 200 ppm relative to the total mass of said catalyst, preferably less than 150 ppm, preferably less than 100 ppm, preferably less than 90 ppm by weight, preferably less than 85 ppm by weight more preferably less than 80 ppm by weight, very preferably less at 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight,
- au moins une matrice, de préférence l’alumine, assurant le complément à 100% dans le catalyseur. Zéolithe IZM-2 - at least one matrix, preferably alumina, providing 100% complement in the catalyst. Zeolite IZM-2
Conformément à l’invention, le catalyseur comprend une zéolithe IZM-2. La zéolithe IZM-2 présente un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. IZM-2 présente une structure cristalline. According to the invention, the catalyst comprises an IZM-2 zeolite. The IZM-2 zeolite has an X-ray diffraction pattern including at least the lines listed in Table 1. IZM-2 has a crystal structure.
Avantageusement, le diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d’un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Kd du cuivre (l = 1,5406 Â). A partir de la position des pics de diffraction représentée par l’angle 2Q, on calcule, par la relation de Bragg, les équidistances réticulaires dhW caractéristiques de l’échantillon. L’erreur de mesure A(dhk|) sur dhW est calculée grâce à la relation de Bragg en fonction de l’erreur absolue D(2Q) affectée à la mesure de 2Q. Une erreur absolue D(2Q) égale à ± 0,02° est communément admise. L’intensité relative lrei affectée à chaque valeur de dhki est mesurée d’après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X de la zéolithe IZM-2 contenue dans le catalyseur selon l'invention comporte au moins les raies aux valeurs de dhki données dans le tableau 1. Dans la colonne des dhki, on indique les valeurs moyennes des distances inter-réticulaires en Angstroms (Â). Chacune de ces valeurs doit être affectée de l’erreur de mesure A(dhki) comprise entre ± 0,6Â et ± 0,01 Â. Advantageously, the diffraction pattern is obtained by radiocrystallographic analysis using a diffractometer using the conventional powder method with the K d radiation of copper (l = 1.5406 Å). From the position of the diffraction peaks represented by the angle 2Q, the characteristic reticular equidistances d hW of the sample are calculated by the Bragg relationship. The measurement error A (d hk | ) on d hW is calculated using the Bragg relation as a function of the absolute error D (2Q) assigned to the measurement of 2Q. An absolute error D (2Q) equal to ± 0.02 ° is commonly accepted. The relative intensity l rei assigned to each value of d hki is measured from the height of the corresponding diffraction peak. The X-ray diffraction diagram of the IZM-2 zeolite contained in the catalyst according to the invention comprises at least the lines at the values of d hki given in Table 1. In the column of d hki , the mean values of the d hki are indicated. inter-reticular distances in Angstroms (Â). Each of these values must be affected by the measurement error A (d hki ) between ± 0.6Â and ± 0.01 Â.
Le tableau 1 représente les valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé IZM-2 calciné. Table 1 represents the mean values of the d hki and relative intensities measured on an X-ray diffraction diagram of the calcined crystalline solid IZM-2.
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible. where FF = very strong; F = strong; m = medium; mf = medium low; f = weak; ff = very low.
L'intensité relative lrei est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 £f <30 ; 30 £ mf <50 ; 50 £m < 65 ; 65 £F < 85 ; FF ³ 85. Ledit solide IZM-2 présente avantageusement une composition chimique exprimée sur une base anhydre, en terme de moles d'oxydes, définie par la formule générale suivante : X02 : aY203 : bM2/nO, dans laquelle X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est au moins un métal alcalin et/ou un métal alcalino- terreux de valence n. Dans ladite formule donnée ci-dessus, a représente le nombre de moles de Y203 et a est compris entre 0 et 0,5, très préférentiellement compris entre 0 et 0,05 et de manière encore plus préférée entre et 0,0016 et 0,02 et b représente le nombre de moles de M2/nO et est compris entre 0 et 1, de préférence entre 0 et 0,5 et de manière encore plus préférée entre 0,005 et 0,5. De préférence, X est choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments tétravalents, très préférentiellement X est le silicium et Y est préférentiellement choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium, très préférentiellement Y est l'aluminium. M est préférentiellement choisi parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux et très préférentiellement M est le sodium. De manière préférée, X représente le silicium, ledit solide cristallisé IZM-2 est alors un solide entièrement silicique lorsque l'élément Y est absent de la composition dudit solide IZM-2. Il est également avantageux d'employer comme élément X un mélange de plusieurs éléments X, en particulier un mélange de silicium avec un autre élément X choisi parmi le germanium et le titane, de préférence le germanium. Ainsi, lorsque le silicium est présent en mélange avec un autre élément X, ledit solide cristallisé IZM-2 est alors un métallosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme calcinée. De manière encore plus préférée et en présence d'un élément Y, X étant le silicium et Y étant l'aluminium : ledit solide cristallisé IZM-2 est alors un aluminosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme calcinée. The relative intensity l rei is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction pattern: ff <15; £ 15 f <30; 30 £ mf <50; £ 50 <65; £ 65 F <85; FF ³ 85. Said IZM-2 solid advantageously has a chemical composition expressed on an anhydrous basis, in terms of moles of oxides, defined by the following general formula: X02: aY203: bM2 / nO, in which X represents at least one tetravalent element, Y represents at least one trivalent element and M is at least one alkali metal and / or one alkaline earth metal of valence n. In said formula given above, a represents the number of moles of Y203 and a is between 0 and 0.5, very preferably between 0 and 0.05 and even more preferably between and 0.0016 and 0, 02 and b represents the number of moles of M2 / nO and is between 0 and 1, preferably between 0 and 0.5 and even more preferably between 0.005 and 0.5. Preferably, X is chosen from silicon, germanium, titanium and the mixture of at least two of these tetravalent elements, very preferably X is silicon and Y is preferably chosen from aluminum, boron, iron, indium and gallium, very preferably Y is aluminum. M is preferably chosen from lithium, sodium, potassium, calcium, magnesium and the mixture of at least two of these metals and very preferably M is sodium. Preferably, X represents silicon, said crystallized solid IZM-2 is then an entirely silicic solid when the element Y is absent from the composition of said solid IZM-2. It is also advantageous to use as element X a mixture of several elements X, in particular a mixture of silicon with another element X chosen from germanium and titanium, preferably germanium. Thus, when the silicon is present as a mixture with another element X, said crystallized solid IZM-2 is then a crystallized metallosilicate exhibiting an X-ray diffraction pattern identical to that described in Table 1 when it is in its form. calcined. Even more preferably and in the presence of an element Y, X being silicon and Y being aluminum: said crystallized solid IZM-2 is then a crystallized aluminosilicate exhibiting an X-ray diffraction pattern identical to that described in Table 1 when in its calcined form.
D'une manière plus générale, ledit solide IZM-2 utilisé dans le support du catalyseur mis en œuvre dans le procédé selon l'invention présente avantageusement une composition chimique exprimée par la formule générale (I) suivante : X02 : aY203 : bM2/nO : cR : dH20 dans laquelle R représente une espèce organique comportant deux atomes d'azote quaternaires, X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est un métal alcalin et/ou un métal alcalino-terreux de valence n ; a, b, c et d représentant respectivement le nombre de moles de Y203, M2/nO, R et H20 et a est compris entre 0 et 0,5, b est compris entre 0 et 1, c est compris entre 0 et 2 et d est compris entre 0 et 2. Cette formule et les valeurs prises par a, b, c et d sont celles pour lesquelles ledit solide IZM-2 se trouve préférentiellement sous sa forme calcinée. More generally, said solid IZM-2 used in the support of the catalyst used in the process according to the invention advantageously exhibits a chemical composition expressed by the following general formula (I): X02: aY203: bM2 / nO : cR: dH20 in which R represents an organic species comprising two quaternary nitrogen atoms, X represents at least one tetravalent element, Y represents at least one trivalent element and M is an alkali metal and / or an alkaline earth metal of valence not ; a, b, c and d respectively representing the number of moles of Y203, M2 / nO, R and H20 and a is between 0 and 0.5, b is between 0 and 1, c is between 0 and 2 and d is between 0 and 2. This formula and the values taken by a, b, c and d are those for which said solid IZM-2 is preferably found in its calcined form.
Plus précisément, ledit solide IZM-2, sous sa forme brute de synthèse, présente avantageusement une composition chimique exprimée par la formule générale suivante : X02 : aY203 : bM2/nO : cR : dH20 (I) dans laquelle R représente une espèce organique comportant deux atomes d'azote quaternaires, X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est un métal alcalin et/ou un métal alcalino-terreux de valence n ; a, b, c et d représentant respectivement le nombre de moles de Y203, M2/nO, R et H20 et a est compris entre 0 et 0,5, b est compris entre 0 et 1, c est compris entre 0,005 et 2 et de préférence entre 0,01 et 0,5, et d est compris entre 0,005 et 2 et de préférence entre 0,01 et 1. More precisely, said solid IZM-2, in its crude synthetic form, advantageously exhibits a chemical composition expressed by the following general formula: X02: aY203: bM2 / nO: cR: dH20 (I) in which R represents an organic species comprising two quaternary nitrogen atoms, X represents at least one tetravalent element, Y represents at least one trivalent element and M is an alkali metal and / or an alkaline earth metal of valence n; a, b, c and d respectively representing the number of moles of Y203, M2 / nO, R and H20 and a is between 0 and 0.5, b is between 0 and 1, c is between 0.005 and 2 and preferably between 0.01 and 0.5, and d is between 0.005 and 2 and preferably between 0.01 and 1.
Dans la formule (I) donnée ci-dessus pour définir la composition chimique dudit solide cristallisé IZM-2 sous sa forme brute de synthèse, la valeur de a est comprise entre 0 et 0,5, très préférentiellement comprise entre 0 et 0,05 et de manière encore plus préférée comprise entre 0,0016 et 0,02. De manière préférée, b est compris entre 0 et 1, de manière très préférée b est compris entre 0 et 0,5 et de manière encore plus préférée b est compris entre 0,005 et 0,5. La valeur de c est comprise entre 0,005 et 2, avantageusement entre 0,01 et 0,5. La valeur prise par d est comprise entre 0,005 et 2, de préférence comprise entre 0,01 et 1. In formula (I) given above to define the chemical composition of said crystallized solid IZM-2 in its crude synthetic form, the value of a is between 0 and 0.5, very preferably between 0 and 0.05 and even more preferably between 0.0016 and 0.02. Preferably, b is between 0 and 1, very preferably b is between 0 and 0.5 and even more preferably b is between 0.005 and 0.5. The value of c is between 0.005 and 2, advantageously between 0.01 and 0.5. The value taken by d is between 0.005 and 2, preferably between 0.01 and 1.
Sous sa forme brute de synthèse, c'est-à-dire directement issu de la synthèse et préalablement à toute étape de calcination(s) bien connue de l'Homme du métier, ledit solide IZM-2 comporte avantageusement au moins l'espèce organique R ayant deux atomes d'azote quaternaires telle que celle décrite ci-après ou encore ses produits de décomposition ou encore ses précurseurs. Selon un mode préféré de l'invention, dans la formule (I) donnée ci-dessus, l'élément R est le 1,6-bis(méthylpiperidinium)hexane. Ladite espèce organique R, qui joue le rôle de structurant, peut être éliminée par les voies classiques connues de l'état de la technique comme des traitements thermiques et/ou chimiques. In its crude synthetic form, that is to say directly resulting from the synthesis and prior to any calcination step (s) well known to those skilled in the art, said solid IZM-2 advantageously comprises at least the species organic R having two quaternary nitrogen atoms such as that described below or its decomposition products or its precursors. According to a preferred embodiment of the invention, in formula (I) given above, the element R is 1,6-bis (methylpiperidinium) hexane. Said organic species R, which acts as a structuring agent, can be eliminated by conventional means known from the state of the art, such as heat and / or chemical treatments.
Un procédé de préparation de la zéolithe IZM-2 est enseigné dans le brevet FR 2 918 050 B incorporé ici par référence. A process for preparing the IZM-2 zeolite is taught in patent FR 2 918 050 B incorporated here by reference.
De manière avantageuse, dans le cas ou X est le silicium et Y est l’aluminium, on fait réagir un mélange aqueux comportant au moins une source d'au moins un oxyde Si02, éventuellement au moins une source d’au moins un oxyde AI203, éventuellement au moins une source d'au moins un métal alcalin et/ou alcalino-terreux de valence n, et de préférence au moins une espèce organique R comportant deux atomes d'azote quaternaires, le mélange présentant préférentiellement la composition molaire suivante : Advantageously, in the case where X is silicon and Y is aluminum, an aqueous mixture comprising at least one source of at least one SiO 2 oxide, optionally at least one source of at least one Al 2 O 3 oxide, is reacted. , optionally at least one source of at least one alkali metal and / or alkaline earth metal of valence n, and preferably at least one organic species R comprising two quaternary nitrogen atoms, the mixture preferably having the following molar composition:
Si02/AI203: au moins 2, de préférence au moins 20, de manière plus préférée de 60 à 600,SiO 2 / Al 2 O 3: at least 2, preferably at least 20, more preferably 60 to 600,
H20/SÎ02: 1 à 100, de préférence de 10 à 70, H2O / SI02: 1 to 100, preferably 10 to 70,
R/Si 02: 0,02 à 2, de préférence de 0,05 à 0,5, R / Si 02: 0.02 to 2, preferably from 0.05 to 0.5,
M2/n0/Si02: 0 à 1, de préférence de 0,005 et 0,5, où M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de préférence M est le sodium. Avantageusement, l'élément R est le 1,6- bis(méthylpiperidinium)hexane. M2 / n0 / Si02: 0 to 1, preferably 0.005 and 0.5, where M is one or more alkali metal (s) and / or alkaline earth metal (s) chosen from lithium, sodium, potassium, calcium, magnesium and a mixture of at least two of these metals , preferably M is sodium. Advantageously, the element R is 1,6-bis (methylpiperidinium) hexane.
Le rapport molaire Si/Al de la zéolithe IZM-2 peut être aussi ajusté à la valeur désirée par des méthodes de post traitement de la zéolithe IZM-2 obtenue après synthèse. De telles méthodes sont connues de l’homme du métier, et permettent d’effectuer de la désalumination ou de la désilication de la zéolithe. De manière préférée le rapport molaire Si/Al de la zéolithe IZM-2 entrant dans la composition du catalyseur selon l’invention est ajusté par un choix approprié des conditions de synthèse de ladite zéolithe. The Si / Al molar ratio of the IZM-2 zeolite can also be adjusted to the desired value by post-treatment methods of the IZM-2 zeolite obtained after synthesis. Such methods are known to those skilled in the art, and make it possible to carry out dealumination or desilication of the zeolite. Preferably, the Si / Al molar ratio of the IZM-2 zeolite forming part of the composition of the catalyst according to the invention is adjusted by an appropriate choice of the conditions for the synthesis of said zeolite.
Parmi les zéolithes IZM-2 on préfère habituellement employer des zéolithes IZM-2 dont le rapport atomique global, silicium/aluminium (Si/Al), est supérieur à environ 3 et de manière plus préférée des zéolithes IZM-2 dont le rapport Si/Al est compris entre 5 et 200 et de manière encore plus préféré entre 10 et 150. Among the IZM-2 zeolites, it is usually preferred to use IZM-2 zeolites whose overall atomic ratio, silicon / aluminum (Si / Al), is greater than about 3 and more preferably IZM-2 zeolites whose Si / Al ratio. Al is between 5 and 200 and even more preferably between 10 and 150.
Aussi, selon un mode de réalisation préféré du procédé de préparation dudit solide cristallisé IZM-2, on fait réagir un mélange aqueux comportant un oxyde de silicium, éventuellement de l'alumine, du dibromure de 1,6-bis(méthylpiperidinium)hexane et de l'hydroxyde de sodium. Selon un autre mode de réalisation préféré du procédé selon l'invention, on fait réagir un mélange aqueux comportant un oxyde de silicium, éventuellement de l'alumine et du dihydroxyde de 1,6-bis(méthylpiperidinium)hexane. Also, according to a preferred embodiment of the process for preparing said crystallized solid IZM-2, an aqueous mixture comprising a silicon oxide, optionally alumina, 1,6-bis (methylpiperidinium) hexane dibromide and sodium hydroxide. According to another preferred embodiment of the process according to the invention, an aqueous mixture comprising a silicon oxide, optionally alumina and 1,6-bis (methylpiperidinium) hexane dihydroxide is reacted.
Le procédé de préparation dudit solide cristallisé IZM-2 consiste avantageusement à préparer un mélange réactionnel aqueux appelé gel et renfermant au moins une source d'au moins un oxyde X02, éventuellement au moins une source d’au moins un oxyde Y203, au moins une espèce organique R, éventuellement au moins une source d'au moins un métal alcalin et/ou alcalino-terreux de valence n. Les quantités desdits réactifs sont avantageusement ajustées de manière à conférer à ce gel une composition permettant sa cristallisation en solide cristallisé IZM-2 sous sa forme brute de synthèse de formule générale (I) X02 : aY203 : bM2/nO : cR : dH20, où a, b, c et d répondent aux critères définis plus haut lorsque c et d sont supérieurs à 0. Puis le gel est soumis à un traitement hydrothermal jusqu'à ce que ledit solide cristallisé IZM-2 se forme. Le gel est avantageusement mis sous conditions hydrothermales sous une pression de réaction autogène, éventuellement en ajoutant du gaz, par exemple de l'azote, à une température comprise entre 120°C et 200°C, de préférence entre 140°C et 180°C, et de manière encore plus préférée entre 160 et 175°C jusqu'à la formation des cristaux de solide IZM-2 sous sa forme brute de synthèse. La durée nécessaire pour obtenir la cristallisation varie généralement entre 1 heure et plusieurs mois en fonction de la composition des réactifs dans le gel, de l'agitation et de la température de réaction. De préférence la durée de cristallisation varie entre 2 heures et 21 jours. La mise en réaction s'effectue généralement sous agitation ou en absence d'agitation, de préférence en présence d'agitation. The process for preparing said crystallized solid IZM-2 advantageously consists in preparing an aqueous reaction mixture called a gel and containing at least one source of at least one oxide X02, optionally at least one source of at least one oxide Y203, at least one organic species R, optionally at least one source of at least one alkali metal and / or alkaline earth metal of valence n. The amounts of said reagents are advantageously adjusted so as to confer on this gel a composition allowing its crystallization in crystallized solid IZM-2 in its crude synthetic form of general formula (I) X02: aY203: bM2 / nO: cR: dH20, where a, b, c and d meet the criteria defined above when c and d are greater than 0. The gel is then subjected to a hydrothermal treatment until said crystallized solid IZM-2 is formed. The gel is advantageously placed under hydrothermal conditions under an autogenous reaction pressure, optionally by adding gas, for example nitrogen, at a temperature between 120 ° C and 200 ° C, preferably between 140 ° C and 180 ° C, and even more preferably between 160 and 175 ° C until the formation of crystals of solid IZM-2 under its crude synthetic form. The time required to obtain crystallization generally varies between 1 hour and several months depending on the composition of the reagents in the gel, the stirring and the reaction temperature. Preferably, the crystallization time varies between 2 hours and 21 days. The reaction is generally carried out with stirring or in the absence of stirring, preferably in the presence of stirring.
Il peut être avantageux d'additionner des germes au mélange réactionnel afin de réduire le temps nécessaire à la formation des cristaux et/ou la durée totale de cristallisation. Il peut également être avantageux d'utiliser des germes afin de favoriser la formation dudit solide cristallisé IZM-2 au détriment d'impuretés. De tels germes comprennent avantageusement des solides cristallisés, notamment des cristaux de solide IZM-2. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10% de la masse de l’oxyde X02 utilisée dans le mélange réactionnel. It may be advantageous to add seeds to the reaction mixture in order to reduce the time required for crystal formation and / or the total crystallization time. It may also be advantageous to use seeds in order to promote the formation of said crystallized solid IZM-2 to the detriment of impurities. Such seeds advantageously comprise crystalline solids, in particular crystals of solid IZM-2. The seed crystals are generally added in a proportion of between 0.01 and 10% of the mass of the oxide X02 used in the reaction mixture.
A l'issue de l'étape de traitement hydrothermal conduisant à la cristallisation dudit solide IZM-2, la phase solide est avantageusement filtrée, lavée, séchée puis calcinée. L'étape de calcination s'effectue avantageusement par une ou plusieurs étapes de chauffage réalisée à une température comprise entre 100 et 1000°C, de préférence comprise entre 400 et 650°C, pour une durée comprise entre quelques heures et plusieurs jours, de préférence comprise entre 3 heures et 48 heures. De manière préférée, la calcination s'effectue en deux étapes de chauffage consécutives. At the end of the hydrothermal treatment step leading to the crystallization of said solid IZM-2, the solid phase is advantageously filtered, washed, dried and then calcined. The calcination step is advantageously carried out by one or more heating steps carried out at a temperature between 100 and 1000 ° C, preferably between 400 and 650 ° C, for a period of between a few hours and several days, preferably between 3 hours and 48 hours. Preferably, the calcination is carried out in two consecutive heating steps.
A l'issue de ladite étape de calcination, ledit solide IZM-2 obtenu est avantageusement celui présentant le diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. Il est dépourvu d'eau ainsi que de l'espèce organique R présentes dans le solide IZM-2 sous sa forme brute de synthèse. Après ladite étape de calcination, la zéolithe IZM-2 peut contenir typiquement de 2000 à 8000 ppm en élément alcalin et/ou alcalino terreux et de préférence de sodium. At the end of said calcination step, said solid IZM-2 obtained is advantageously that exhibiting the X-ray diffraction diagram including at least the lines listed in Table 1. It is devoid of water as well as of the species. organic R present in the solid IZM-2 in its crude synthetic form. After said calcination step, the IZM-2 zeolite can typically contain from 2000 to 8000 ppm of alkali and / or alkaline earth element and preferably of sodium.
Après calcination, afin de diminuer la teneur en alcalin et/ou alcalino-terreux et de préférence en sodium, dans ladite zéolithe, le solide IZM-2 entrant dans la composition du support du catalyseur selon l'invention est avantageusement lavé par au moins un traitement par une solution d’au moins un sel d’ammonium de manière à obtenir la forme ammonium du solide IZM-2. Le rapport atomique M/Y est généralement avantageusement inférieur à 0,1 et de préférence inférieur à 0,05 et de manière encore plus préférée inférieur à 0,01. Cette étape de lavage peut être effectuée à toute étape de la préparation du support du catalyseur ou du catalyseur, c'est-à-dire après l'étape de préparation du solide IZM-2, après l'étape de mise en forme du solide IZM-2, ou encore après l'étape d'introduction du métal hydro- déshydrogénant. De préférence l'étape de lavage est effectuée avant l'étape de mise en forme du solide IZM-2. L’étape de lavage est de préférence effectuée en immergeant sous agitation le solide dans une solution aqueuse d’au moins un sel d’ammonium. Le sel d’ammonium peut être choisi parmi le nitrate d’ammonium NH4N03, le chlorure d’ammonium NH4CI, l’hydroxyde d’ammonium NH40H, le bicarbonate d’ammonium NH4HC03, l’acétate d’ammonium NH4H3C202 ou encore le sulfate d’ammonium (NH4)2S04. La durée d’immersion du solide dans la solution peut varier typiquement de 15 minutes à plusieurs heures. La concentration en sel(s) d’ammonium(s) dans la solution est typiquement comprise entre 0,1 mol par litre et 10 moles par litre. Le lavage s’effectue de préférence à une température comprise entre l’ambiante et 100 °C. Le rapport entre le volume de solution engagée (en ml) et la masse de zéolithe engagée (en gramme) est de préférence compris entre 1 et 100. Pour diminuer la teneur en alcalin et/ou alcalinoterreux et de préférence en sodium au niveau désiré il peut s’avérer nécessaire de répéter l’étape de lavage plusieurs fois. A l’issue du dernier lavage le solide est filtré, lavé à l’eau déionisée puis séché. La zéolithe IZM-2 est enfin calcinée afin de l’obtenir sous sa forme protonique. Les conditions de calcination sont typiquement les mêmes que celles employées pour calciner le solide à l’issue de l’étape de traitement hydrothermal. After calcination, in order to reduce the alkali and / or alkaline-earth and preferably sodium content, in said zeolite, the solid IZM-2 entering into the composition of the support of the catalyst according to the invention is advantageously washed with at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the solid IZM-2. The M / Y atomic ratio is generally advantageously less than 0.1 and preferably less than 0.05 and even more preferably less than 0.01. This washing step can be carried out at any step in the preparation of the catalyst or catalyst support, that is to say after the step of preparing the IZM-2 solid, after the step of shaping the solid. IZM-2, or even after the step of introducing the hydro- metal dehydrogenating. Preferably the washing step is carried out before the step of shaping the solid IZM-2. The washing step is preferably carried out by immersing the solid with stirring in an aqueous solution of at least one ammonium salt. The ammonium salt can be chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HCO3, ammonium acetate NH4H3C202 or else sulphate of Ammonium (NH4) 2SO4. The period of immersion of the solid in the solution can typically vary from 15 minutes to several hours. The concentration of ammonium salt (s) in the solution is typically between 0.1 mol per liter and 10 moles per liter. The washing is preferably carried out at a temperature between room and 100 ° C. The ratio between the volume of solution involved (in ml) and the mass of zeolite involved (in grams) is preferably between 1 and 100. To reduce the content of alkali and / or alkaline earth and preferably sodium to the desired level it it may be necessary to repeat the washing step several times. At the end of the last washing, the solid is filtered off, washed with deionized water and then dried. Finally, the IZM-2 zeolite is calcined in order to obtain it in its proton form. The calcination conditions are typically the same as those used to calcine the solid at the end of the hydrothermal treatment step.
Après lavage, la zéolithe peut contenir typiquement moins de 200 ppm et de préférence plus de 20 ppm, voire plus de 30 ppm d’élément alcalin et/ou alcalino terreux et de préférence de sodium. After washing, the zeolite can typically contain less than 200 ppm and preferably more than 20 ppm, or even more than 30 ppm of alkali and / or alkaline earth element and preferably of sodium.
Matrice Matrix
Conformément à l’invention, le catalyseur comprend au moins une matrice. Ladite matrice peut avantageusement être amorphe ou cristallisée. According to the invention, the catalyst comprises at least one matrix. Said matrix can advantageously be amorphous or crystalline.
De préférence, ladite matrice est avantageusement choisie dans le groupe formé par l'alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange ou bien on peut choisir également les aluminates. De préférence, l’alumine est utilisée comme matrice. De manière préférée, ladite matrice contient de l'alumine sous toutes ses formes connues de l'homme du métier, telles que par exemple les alumines de type alpha, gamma, êta, delta. Lesdites alumines diffèrent par leur surface spécifique et leur volume poreux. La teneur en alcalin et/ou alcalino terreux de la matrice est variable et dépend du mode d’obtention de ladite matrice comme cela est bien connu pour l’alumine par exemple (Handbook of Porous Solids, 2008, Wiley-VCH chapitre 4.7.2.). Le support du catalyseur utilisé dans l’invention comprend et est de préférence constitué de ladite matrice et de ladite zéolithe IZM-2. Preferably, said matrix is advantageously chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture or else one can also choose the aluminates. Preferably, alumina is used as a matrix. Preferably, said matrix contains alumina in all its forms known to those skilled in the art, such as, for example, aluminas of the alpha, gamma, eta, delta type. Said aluminas differ by their specific surface and their pore volume. The alkali and / or alkaline earth content of the matrix is variable and depends on the method of obtaining said matrix as is well known for alumina for example (Handbook of Porous Solids, 2008, Wiley-VCH chapter 4.7.2 .). The support for the catalyst used in the invention comprises and preferably consists of said matrix and said IZM-2 zeolite.
La teneur en élément alcalin et/ou alcalino terreux de la matrice peut avantageusement être ajustée par toute méthode connue de l’homme de l’art pour obtenir un catalyseur conforme à l’invention. La matrice ou le précurseur de la matrice pourra ainsi être lavé par mise au contact d’une solution aqueuse dont le pH est inférieur ou égal au point de charge nulle de ladite matrice, comme cela est illustré pour une matrice alumine dans Catalysis Supports and Supported Catalysts, Butterworth Publishers (1987). A titre illustratif, de la boehmite peut être lavée par mise au contact dudit solide avec une solution aqueuse de nitrate d’ammonium. La durée d’immersion du solide dans la solution peut varier typiquement de 15 minutes à plusieurs heures. La concentration en sel(s) d’ammonium(s) dans la solution est typiquement comprise entre 0,1 mol par litre et 10 moles par litre. Le lavage s’effectue de préférence à une température comprise entre l’ambiante et 100 °C. Le rapport entre le volume de solution engagée (en ml) et la masse de la boehmite engagée (en gramme) est de préférence compris entre 1 et 100. Pour diminuer la teneur en alcalin et/ou alcalinoterreux au niveau désiré il peut s’avérer nécessaire de répéter l’étape de lavage plusieurs fois. A l’issue du dernier lavage le solide est filtré, lavé à l’eau déionisée puis séché et calciné. The content of alkali and / or alkaline earth element in the matrix can advantageously be adjusted by any method known to those skilled in the art to obtain a catalyst in accordance with the invention. The matrix or the precursor of the matrix can thus be washed by bringing into contact an aqueous solution whose pH is less than or equal to the zero charge point of said matrix, as illustrated for an alumina matrix in Catalysis Supports and Supported Catalysts, Butterworth Publishers (1987). By way of illustration, boehmite can be washed by contacting said solid with an aqueous solution of ammonium nitrate. The duration of immersion of the solid in the solution can typically vary from 15 minutes to several hours. The concentration of ammonium salt (s) in the solution is typically between 0.1 mol per liter and 10 moles per liter. Washing is preferably carried out at a temperature between room and 100 ° C. The ratio between the volume of solution engaged (in ml) and the mass of the boehmite engaged (in grams) is preferably between 1 and 100. To reduce the alkali and / or alkaline earth content to the desired level it may be necessary to necessary to repeat the washing step several times. After the last washing, the solid is filtered, washed with deionized water, then dried and calcined.
Lorsqu’elle contient des éléments alcalins et/ou alcalino terreux, la matrice peut contenir typiquement moins de 200 ppm et de préférence plus de 20 ppm, voire plus de 30 ppm, d’élément alcalin et/ou alcalino terreux et de préférence de sodium. When it contains alkaline and / or alkaline earth elements, the matrix can typically contain less than 200 ppm and preferably more than 20 ppm, or even more than 30 ppm, of alkali and / or alkaline earth element and preferably of sodium. .
Conformément à l’invention, le catalyseur comprend au moins un métal du groupe VIII de préférence choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine, de préférence choisi parmi les métaux nobles du groupe VIII, de manière très préférée choisi parmi le palladium et le platine et de manière encore plus préférée on choisit le platine. In accordance with the invention, the catalyst comprises at least one metal from group VIII preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum is chosen.
De préférence, ledit catalyseur comprend une teneur en métal du groupe VIII comprise entre 0,01 et 5% poids par rapport à la masse totale dudit catalyseur et de préférence comprise entre 0,1 et 4 % poids. Preferably, said catalyst comprises a group VIII metal content of between 0.01 and 5% by weight relative to the total mass of said catalyst and preferably of between 0.1 and 4% by weight.
Dans le cas où ledit catalyseur comprend au moins un métal noble du groupe VIII, la teneur en métal noble dudit catalyseur est avantageusement comprise entre 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids par rapport à la masse totale dudit catalyseur. Le catalyseur de l'invention peut également avantageusement contenir au moins un métal choisi parmi les métaux des groupes II IA, IVA et VI IB choisis parmi le gallium, l'indium, l'étain et le rhénium. Dans ce cas, la teneur en métal choisi parmi les métaux des groupes NIA, IVA et Vil B est de préférence comprise entre 0,01 et 2%, de préférence entre 0,05 et 1% poids par rapport à la masse totale dudit catalyseur. In the case where said catalyst comprises at least one noble metal from group VIII, the noble metal content of said catalyst is advantageously between 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and preferably between 0.1 and 4% by weight. very preferably between 0.1 and 2% by weight relative to the total mass of said catalyst. The catalyst of the invention can also advantageously contain at least one metal chosen from metals of groups II IA, IVA and VI IB chosen from gallium, indium, tin and rhenium. In this case, the metal content chosen from the metals of groups NIA, IVA and Vil B is preferably between 0.01 and 2%, preferably between 0.05 and 1% by weight relative to the total mass of said catalyst. .
La dispersion du(es) métal(ux) du groupe VIII, déterminée par chimisorption, par exemple par titration H2/02 ou par chimisorption du monoxyde de carbone, est comprise entre 10% et 100%, de préférence entre 20% et 100% et de manière encore plus préférée entre 30% et 100%. Le coefficient de répartition macroscopique du(es) métal(ux) du groupe VIII, obtenu à partir de son (leur) profil déterminé par microsonde de Castaing, défini comme le rapport des concentrations du(es) métal(ux) du groupe VIII au cœur du grain par rapport au bord de ce même grain, est compris entre 0,7 et 1,3, de préférence entre 0,8 et 1,2. La valeur de ce rapport, voisine de 1, témoigne de l'homogénéité de la répartition du(es) métal(ux) du groupe VIII dans le catalyseur. The dispersion of the metal (s) of group VIII, determined by chemisorption, for example by H2 / 02 titration or by chemisorption of carbon monoxide, is between 10% and 100%, preferably between 20% and 100% and even more preferably between 30% and 100%. The macroscopic distribution coefficient of the metal (s) of group VIII, obtained from its (their) profile determined by Castaing microprobe, defined as the ratio of the concentrations of the metal (s) of group VIII to core of the grain with respect to the edge of this same grain is between 0.7 and 1.3, preferably between 0.8 and 1.2. The value of this ratio, close to 1, testifies to the homogeneity of the distribution of the metal (s) from group VIII in the catalyst.
Le catalyseur selon l'invention peut avantageusement être préparé selon toutes les méthodes bien connues de l'homme du métier. The catalyst according to the invention can advantageously be prepared according to all the methods well known to those skilled in the art.
Mise en forme Formatting
Avantageusement, les différents constituants du support ou du catalyseur peuvent être mis en forme par étape de malaxage pour former une pâte puis extrusion de la pâte obtenue, ou alors par mélange de poudres puis pastillage, ou alors par tout autre procédé connu d’agglomération d’une poudre contenant de l’alumine. Les supports ainsi obtenus peuvent se présenter sous différentes formes et dimensions. De manière préférée la mise en forme est effectuée par malaxage et extrusion. Advantageously, the various constituents of the support or of the catalyst can be shaped by mixing step to form a paste then extrusion of the paste obtained, or else by mixing powders then pelletizing, or else by any other known agglomeration process. a powder containing alumina. The supports thus obtained can be in different shapes and sizes. Preferably, the shaping is carried out by mixing and extrusion.
Lors de la mise en forme du support par malaxage puis extrusion, ladite zéolithe IZM-2 peut être introduite au cours de la mise en solution ou en suspension des composés d'alumine ou précurseurs d’alumine tels que la boéhmite par exemple. Ladite zéolithe IZM-2 peut être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, ladite zéolithe peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en IZM-2 visée dans le catalyseur selon l’invention. Cette suspension appelée couramment une barbotine est alors mélangée avec les composés d'alumine ou précurseurs d’alumine. Par ailleurs, l’utilisation d’additifs peut avantageusement être mise en œuvre pour faciliter la mise en forme et/ou améliorer les propriétés mécaniques finales des supports comme cela est bien connu par l’homme du métier. A titre d’exemple d’additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy-éthyl-cellulose, du tall-oil (huile de tall), les gommes xanthaniques, des agents tensio-actifs, des agents floculants comme les polyacrylamides, le noir de carbone, les amidons, l’acide stéarique, l’alcool polyacrylique, l’alcool polyvinylique, des biopolymères, le glucose, les polyéthylènes glycols, etc. During the shaping of the support by mixing and then extrusion, said IZM-2 zeolite can be introduced during the dissolution or suspension of alumina compounds or alumina precursors such as bohemite for example. Said IZM-2 zeolite can be, without this being limiting, for example in the form of powder, ground powder, suspension or suspension which has undergone a deagglomeration treatment. Thus, for example, said zeolite can advantageously be placed in suspension, acidified or not, at a concentration adjusted to the final IZM-2 content targeted in the catalyst according to the invention. This suspension commonly called a slip is then mixed with the alumina compounds or alumina precursors. Furthermore, the use of additives can advantageously be implemented to facilitate shaping and / or improve the final mechanical properties of the supports, as is well known to those skilled in the art. By way of example of additives, mention may in particular be made of cellulose, carboxymethyl-cellulose, carboxy-ethyl-cellulose, tall oil (tall oil), xanthan gums, surfactants, agents. flocculants such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc.
On peut avantageusement ajouter ou retirer de l'eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut avantageusement être réalisée à tout stade de l'étape de malaxage. Water can advantageously be added or removed to adjust the viscosity of the paste to be extruded. This step can advantageously be carried out at any stage of the mixing step.
Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut également ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate. On utilise de manière préférée un hydrate et de manière encore plus préférée un hydrate d'aluminium. La perte au feu de cet hydrate est avantageusement supérieure à 15%.To adjust the solid matter content of the paste to be extruded in order to make it extrudable, it is also possible to add a predominantly solid compound and preferably an oxide or a hydrate. A hydrate is preferably used and even more preferably an aluminum hydrate is used. The loss on ignition of this hydrate is advantageously greater than 15%.
L'extrusion de la pâte issue de l'étape de malaxage peut avantageusement être réalisée par n'importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est avantageusement extrudée à travers une filière, par exemple à l'aide d'un piston ou d'une mono-vis ou double vis d'extrusion. L'extrusion peut avantageusement être réalisée par toute méthode connue de l'homme de métier. The extrusion of the paste resulting from the kneading step can advantageously be carried out by any conventional tool, available commercially. The paste resulting from the mixing is advantageously extruded through a die, for example using a piston or a single or twin extrusion screw. The extrusion can advantageously be carried out by any method known to those skilled in the art.
Les supports du catalyseur selon l’invention sont en général sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes et/ou de roues. De préférence, les supports du catalyseur selon l’invention ont la forme de sphères ou d'extrudés. Avantageusement le support se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée. The catalyst supports according to the invention are generally in the form of cylindrical or polylobed extrudates such as bilobed, trilobed, polylobed in straight or twisted shape, but can optionally be manufactured and used in the form of crushed powders, tablets, etc. rings, balls and / or wheels. Preferably, the supports for the catalyst according to the invention are in the form of spheres or extrudates. Advantageously, the support is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes may be cylindrical (which may or may not be hollow) and / or twisted cylindrical and / or multilobed (2, 3, 4 or 5 lobes for example) and / or rings. The multilobed form is advantageously used in a preferred manner.
Séchage Drying
Le support ainsi obtenu peut ensuite être soumis à une étape de séchage. Ladite étape de séchage est avantageusement effectuée par toute technique connue de l’homme du métier. De préférence, le séchage est effectué sous flux d'air. Ledit séchage peut également être effectué sous flux de tout gaz oxydant, réducteur ou inerte. De préférence, le séchage est avantageusement effectué à une température comprise entre 50 et 180°C, de manière préférée entre 60 et 150°C et de manière très préférée entre 80 et 130°C. The support thus obtained can then be subjected to a drying step. Said drying step is advantageously carried out by any technique known to those skilled in the art. Preferably, the drying is carried out under air flow. Said drying can also be carried out under a flow of any oxidizing, reducing or inert gas. Preferably, the drying is advantageously carried out at a temperature between 50 and 180 ° C, preferably between 60 and 150 ° C and very preferably between 80 and 130 ° C.
Calcination Calcination
Ledit support, éventuellement séché, subit ensuite de préférence une étape de calcination.Said support, optionally dried, then preferably undergoes a calcination step.
Ladite étape de calcination est avantageusement réalisée en présence d'oxygène moléculaire, par exemple en effectuant un balayage d'air, à une température avantageusement supérieure à 200°C et inférieure ou égale à 1100°C. Ladite étape de calcination peut avantageusement être effectuée en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut être un four rotatif tournant ou être un four vertical à couches traversées radiales. De préférence, ladite étape de calcination est effectuée entre plus d'une heure à 200°C à moins d'une heure à 1100°C. La calcination peut avantageusement être opérée en présence de vapeur d'eau et/ou en présence d’une vapeur acide ou basique. Par exemple, la calcination peut être réalisée sous pression partielle d’ammoniaque. Said calcination step is advantageously carried out in the presence of molecular oxygen, for example by carrying out an air sweep, at a temperature advantageously greater than 200 ° C and less than or equal to 1100 ° C. Said calcination step can advantageously be carried out in a traversed bed, in a lickbed bed or in a static atmosphere. For example, the furnace used can be a rotary rotary furnace or be a vertical furnace with radial traversed layers. Preferably, said calcination step is carried out between more than one hour at 200 ° C to less than one hour at 1100 ° C. Calcination can advantageously be carried out in the presence of water vapor and / or in the presence of an acidic or basic vapor. For example, the calcination can be carried out under partial pressure of ammonia.
Des traitements post-calcination peuvent éventuellement être effectués, de manière à améliorer les propriétés du support, notamment les propriétés texturales. Post-calcination treatments can optionally be carried out, so as to improve the properties of the support, in particular the textural properties.
Ainsi, le support du catalyseur selon la présente invention peut être soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l'autoclave en présence d'eau à une température supérieure à la température ambiante, de préférence supérieure à 25°C, de préférence supérieure à 30°C. Thus, the support of the catalyst according to the present invention can be subjected to a hydrothermal treatment in a confined atmosphere. The term “hydrothermal treatment in a confined atmosphere” means treatment by autoclaving in the presence of water at a temperature above room temperature, preferably above 25 ° C, preferably above 30 ° C.
Au cours de ce traitement hydrothermal, on peut avantageusement imprégner le support, préalablement à son passage à l'autoclave (l'autoclavage étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non). Cette imprégnation, préalable à l'autoclavage, peut avantageusement être acide ou non. Cette imprégnation, préalable à l'autoclavage peut avantageusement être effectuée à sec ou par immersion du support dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact du support avec un volume de solution inférieur ou égal au volume poreux total du support. De préférence, l'imprégnation est réalisée à sec. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP 0 387 109 A. La température pendant l'autoclavage peut être comprise entre 100 et 250°C pendant une période de temps comprise entre 30 minutes et 3 heures. During this hydrothermal treatment, the support can advantageously be impregnated, prior to its passage in the autoclave (autoclaving being carried out either in vapor phase or in liquid phase, this vapor or liquid phase of the autoclave possibly being acidic. or not). This impregnation, prior to autoclaving, may advantageously be acidic or not. This impregnation, prior to autoclaving, can advantageously be carried out dry or by immersing the support in an acidic aqueous solution. By dry impregnation is meant bringing the support into contact with a volume of solution less than or equal to the total pore volume of the support. Preferably, the impregnation is carried out dry. The autoclave is preferably an autoclave with a rotating basket such as that defined in patent application EP 0 387 109 A. The temperature during autoclaving can be between 100 and 250 ° C for a period of time between 30 minutes and 3 hours.
Le mélange de la matrice et de la zéolithe IZM-2 mis en forme constitue le support du catalyseur. La teneur en alcalin et/ou alcalino terreux du support pourra également être ajustée par toute méthode connue de l’homme du métier pour obtenir un catalyseur conforme à l’invention. The mixture of the matrix and the shaped IZM-2 zeolite constitutes the catalyst support. The alkali and / or alkaline earth content of the support can also be adjusted by any method known to those skilled in the art to obtain a catalyst in accordance with the invention.
De préférence, des traitements de lavage peuvent aussi être effectués afin de diminuer la teneur en alcalin et/ou alcalino-terreux du support. Les conditions opératoires du lavage sont typiquement les mêmes que celles décrites pour le lavage de la zéolithe. Le support est alors à nouveau calciné après lavage, de préférence dans les mêmes conditions que celles décrites pour le lavage de la zéolithe. Preferably, washing treatments can also be carried out in order to reduce the alkali and / or alkaline earth content of the support. The operating conditions for washing are typically the same as those described for washing the zeolite. The support is then again calcined after washing, preferably under the same conditions as those described for washing the zeolite.
Dépôt de la phase métallique Deposition of the metallic phase
Pour le dépôt du métal du groupe VIII de la classification périodique des éléments, toutes les techniques de dépôt connues de l'homme du métier et tous les précurseurs de tels métaux peuvent convenir. On peut utiliser des techniques de dépôt par imprégnation à sec ou en excès d’une solution contenant les précurseurs des métaux, en présence de compétiteurs ou non. L’introduction du métal peut s’effectuer à toute étape de la préparation du catalyseur: sur la zéolithe IZM-2 et/ou sur la matrice, notamment avant l’étape de mise en forme, pendant l’étape de mise en forme, ou après l’étape de mise en forme, sur le support du catalyseur. De manière préférée le dépôt du métal s’effectue après l’étape de mise en forme.For the deposition of the metal from group VIII of the Periodic Table of the Elements, all the deposition techniques known to those skilled in the art and all the precursors of such metals may be suitable. Dry impregnation deposition techniques or in excess of a solution containing the metal precursors can be used, in the presence of competitors or not. The introduction of the metal can be carried out at any stage of the preparation of the catalyst: on the IZM-2 zeolite and / or on the matrix, in particular before the shaping step, during the shaping step, or after the shaping step, on the catalyst support. Preferably, the deposition of the metal takes place after the shaping step.
Le contrôle de certains paramètres mis en œuvre lors du dépôt, en particulier la nature du précurseur du (des) métal(ux) du groupe VIII utilisé(s), permet d'orienter le dépôt du(es)dit(s) métal(ux) majoritairement sur la matrice ou sur la zéolithe. The control of certain parameters implemented during the deposition, in particular the nature of the precursor of the group VIII metal (s) used (s), makes it possible to orient the deposition of the said metal (s) ( ux) mainly on the matrix or on the zeolite.
Ainsi, pour introduire le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, majoritairement sur la matrice, on peut mettre en œuvre un échange anionique avec de l’acide hexachloroplatinique et/ou de l’acide hexachloropalladique, de préférence en présence d’un agent compétiteur, par exemple de l’acide chlorhydrique, le dépôt étant en général suivi d'une calcination, par exemple à une température comprise entre 350 et 550°C et pendant une durée comprise entre 1 et 4 heures. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la matrice et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur. On peut aussi envisager de déposer le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, par échange cationique de manière à ce que le(s)dit(s) métal(ux) soi(en)t déposé(s) majoritairement sur la zéolithe. Ainsi, dans le cas du platine, le précurseur peut être par exemple choisi parmi : Thus, to introduce the metal (s) from group VIII, preferably platinum and / or palladium, mainly on the matrix, an anion exchange can be carried out with hexachloroplatinic acid and / or hexachloropalladic acid, preferably in the presence of a competing agent, for example hydrochloric acid, the deposition generally being followed by calcination, for example at a temperature between 350 and 550 ° C and for a period of between 1 and 4 hours. With such precursors, the metal (s) of group VIII is (are) deposited mainly on the matrix and the said metal (s) present (s) a good dispersion and a good macroscopic distribution across the grain of catalyst. It is also possible to envisage depositing the metal (s) from group VIII, preferably platinum and / or palladium, by cation exchange so that the said metal (s) are themselves (in ) t deposited mainly on the zeolite. Thus, in the case of platinum, the precursor can for example be chosen from:
- les composés ammoniaqués tels que les sels de platine (II) tétramines de formule Pt(NH3)4X2, les sels de platine (IV) hexamines de formule Pt(NH3)6X4 ; les sels de platine (IV) halogénopentamines de formule (PtX(NH3)5)X3 ; les sels de platine N- tétrahalogénodiamines de formule PtX4(NH3)2 ; et - ammonia compounds such as the platinum (II) tetramine salts of formula Pt (NH3) 4X2, the platinum (IV) hexamine salts of formula Pt (NH3) 6X4; halopentamine platinum (IV) salts of formula (PtX (NH3) 5) X3; the N-tetrahalodiamine platinum salts of formula PtX4 (NH3) 2; and
- les composés halogénés de formule H(Pt(acac)2X); - halogenated compounds of formula H (Pt (acac) 2X);
X étant un halogène choisi dans le groupe formé par le chlore, le fluor, le brome et l'iode, X étant de préférence le chlore, et "acac" représentant le groupe acétylacétonate (de formule brute C5H702), dérivé de l'acétylacétone. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la zéolithe et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur. X being a halogen chosen from the group formed by chlorine, fluorine, bromine and iodine, X preferably being chlorine, and "acac" representing the acetylacetonate group (of gross formula C5H702), derived from acetylacetone . With such precursors, the metal (s) of group VIII is (are) deposited (s) mainly on the zeolite and the said metal (s) present (s) a good dispersion and a good macroscopic distribution across the grain of catalyst.
La solution d’imprégnation peut avantageusement également comprendre au moins un sel d’ammonium choisi parmi le nitrate d’ammonium NH4N03, le chlorure d’ammonium NH4CI, l’hydroxyde d’ammonium NH40H, le bicarbonate d’ammonium NH4HC03, l’acétate d’ammonium NH4H3C202 seul ou en mélange, le rapport molaire entre le sel d’ammonium et le métal noble du précurseur étant compris entre 0,1 et 400. The impregnation solution can advantageously also comprise at least one ammonium salt chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HC03, acetate ammonium NH4H3C202 alone or as a mixture, the molar ratio between the ammonium salt and the noble metal of the precursor being between 0.1 and 400.
Dans le cas où le catalyseur de l'invention contient également au moins un métal choisi parmi les métaux des groupes NIA, IVA et VI IB, toutes les techniques de dépôt d'un tel métal connues de l'homme du métier et tous les précurseurs de tels métaux peuvent convenir.In the case where the catalyst of the invention also contains at least one metal chosen from the metals of groups NIA, IVA and VI IB, all the techniques for depositing such a metal known to those skilled in the art and all the precursors such metals may be suitable.
On peut ajouter le(s) métal(ux) du groupe VIII et celui(ceux) des groupes NIA, IVA et VII B, soit séparément soit simultanément dans au moins une étape unitaire. Lorsqu’au moins un métal des groupes NIA, IVA et VII B est ajouté séparément, il est préférable qu’il soit ajouté après le métal du groupe VIII. The metal (s) from group VIII and that (those) from groups NIA, IVA and VII B can be added, either separately or simultaneously in at least one unitary step. When at least one metal from groups NIA, IVA and VII B is added separately, it is preferable that it is added after the metal from group VIII.
Le métal additionnel choisi parmi les métaux des groupes NIA, IVA et VII B peut être introduit par l'intermédiaire de composés tels que par exemple les chlorures, les bromures et les nitrates des métaux des groupes NIA, IVA et VII B. Par exemple dans le cas de l’indium, on utilise avantageusement le nitrate ou le chlorure et dans le cas du rhénium, on utilise avantageusement l'acide perrhénique. Le métal additionnel choisi parmi les métaux des groupes NIA, IVA et VIIB peut également être introduit sous la forme d'au moins un composé organique choisi dans le groupe constitué par les complexes dudit métal, en particulier les complexes polycétoniques du métal et les hydrocarbylmétaux tels que les alkyles, les cycloalkyles, les aryles, les alkylaryles et les arylalkyles de métaux. Dans ce dernier cas, l'introduction du métal est avantageusement effectuée à l'aide d'une solution du composé organométallique dudit métal dans un solvant organique. On peut également employer des composés organohalogénés du métal. Comme composés organiques de métaux, on peut citer en particulier le tétrabutylétain, dans le cas de l'étain, et le triphénylindium, dans le cas de l'indium. The additional metal chosen from metals from groups NIA, IVA and VII B can be introduced via compounds such as, for example, chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B. For example in in the case of indium, nitrate or chloride is advantageously used and in the case of rhenium, perrhenic acid is advantageously used. The additional metal chosen from the metals of groups NIA, IVA and VIIB can also be introduced in the form of at least one compound organic chosen from the group consisting of complexes of said metal, in particular polyketone complexes of the metal and hydrocarbylmetals such as alkyls, cycloalkyls, aryls, alkylaryls and arylalkyls of metals. In the latter case, the introduction of the metal is advantageously carried out using a solution of the organometallic compound of said metal in an organic solvent. Organohalogen compounds of the metal can also be employed. As organic compounds of metals, there may be mentioned in particular tetrabutyltin, in the case of tin, and triphenylindium, in the case of indium.
Si le métal additionnel choisi parmi les métaux des groupes NIA, IVA et VII B est introduit avant le métal du groupe VIII, le composé du métal NIA, IVA et/ou VIIB utilisé est généralement choisi dans le groupe constitué par l'halogénure, le nitrate, l'acétate, le tartrate, le carbonate et l'oxalate du métal. L'introduction est alors avantageusement effectuée en solution aqueuse. Mais il peut également être introduit à l’aide d’une solution d’un composé organométallique du métal par exemple le tétrabutylétain. Dans ce cas, avant de procéder à l'introduction d'au moins un métal du groupe VIII, on procédera à une calcination sous air. If the additional metal chosen from the metals of groups NIA, IVA and VII B is introduced before the metal of group VIII, the compound of the metal NIA, IVA and / or VIIB used is generally chosen from the group consisting of the halide, the metal nitrate, acetate, tartrate, carbonate and oxalate. The introduction is then advantageously carried out in aqueous solution. But it can also be introduced using a solution of an organometallic compound of the metal, for example tetrabutyltin. In this case, before proceeding with the introduction of at least one metal from group VIII, calcination in air will be carried out.
De plus, des traitements intermédiaires tels que par exemple une calcination et/ou une réduction peuvent être appliqués entre les dépôts successifs des différents métaux. In addition, intermediate treatments such as, for example, calcination and / or reduction can be applied between the successive deposits of the different metals.
Avant son utilisation dans un procédé d’isomérisation, le catalyseur selon l’invention est de préférence réduit. Cette étape de réduction est avantageusement réalisée par un traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 MPa. Par exemple, une réduction consiste en un palier à 150°C de deux heures puis une montée en température jusqu'à 450°C à la vitesse de 1°C/min puis un palier de deux heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 normaux m3 d’hydrogène par tonne catalyseur et la pression totale maintenue constante à 0,2 MPa. Toute méthode de réduction ex-situ peut avantageusement être envisagée. Une réduction préalable du catalyseur final ex situ, sous courant d'hydrogène, peut être mise en œuvre, par exemple à une température de 450°C à 600°C, pendant une durée de 0,5 à 4 heures. Before its use in an isomerization process, the catalyst according to the invention is preferably reduced. This reduction step is advantageously carried out by treatment under hydrogen at a temperature of between 150 ° C and 650 ° C and a total pressure of between 0.1 and 25 MPa. For example, a reduction consists of a plateau at 150 ° C for two hours then a rise in temperature to 450 ° C at a rate of 1 ° C / min then a plateau of two hours at 450 ° C; throughout this reduction step, the hydrogen flow rate is 1000 normal m3 of hydrogen per tonne of catalyst and the total pressure kept constant at 0.2 MPa. Any ex-situ reduction method can advantageously be envisaged. A prior reduction of the final catalyst ex situ, under a stream of hydrogen, can be carried out, for example at a temperature of 450 ° C. to 600 ° C., for a period of 0.5 to 4 hours.
Ledit catalyseur comprend également avantageusement du soufre. Dans le cas où le catalyseur de l'invention contient du soufre, celui-ci peut être introduit à n’importe quelle étape de la préparation du catalyseur: avant ou après étape de mise en forme, et/ou séchage et/ou calcination, avant et/ou après l’introduction du ou des métaux cités précédemment, ou encore par sulfuration in situ et ou ex situ avant la réaction catalytique. Dans le cas d’une sulfuration in situ, la réduction, si le catalyseur n’a pas été préalablement réduit, intervient avant la sulfuration. Dans le cas d’une sulfuration ex situ, on effectue également la réduction puis la sulfuration. La sulfuration s’effectue de préférence en présence d’hydrogène en utilisant tout agent sulfurant bien connu de l’homme de métier, tel que par exemple le sulfure de diméthyle ou le sulfure d’hydrogène. Said catalyst also advantageously comprises sulfur. In the case where the catalyst of the invention contains sulfur, the latter can be introduced at any stage of the preparation of the catalyst: before or after the shaping stage, and / or drying and / or calcination, before and / or after the introduction of the metal (s) mentioned above, or alternatively by sulfurization in situ and / or ex situ before the catalytic reaction. In the case of in situ sulfurization, the reduction, if the catalyst has not been reduced beforehand, takes place before the sulfurization. In the case of ex situ sulfurization, the reduction and then the sulfurization are also carried out. The sulfurization is preferably carried out in the presence of hydrogen using any sulfurizing agent well known to those skilled in the art, such as, for example, dimethyl sulfide or hydrogen sulfide.
Les catalyseurs selon l’invention se présentent sous différentes formes et dimensions. Ils sont utilisés en général sous la forme d'extrudés cylindriques et/ou polylobés tels que bilobés, trilobés, polylobés de forme droite et/ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes et/ou de roues. De préférence, les catalyseurs mis en œuvre dans le procédé selon l'invention ont la forme de sphères ou d'extrudés. Avantageusement le catalyseur se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée. Le dépôt du métal ne change pas la forme du support. The catalysts according to the invention come in different shapes and sizes. They are generally used in the form of cylindrical and / or polylobed extrudates such as bilobed, trilobed, polylobed of straight and / or twisted shape, but can optionally be manufactured and employed in the form of crushed powders, tablets, rings, balls and / or wheels. Preferably, the catalysts used in the process according to the invention have the form of spheres or extrudates. Advantageously, the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes may be cylindrical (which may or may not be hollow) and / or twisted cylindrical and / or multilobed (2, 3, 4 or 5 lobes for example) and / or rings. The multilobed form is advantageously used in a preferred manner. The deposition of the metal does not change the shape of the support.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. The following examples illustrate the invention without, however, limiting its scope.
EXEMPLES EXAMPLES
Exemple 1 : synthèse de la zéolithe IZM-2 Example 1: synthesis of the IZM-2 zeolite
La zéolithe IZM-2 a été synthétisée conformément à l'enseignement du brevet FR 2 918 050 B. Une suspension colloïdale de silice connue sous le terme commercial Ludox HS-40 commercialisée par Aldrich, est incorporée dans une solution composée de soude (Prolabo), de structurant dibromure de 1,6bis(méthylpiperidinium)hexane, d’hydroxyde d’aluminium (Aldrich) et d’eau déionisée. La composition molaire du mélange est la suivante : 1 Si02; 0,0042 AI203; 0,1666 Na20; 0,1666 1,6bis(méthylpiperidinium)hexane; 33,3333 H20. Le mélange est agité vigoureusement pendant une demi-heure. Le mélange est ensuite transféré, après homogénéisation, dans un autoclave de type PARR. L’autoclave est chauffé pendant 5 jours à 170°C sous agitation en tourne broche (30 tours/min). Le produit obtenu est filtré, lavé à l’eau déionisée pour atteindre un pH neutre puis séché une nuit à 100°C en étuve. Le solide est ensuite introduit dans un four à moufle pour y être calciné afin d’éliminer le structurant. Le cycle de calcination comprend une montée en température jusqu’à 200°C, un palier à cette température de deux heures, une montée en température jusqu’à 550°C suivi d’un palier de huit heures à cette température et enfin un retour à température ambiante. Les montées en température sont effectuées avec une rampe de 2°C/min. Le solide ainsi obtenu après calcination contient une teneur en sodium mesurée par absorption atomique de 3695 ppm. The IZM-2 zeolite was synthesized in accordance with the teaching of patent FR 2 918 050 B. A colloidal suspension of silica known under the trade name Ludox HS-40 marketed by Aldrich, is incorporated into a solution composed of soda (Prolabo). , 1.6bis (methylpiperidinium) hexane dibromide structuring agent, aluminum hydroxide (Aldrich) and deionized water. The molar composition of the mixture is as follows: 1 SiO 2; 0.0042 AI203; 0.1666 Na20; 0.1666 1.6bis (methylpiperidinium) hexane; 33.3333 H2O. The mixture is stirred vigorously for half an hour. The mixture is then transferred, after homogenization, into an autoclave of the PARR type. The autoclave is heated for 5 days at 170 ° C. with stirring in the spit (30 revolutions / min). The product obtained is filtered, washed with deionized water to reach a neutral pH and then dried overnight at 100 ° C. in an oven. The solid is then introduced into a muffle furnace to be calcined there in order to remove the structuring agent. The calcination cycle includes a rise in temperature up to 200 ° C, a plateau at this temperature of two hours, a rise in temperature up to 550 ° C followed by a plateau of eight hours at this temperature and finally a return at room temperature. The temperature rises are carried out with a ramp of 2 ° C / min. The The solid thus obtained after calcination contains a sodium content measured by atomic absorption of 3695 ppm.
Pour diminuer la teneur en sodium, le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d'ammonium (10 ml de solution par gramme de solide, concentration en nitrate d'ammonium de 3 M). Cette étape de mise sous reflux est effectuée quatre fois avec une solution fraîche de nitrate d’ammonium, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme acide (protonée H+) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 2°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le solide ainsi obtenu a été analysé par Diffraction des Rayons X et identifié comme étant constitué par de la zéolithe IZM-2. Le solide ainsi obtenu contient une teneur en sodium mesurée par absorption atomique de 142 ppm. To reduce the sodium content, the solid thus obtained is then refluxed for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M). This refluxing step is carried out four times with a fresh solution of ammonium nitrate, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100 ° C. Finally, to obtain the zeolite in its acid form (protonated H +), a calcination step is carried out at 550 ° C for ten hours (temperature rise ramp of 2 ° C / min) in a crossed bed in dry air (2 normal liters per hour and per gram of solid). The solid thus obtained was analyzed by X-ray diffraction and identified as being constituted by zeolite IZM-2. The solid thus obtained contains a sodium content measured by atomic absorption of 142 ppm.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée selon l’exemple 1 avec un premier lot de boehmite fournie par la société AXENS contenant 287 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière trilobés de diamètre 1,8 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés à 550°C durant deux heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 24% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 252 ppm poids. The IZM-2 / alumina support is obtained by mixing and extruding the IZM-2 zeolite prepared according to Example 1 with a first batch of boehmite supplied by the company AXENS containing 287 ppm by weight of sodium. The kneaded dough is extruded through a trilobed die with a diameter of 1.8 mm. After drying in an oven overnight at 110 ° C, the extrudates are calcined at 550 ° C for two hours (temperature rise ramp of 5 ° C / min) in a crossed bed in dry air (2 normal liters per hour and per gram solid). The support does not undergo a washing step. The weight content of the IZM-2 zeolite in the support after calcination is 24% by weight. The sodium content in the support measured by atomic absorption is 252 ppm by weight.
Exemple 3 (non conforme à l’invention) : préparation d’un catalyseur d’isomérisation A. Example 3 (not in accordance with the invention): preparation of an isomerization catalyst A.
Le catalyseur A est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé selon l’exemple 2 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes : montée de la température à l'ambiante à 150°C à 5°C/min, palier d’une heure à 150°C, Catalyst A is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared according to Example 2 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2. Typically 20 grams of support is used, which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions: temperature rise to ambient to 150 ° C at 5 ° C / min, hold for one hour at 150 ° C,
- montée de la 150°C à 450°C à 5°C/min, - rise from 150 ° C to 450 ° C at 5 ° C / min,
- palier d’une heure à 450°C, - one hour level at 450 ° C,
- descente à l'ambiante. - descent to ambient.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,3% en poids par rapport à la masse totale dudit catalyseur, son coefficient de répartition mesuré par microsonde de Castaing de 0,6. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur pondérale en sodium dans le catalyseur mesurée par absorption atomique est de 255 ppm. The Pt content measured by FX on the calcined catalyst is 0.3% by weight relative to the total mass of said catalyst, its distribution coefficient measured by Castaing microprobe of 0.6. The catalyst obtained does not undergo a washing step with an ammonium nitrate solution. The sodium content by weight in the catalyst measured by atomic absorption is 255 ppm.
Les propriétés texturales du catalyseur A ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0.97. La surface spécifique du solide est calculé par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur A présente une surface spécifique de 294 m2/g, un volume poreux total de 0,64 ml/g et un diamètre médian de 14 nm. The textural properties of catalyst A were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97. The specific surface of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed. Catalyst A has a specific surface area of 294 m 2 / g, a total pore volume of 0.64 ml / g and a median diameter of 14 nm.
Ce support est obtenu par lavage du premier support IZM-2/alumine décrit dans l’exemple 2. Le support IZM-2/alumine décrit dans l’exemple 2 est lavé avec une solution aqueuse de nitrate d’ammonium. Le support est mis au contact d’une solution aqueuse de nitrate d’ammonium dans un erlenmeyer sur table d’agitation et durant 24 heures. Le volume de solution est fixé à 8 ml par gramme de support et la concentration en nitrate d’ammonium est fixée à 0,15 M. Après 24 heures la solution est soutirée puis le solide est rincé avec deux fois le volume d’échange d’eau distillé puis mis à sécher une nuit en étuve à 110°C. Le solide est ensuite calciné en lit traversé sous air sec laboratoire (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes : This support is obtained by washing the first IZM-2 / alumina support described in Example 2. The IZM-2 / alumina support described in Example 2 is washed with an aqueous solution of ammonium nitrate. The support is placed in contact with an aqueous solution of ammonium nitrate in an Erlenmeyer flask on a stirring table for 24 hours. The volume of solution is set at 8 ml per gram of support and the ammonium nitrate concentration is set at 0.15 M. After 24 hours the solution is withdrawn and then the solid is rinsed with twice the exchange volume d distilled water then left to dry overnight in an oven at 110 ° C. The solid is then calcined in a crossed bed under dry laboratory air (1 normal liter per hour and per gram of solid) in a tube furnace under the following conditions:
- montée de la température à l'ambiante à 150°C à 5°C/min, - temperature rise to ambient to 150 ° C at 5 ° C / min,
- palier d'une heure à 150°C, - one hour level at 150 ° C,
- montée de 150 à 250°C à 5°C/min, - rise from 150 to 250 ° C at 5 ° C / min,
- palier d'une heure à 250°C, - montée de 250 à 350°C à 5°C/min, - level of one hour at 250 ° C, - rise from 250 to 350 ° C at 5 ° C / min,
- palier d'une heure à 350°C, - one hour level at 350 ° C,
- montée de 350 à 520°C à 5°C/min, - rise from 350 to 520 ° C at 5 ° C / min,
- palier de deux heures à 520°C, - two hour level at 520 ° C,
- descente à température ambiante. - drop to ambient temperature.
La teneur en sodium dans le support mesurée par absorption atomique est de 40 ppm poids. The sodium content in the support measured by atomic absorption is 40 ppm by weight.
Exemple 5 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation B. Example 5 (according to the invention): preparation of an isomerization catalyst B.
Le catalyseur B est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé selon l’exemple 4 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes : Catalyst B is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared according to Example 4 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2. Typically 20 grams of carrier is used which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
- montée de la température à l'ambiante à 150°C à 5°C/min ; - temperature rise to ambient to 150 ° C at 5 ° C / min;
- palier d’une heure à 150°C ; - one hour hold at 150 ° C;
- montée de la 150°C à 450°C à 5°C/min ; - rise from 150 ° C to 450 ° C at 5 ° C / min;
- palier d’une heure à 450°C ; - one hour hold at 450 ° C;
- descente à l'ambiante. - descent to ambient.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,3% en poids par rapport à la masse totale de catalyseur, son coefficient de répartition mesuré par microsonde de Castaing de 0,5. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 42 ppm poids. The Pt content measured by FX on the calcined catalyst is 0.3% by weight relative to the total mass of catalyst, its distribution coefficient measured by Castaing microprobe of 0.5. The catalyst obtained does not undergo a washing step with an ammonium nitrate solution. The sodium content in the catalyst measured by atomic absorption is 42 ppm by weight.
Les propriétés texturales du catalyseur B ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0.97. La surface spécifique du solide est calculé par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur B présente une surface spécifique de 300 m2/g, un volume poreux total de 0,65 ml/g et un diamètre médian de 13 nm. The textural properties of catalyst B were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97. The specific surface of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half of the volume of nitrogen is adsorbed. Catalyst B has a specific surface of 300 m 2 / g, a total pore volume of 0.65 ml / g and a median diameter of 13 nm.
Le catalyseur C est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Le catalyseur D est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation en excès du support IZM- 2/alumine préparé selon l’exemple 2 par une solution aqueuse contenant de l’acide hexachloroplatinique. La concentration en acide hexachloroplatinique dans la solution est de 2,55 10-3 mol/l. Catalyst C is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by impregnating in excess of the IZM-2 / alumina support prepared according to Example 2 with an aqueous solution containing hexachloroplatinic acid. The concentration of hexachloroplatinic acid in the solution is 2.55 10-3 mol / l.
On utilise 20 grammes de support dont on remplit le volume poreux par de l’eau distillée et on laisse le solide à maturer durant une heure à température ambiante. Le solide est ensuite immergé dans 80 ml d’une solution d’acide chlorhydrique HCl de concentration 3,52 10-1 mol/l dans un erlenmeyer puis l’ensemble est mis sur agitation sur une table d’agitation (100 tours/min) à température ambiante durant une heure. La solution d’acide chlorhydrique est ensuite soutirée puis le solide est immergé dans 80 ml de la solution d’acide hexachloroplatinique précédemment décrite puis l’ensemble est mis sur agitation sur une table d’agitation (100 tours/min) à température ambiante durant 24 heures. La solution d’imprégnation est ensuite soutirée et le solide est rincé avec 160 ml d’eau distillée. Le solide est ensuite mis à sécher en étuve ventilée durant la nuit à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (2 normaux litres par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes : 20 grams of support are used, the pore volume of which is filled with distilled water and the solid is allowed to mature for one hour at room temperature. The solid is then immersed in 80 ml of a hydrochloric acid HCl solution of concentration 3.52 10-1 mol / l in an Erlenmeyer flask then the whole is stirred on a stirring table (100 revolutions / min ) at room temperature for one hour. The hydrochloric acid solution is then withdrawn then the solid is immersed in 80 ml of the hexachloroplatinic acid solution described above, then the whole is stirred on a stirring table (100 revolutions / min) at room temperature for 24 hours. The impregnation solution is then drawn off and the solid is rinsed with 160 ml of distilled water. The solid is then placed to dry in a ventilated oven overnight at 110 ° C. and a calcination step is finally carried out under a flow of dry air (2 normal liters per hour and per gram of solid) in a tube furnace under the conditions following:
- montée de la température à l'ambiante à 500°C à 5°C/min, - temperature rise to ambient to 500 ° C at 5 ° C / min,
- palier de deux heures à 500°C, - two hour hold at 500 ° C,
- descente à l'ambiante. - descent to ambient.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,2% en poids par rapport à la masse totale de catalyseur, son coefficient de répartition mesuré par microsonde de Castaing de 1,0. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 180 ppm poids. The Pt content measured by FX on the calcined catalyst is 0.2% by weight relative to the total mass of catalyst, its distribution coefficient measured by Castaing microprobe of 1.0. The catalyst obtained does not undergo a washing step with an ammonium nitrate solution. The sodium content in the catalyst measured by atomic absorption is 180 ppm by weight.
Les propriétés texturales du catalyseur C ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0.97. La surface spécifique du solide est calculé par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur C présente une surface spécifique de 292 m2/g, un volume poreux total de 0,65 ml/g et un diamètre médian de 14 nm. The textural properties of catalyst C were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97. The specific surface of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed. Catalyst C has a specific surface area of 292 m 2 / g, a total pore volume of 0.65 ml / g and a median diameter of 14 nm.
Exemple 7 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation D. Example 7 (according to the invention): preparation of an isomerization catalyst D.
Le catalyseur D est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Le catalyseur D est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation en excès du support IZM-2/alumine préparé selon l’exemple 4 par une solution aqueuse contenant de l’acide hexachloroplatinique. La concentration en acide hexachloroplatinique dans la solution est de 2,55 10-3 mol/l. Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by impregnating excess IZM-2 / alumina support prepared according to Example 4 with an aqueous solution containing hexachloroplatinic acid. The concentration of hexachloroplatinic acid in the solution is 2.55 10-3 mol / l.
On utilise 20 grammes de support dont on remplit le volume poreux par de l’eau distillée et on laisse le solide à maturer durant une heure à température ambiante. Le solide est ensuite immergé dans 80 ml d’une solution d’acide chlorhydrique HCl de concentration 3,52 10-1 mol/l dans un erlenmeyer puis l’ensemble est mis sur agitation sur une table d’agitation (100 tours/min) à température ambiante durant une heure. La solution d’acide chlorhydrique est ensuite soutirée puis le solide est immergé dans 80 ml de la solution d’acide hexachloroplatinique précédemment décrite puis l’ensemble est mis sur agitation sur une table d’agitation (100 tours/min) à température ambiante durant 24 heures. La solution d’imprégnation est ensuite soutirée et le solide est rincé avec 160 ml d’eau distillée. Le solide est ensuite mis à sécher en étuve ventilée durant la nuit à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (2 normaux litres par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes : 20 grams of support are used, the pore volume of which is filled with distilled water and the solid is allowed to mature for one hour at room temperature. The solid is then immersed in 80 ml of a hydrochloric acid HCl solution of concentration 3.52 10-1 mol / l in an Erlenmeyer flask then the whole is stirred on a stirring table (100 revolutions / min ) at room temperature for one hour. The hydrochloric acid solution is then withdrawn then the solid is immersed in 80 ml of the hexachloroplatinic acid solution described above, then the whole is stirred on a stirring table (100 revolutions / min) at room temperature for 24 hours. The impregnation solution is then drawn off and the solid is rinsed with 160 ml of distilled water. The solid is then left to dry in a ventilated oven overnight at 110 ° C. and a calcination step is finally carried out under a flow of dry air (2 normal liters per hour and per gram of solid) in a tube furnace under the conditions following:
- montée de la température à l'ambiante à 500°C à 5°C/min, - temperature rise to ambient to 500 ° C at 5 ° C / min,
- palier de deux heures à 500°C, - two hour hold at 500 ° C,
- descente à l'ambiante. - descent to ambient.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,2% en poids par rapport à la masse totale du catalyseur, son coefficient de répartition mesuré par microsonde de Castaing de 1,0. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 37 ppm poids. The Pt content measured by FX on the calcined catalyst is 0.2% by weight relative to the total mass of the catalyst, its distribution coefficient measured by Castaing microprobe of 1.0. The catalyst obtained does not undergo a washing step with an ammonium nitrate solution. The sodium content in the catalyst measured by atomic absorption is 37 ppm by weight.
Les propriétés texturales du catalyseur D ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0.97. La surface spécifique du solide est calculé par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur D présente une surface spécifique de 285 m2/g, un volume poreux total de 0,65 ml/g et un diamètre médian de 13 nm. The textural properties of catalyst D were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour and then at 350 ° C for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97. The specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed. Catalyst D has a specific surface area of 285 m 2 / g, a total pore volume of 0.65 ml / g and a median diameter of 13 nm.
Exemple 8 : évaluation des propriétés catalytiques des catalyseurs C, B et D conformes à l’invention et A non conformes à l’invention, en isomérisation d’une charge paraffinique.Example 8: Evaluation of the catalytic properties of catalysts C, B and D in accordance with the invention and A not in accordance with the invention, in isomerization of a paraffinic feed.
Les catalyseurs ont été testés en isomérisation d’une charge paraffinique composée par du n-hexadécane. Les tests ont été effectués dans une micro-unité mettant en œuvre un réacteur lit fixe et travaillant en courant descendant sans recyclage. L’analyse des effluents hydrocarbonés est effectuée en ligne par chromatographie en phase gazeuse. Une fois chargé dans l’unité, le catalyseur subit une première étape de séchage sous azote dans les conditions suivantes : The catalysts were tested for isomerization of a paraffinic feed composed of n-hexadecane. The tests were carried out in a micro-unit implementing a fixed bed reactor and working in downdraft without recycling. The analysis of hydrocarbon effluents is carried out online by gas chromatography. Once loaded into the unit, the catalyst undergoes a first drying step under nitrogen under the following conditions:
- débit d’azote: 2 normaux litres par heure et par gramme de catalyseur, - nitrogen flow: 2 normal liters per hour and per gram of catalyst,
- pression totale: 0,1 MPa, - total pressure: 0.1 MPa,
- rampe de montée en température de l’ambiante à 150°C: 5°C/min, - ambient temperature rise ramp to 150 ° C: 5 ° C / min,
- palier à 150°C de 30 minutes. - stop at 150 ° C for 30 minutes.
Après séchage l’azote est remplacé par l’hydrogène et une étape de réduction sous débit d'hydrogène pur est effectuée ensuite dans les conditions suivantes: After drying, the nitrogen is replaced by hydrogen and a reduction step under a flow of pure hydrogen is then carried out under the following conditions:
- débit d'hydrogène: 5 normaux litres par heure et par gramme de catalyseur, - hydrogen flow rate: 5 normal liters per hour and per gram of catalyst,
- pression totale: 1,1 MPa, - total pressure: 1.1 MPa,
- rampe de montée en température de 150 à 450°C: 5°C/min, - temperature rise ramp from 150 to 450 ° C: 5 ° C / min,
- palier à 450°C de 1 heure. - level at 450 ° C for 1 hour.
Après étape de réduction, la température est descendue à 230°C, et le catalyseur est mis en contact du n-hexadécane dans les conditions suivantes : After the reduction step, the temperature has dropped to 230 ° C., and the catalyst is contacted with n-hexadecane under the following conditions:
- vitesse spatiale horaire de 2 grammes de n-hexadécane par heure et par gramme de catalyseur, - hourly space velocity of 2 grams of n-hexadecane per hour and per gram of catalyst,
- pression partielle en hydrogène de 1,0 MPa, - partial pressure of hydrogen of 1.0 MPa,
- pression totale de 1,1 MPa. La conversion est modifiée en faisant varier la température; et à chaque palier de température deux analyses de l'effluent sont effectuées, ce qui permet de calculer les performances catalytiques et de vérifier la stabilité des performances catalytiques pour ledit palier de température. Typiquement on fait varier la température entre 230 et 350°C par palier de température de 5°C. L'analyse des effluents s'effectue intégralement par le biais d'un système GC en ligne. La température nécessaire pour atteindre 50% de conversion fait office de descripteur de l’activité du catalyseur alors que le rendement maximal obtenu en isomères de l’hexadécane fait office de descripteur des propriétés isomérisantes du catalyseur. Le tableau 2 représente les performances catalytiques des catalyseurs A, B, C et D en hydroconversion du n-hexadécane. - total pressure of 1.1 MPa. The conversion is changed by varying the temperature; and at each temperature level two analyzes of the effluent are carried out, which makes it possible to calculate the catalytic performance and to verify the stability of the catalytic performance for said temperature level. Typically, the temperature is varied between 230 and 350 ° C in a temperature step of 5 ° C. The effluent analysis is carried out entirely through an on-line GC system. The temperature necessary to achieve 50% conversion acts as a descriptor of the activity of the catalyst while the maximum yield obtained in hexadecane isomers acts as a descriptor of the isomerizing properties of the catalyst. Table 2 represents the catalytic performances of catalysts A, B, C and D in hydroconversion of n-hexadecane.
Les catalyseurs A et B se distinguent uniquement par leur teneur résiduelle en sodium, alors que le protocole de dépôt et la quantité de platine déposés sont les mêmes. On constate que la diminution de la teneur en sodium de 255 ppm à 42 ppm dans le catalyseur permet d’améliorer significativement son activité catalytique : la température nécessaire pour atteindre 50% de conversion est 11°C plus basse pour le catalyseur B que pour le catalyseur A. De manière remarquable, la sélectivité en isomérisation des deux catalyseurs est la même puisque le rendement maximal en isomères est identique (85%). La diminution de la teneur en sodium permet d’augmenter l’activité catalytique tout en conservant les propriétés isomérisantes du catalyseur. Catalysts A and B are distinguished only by their residual sodium content, while the deposition protocol and the amount of platinum deposited are the same. It can be seen that the decrease in the sodium content from 255 ppm to 42 ppm in the catalyst makes it possible to significantly improve its catalytic activity: the temperature necessary to reach 50% conversion is 11 ° C lower for catalyst B than for catalyst B. catalyst A. Remarkably, the isomerization selectivity of the two catalysts is the same since the maximum isomer yield is identical (85%). Decreasing the sodium content increases the catalytic activity while retaining the isomerizing properties of the catalyst.
Les catalyseurs C et D se distinguent uniquement par leur teneur résiduelle en sodium, alors que le protocole de dépôt et la quantité de platine déposés sont les mêmes. On constate que la diminution de la teneur en sodium de 180 ppm à 37 ppm dans le catalyseur permet d’améliorer significativement son activité catalytique : la température nécessaire pour atteindre 50% de conversion est 8°C plus basse pour le catalyseur B que pour le catalyseur A. De manière remarquable, la sélectivité en isomérisation des deux catalyseurs est la même puisque le rendement maximal en isomères est identique (83%). La diminution de la teneur en sodium permet d’augmenter l’activité catalytique tout en conservant les propriétés isomérisantes du catalyseur. Catalysts C and D are distinguished only by their residual sodium content, while the deposition protocol and the amount of platinum deposited are the same. It is noted that the reduction in the sodium content from 180 ppm to 37 ppm in the catalyst allows significantly improve its catalytic activity: the temperature necessary to achieve 50% conversion is 8 ° C lower for catalyst B than for catalyst A. Remarkably, the isomerization selectivity of the two catalysts is the same since the yield maximum in isomers is the same (83%). The reduction in the sodium content makes it possible to increase the catalytic activity while retaining the isomerizing properties of the catalyst.
Les modes de dépôt de Pt et les teneurs en Pt déposées sur les catalyseurs A et B et sur les catalyseur C et D sont différents. On constate qu’indépendamment du mode de dépôt de Pt et de sa teneur sur le catalyseur, la diminution de la teneur en sodium sur le catalyseur a un même effet : augmentation de l’activité catalytique et conservation des propriétés isomérisantes. The Pt deposition methods and the Pt contents deposited on catalysts A and B and on catalysts C and D are different. It can be seen that regardless of the method of deposition of Pt and its content on the catalyst, the decrease in the sodium content on the catalyst has the same effect: increase in catalytic activity and retention of isomerizing properties.

Claims

REVENDICATIONS
1. Procédé d'isomérisation de charges paraffiniques opérant à une température comprise entre 200°C et 500°C, à une pression totale comprise entre 0,45 MPa et 7 MPa, à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 kilogramme de charge introduite par kilogramme de catalyseur et par heure et mettant en œuvre un catalyseur comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, et supérieure à 20 ppm en poids.1. Process for isomerization of paraffinic feeds operating at a temperature between 200 ° C and 500 ° C, at a total pressure between 0.45 MPa and 7 MPa, at a partial pressure of hydrogen between 0.3 and 5.5 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of feed introduced per kilogram of catalyst and per hour and using a catalyst comprising at least one metal from group VIII of the Periodic Table of the Elements, at minus one matrix and at least one IZM-2 zeolite, said catalyst being characterized in that the total weight content of alkaline and / or alkaline earth elements is less than 200 ppm by weight relative to the total mass of said catalyst, and greater than 20 ppm by weight.
2. Procédé d'isomérisation selon la revendication 1 dans lequel ladite charge paraffinique est produite à partir de ressources renouvelables choisies parmi les huiles végétales, les huiles d'algues ou algales, les huiles de poissons et les graisses d'origine végétale ou animale, ou des mélanges de telles charges. 2. The isomerization process according to claim 1 wherein said paraffinic filler is produced from renewable resources chosen from vegetable oils, algal or algal oils, fish oils and fats of vegetable or animal origin, or mixtures of such fillers.
3. Procédé selon l’une des revendications 1 ou 2 dans lequel ladite charge paraffinique est produite par hydrotraitement desdites ressources renouvelables. 3. Method according to one of claims 1 or 2 wherein said paraffinic feed is produced by hydrotreating said renewable resources.
4. Procédé selon la revendication 1 dans lequel ladite charge paraffinique est une charge paraffinique produite par un procédé mettant en jeu une étape de valorisation par la voie Fischer-Tropsch. 4. The method of claim 1 wherein said paraffinic feed is a paraffinic feed produced by a process involving a step of upgrading by the Fischer-Tropsch route.
5. Procédé selon l’une des revendications 1 à 4 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur. 5. Method according to one of claims 1 to 4 wherein said catalyst has a total weight content of alkali and / or alkaline earth elements of less than 150 ppm by weight relative to the total mass of said catalyst.
6. Procédé selon la revendication 5 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 100 ppm en poids par rapport à la masse totale dudit catalyseur. 6. The method of claim 5 wherein said catalyst has a total weight content of alkali and / or alkaline earth elements less than 100 ppm by weight relative to the total mass of said catalyst.
7. Procédé selon la revendication 6 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 90 ppm en poids par rapport à la masse totale dudit catalyseur. 7. The method of claim 6 wherein said catalyst has a total weight content of alkali and / or alkaline earth elements less than 90 ppm by weight relative to the total mass of said catalyst.
8. Procédé selon la revendication 7 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 80 ppm en poids par rapport à la masse totale dudit catalyseur. 8. The method of claim 7 wherein said catalyst has a total weight content of alkali and / or alkaline earth elements less than 80 ppm by weight relative to the total mass of said catalyst.
9. Procédé selon la revendication 7 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 70 ppm en poids par rapport à la masse totale dudit catalyseur. 9. The method of claim 7 wherein said catalyst has a total weight content of alkali and / or alkaline earth elements of less than 70 ppm by weight relative to the total mass of said catalyst.
10. Procédé selon l’une des revendications 1 à 9 dans lequel les éléments alcalins et/ou alcalinoterreux sont choisis parmi le lithium, le sodium, le potassium, le berylium, le magnésium, le barium, et le calcium et de préférence le sodium. 10. Method according to one of claims 1 to 9 wherein the alkaline and / or alkaline earth elements are chosen from lithium, sodium, potassium, berylium, magnesium, barium, and calcium and preferably sodium. .
11. Procédé selon l’une des revendications 1 à 10 dans lequel l’élément du groupe VIII est le platine. 11. A method according to one of claims 1 to 10 wherein the group VIII element is platinum.
12. Procédé selon l’une des revendications 1 à 11 dans lequel ladite matrice est avantageusement choisie dans le groupe formé par l'alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange. 12. Method according to one of claims 1 to 11 wherein said matrix is advantageously chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide. and zirconia, taken alone or as a mixture.
EP20819768.1A 2019-12-17 2020-12-09 Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates Pending EP4077595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914593A FR3104603B1 (en) 2019-12-17 2019-12-17 USE OF A CATALYST BASED ON IZM-2 WITH A LOW ALKALINE CONTENT FOR THE ISOMERIZATION OF PARAFFINIC FEEDS INTO MIDDLE DISTILLATES
PCT/EP2020/085217 WO2021122198A1 (en) 2019-12-17 2020-12-09 Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates

Publications (1)

Publication Number Publication Date
EP4077595A1 true EP4077595A1 (en) 2022-10-26

Family

ID=69700187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20819768.1A Pending EP4077595A1 (en) 2019-12-17 2020-12-09 Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates

Country Status (7)

Country Link
US (1) US20230019569A1 (en)
EP (1) EP4077595A1 (en)
JP (1) JP2023506856A (en)
CN (1) CN114929841A (en)
BR (1) BR112022010601A2 (en)
FR (1) FR3104603B1 (en)
WO (1) WO2021122198A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642414B1 (en) 1989-02-01 1991-04-26 Rhone Poulenc Chimie PROCESS FOR THE MANUFACTURE OF AGGLOMERATES OF ACTIVE ALUMIN, AGGLOMERATES OBTAINED BY THE PROCESS AND DEVICE FOR IMPLEMENTING SAME
FR2910483B1 (en) 2006-12-21 2010-07-30 Inst Francais Du Petrole METHOD OF CONVERTING CHARGES FROM RENEWABLE SOURCES IN GOODLY GASOLINE FUEL BASES.
FR2918050B1 (en) 2007-06-29 2011-05-06 Inst Francais Du Petrole IZM-2 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
FR2934794B1 (en) * 2008-08-08 2010-10-22 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROCRACKING FISCHER-TROSPCH-BASED LOADS IN THE PRESENCE OF A CATALYST COMPRISING AN IZM-2 SOLID
FR2950895B1 (en) 2009-10-06 2012-02-17 Inst Francais Du Petrole METHOD FOR HYDROTREATING AND HYDROISOMERIZING RENEWABLE SOURCE LOADS USING A CATALYST BASED ON SILICON CARBIDE
FR2984911B1 (en) 2011-12-22 2014-08-29 IFP Energies Nouvelles PROCESS FOR CONVERTING BIOMASS PARAFFINIC CHARGES TO MEDIUM DISTILLATE BASES USING AT LEAST ONE IZM-2 ZEOLITE CATALYST
US20140296601A1 (en) * 2013-03-29 2014-10-02 Uop Llc Isomerization process with mtw catalyst
FR3074428B1 (en) 2017-12-06 2022-01-21 Ifp Energies Now METHOD FOR THE PREPARATION OF A CATALYST BASED ON IZM-2 FROM A SOLUTION COMPRISING SPECIFIC PRECURSORS AND USE FOR THE ISOMERIZATION OF PARAFFINIC CHARGERS

Also Published As

Publication number Publication date
CN114929841A (en) 2022-08-19
FR3104603B1 (en) 2022-07-22
JP2023506856A (en) 2023-02-20
US20230019569A1 (en) 2023-01-19
BR112022010601A2 (en) 2022-08-16
FR3104603A1 (en) 2021-06-18
WO2021122198A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
EP2313344B1 (en) Process for producing middle distillates by hydrocracking of feedstocks resulting from the fischer-tropsch process in the presence of a catalyst comprising an izm-2 solid
FR3054454A1 (en) CATALYST COMPRISING IZM-2 ZEOLITE HAVING SI / AL MOLAR RATIO OPTIMIZED FOR ISOMERIZING C8 AROMATIC CUTTERS
US10906030B2 (en) Process for preparing a catalyst based on IZM-2 from a solution comprising specific precursors and use for the isomerization of paraffinic feedstocks
EP3581634B1 (en) Use of a bifunctional catalyst made of izm-2 with specific si/al ratio for the isomerisation of long paraffin charges into medium distillates
EP4077595A1 (en) Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates
WO2009106705A2 (en) Method of producing middle distillates by hydroisomerization and hydro­cracking of feedstocks coming from the fischer-tropsch process
WO2022117414A1 (en) Izm-2 catalyst containing aluminium and gallium and use thereof in the isomerisation of long paraffinic feedstocks to middle distillates
FR2950896A1 (en) Making middle distillates from paraffin charge produced by Fischer-Tropsch synthesis comprises implementing hydrocracking catalyst comprising hydrodehydrogenating metal and composite support formed by Y-type zeolite and silicon carbide
WO2022084077A1 (en) Method for preparing an izm-2 based catalyst by a specific heat treatment and use of said catalyst for the isomerisation of paraffinic feedstocks in middle distillates
FR2765236A1 (en) PROCESS FOR IMPROVING THE FLOW POINT OF LOADS CONTAINING PARAFFINS WITH A MODIFIED ZEOLITH NU-87 CATALYST
WO2018099832A1 (en) Use of a catalyst based on izm-2 zeolite and a catalyst based on euo zeolite for the isomerisation of aromatic c8 fractions
FR3084082A1 (en) USE OF A BIFUNCTIONAL CATALYST BASED ON ZEOLITE IZM-2 FOR THE HYDROISOMERIZATION OF LIGHT PARAFFINIC LOADS DERIVED FROM THE FISCHER-TROPSCH SYNTHESIS
EP2781497B1 (en) Method for converting loads from renewable sources using a catalyst including an Nu-10 zeolite and a ZSM-48 zeolite
WO2021122199A1 (en) Izm-2 zeolite catalyst having a low alkali content, and use thereof for the isomerization of the aromatic c8 fraction
EP2781583B1 (en) Method for converting loads from renewable sources using a catalyst including an Nu-10 zeolite and a silica-alumina
WO2013014340A2 (en) Oligomerising hydrocracking method using a catalyst based on dispersed beta zeolite
FR2765209A1 (en) Modified zeolite, for improving setting point of charge comprising paraffin(s)
FR2765237A1 (en) Improving the setting point of paraffin charge
FR3003562A1 (en) METHOD OF HYDROISOMERIZING A FISCHER-TROPSCH SYNTHESIS LOAD USING A CATALYST COMPRISING A NU-10 ZEOLITE AND AN ALUMINUM SILICA

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230412