WO2022117414A1 - Izm-2 catalyst containing aluminium and gallium and use thereof in the isomerisation of long paraffinic feedstocks to middle distillates - Google Patents

Izm-2 catalyst containing aluminium and gallium and use thereof in the isomerisation of long paraffinic feedstocks to middle distillates Download PDF

Info

Publication number
WO2022117414A1
WO2022117414A1 PCT/EP2021/082847 EP2021082847W WO2022117414A1 WO 2022117414 A1 WO2022117414 A1 WO 2022117414A1 EP 2021082847 W EP2021082847 W EP 2021082847W WO 2022117414 A1 WO2022117414 A1 WO 2022117414A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
moles
zeolite
gallium
izm
Prior art date
Application number
PCT/EP2021/082847
Other languages
French (fr)
Inventor
Raquel Martinez-Franco
Christophe Bouchy
Ana Marta COSTA
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2022117414A1 publication Critical patent/WO2022117414A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • middle distillate bases that is to say in a cut that can be incorporated into the kerosene and/or diesel pool
  • various methods for producing middle distillates based on the use of oil, natural gas or even renewable resources can be implemented.
  • Middle distillate bases can thus be produced from a paraffinic feedstock obtained from a feedstock derived from renewable sources, and in particular vegetable oils or animal fats, raw or having undergone a prior treatment, as well as the mixtures of such fillers.
  • said fillers from renewable sources contain chemical compounds of the triglyceride type or esters of fatty acids or free fatty acids, the structure and the length of the hydrocarbon chain of these compounds being compatible with the hydrocarbons present in the middle distillates.
  • Said fillers from renewable sources produce, after hydrotreatment, paraffinic fillers, free of sulfur compounds and aromatic compounds.
  • These paraffinic fillers are typically composed of linear paraffins having a number of carbon atoms between 9 and 25.
  • Middle distillate bases can also be produced from natural gas, coal, or renewable sources through the Fischer-Tropsch synthesis process.
  • the so-called low temperature Fischer-Tropsch synthesis using cobalt catalysts makes it possible to produce essentially linear paraffinic compounds having a very variable number of carbon atoms, typically from 1 to 100 carbon atoms or even more. Separation steps can make it possible to recover paraffinic feedstocks composed of linear paraffins having a number of carbon atoms between 9 and 25.
  • middle distillate bases obtained after hydrotreatment of vegetable oils or after the low-temperature Fischer-Tropsch synthesis process generally cannot be incorporated as such into the kerosene or gas oil pool, in particular because of insufficient cold properties.
  • high molecular weight paraffins which are linear or very weakly branched and which are present in these middle distillate bases lead to high pour points and therefore to congealing phenomena for uses at low temperatures.
  • the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule and whose boiling point equals approximately 340°C, i.e. typically included in the middle distillate cut is +37°C approximately which makes it impossible to use, the specification being -15°C for diesel.
  • these linear or very slightly branched paraffins must be completely or partially eliminated.
  • This operation can be carried out by extraction with solvents such as propane or methyl ethyl ketone, one then speaks of dewaxing with propane or methyl ethyl ketone (MEK).
  • solvents such as propane or methyl ethyl ketone
  • MEK methyl ethyl ketone
  • Bifunctional catalysts involve a Bronsted acid phase (for example a zeolite) and a hydro/dehydrogenating phase (for example platinum) and generally a matrix (for example alumina).
  • a Bronsted acid phase for example a zeolite
  • a hydro/dehydrogenating phase for example platinum
  • a matrix for example alumina
  • the appropriate choice of the acid phase makes it possible to promote the isomerization of long linear paraffins and to minimize cracking.
  • the shape selectivity of one-dimensional medium-pore zeolites (10MR) such as ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 zeolites makes their use particularly suitable for obtaining catalysts that are selective towards isomerization.
  • Zeolites are crystallized microporous solids consisting of [MeC] tetrahedra, in which Me can be a 4-valence element such as silicon, or a 3-valence element such as aluminum. Tetrahedra containing an element of valence 3 therefore carry a negative charge which is neutralized by a metallic or organic cation or a proton. When said cation is a proton, a Bronsted acid site is generated.
  • the strength of the acid Bronsted site depends on the nature of the element of valence 3. Generally the strength of the acid Bronsted sites decreases in the order: Si(OH )Al > Si(OH)Ga > Si(OH)Fe > Si(OH)ln > Si(OH)B (see H. Berndt, A. Martin, H. Kosslick, B. Lücke, Microporous Materials, vol. 2 , No. 3, pp. 197-204, 1994 or M. Guisnet, FR Ribeiro, “zeolites, a nanoworld at the service of catalysis”, EDP Sciences, 2006).
  • Patent US9,758,734,B2 thus teaches a paraffinic charge isomerization process with a catalyst containing ZSM-12, ZSM-22, ZSM-23, ZSM-48, ZSM-57 or MCM-22 zeolite in which at least part of the aluminum is replaced by iron.
  • the comparative examples illustrate the gain in selectivity obtained with catalysts using ZSM-23 containing iron compared with a catalyst using ZSM-23 containing only aluminum, in addition to silicon.
  • Catalysts using Ga-Al-ZSM-22 zeolites are all the more selective in isomerization as the Ga/Al molar ratio is high.
  • all the bifunctional catalysts implementing Ga-AI-ZSM-22 zeolites are less active than the catalyst implementing the AI-ZSM-22 zeolite, with a loss of activity of between 10 and 30°C.
  • Catalysts implementing Ga-Al-ZSM-22 zeolites are all the less active in isomerization as the Ga/Al molar ratio is high.
  • the total or partial replacement of the aluminum by another element such as iron or gallium in the zeolite therefore makes it possible to improve the isomerization selectivity of the catalyst, but to the detriment of its catalytic activity.
  • the activity of the catalyst is also an important parameter. Increasing the activity of the catalyst makes it possible to improve the overall operation of the process from the point of view of its productivity or its energy consumption. It is therefore desirable to develop catalysts that are as active and as selective as possible towards isomerization.
  • FR 2 918 050 A discloses an IZM-2 solid having an overall silicon to aluminum Si/Al molar ratio of between 1 and infinity, and preferably between 25 and 312.
  • FR 2 984 911 A only an IZM-2 solid having an overall Si/Al molar ratio of 53 is used in the catalyst formulation. This overall Si/AI molar ratio was calculated from the X-ray fluorescence characterization results.
  • Patent application FR 3 082 521 A1 discloses a process for the isomerization of paraffinic fillers using a catalyst comprising at least one metal from group VIII of the periodic table of elements, at least one matrix and at least one IZM-2 zeolite , in which the ratio between the number of moles of silicon and the number of moles of aluminum of the network of the IZM-2 zeolite is between 25 and 55.
  • Patent application FR 3 074428 A1 teaches a process for preparing a bifunctional catalyst comprising an acid function consisting of IZM-2 zeolite, as well as its use in a process for the isomerization of a paraffinic feed having a number of carbon atoms between 9 and 25.
  • the IZM-2 zeolite used in the catalysts is in the aluminosilicate form, that is to say that the zeolite contains aluminum and silicon. Elements such as gallium, iron, indium, boron are not present.
  • Such a catalyst is substantially more selective than a catalyst comprising an IZM-2 zeolite containing only aluminum and it is significantly more active than a catalyst comprising an IZM-2 zeolite containing only gallium.
  • An object of the present invention relates to a bifunctional catalyst comprising at least one metal from group VIII of the periodic table of the elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said zeolite having a Si/(Al+Ga) molar ratio of between 35 and 175 and a Ga/(Al+Ga) molar ratio of between 0.10 and 0.90.
  • Another object of the present invention relates to a process for the isomerization of paraffinic fillers, preferably derived from hydrotreated vegetable and/or animal oils or from the low-temperature Fischer-Trospch synthesis, said process implementing said bifunctional catalyst.
  • the present invention relates to a catalyst comprising at least one metal from group VIII of the periodic table of elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said IZM-2 zeolite having a molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) between 35 and 175, preferably between 40 and 150, preferably between 50 and 135 and very preferably between 55 and 120, and a molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) between 0.10 and 0.90, preferably between 0.20 and 0.80 and very preferably between 0.35 and 0.65 .
  • the present invention also relates to a process for isomerizing a paraffinic feed comprising paraffins having a number of carbon atoms between
  • said paraffinic feed being produced from renewable resources, said process operating at a temperature between 200°C and 500°C, at a pressure between 0.45 MPa and 7 MPa, at an hourly space velocity of between between 0.1 and
  • the ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of the IZM-2 zeolite and the ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of the IZM-2 zeolite is calculated from the silicon, aluminum and gallium contents in the IZM-2 zeolite.
  • the silicon content is measured by X-ray fluorescence, and the aluminum and gallium contents are measured by inductively coupled plasma.
  • An advantage of the present invention is to provide a specific catalyst based on an IZM-2 zeolite containing, in addition to silicon, both aluminum and gallium and having a molar ratio Ga/(Ga+Al) optimized and a process for the isomerization of a paraffinic charge using said catalyst making it possible to improve the selectivity of the catalyst while maintaining maximum activity.
  • the present invention relates to a catalyst comprising at least one metal from group VIII of the periodic table of the elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium.
  • said IZM-2 zeolite having a molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of between 35 and 175, preferably between 40 and 150, preferably between 50 and 135 and very preferably between 55 and 120, and a molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of between 0.10 and 0.90, preferably between 0, 20 and 0.80 and very preferably between 0.35 and 0.65.
  • the catalyst comprises at least one metal from group VIII of the periodic table of the elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said IZM zeolite -2 having a Si/(Al+Ga) molar ratio of between 35 and 175, preferably between 40 and 150 and preferably between 50 and 135 and very preferably between 55 and 120 and a Ga/(Ga +AI) between 0.10 and 0.90, preferably between 0.20 and 0.80 and very preferably between 0.35 and 0.65.
  • said at least matrix and said at least zeolite containing both aluminum and gallium constitute a support for the metallic phase comprising said at least one group VIII metal.
  • the catalyst comprises the IZM-2 zeolite containing both aluminum and gallium, in particular denoted Ga-Al-IZM-2.
  • the catalyst advantageously comprises from 1 to 90% by weight, preferably from 3 to 85% by weight, more preferably from 4 to 80% by weight and even more preferably from 6 to 70% by weight of Ga-Al-IZM- 2.
  • Ga-AI-IZM-2 zeolite is a crystallized microporous solid having a crystalline structure described in patent application FR 2 918 050.
  • Ga-AI-IZM-2 zeolite has an X-ray diffraction diagram including at least the lines listed in table 1.
  • the X diffraction diagram does not contain other lines of significant intensity (that is to say of intensity greater than about three times the background noise) than those listed in table 1.
  • the measurement error A(dhki) on dhki is calculated using Bragg's relation as a function of the absolute error A(20) assigned to the measurement of 20.
  • An absolute error A(20) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity l rei assigned to each value of dhki is measured according to the height of the corresponding diffraction peak.
  • the X-ray diffraction diagram of the Ga-AI-IZM-2 zeolite according to the invention comprises at least the lines at the dhki values given in table 1. In the dhki column, the average values of the inter-distance distances are indicated. -reticulars in Angstroms ( ⁇ ). Each of these values must be affected by the measurement error A(dhki) of between ⁇ 0.6 ⁇ and ⁇ 0.01 ⁇ .
  • Table 1 Mean dhki values and relative intensities measured on an X-ray diffraction pattern of the calcined Ga-AI-IZM-2 crystalline solid.
  • the relative intensity I rei is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction diagram: ff ⁇ 15;15 ⁇ f ⁇ 30;30 ⁇ mf ⁇ 50;50 ⁇ m ⁇ 65;65 ⁇ F ⁇ 85; FF > 85.
  • said catalyst comprises at least one IZM-2 zeolite containing both aluminum and gallium, having a Si/(Al+Ga) molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium of the IZM-2 zeolite comprised between 35 and 175, preferably between 40 and 150 and more preferably between 50 and 135 and very preferably between 55 and 120 and such that the molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of the IZM-2 zeolite is between 0.1 and 0.9, of preferably between 0.2 and 0.8 and very preferably between 0.35 and 0.65.
  • the ratio of the number of moles of silicon divided by the number of moles of aluminum and gallium of the IZM-2 zeolite (Si/(Al+Ga)) is calculated according to the formula:
  • Ga/(Al+Ga) n Ga / (n A i+n Ga ) with nsi / (n A i+n Ga ): ratio of the number of moles of silicon divided by the number of moles of aluminum and gallium , in mole/mole, n Ga / (n A i+n Ga ): ratio of the number of moles of gallium divided by the number of moles of aluminum and gallium, in mole/mole, nsi: moles of silicon per gram of the zeolite, in mole/gram, n Al : moles of aluminum per gram of zeolite, in mole/gram, n Ga : moles of gallium per gram of zeolite, in mole/gram.
  • MM(Si) molar mass of silicon, in grams/mole.
  • %wdsAI weight percentage of aluminum in the zeolite (dry mass), measured by inductively coupled plasma (ICP) on a SPECTRO ARCOS ICP-OES device from SPECTRO according to the ASTM D7260 method,
  • MM(AI) molar mass of aluminium, in grams/mole
  • %wtGa weight percentage of gallium in the zeolite (dry mass), measured by inductively coupled plasma (ICP) on a SPECTRO ARCOS ICP-OES device from SPECTRO according to the ASTM D7260 method,
  • MM(Ga) molar mass of galium, in grams/mole
  • the reaction mixture preferably has the following molar composition:
  • SiO2/(Al2O3+Ga2O3) between 70 and 350, preferably between 80 and 300,
  • Ga2O3/(Al2O3+Ga2C>3) between 0.01 and 0.99, preferably between 0.05 and 0.95, preferably between 0.10 and 0.90, preferably between 0.20 and 0 .80 and very preferably between 0.35 and 0.65,
  • H2O/SiO2 between 1 to 100, preferably from 10 to 70,
  • RBr2/SiO2 between 0.02 and 2, preferably from 0.05 to 0.5
  • M 2 /nO/SiO 2 between 0.005 and 1, preferably 0.005 and 0.5
  • SiO2 designates the molar quantity of SiO2 provided by the source(s) of silicon
  • AI2O3 designates the molar quantity of AI2O3 provided by the aluminum source(s),
  • Ga2 ⁇ 3 designates the molar quantity of Ga2 ⁇ 3 provided by the source(s) of gallium
  • H2O is the molar amount of water in the mixture
  • RBr2 denotes the molar amount of 1,6-bis(methylpiperidinium)hexane dibromide
  • M2O denotes the molar quantity, expressed in oxide form, of one or more alkali metal(s) and/or alkaline-earth metal(s) chosen from lithium, sodium, potassium, calcium, magnesium and the mixture of at least two of these metals, very preferably M is sodium.
  • Step i) makes it possible to obtain a precursor gel.
  • step i) The hydrothermal treatment of said precursor gel obtained at the end of step i) at a temperature of between 150° C. and 195° C., for a period of between 1 day (i.e. 24 hours) and 4 days (i.e. 96 hours) and preferably between 1 day (ie 24 hours) and 3 days (ie 72 hours) until said Ga-Al-IZM-2 zeolite crystallizes.
  • the reaction is generally carried out with stirring or without stirring, preferably with stirring.
  • the solid phase formed of a Ga-Al-IZM-2 zeolite is preferably filtered, washed and then dried.
  • the crystallized material advantageously composed of Ga-Al-IZM-2 zeolite, is ready for subsequent steps such as calcination and/or ion exchange.
  • steps such as calcination and/or ion exchange.
  • all the conventional methods known to those skilled in the art can be used.
  • the dried zeolite can then be advantageously calcined, preferably at a temperature of between 450 and 700° C. for a period of between 2 and 20 hours, the calcination possibly being preceded by a gradual rise in temperature.
  • the Ga-AI-IZM-2 zeolite obtained at the end of the calcination step is devoid of any organic species and in particular of the organic structurant RBr2.
  • the calcined Ga-AI-IZM-2 zeolite is generally analyzed by X-ray diffraction.
  • the Si/(Al+Ga) molar ratio and the Ga/(Al+Ga) molar ratio of the IZM-2 zeolite obtained can also be adjusted to the desired values by post-treatment methods for the zeolite.
  • Ga-Al-IZM-2 obtained after synthesis Such methods are known to those skilled in the art, and make it possible to carry out dealumination, degalliation or desilication of the zeolite.
  • the Si/(Al+Ga) molar ratio of the IZM-2 zeolite entering into the composition of the catalyst according to the invention is adjusted by an appropriate choice of the composition of the synthesis gel (step i)) of said zeolite .
  • the Ga-Al-IZM-2 zeolite present in the catalyst according to the invention is very advantageously in its acid form, that is to say in the protonated H + form.
  • the ratio of the number of moles of cations other than the proton per gram of Ga-Al-IZM-2 zeolite divided by the number of moles of aluminum and gallium per gram of IZM- 2 is less than 0.9, preferably less than 0.6 and very preferably less than 0.3.
  • the Ga-Al-IZM-2 zeolite entering into the composition of the catalyst according to the invention can for example be exchanged by at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the Ga-AI-IZM-2 zeolite which, once calcined, leads to the acid form of said Ga-AI-IZM-2 zeolite.
  • This exchange step can be carried out at any step in the preparation of the catalyst, that is to say after the step for preparing the Ga-Al-IZM-2 zeolite, after the step for shaping the Ga-Al-IZM-2 zeolite with a matrix, or else after the step of introducing the hydro-dehydrogenating metal.
  • the exchange step is carried out before the step of shaping the IZM-2 zeolite.
  • said catalyst comprises at least one matrix.
  • Said matrix can advantageously be amorphous or crystallized.
  • said matrix is advantageously chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture or else aluminates can also be chosen.
  • alumina is used as the matrix.
  • said matrix contains alumina in all its forms known to those skilled in the art, such as for example alpha, gamma, eta, delta type aluminas. Said aluminas differ by their specific surface and their porous volume.
  • the mixture of the matrix and the shaped Ga-Al-IZM-2 zeolite constitutes the catalyst support.
  • Said catalyst advantageously comprises from 10 to 99% by weight, preferably from 15 to 97% by weight, more preferably from 20 to 96% by weight and even more preferably from 30 to 94% by weight of said matrix.
  • the catalyst comprises at least one group VIII metal preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, alone or as a mixture preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum.
  • group VIII metal preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, alone or as a mixture preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum.
  • said catalyst comprises a group VIII metal content of between 0.01 and 5% by weight relative to the total mass of said catalyst and preferably between 0.1 and 4% by weight.
  • the noble metal content of said catalyst is advantageously between 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and very preferably between 0.1 and 2% by weight relative to the total mass of said catalyst.
  • the dispersion of the group VIII metal(s), determined by chemisorption, for example by H2/O2 titration or by chemisorption of carbon monoxide, is between 10% and 100%, preferably between 20% and 100% and even more preferably between 30% and 100%.
  • Said catalyst may advantageously comprise at least one additional metal chosen from the group formed by the metals of groups IIIA, IVA and VI IB of the periodic table of the elements and preferably chosen from gallium, indium, tin and rhenium.
  • Said additional metal is preferably chosen from indium, tin and rhenium.
  • the content of metal chosen from metals of groups IIIA, IVA and VI IB is preferably between 0.01 and 2%, preferably between 0.05 and 1% by weight relative to the total mass of said catalyst. .
  • the catalyst according to the invention can advantageously be prepared according to all the methods well known to those skilled in the art. Step i) formatting of the support
  • the method comprises a step i) of preparing the catalyst support by shaping the Ga-Al-IZM-2 zeolite with a matrix so that the weight percentage of the zeolite is advantageously between 1 and 90% based on the weight of the support, preferably from 3 to 85% and more preferably from 4 to 80% and even more preferably from 6 to 70% by weight.
  • the catalyst support used in the process according to the invention can advantageously be shaped by any technique known to those skilled in the art.
  • the shaping can advantageously be carried out, for example, by extrusion, by pelleting, by the drop coagulation method (“oil-drop”), by granulation on a turntable or by any other method well known to those skilled in the art. .
  • the supports thus obtained can be in different shapes and sizes.
  • the various constituents of the support or of the catalyst can be shaped by mixing step to form a paste then extrusion of the paste obtained, or else by mixing powders then pelletizing, or else by any other known method of agglomeration of a powder containing alumina.
  • the supports thus obtained can be in different shapes and sizes.
  • the shaping is carried out by kneading and extrusion.
  • said Ga-Al-IZM-2 zeolite can be introduced during the dissolution or suspension of the compounds of the matrix, in particular alumina, or precursors of the matrix, in particular of alumina such as boehmite for example.
  • Said Ga-Al-IZM-2 zeolite can be, without this being limiting, for example in the form of powder, ground powder, suspension, suspension having undergone a deagglomeration treatment.
  • said zeolite can advantageously be suspended acidulated or not at a concentration adjusted to the final content of Ga-Al-IZM-2 targeted in the catalyst according to the invention.
  • This suspension commonly called a slurry is then mixed with the compounds of the matrix, in particular alumina or precursors of the matrix, in particular alumina.
  • additives can advantageously be implemented to facilitate shaping and/or improve the final mechanical properties of the supports, as is well known to those skilled in the art.
  • additives mention may be made in particular of cellulose, carboxymethyl-cellulose, carboxy-ethyl-cellulose, tall oil (tall oil), xanthan gums, surfactants, flocculants such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc
  • a predominantly solid compound and preferably an oxide or a hydrate.
  • a hydrate is preferably used and even more preferably an aluminum hydrate. The loss on ignition of this hydrate is advantageously greater than 15%.
  • the extrusion of the paste resulting from the mixing step can advantageously be carried out by any conventional tool, commercially available.
  • the paste resulting from the mixing is advantageously extruded through a die, for example using a piston or a single or double extrusion screw.
  • the extrusion can advantageously be carried out by any method known to those skilled in the art.
  • the catalyst supports according to the invention are generally in the form of cylindrical or polylobed extrudates such as bilobed, trilobed, polylobed in a straight or twisted shape, but can optionally be manufactured and used in the form of crushed powders, tablets, rings, balls and/or wheels.
  • the catalyst supports according to the invention have the form of spheres or extrudates.
  • the support is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes may be cylindrical (which may or may not be hollow) and/or twisted cylindrical and/or multilobed (2, 3, 4 or 5 lobes for example) and/or rings.
  • the multilobed shape is advantageously used in a preferred manner.
  • the support thus obtained can then be subjected to a drying step.
  • Said drying step is advantageously carried out by any technique known to those skilled in the art.
  • the drying is carried out under air flow. Said drying can also be carried out under a flow of any oxidizing, reducing or inert gas. Preferably, the drying is advantageously carried out at a temperature between 50 and 180°C, preferably between 60 and 150°C and very preferably between 80 and 130°C. iii) Calcination
  • Said support optionally dried, then preferably undergoes a calcining step.
  • Said calcination step is advantageously carried out in the presence of molecular oxygen, for example by carrying out an air sweep, at a temperature advantageously greater than 200° C. and less than or equal to 1100° C.
  • Said calcination step can advantageously be carried out in a traversed bed, in a licked bed or in a static atmosphere.
  • the kiln used can be a rotating rotary kiln or be a vertical kiln with radial traversed layers.
  • said calcining step is carried out between more than one hour at 200°C to less than one hour at 1100°C.
  • the calcination can advantageously be carried out in the presence of water vapor and/or in the presence of an acid or basic vapor.
  • calcination can be carried out under partial pressure of ammonia.
  • Post-calcination treatments can optionally be carried out, so as to improve the properties of the support, in particular the textural properties.
  • the catalyst support used in the process according to the present invention can be subjected to a hydrothermal treatment in a confined atmosphere.
  • hydrothermal treatment in a confined atmosphere is meant a treatment by passage through an autoclave in the presence of water at a temperature above ambient temperature, preferably above 25°C, preferably above 30°C.
  • the support can advantageously be impregnated, prior to its passage through the autoclave (the autoclaving being carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave possibly being acid or not).
  • This impregnation, prior to the autoclaving can advantageously be acidic or not.
  • This impregnation, prior to autoclaving can advantageously be carried out dry or by immersing the support in an acidic aqueous solution.
  • dry impregnation is meant bringing the support into contact with a volume of solution less than or equal to the total pore volume of the support.
  • the impregnation is carried out dry.
  • the autoclave is preferably a rotating basket autoclave such as that defined in patent application EP 0 387 109 A.
  • the temperature during the autoclaving can be between 100 and 250° C. for a period of time between 30 minutes and 3 hours. v) Deposition of the metallic phase
  • the metal can be introduced at any stage in the preparation of the catalyst: on the Ga/Al-IZM-2 zeolite and/or on the matrix, in particular before the shaping stage, during the shaping, or after the shaping step, on the catalyst support.
  • the metal is deposited after the shaping step.
  • the group VIII metal(s), preferably platinum and/or palladium, mainly on the matrix it is possible to implement an anion exchange with hexachloroplatinic acid and/or hexachloropalladic acid, in the presence of a competing agent, for example hydrochloric acid, the deposition generally being followed by calcination, for example at a temperature of between 350 and 550° C. and for a period of between 1 and 4 hours.
  • the group VIII metal(s) is (are) deposited mainly on the matrix and said metal(s) exhibit(s) good dispersion and good macroscopic distribution through the catalyst grain.
  • the precursor can for example be chosen from:
  • X being a halogen chosen from the group formed by chlorine, fluorine, bromine and iodine, X preferably being chlorine, and "acac" representing the acetylacetonate group (of structural formula C 5 H 7 O 2 ), derivative of acetylacetone.
  • the group VIII metal(s) is (are) deposited mainly on the zeolite and said metal(s) exhibit(s) good dispersion and good macroscopic distribution through the catalyst grain.
  • the catalyst of the invention also contains at least one metal chosen from the metals of groups IIIA, IVA and VI I B, all the techniques for depositing such a metal known to those skilled in the art and all the precursors of such metals may be suitable.
  • the metal(s) of group VIII and that(those) of groups I HA, IVA and VI IB can be added, either separately or simultaneously in at least one unitary step.
  • at least one Group I HA, IVA and VI IB metal is added separately, it is preferred that it be added after the Group VIII metal.
  • the additional metal chosen from metals from groups II IA, IVA and VI IB can be introduced via compounds such as, for example, the chlorides, bromides and nitrates of metals from groups I HA, IVA and VII B.
  • compounds such as, for example, the chlorides, bromides and nitrates of metals from groups I HA, IVA and VII B.
  • indium, nitrate or chloride is advantageously used and in the case of rhenium, perrhenic acid is advantageously used.
  • the additional metal chosen from the metals of groups IIIA, IVA and VI IB can also be introduced in the form of at least one organic compound chosen from the group consisting of the complexes of the said metal, in particular the polyketone complexes of the metal and the hydrocarbyl metals such as metal alkyls, cycloalkyls, aryls, alkylaryls and arylalkyls.
  • the introduction of the metal is advantageously carried out using a solution of the organometallic compound of said metal in an organic solvent. It is also possible to employ organohalogen compounds of the metal.
  • organic metal compounds mention may be made in particular of tetrabutyltin, in the case of tin, and triphenylindium, in the case of indium.
  • the additional metal chosen from metals of groups IIIA, IVA and VIIB is introduced before the metal of group VIII, the compound of metal IIIA, IVA and/or VIIB used is generally chosen from the group consisting of the halide, the nitrate , acetate, tartrate, carbonate and oxalate of the metal.
  • the introduction is then advantageously carried out in aqueous solution. But it can also be introduced using a solution of an organometallic compound of the metal, for example tetrabutyltin. In this case, before proceeding with the introduction of at least one group VIII metal, a calcination in air will be carried out.
  • intermediate treatments such as for example calcination and/or reduction can be applied between the successive depositions of the different metals.
  • the catalyst is preferably reduced.
  • This reduction step is advantageously carried out by a treatment under hydrogen at a temperature of between 150° C. and 650° C. and a total pressure of between 0.1 and 25 MPa.
  • a reduction consists of a plateau at 150°C for two hours then a rise in temperature to 450°C at the rate of 1°C/min then a plateau for two hours at 450°C; throughout this reduction step, the hydrogen flow rate is 1000 normal m 3 of hydrogen per tonne of catalyst and the total pressure is kept constant at 0.2 MPa.
  • Any ex-situ reduction method can advantageously be considered.
  • a preliminary reduction of the final catalyst ex situ, under a stream of hydrogen can be implemented, for example at a temperature of 450° C. to 600° C., for a period of 0.5 to 4 hours.
  • Said catalyst also advantageously comprises sulfur.
  • the catalyst of the invention contains sulfur
  • the latter can be introduced at any stage of the preparation of the catalyst: before or after the shaping stage, and/or drying and/or calcination, before and/or after the introduction of the metal(s) mentioned above, or alternatively by sulfurization in situ and or ex-situ before the catalytic reaction.
  • in situ sulfurization the reduction, if the catalyst has not been previously reduced, takes place before the sulfurization.
  • ex situ sulphurization reduction and then sulphurization are also carried out.
  • the sulfurization is preferably carried out in the presence of hydrogen using any sulfurizing agent well known to those skilled in the art, such as for example dimethyl sulphide or hydrogen sulphide.
  • the catalysts according to the invention come in different shapes and sizes. They are generally used in the form of cylindrical and/or polylobed extrudates such as bi-lobed, tri-lobed, poly-lobed in straight and/or twisted shape, but can optionally be manufactured and used in the form of crushed powders, tablets, rings, balls and/or wheels.
  • the catalysts used in the process according to the invention have the form of spheres or extrudates.
  • the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes may be cylindrical (which may or may not be hollow) and/or twisted cylindrical and/or multilobed (2, 3, 4 or 5 lobes for example) and/or rings.
  • the multilobed shape is advantageously used in a preferred manner.
  • the deposition of the metal does not change the shape of the support.
  • Said catalyst according to the invention more preferably comprises, and preferably consists of:
  • At least one matrix preferably alumina, ensuring the complement to 100% by weight in the catalyst.
  • Another object of the invention relates to a process for the isomerization of paraffinic fillers having a number of carbon atoms between 9 and 25, said paraffinic filler being produced from renewable resources, or by a process involving a step recovery by the Fischer-Tropsch route, said process operating at a temperature of between 200°C and 500°C, at a pressure of between 0.45 MPa and 7 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of load introduced by kilogram of catalyst and per hour, in the presence of hydrogen at a partial pressure of hydrogen of between 0.3 and 5.5 MPa, and implementing the catalyst according to the invention.
  • the process for isomerizing a paraffinic feedstock comprising paraffins having a number of carbon atoms between 9 and 25, said paraffinic feedstock being produced from renewable resources is implemented at a temperature between 200°C and 500°C, at a pressure between 0.45 MPa and 7 MPa, at an hourly space velocity between 0.1 and 10 kilograms of charge introduced per kilogram of catalyst and per hour and in the presence of hydrogen, at a hydrogen partial pressure of between 0.3 and 5.5 MPa.
  • said process is carried out at a temperature between 200 and 450°C, and more preferably between 220 and 430°C.
  • the pressure at which the method according to the invention is implemented is preferably between 0.6 and 6 MPa.
  • the method is implemented at an hourly space velocity advantageously between 0.2 and 7 h ⁇ 1 and preferably between 0.5 and 5 h ⁇ 1 .
  • the isomerization process comprises bringing a paraffinic feed into contact with at least said catalyst according to the invention present in a catalytic reactor, in the presence of hydrogen.
  • the hydrogen partial pressure is between 0.3 and 5.5 MPa, preferably between 0.4 and 4.8 MPa.
  • the paraffins of said paraffinic charge have a number of carbon atoms comprised between 9 and 25, preferably comprised between 10 and 25 and very preferably between 10 and 22.
  • the paraffin content in said charge implemented in the process according to the invention is advantageously greater than 90% by weight, preferably greater than 95% by weight, even more preferably greater than 98% by weight.
  • the mass percentage of isoparaffins is less than 15%, preferably less than 10% and very preferably less than 5%.
  • said paraffinic filler used in the process according to the invention can be produced from renewable resources.
  • said paraffinic filler is produced from renewable resources chosen from vegetable oils, algae or algal oils, fish oils and fats of vegetable or animal origin, or mixtures of such fillers.
  • Said vegetable oils can advantageously be raw or refined, totally or partly, and derived from plants chosen from rapeseed, sunflower, soy, palm, olive, coconut, copra, castor, cotton , peanut, linseed and crambe oils and all oils derived, for example, from sunflower or rapeseed by genetic modification or hybridization, this list not being exhaustive.
  • Said animal fats are advantageously chosen from lard and fats composed of residues from the food industry or from catering industries. Frying oils, various animal oils such as fish oils, tallow, lard can also be used.
  • the renewable resources from which the paraffinic filler used in the process according to the invention is produced essentially contain chemical structures of the triglyceride type which those skilled in the art also know under the name fatty acid triester as well as free fatty acids, whose fatty chains contain a number of carbon atoms between 9 and 25.
  • a fatty acid triester is thus composed of three chains of fatty acids. These fatty acid chains in the form of triesters or in the form of free fatty acids, have a number of unsaturations per chain, also called the number of carbon-carbon double bonds per chain, generally between 0 and 3 but which can be higher in particular for oils derived from algae which generally have a number of unsaturations per chain of 5 to 6.
  • the molecules present in said renewable resources that can be used in the present invention therefore have a number of unsaturations, expressed per molecule of triglyceride, advantageously between 0 and 18.
  • the level of unsaturation, expressed as a number of unsaturation per hydrocarbon fatty chain is advantageously between 0 and 6.
  • Renewable resources generally also include various impurities and in particular heteroatoms such as nitrogen.
  • Nitrogen levels in oils plants are generally between 1 ppm and 100 ppm by weight approximately, depending on their nature. They can reach up to 1% weight on particular loads.
  • Said paraffinic filler used in the process according to the invention is advantageously produced from renewable resources, in particular chosen from vegetable oils, algae or algal oils, fish oils and fats of vegetable or animal origin, or mixtures thereof, according to methods known to those skilled in the art.
  • renewable resources in particular chosen from vegetable oils, algae or algal oils, fish oils and fats of vegetable or animal origin, or mixtures thereof, according to methods known to those skilled in the art.
  • One possible route is the catalytic transformation of said renewable resources into deoxygenated paraffinic effluent in the presence of hydrogen and, in particular, hydrotreating.
  • said paraffinic feedstock is produced by hydrotreating said renewable resources.
  • These processes for hydrotreating renewable resources are already well known and are described in numerous patents.
  • said paraffinic feedstock used in the process according to the invention can advantageously be produced, preferably by hydrotreatment then by gas/liquid separation, from said renewable resources as for example in patent FR 2 910 483 or in patent FR 2 950 895.
  • said paraffinic filler used in the process according to the invention can also be a paraffinic filler produced by a process involving a step of upgrading by the Fischer-Tropsch route.
  • synthesis gas CO+H2
  • synthesis gas is catalytically transformed into oxygenates and essentially linear hydrocarbons in gaseous, liquid or solid form. Said products obtained can constitute the paraffinic charge of the process according to the invention.
  • the synthesis gas (CO+H2) is advantageously produced from natural gas, coal, biomass, any source of hydrocarbon compounds or a mixture of these sources.
  • paraffinic feedstocks obtained, according to a Fischer-Tropsch synthesis process, from a synthesis gas (CO+H2) produced from renewable resources, natural gas or coal can be used in the process according to 'invention.
  • said paraffinic filler produced by Fischer-Tropsch synthesis and used in the process according to the invention mainly comprises n-paraffins.
  • said filler comprises an n-paraffin content greater than 60% by weight relative to the total mass of said filler.
  • Said charge may also comprise a content of oxygenated products, preferably less than 10% by weight, a content of unsaturates, that is to say preferably of olefinic products, preferably less than 20% by weight and a content of iso-paraffins preferably less than 10% by weight relative to the total mass of said filler.
  • said paraffinic feed produced by Fischer-Tropsch synthesis is free of heteroatomic impurities such as, for example, sulfur, nitrogen or metals.
  • Figure 1 represents the X-ray diffraction diagram performed on the calcined solid of Example 3.
  • Figure 2 represents a Scanning Electron Microscope (SEM) snapshot of the solid of Example 3.
  • colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained.
  • a molar composition of the following mixture 60 SiO2: 0.25 Ga2O3: 10 RBr2: 10 Na2O: 2000 H2O, i.e. a SiO2/Ga2O3 ratio of 240.
  • the precursor gel is then transferred, after homogenization , in a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades.
  • the reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm.
  • the crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C.
  • the loss on fire PAF of the dried solid is 3.28%.
  • the solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature.
  • the calcined solid product was analyzed by X-ray diffraction and identified as consisting of a Ga-IZM-2 zeolite of greater than 99.8% purity.
  • the solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions.
  • This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C.
  • a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid).
  • the solid thus obtained was analyzed by X-ray diffraction and identified as consisting of Ga-IZM-2 zeolite. Characterizations by X-ray fluorescence and ICP give access to the following results for the Ga-IZM-2 zeolite:
  • the platinum is deposited by impregnation in excess of GGD200 alumina balls (supplied by the company AXENS) with an aqueous solution containing hexachloroplatinic acid.
  • the concentration of hexachloroplatinic acid in the solution is 2.38 ⁇ 10 ⁇ 2 mol/l.
  • 20 grams of alumina are used, the pore volume of which is filled with distilled water and the solid is left to mature for one hour at ambient temperature.
  • the solid is then immersed in 90 ml of a solution of hydrochloric acid HCl with a concentration of 2.13 10' 1 mol/l in an Erlenmeyer flask then the whole is stirred on a stirring table (100 revolutions/min ) at room temperature for one hour.
  • the hydrochloric acid solution is then withdrawn then the solid is immersed in 90 ml of the hexachloroplatinic acid solution described above then the whole is stirred on a stirring table (100 rpm) at room temperature for 24 hours.
  • the impregnation solution is then drawn off and the solid is rinsed with 160 ml of distilled water.
  • the solid is then dried in a ventilated oven overnight at 110° C. and a calcining step is finally carried out under a flow of dry air (2 normal liters per hour and per gram of solid) in a tube furnace under the conditions following:
  • the Pt content measured by FX on the calcined alumina is 1.7% by weight, its dispersion measured by H2/O2 titration is 86%, its distribution coefficient measured by Castaing microprobe 0.99.
  • Catalyst A is shaped by pelletizing and crushing the Ga-IZM-2 zeolite with alumina impregnated with Pt. the Ga-IZM-2 powder and grinding-screening of the alumina balls impregnated with Pt to obtain a particle size of less than 63 microns. After weighing the masses of solids desired (1 gram of dry mass for each solid), the mechanical mixing (2 grams of dry mass) of the two powders is carried out using a bucket mill for 2 minutes, with a ball and a frequency of 30 Hz. The mixture is then pelletized with a hydraulic press (4 ton metric) then ground and sieved to a particle size of 250-500 microns.
  • composition of catalyst A is as follows: 50% weight Ga-IZM-2/0.85% weight Pt/49.15% weight Alumina.
  • Example 2 preparation of catalyst B
  • This Ga-Al-IZM-2 zeolite was synthesized in accordance with the teaching of patent application FR 2 918 050. 51.892 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (19 .06% by weight) are mixed with 25.892 g of deionized water. 1.676 g of sodium hydroxide (98% by weight, Aldrich) are added to the preceding mixture, the preparation obtained is kept under stirring for 10 minutes. 0.027 g of sodium aluminate (NaAIC>2, 53.00% Al2O3, 42.32% Na2 ⁇ D, Carlo Erba) are incorporated into the above mixture, the preparation obtained is kept under stirring for 10 minutes.
  • the precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on ignition PAF of the dried solid is 3.02%.
  • the solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature.
  • the solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions.
  • the deposition of platinum is carried out in the same way as for catalyst A.
  • the shaping of the catalyst is the same as for catalyst A.
  • composition of catalyst B is as follows: 50% by weight Ga-Al-IZM-2 No. 1/0.85% by weight Pt/49.15% by weight Alumina.
  • This IZM-2 zeolite was synthesized in accordance with the teaching of patent application FR 2 918 050. 51.908 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (19.06% in weight) are mixed with 25.976 g of deionized water. 1.654 g of sodium hydroxide (98% by weight, Aldrich) are added to the preceding mixture, the preparation obtained is kept under stirring for 10 minutes. 0.055 g of sodium aluminate (NaAIO2, 53.00% Al2O3, 42.32% Na2O, Carlo Erba) are incorporated into the above mixture, the preparation obtained is kept stirring for 10 minutes.
  • sodium aluminate NaAIO2, 53.00% Al2O3, 42.32% Na2O, Carlo Erba
  • 0.245 g galium nitrate (Ga(NOs)3 XH2O, 99% trace metals basis, Sigma-Aldrich) are incorporated and the synthesis gel is kept stirred for 15 minutes.
  • 20.177 g of colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained, that is to say a molar composition of the following mixture: 60 SiC>2: 0.125 Al2O3: 0.125 Ga2O3: 10 RBr2: 10 Na2 ⁇ D: 2000 H2O, i.e.
  • the precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on ignition PAF of the dried solid is 1.9%.
  • the solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature.
  • the X-ray diffraction pattern performed on the calcined solid is given in Figure 1.
  • the Scanning Electron Microscope (SEM) photograph is given in Figure 2.
  • the solid thus obtained is then refluxed for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, concentration in 3 M ammonium nitrate) to exchange sodium alkali cations for ammonium ions.
  • This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C.
  • a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid).
  • the calcined solid product is analyzed by X-ray diffraction and identified as consisting of a Ga-/Al-IZM-2 zeolite of purity greater than 99.8%. Characterizations by X-ray fluorescence and ICP give access to the following results for the zeolite Ga-AI-IZM-2 n°2:
  • the deposition of platinum is carried out in the same way as for catalyst A.
  • the shaping of the catalyst is the same as for catalyst A.
  • composition of catalyst C is as follows: 50% by weight Ga-Al-IZM-2 No. 2/0.85% by weight Pt/49.15% by weight Alumina.
  • This IZM-2 zeolite was synthesized in accordance with the teaching of patent application FR 2 918 050. 46.023 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (21.50% by weight) are mixed with 31.98 g of deionized water. 1.64 g of sodium hydroxide (98% by weight, Aldrich) are added to the previous mixture, the preparation obtained is kept under stirring for 10 minutes. 0.082 g of sodium aluminate (NaAIC>2, 53.00% Al2O3, 42.32% Na2 ⁇ D, Carlo Erba) are incorporated into the above mixture, the preparation obtained is kept under stirring for 10 minutes.
  • sodium aluminate NaAIC>2, 53.00% Al2O3, 42.32% Na2 ⁇ D, Carlo Erba
  • the precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on ignition PAF of the dried solid is 0.8%.
  • the solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1°C/min in temperature up to 550°C followed by a plateau at 550°C maintained for 8 hours then a return to ambient temperature.
  • the solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions.
  • the deposition of platinum is carried out in the same way as for catalyst A.
  • the shaping of the catalyst is the same as for catalyst A.
  • composition of catalyst D is as follows: 50% by weight Ga-Al-IZM-2 No. 3/0.85% by weight Pt/49.15% by weight Alumina.
  • Example 5 (not in accordance with the invention): preparation of catalyst E
  • colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained.
  • a molar composition of the following mixture 60 SiC>2: 0.25 Al2O3: 10 RBr2: 10 Na2 ⁇ D: 2000 H2O, i.e. a SiO2/AhO3 ratio of 240.
  • the precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades.
  • the reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm.
  • the crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C.
  • the PAF of the dried solid is 2.8%.
  • the solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature.
  • the solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions.
  • This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C.
  • a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid).
  • the calcined solid product is analyzed by X-ray diffraction and identified as consisting of an AI-IZM-2 zeolite with a purity greater than 99.8%. Characterizations by X-ray fluorescence and ICP provide the following results for the AI-IZM-2 zeolite: - ratio of the number of moles of silicon divided by the number of moles of gallium and aluminum, in mol/mol, Si/(Al+Ga): 90;
  • the deposition of platinum is carried out in the same way as for catalyst A.
  • the shaping of the catalyst is the same as for catalyst A.
  • composition of catalyst E is as follows: 50% by weight AI-IZM-2/0.85% by weight Pt/49.15% by weight Alumina.
  • Example 6 evaluation of the catalytic properties of catalysts B, C and D in accordance with the invention and A and E not in accordance with the invention, in isomerization of a paraffinic charge
  • the catalysts were tested in isomerization of a paraffinic charge composed of n-hexadecane. The tests were carried out in a micro-unit implementing a fixed bed reactor and working in downdraft without recycling. The analysis of hydrocarbon effluents is carried out online by gas chromatography. Once loaded into the unit, the catalyst undergoes a first stage of drying under nitrogen under the following conditions:
  • the conversion is modified by varying the temperature; and at each temperature level two analyzes of the effluent are carried out, which makes it possible to calculate the catalytic performances and to check the stability of the catalytic performances for said temperature level.
  • the temperature is varied between 230 and 350°C in temperature steps of 5°C.
  • Effluent analysis is performed entirely through an online GC (gas chromatography) system.
  • the temperature necessary to reach 50% conversion acts as a descriptor of the activity of the catalyst, while the maximum yield obtained of hexadecane isomers acts as a descriptor of the isomerizing properties of the catalyst.
  • Table 2 catalytic performances of catalysts A, B, C, D and E in hydroconversion of n-hexadecane.
  • the non-compliant catalyst E which implements an AI-IZM-2 (no presence of gallium) is the least selective catalyst of the series, with a maximum isomer yield of 81.3% whereas it is greater than 85% for the other catalysts A B C and D .
  • the presence of gallium makes it possible to improve the isomerization selectivity of the catalysts.
  • catalyst A non-compliant, which implements a Ga-IZM-2 (no presence of aluminum) is the least active of the series. It has a temperature at 50% conversion high at 278°C, i.e. an activity deficit of 15°C compared to catalyst E, which does not conform, which has a temperature at 50% conversion at 263°C.
  • Compliant catalysts B, C and D which use Ga-Al-IZM-2, exhibit both greater selectivity than non-compliant catalyst E (max. isomer yields between 85.6% and 89 .3% for compliant catalysts B C D compared to a yield of 81.3% for non-compliant catalyst E) and greater activity than non-compliant catalyst A (temperatures at 50% conversion between 259 and 271 °C per compared to a temperature at 50% conversion of 278° C. for non-compliant catalyst A).
  • the conformal catalyst C is particularly interesting because it combines both a high isomerization selectivity and an activity comparable to catalyst E.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a catalyst comprising at least one metal from group VIII of the periodic table, at least one matrix and at least one IZM-2 zeolite containing both aluminium and gallium, said IZM-2 zeolite having a molar ratio between the number of moles of silicon and the number of moles of aluminium and gallium Si/(AI+Ga) of between 35 and 175 and a molar ratio between the number of moles of gallium and the number of moles of aluminium and gallium Ga/(Ga+AI) of between 0.10 and 0.90, and to the method for isomerisation of paraffinic feedstocks using said catalyst.

Description

CATALYSEUR A BASE D’IZM-2 CONTENANT DE L’ALUMINIUM ET DU GALLIUM ET SON UTILISATION POUR L’ISOMERISATION DE CHARGES PARAFFINIQUES LONGUES EN DISTILLATS MOYENS CATALYST BASED ON IZM-2 CONTAINING ALUMINUM AND GALLIUM AND ITS USE FOR THE ISOMERIZATION OF LONG PARAFFINIC CHARGERS INTO MIDDLE DISTILLATES
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
Afin de répondre à la demande en bases distillats moyens, c’est-à-dire en coupe incorporable au pool kérosène et/ou gazole, diverses méthodes de production de distillats moyens basées sur l’utilisation du pétrole, de gaz naturel ou encore de ressources renouvelables peuvent être mises en œuvre. In order to meet the demand for middle distillate bases, that is to say in a cut that can be incorporated into the kerosene and/or diesel pool, various methods for producing middle distillates based on the use of oil, natural gas or even renewable resources can be implemented.
Les bases distillats moyens peuvent ainsi être produites à partir d'une charge paraffinique obtenue à partir d'une charge issue de sources renouvelables, et en particulier d'huiles végétales ou des graisses animales, brutes ou ayant subi un traitement préalable, ainsi que les mélanges de telles charges. En effet, lesdites charges issues de sources renouvelables contiennent des composés chimiques de type triglycérides ou esters d’acides gras ou acides gras libres, la structure et la longueur de chaîne hydrocarbonée de ces composés étant compatibles avec les hydrocarbures présents dans les distillats moyens. Lesdites charges issues de sources renouvelables produisent, après hydrotraitement, des charges paraffiniques, exemptes de composés soufrés et de composés aromatiques. Ces charges paraffiniques sont typiquement composées de paraffines linéaires ayant un nombre d’atomes de carbone compris entre 9 et 25. Middle distillate bases can thus be produced from a paraffinic feedstock obtained from a feedstock derived from renewable sources, and in particular vegetable oils or animal fats, raw or having undergone a prior treatment, as well as the mixtures of such fillers. Indeed, said fillers from renewable sources contain chemical compounds of the triglyceride type or esters of fatty acids or free fatty acids, the structure and the length of the hydrocarbon chain of these compounds being compatible with the hydrocarbons present in the middle distillates. Said fillers from renewable sources produce, after hydrotreatment, paraffinic fillers, free of sulfur compounds and aromatic compounds. These paraffinic fillers are typically composed of linear paraffins having a number of carbon atoms between 9 and 25.
Les bases distillats moyens peuvent aussi être produites à partir de gaz naturel, charbon, ou sources renouvelables par l’intermédiaire du procédé de synthèse de Fischer-Tropsch. En particulier la synthèse de Fischer-Tropsch dite basse température utilisant des catalyseurs au cobalt permet de produire des composés essentiellement paraffiniques linéaires ayant un nombre d’atomes de carbone très variable, typiquement de 1 à 100 atomes de carbone voire plus. Des étapes de séparation peuvent permettre de récupérer des charges paraffiniques composées de paraffines linéaires ayant un nombre d’atomes de carbone compris entre 9 et 25. Middle distillate bases can also be produced from natural gas, coal, or renewable sources through the Fischer-Tropsch synthesis process. In particular, the so-called low temperature Fischer-Tropsch synthesis using cobalt catalysts makes it possible to produce essentially linear paraffinic compounds having a very variable number of carbon atoms, typically from 1 to 100 carbon atoms or even more. Separation steps can make it possible to recover paraffinic feedstocks composed of linear paraffins having a number of carbon atoms between 9 and 25.
Toutefois, ces bases distillats moyens obtenues après hydrotraitement des huiles végétales ou après le procédé de synthèse de Fischer-Tropsch basse température ne peuvent généralement pas être incorporées telles quelles au pool kérosène ou gazole notamment en raison de propriétés à froid insuffisantes. En effet, les paraffines de haut poids moléculaire qui sont linéaires ou très faiblement branchées et qui sont présentes dans ces bases distillats moyens conduisent à des points d'écoulement hauts et donc à des phénomènes de figeage pour des utilisations à basses températures. Par exemple, le point d’écoulement d’un hydrocarbure linéaire contenant 20 atomes de carbone par molécule et dont la température d’ébullition égale à 340°C environ, c’est-à-dire typiquement comprise dans la coupe distillats moyens, est de +37°C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gazole. Afin de diminuer les valeurs des points d'écoulement, ces paraffines linéaires ou très peu branchées doivent être entièrement ou partiellement éliminées. However, these middle distillate bases obtained after hydrotreatment of vegetable oils or after the low-temperature Fischer-Tropsch synthesis process generally cannot be incorporated as such into the kerosene or gas oil pool, in particular because of insufficient cold properties. Indeed, high molecular weight paraffins which are linear or very weakly branched and which are present in these middle distillate bases lead to high pour points and therefore to congealing phenomena for uses at low temperatures. For example, the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule and whose boiling point equals approximately 340°C, i.e. typically included in the middle distillate cut, is +37°C approximately which makes it impossible to use, the specification being -15°C for diesel. In order to decrease the values of the pour points, these linear or very slightly branched paraffins must be completely or partially eliminated.
Cette opération peut s'effectuer par extraction par des solvants tels que le propane ou la méthyl-éthyl cétone, on parle alors de déparaffinage au propane ou à la méthyl éthyl-cétone (MEK). Cependant, ces techniques sont coûteuses, longues et pas toujours aisées à mettre en œuvre. This operation can be carried out by extraction with solvents such as propane or methyl ethyl ketone, one then speaks of dewaxing with propane or methyl ethyl ketone (MEK). However, these techniques are costly, time-consuming and not always easy to implement.
Le craquage sélectif des chaînes paraffiniques linéaires les plus longues qui conduit à la formation de composés de poids moléculaire plus faible dont une partie peut être éliminée par distillation constitue une solution pour diminuer les valeurs des points d'écoulement. Compte tenu de leur sélectivité de forme les zéolithes sont parmi les catalyseurs les plus utilisés pour ce type de procédé. Le catalyseur le plus utilisé dans la catégorie déparaffinage par craquage sélectif est la zéolithe ZSM-5, de type structural MFI, qui présente une porosité tridimensionnelle, avec des pores moyens (ouverture à 10 atomes d'oxygènes 10MR). Toutefois, le craquage occasionné dans de tels procédés conduit à la formation de quantités importantes de produits de poids moléculaires plus faibles que ceux visés, tels que du butane, propane, éthane et méthane, ce qui réduit considérablement le rendement en produits recherchés. The selective cracking of the longest linear paraffinic chains, which leads to the formation of compounds of lower molecular weight, part of which can be eliminated by distillation, constitutes a solution for reducing the values of the pour points. Given their shape selectivity, zeolites are among the most widely used catalysts for this type of process. The most widely used catalyst in the dewaxing by selective cracking category is ZSM-5 zeolite, of MFI structural type, which has three-dimensional porosity, with medium pores (opening at 10 oxygen atoms 10MR). However, the cracking caused in such processes leads to the formation of large quantities of products of lower molecular weights than those targeted, such as butane, propane, ethane and methane, which considerably reduces the yield of desired products.
Une autre solution pour améliorer la tenue à froid consiste à isomériser les paraffines linéaires longues en minimisant au maximum le craquage. Ceci peut être réalisé par la mise en œuvre de procédé d’hydroisomérisation employant des catalyseurs bifonctionnels. Les catalyseurs bifonctionnels mettent en jeu une phase acide de Bronsted (par exemple une zéolithe) et une phase hydro/déshydrogénante (par exemple du platine) et généralement une matrice (par exemple de l’alumine). Le choix approprié de la phase acide permet de favoriser l’isomérisation des paraffines linéaires longues et de minimiser le craquage. Ainsi la sélectivité de forme des zéolithes monodimensionnelles à pores moyens (10MR) comme les zéolithes ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 rend leur utilisation particulièrement adaptée pour obtenir des catalyseurs sélectifs envers l’isomérisation. Ces exemples illustrent la recherche continue effectuée pour développer des catalyseurs toujours plus performants pour l’isomérisation des paraffines linéaires longues, en minimisant la formation de produits de craquage par la mise en œuvre de zéolithes appropriées. Les zéolithes sont des solides microporeux cristallisés constitués de tétraèdres [MeC ], dans lesquels Me peut être un élément de valence 4 tel que le silicium, ou un élément de valence 3 tel que l’aluminium. Les tétraèdres contenant un élément de valence 3 sont donc porteurs d’une charge négative qui est neutralisée par un cation métallique, organique ou un proton. Lorsque ledit cation est un proton, un site acide de Bronsted est généré. Il est reporté dans la littérature que toutes choses égales par ailleurs, la force du site acide de Bronsted est fonction de la nature de l’élément de valence 3. Généralement la force des sites acides de Bronsted décroit dans l’ordre : Si(OH)AI > Si(OH)Ga > Si(OH)Fe > Si(OH)ln > Si(OH)B (voir H. Berndt, A. Martin, H. Kosslick, B. Lücke, Microporous Materials, vol. 2, no. 3, pp. 197-204, 1994 ou M. Guisnet, F. R. Ribeiro, « les zéolithes, un nanomonde au service de la catalyse », EDP Sciences, 2006). Il est généralement admis que la diminution de la force des sites acides de Bronsted favorise la sélectivité en isomérisation, toutes choses égales par ailleurs. Le remplacement de l’aluminium par du gallium, du fer, de l’indium ou du bore pourrait ainsi permettre d’améliorer encore la sélectivité en isomérisation d’une structure zéolithique donnée. Le brevet US9,758,734,B2 enseigne ainsi un procédé d’isomérisation de charge paraffinique avec un catalyseur contenant de la zéolithe ZSM-12, ZSM-22, ZSM-23, ZSM-48, ZSM-57 ou MCM-22 dans laquelle au moins une partie de l’aluminium est remplacée par du fer. Les exemples comparatifs illustrent le gain de sélectivité obtenu avec des catalyseurs utilisant de la ZSM-23 contenant du fer comparativement à un catalyseur utilisant la ZSM-23 ne contenant que de l’aluminium, en plus du silicium. Cependant, l’utilisation d’une zéolithe contenant du fer à la place de l’aluminium entraine une perte d’activité du catalyseur de 30°C, ce qui est en accord avec des sites de Bronsted moins forts dans la zéolithe contenant du fer. Récemment Liu et coll, ont reporté la synthèse de zéolithes ZSM-22 contenant de l’aluminium (AI-ZSM-22) ou de l’aluminium et du gallium (Ga-AI-ZSM-22) et leur évaluation catalytique en hydroconversion du n-dodécane. Tous les catalyseurs bifonctionnels mettant en œuvre des zéolithes Ga-AI-ZSM-22 sont plus sélectifs en isomérisation que le catalyseur mettant en œuvre la zéolithe AI-ZSM-22. Les catalyseurs mettant en œuvre des zéolithes Ga-AI-ZSM-22 sont d’autant plus sélectifs en isomérisation que le rapport molaire Ga/AI est élevé. En revanche tous les catalyseurs bifonctionnels mettant en œuvre des zéolithes Ga- AI-ZSM-22 sont moins actifs que le catalyseur mettant en œuvre la zéolithe AI-ZSM-22, avec un perte d’activité comprise entre 10 et 30°C. Les catalyseurs mettant en œuvre des zéolithes Ga-AI-ZSM-22 sont d’autant moins actifs en isomérisation que le rapport molaire Ga/AI est élevé. Dans les études mentionnées, le remplacement total ou partiel de l’aluminium par un autre élément tel que le fer ou le gallium dans la zéolithe permet donc d’améliorer la sélectivité en isomérisation du catalyseur, mais au détriment de son activité catalytique. Another solution for improving cold resistance consists in isomerizing long linear paraffins while minimizing cracking as much as possible. This can be achieved by the implementation of hydroisomerization process employing bifunctional catalysts. Bifunctional catalysts involve a Bronsted acid phase (for example a zeolite) and a hydro/dehydrogenating phase (for example platinum) and generally a matrix (for example alumina). The appropriate choice of the acid phase makes it possible to promote the isomerization of long linear paraffins and to minimize cracking. Thus the shape selectivity of one-dimensional medium-pore zeolites (10MR) such as ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 zeolites makes their use particularly suitable for obtaining catalysts that are selective towards isomerization. . These examples illustrate the ongoing research carried out to develop ever more efficient catalysts for the isomerization of long linear paraffins, minimizing the formation of cracking products by using appropriate zeolites. Zeolites are crystallized microporous solids consisting of [MeC] tetrahedra, in which Me can be a 4-valence element such as silicon, or a 3-valence element such as aluminum. Tetrahedra containing an element of valence 3 therefore carry a negative charge which is neutralized by a metallic or organic cation or a proton. When said cation is a proton, a Bronsted acid site is generated. It is reported in the literature that all other things being equal, the strength of the acid Bronsted site depends on the nature of the element of valence 3. Generally the strength of the acid Bronsted sites decreases in the order: Si(OH )Al > Si(OH)Ga > Si(OH)Fe > Si(OH)ln > Si(OH)B (see H. Berndt, A. Martin, H. Kosslick, B. Lücke, Microporous Materials, vol. 2 , No. 3, pp. 197-204, 1994 or M. Guisnet, FR Ribeiro, “zeolites, a nanoworld at the service of catalysis”, EDP Sciences, 2006). It is generally accepted that the decrease in the strength of the Bronsted acid sites promotes isomerization selectivity, all other things being equal. The replacement of aluminum by gallium, iron, indium or boron could thus make it possible to further improve the isomerization selectivity of a given zeolite structure. Patent US9,758,734,B2 thus teaches a paraffinic charge isomerization process with a catalyst containing ZSM-12, ZSM-22, ZSM-23, ZSM-48, ZSM-57 or MCM-22 zeolite in which at least part of the aluminum is replaced by iron. The comparative examples illustrate the gain in selectivity obtained with catalysts using ZSM-23 containing iron compared with a catalyst using ZSM-23 containing only aluminum, in addition to silicon. However, the use of an iron-containing zeolite instead of aluminum leads to a loss of catalyst activity of 30°C, which is in agreement with weaker Bronsted sites in the iron-containing zeolite. . Recently Liu et al reported the synthesis of ZSM-22 zeolites containing aluminum (AI-ZSM-22) or aluminum and gallium (Ga-AI-ZSM-22) and their catalytic evaluation in hydroconversion of n-dodecane. All the bifunctional catalysts implementing Ga-Al-ZSM-22 zeolites are more selective in isomerization than the catalyst implementing the Al-ZSM-22 zeolite. Catalysts using Ga-Al-ZSM-22 zeolites are all the more selective in isomerization as the Ga/Al molar ratio is high. On the other hand, all the bifunctional catalysts implementing Ga-AI-ZSM-22 zeolites are less active than the catalyst implementing the AI-ZSM-22 zeolite, with a loss of activity of between 10 and 30°C. Catalysts implementing Ga-Al-ZSM-22 zeolites are all the less active in isomerization as the Ga/Al molar ratio is high. In the studies mentioned, the total or partial replacement of the aluminum by another element such as iron or gallium in the zeolite therefore makes it possible to improve the isomerization selectivity of the catalyst, but to the detriment of its catalytic activity.
Or, en plus de la sélectivité envers l’isomérisation, l’activité du catalyseur est également un paramètre important. Augmenter l’activité du catalyseur permet d’améliorer le fonctionnement global du procédé du point de vue de sa productivité ou de sa consommation énergétique. Il est donc souhaitable de développer des catalyseurs les plus actifs et les plus sélectifs possibles envers l’isomérisation. However, in addition to the selectivity towards the isomerization, the activity of the catalyst is also an important parameter. Increasing the activity of the catalyst makes it possible to improve the overall operation of the process from the point of view of its productivity or its energy consumption. It is therefore desirable to develop catalysts that are as active and as selective as possible towards isomerization.
Récemment, la demanderesse dans ses travaux a mis au point une nouvelle zéolithe, la zéolithe IZM-2 telle que décrite dans la demande FR 2 918 050 A, ainsi qu’un procédé de conversion de charges paraffiniques comprenant des paraffines longues ayant un nombre d'atomes de carbone compris entre 9 et 25 mettant en œuvre un catalyseur comprenant ladite zéolite IZM-2 tel que décrit dans la demande de brevet FR 2 984 911 A, ledit procédé permettant d'améliorer la sélectivité envers la production en base distillats moyens en limitant la production de produits craqués légers ne pouvant pas être incorporés dans un pool gazole et/ou kérosène. Recently, the Applicant in her work has developed a new zeolite, IZM-2 zeolite as described in application FR 2 918 050 A, as well as a process for converting paraffinic feedstocks comprising long paraffins having a number of carbon atoms between 9 and 25 using a catalyst comprising said IZM-2 zeolite as described in patent application FR 2 984 911 A, said process making it possible to improve the selectivity towards the production of middle distillate base in limiting the production of light cracked products that cannot be incorporated into a diesel and/or kerosene pool.
FR 2 918 050 A divulgue un solide IZM-2 présentant un rapport molaire global silicium sur aluminium Si/AI compris entre 1 et l’infini, et de préférence entre 25 et 312. Dans l’exemple illustratif de la demande de brevet FR 2 984 911 A, seul un solide IZM-2 présentant un rapport molaire global Si/AI de 53 est utilisé dans la formulation du catalyseur. Ce rapport molaire global Si/AI a été calculé à partir des résultats de caractérisation par fluorescence X.FR 2 918 050 A discloses an IZM-2 solid having an overall silicon to aluminum Si/Al molar ratio of between 1 and infinity, and preferably between 25 and 312. In the illustrative example of patent application FR 2 984 911 A, only an IZM-2 solid having an overall Si/Al molar ratio of 53 is used in the catalyst formulation. This overall Si/AI molar ratio was calculated from the X-ray fluorescence characterization results.
La demande de brevet FR 3 082 521 A1 divulgue un procédé d’isomérisation de charges paraffiniques mettant en œuvre un catalyseur comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2, dans lequel le rapport entre le nombre de moles de silicium et le nombre de moles d’aluminium du réseau de la zéolithe IZM-2 est compris entre 25 et 55. Patent application FR 3 082 521 A1 discloses a process for the isomerization of paraffinic fillers using a catalyst comprising at least one metal from group VIII of the periodic table of elements, at least one matrix and at least one IZM-2 zeolite , in which the ratio between the number of moles of silicon and the number of moles of aluminum of the network of the IZM-2 zeolite is between 25 and 55.
La demande de brevet FR 3 074428 A1 enseigne un procédé de préparation d'un catalyseur bifonctionnel comprenant une fonction acide constituée par de la zéolithe IZM-2, ainsi que son utilisation dans un procédé d'isomérisation d'une charge parraffinique présentant un nombre d'atomes de carbone compris entre 9 et 25. Patent application FR 3 074428 A1 teaches a process for preparing a bifunctional catalyst comprising an acid function consisting of IZM-2 zeolite, as well as its use in a process for the isomerization of a paraffinic feed having a number of carbon atoms between 9 and 25.
Dans tous les exemples illustratifs des brevets mentionnés, la zéolithe IZM-2 employée dans les catalyseurs est sous forme aluminosilicate, c’est-à-dire que la zéolithe contient de l’aluminium et du silicium. Des éléments tels que la gallium, fer, indium, bore ne sont pas présents. In all the illustrative examples of the patents mentioned, the IZM-2 zeolite used in the catalysts is in the aluminosilicate form, that is to say that the zeolite contains aluminum and silicon. Elements such as gallium, iron, indium, boron are not present.
Les travaux de recherche effectués par le demandeur l'ont conduit à découvrir que, de façon surprenante, un catalyseur spécifique à base d'une zéolithe IZM-2 contenant à la fois du gallium et de l’aluminium permet d’obtenir une activité améliorée du catalyseur tout en conservant une sélectivité en isomérisation maximale lorsque celui-ci est utilisé dans un procédé d'isomérisation d'une charge paraffinique The research work carried out by the applicant led him to discover that, surprisingly, a specific catalyst based on an IZM-2 zeolite containing both gallium and aluminum makes it possible to obtain an improved activity. of the catalyst while maintaining maximum isomerization selectivity when the latter is used in a process for the isomerization of a paraffinic feedstock
En particulier, l’utilisation d’un tel catalyseur dans le procédé d'isomérisation selon l’invention conduit à des performances catalytiques optimales en terme d’activité et de sélectivité. Un tel catalyseur est sensiblement plus sélectif qu'un catalyseur comprenant une zéolithe IZM-2 ne contenant que de l’aluminium et il est sensiblement plus actif qu’un catalyseur comprenant une zéolithe IZM-2 ne contenant que du gallium. In particular, the use of such a catalyst in the isomerization process according to the invention leads to optimal catalytic performance in terms of activity and selectivity. Such a catalyst is substantially more selective than a catalyst comprising an IZM-2 zeolite containing only aluminum and it is significantly more active than a catalyst comprising an IZM-2 zeolite containing only gallium.
Un objet de la présente invention concerne un catalyseur bifonctionnel comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, ladite zéolithe présentant un ratio molaire Si/(AI+Ga) compris entre 35 et 175 et un ratio molaire Ga/(AI+Ga) compris entre 0,10 et 0,90. An object of the present invention relates to a bifunctional catalyst comprising at least one metal from group VIII of the periodic table of the elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said zeolite having a Si/(Al+Ga) molar ratio of between 35 and 175 and a Ga/(Al+Ga) molar ratio of between 0.10 and 0.90.
Un autre objet de la présente invention concerne un procédé d'isomérisation de charges paraffiniques, de préférence issues des huiles végétales et/ou animales hydrotraitées ou de la synthèse Fischer-Trospch basse température, ledit procédé mettant en œuvre ledit catalyseur bifonctionnel. Another object of the present invention relates to a process for the isomerization of paraffinic fillers, preferably derived from hydrotreated vegetable and/or animal oils or from the low-temperature Fischer-Trospch synthesis, said process implementing said bifunctional catalyst.
OBJET DE L'INVENTION OBJECT OF THE INVENTION
La présente invention concerne un catalyseur comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, ladite zéolithe IZM-2 présentant un ratio molaire entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) compris entre 35 et 175 de préférence entre 40 et 150, de manière préférée entre 50 et 135 et de manière très préférée entre 55 et 120, et un ratio molaire entre le nombre de moles de gallium et le nombre de moles d’aluminium et de gallium Ga/(Ga+AI) compris entre 0,10 et 0,90, de manière préférée entre 0,20 et 0,80 et de manière très préférée entre 0,35 et 0,65. The present invention relates to a catalyst comprising at least one metal from group VIII of the periodic table of elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said IZM-2 zeolite having a molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) between 35 and 175, preferably between 40 and 150, preferably between 50 and 135 and very preferably between 55 and 120, and a molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) between 0.10 and 0.90, preferably between 0.20 and 0.80 and very preferably between 0.35 and 0.65 .
La présente invention concerne également un procédé d'isomérisation d’une charge paraffinique comprenant des paraffines ayant un nombre d'atomes de carbone compris entreThe present invention also relates to a process for isomerizing a paraffinic feed comprising paraffins having a number of carbon atoms between
9 et 25, ladite charge paraffinique étant produite à partir de ressources renouvelables, ledit procédé opérant à une température comprise entre 200°C et 500°C, à une pression comprise entre 0,45 MPa et 7 MPa, à une vitesse spatiale horaire comprise entre 0,1 et9 and 25, said paraffinic feed being produced from renewable resources, said process operating at a temperature between 200°C and 500°C, at a pressure between 0.45 MPa and 7 MPa, at an hourly space velocity of between between 0.1 and
10 h’1, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, en présence d’hydrogène et à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, et mettant en œuvre le catalyseur selon l’invention. 10 h′ 1 , expressed in kilograms of charge introduced per kilogram of catalyst and per hour, in the presence of hydrogen and at a partial pressure of hydrogen of between 0.3 and 5.5 MPa, and implementing the catalyst according to the invention.
Au sens de la présente invention, le rapport entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) de la zéolithe IZM-2 et le rapport entre le nombre de moles de gallium et le nombre de moles d’aluminium et de gallium Ga/(Ga+AI) de la zéolithe IZM-2 est calculé à partir des teneurs en silicium, aluminium et gallium dans la zéolithe IZM-2. La teneur en silicium est mesurée par Fluorescence X, et les teneurs en aluminium et gallium sont mesurées par plasma à couplage inductif. Within the meaning of the present invention, the ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of the IZM-2 zeolite and the ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of the IZM-2 zeolite is calculated from the silicon, aluminum and gallium contents in the IZM-2 zeolite. The silicon content is measured by X-ray fluorescence, and the aluminum and gallium contents are measured by inductively coupled plasma.
Un avantage de la présente invention est de fournir un catalyseur spécifique à base d’une zéolithe IZM-2 contenant, en plus du silicium, à la fois de l’aluminium et du gallium et ayant un ratio molaire Ga/(Ga+AI) optimisé et un procédé d’isomérisation d’une charge paraffinique utilisant ledit catalyseur permettant d’améliorer la sélectivité du catalyseur tout en conservant une activité maximale. An advantage of the present invention is to provide a specific catalyst based on an IZM-2 zeolite containing, in addition to silicon, both aluminum and gallium and having a molar ratio Ga/(Ga+Al) optimized and a process for the isomerization of a paraffinic charge using said catalyst making it possible to improve the selectivity of the catalyst while maintaining maximum activity.
DESCRIPTION DETAILLEE DE L’INVENTION DETAILED DESCRIPTION OF THE INVENTION
Conformément à l’invention, la présente invention concerne un catalyseur comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, ladite zéolithe IZM-2 présentant un ratio molaire entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) compris entre 35 et 175 de préférence entre 40 et 150, de manière préférée entre 50 et 135 et de manière très préférée entre 55 et 120, et un ratio molaire entre le nombre de moles de gallium et le nombre de moles d’aluminium et de gallium Ga/(Ga+AI) compris entre 0,10 et 0,90, de manière préférée entre 0,20 et 0,80 et de manière très préférée entre 0,35 et 0,65. In accordance with the invention, the present invention relates to a catalyst comprising at least one metal from group VIII of the periodic table of the elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium. , said IZM-2 zeolite having a molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of between 35 and 175, preferably between 40 and 150, preferably between 50 and 135 and very preferably between 55 and 120, and a molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of between 0.10 and 0.90, preferably between 0, 20 and 0.80 and very preferably between 0.35 and 0.65.
Catalyseur Catalyst
Conformément à l’invention, le catalyseur comprend au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, ladite zéolithe IZM-2 ayant un ratio molaire Si/(AI+Ga) compris entre 35 et 175, de préférence entre 40 et 150 et de manière préférée entre 50 et 135 et de manière très préférée entre 55 et 120 et un ratio molaire Ga/(Ga+AI) compris entre 0,10 et 0,90, de manière préférée entre 0,20 et 0,80 et de manière très préférée entre 0,35 et 0,65. In accordance with the invention, the catalyst comprises at least one metal from group VIII of the periodic table of the elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said IZM zeolite -2 having a Si/(Al+Ga) molar ratio of between 35 and 175, preferably between 40 and 150 and preferably between 50 and 135 and very preferably between 55 and 120 and a Ga/(Ga +AI) between 0.10 and 0.90, preferably between 0.20 and 0.80 and very preferably between 0.35 and 0.65.
Avantageusement, ladite au moins matrice et ladite au moins zéolithe contenant à la fois de l’aluminium et du gallium constitue un support pour la phase métallique comprenant ledit au moins un métal du groupe VIII. Advantageously, said at least matrix and said at least zeolite containing both aluminum and gallium constitute a support for the metallic phase comprising said at least one group VIII metal.
Zéolithe IZM-2 IZM-2 zeolite
Conformément à l’invention, le catalyseur comprend la zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, en particulier notée Ga-AI-IZM-2. In accordance with the invention, the catalyst comprises the IZM-2 zeolite containing both aluminum and gallium, in particular denoted Ga-Al-IZM-2.
Le catalyseur comprend avantageusement de 1 à 90% poids, de préférence de 3 à 85% poids, de manière plus préférée de 4 à 80% poids et de manière encore plus préférée de 6 à 70% poids de zéolithe Ga-AI-IZM-2. The catalyst advantageously comprises from 1 to 90% by weight, preferably from 3 to 85% by weight, more preferably from 4 to 80% by weight and even more preferably from 6 to 70% by weight of Ga-Al-IZM- 2.
La zéolithe Ga-AI-IZM-2 est un solide microporeux cristallisé présentant une structure cristalline décrite dans la demande de brevet FR 2 918 050. La zéolithe Ga-AI-IZM-2 présente un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. De préférence, le diagramme de diffraction X ne contient pas d’autres raies d’intensité significative (c’est-à-dire d’intensité supérieure à environ trois fois le bruit de fond) que celle inscrites dans le tableau 1. Ga-AI-IZM-2 zeolite is a crystallized microporous solid having a crystalline structure described in patent application FR 2 918 050. Ga-AI-IZM-2 zeolite has an X-ray diffraction diagram including at least the lines listed in table 1. Preferably, the X diffraction diagram does not contain other lines of significant intensity (that is to say of intensity greater than about three times the background noise) than those listed in table 1.
Ce diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d’un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Kai du cuivre (À = 1 ,5406 Â). A partir de la position des pics de diffraction représentée par l’angle 20, on calcule, par la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l’échantillon. L’erreur de mesure A(dhki) sur dhki est calculée grâce à la relation de Bragg en fonction de l’erreur absolue A(20) affectée à la mesure de 20. Une erreur absolue A(20) égale à ± 0,02° est communément admise. L’intensité relative lrei affectée à chaque valeur de dhki est mesurée d’après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X de la zéolithe Ga-AI-IZM-2 selon l’invention comporte au moins les raies aux valeurs de dhki données dans le tableau 1. Dans la colonne des dhki, on indique les valeurs moyennes des distances inter-réticulaires en Angstroms (Â). Chacune de ces valeurs doit être affectée de l’erreur de mesure A(dhki) comprise entre ± 0,6Â et ± 0,01 Â.
Figure imgf000009_0001
This diffraction diagram is obtained by X-ray crystallographic analysis using a diffractometer using the conventional powder method with the Kai radiation of copper (λ=1.5406 Å). From the position of the diffraction peaks represented by the angle 20, the characteristic reticular equidistances dhki of the sample are calculated by Bragg's relation. The measurement error A(dhki) on dhki is calculated using Bragg's relation as a function of the absolute error A(20) assigned to the measurement of 20. An absolute error A(20) equal to ± 0.02 ° is commonly accepted. The relative intensity l rei assigned to each value of dhki is measured according to the height of the corresponding diffraction peak. The X-ray diffraction diagram of the Ga-AI-IZM-2 zeolite according to the invention comprises at least the lines at the dhki values given in table 1. In the dhki column, the average values of the inter-distance distances are indicated. -reticulars in Angstroms (Â). Each of these values must be affected by the measurement error A(dhki) of between ± 0.6 Å and ± 0.01 Å.
Figure imgf000009_0001
Tableau 1 : valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé Ga-AI-IZM-2 calciné. Table 1: Mean dhki values and relative intensities measured on an X-ray diffraction pattern of the calcined Ga-AI-IZM-2 crystalline solid.
Valeurs moyennes de dhki et intensités relatives mesurées sur un diagramme de diffraction des rayons X d’une zéolithe Ga/AI-IZM-2 calciné où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible. Mean dhki values and relative intensities measured on an X-ray diffraction pattern of a calcined Ga/AI-IZM-2 zeolite where FF = very strong; F = strong; m = medium; mf = medium low; f = low; ff = very weak.
L’intensité relative lrei est donnée en rapport à une échelle d’intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff < 15 ; 15 < f < 30 ; 30 < mf < 50 ; 50 < m < 65 ; 65 < F < 85 ; FF > 85. The relative intensity I rei is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction diagram: ff<15;15<f<30;30<mf<50;50<m<65;65<F<85; FF > 85.
Conformément à l’invention, ledit catalyseur comprend au moins une zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, ayant un ratio molaire Si/(AI+Ga) entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium de la zéolithe IZM-2 compris entre 35 et 175, de préférence entre 40 et 150 et de manière préférée entre 50 et 135 et de manière très préférée entre 55 et 120 et telle que le rapport molaire entre le nombre de moles de gallium et le nombre de moles d’aluminium et de gallium Ga/(Ga+AI) de la zéolithe IZM-2 est compris entre 0,1 et 0,9, de manière préférée entre 0,2 et 0,8 et de manière très préférée entre 0,35 et 0,65. In accordance with the invention, said catalyst comprises at least one IZM-2 zeolite containing both aluminum and gallium, having a Si/(Al+Ga) molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium of the IZM-2 zeolite comprised between 35 and 175, preferably between 40 and 150 and more preferably between 50 and 135 and very preferably between 55 and 120 and such that the molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of the IZM-2 zeolite is between 0.1 and 0.9, of preferably between 0.2 and 0.8 and very preferably between 0.35 and 0.65.
Selon l’invention, le rapport du nombre de moles de silicium divisé par le nombre de moles d’aluminium et de gallium de la zéolithe IZM-2 (Si/(AI+Ga)) est calculé selon la formule : According to the invention, the ratio of the number of moles of silicon divided by the number of moles of aluminum and gallium of the IZM-2 zeolite (Si/(Al+Ga)) is calculated according to the formula:
Si/(AI+Ga) = nSi / (nAi+nGa) Si/(AI+Ga) = n Si / (n A i+n Ga )
Et le rapport du nombre de moles de gallium divisé par le nombre de moles de gallium et d’aluminium de la zéolithe IZM-2 (Ga/(AI+Ga)) est calculé selon la formule : And the ratio of the number of moles of gallium divided by the number of moles of gallium and aluminum of the IZM-2 zeolite (Ga/(Al+Ga)) is calculated according to the formula:
Ga/(AI+Ga) = nGa / (nAi+nGa) avec nsi / (nAi+nGa) : rapport du nombre de moles de silicium divisé par le nombre de moles d’aluminium et de gallium, en mole/mole, nGa / (nAi+nGa) : rapport du nombre de moles de gallium divisé par le nombre de moles d’aluminium et de gallium, en mole/mole, nsi : moles de silicium par gramme de la zéolithe, en mole/gramme, nAi : moles d’aluminium par gramme de zéolithe, en mole/gramme, nGa : moles de gallium par gramme de zéolithe, en mole/gramme. Ga/(Al+Ga) = n Ga / (n A i+n Ga ) with nsi / (n A i+n Ga ): ratio of the number of moles of silicon divided by the number of moles of aluminum and gallium , in mole/mole, n Ga / (n A i+n Ga ): ratio of the number of moles of gallium divided by the number of moles of aluminum and gallium, in mole/mole, nsi: moles of silicon per gram of the zeolite, in mole/gram, n Al : moles of aluminum per gram of zeolite, in mole/gram, n Ga : moles of gallium per gram of zeolite, in mole/gram.
Le nombre de moles de silicium par gramme de zéolithe IZM-2 se détermine à partir du pourcentage (%) poids (pds) en silicium de la zéolithe selon la formule : nSi = (%pdsSi) / [MM(Si) * 100] avec nsi : moles de silicium par gramme de zéolithe, en mole/gramme, %pdsSi : pourcentage poids de silicum dans la zéolithe (masse sèche), mesuré par Fluorescence X par dosage en perle sur un appareil AXIOS de marque PANalytical travaillant à 125 mA and 32 kV, The number of moles of silicon per gram of IZM-2 zeolite is determined from the percentage (%) weight (wt) of silicon in the zeolite according to the formula: n Si = (% wtSi) / [MM(Si) * 100 ] with nsi: moles of silicon per gram of zeolite, in mole/gram, %pdsSi: weight percentage of silicon in the zeolite (dry mass), measured by X-ray fluorescence by bead assay on a PANalytical brand AXIOS device working at 125 mA and 32 kV,
MM(Si) : masse molaire du silicium, en gramme/mole. MM(Si): molar mass of silicon, in grams/mole.
Le nombre de moles d’aluminium par gramme de zéolithe IZM-2 se détermine à partir du pourcentage (%) poids (pds) en aluminium de la zéolithe selon la formule : nAi = (%pdsAI) / [MM(AI) * 100] avec nAi : moles d’aluminium par gramme de zéolithe, en mole/gramme, The number of moles of aluminum per gram of IZM-2 zeolite is determined from the percentage (%) weight (wt) of aluminum in the zeolite according to the formula: n Ai = (% wtAI) / [MM(AI) * 100] with n Ai : moles of aluminum per gram of zeolite, in mole/gram,
%pdsAI : pourcentage poids d’aluminium dans la zéolithe (masse sèche), mesuré par plasma à couplage inductif (ICP) sur un appareil SPECTRO ARCOS ICP-OES de SPECTRO selon la méthode ASTM D7260, %wdsAI: weight percentage of aluminum in the zeolite (dry mass), measured by inductively coupled plasma (ICP) on a SPECTRO ARCOS ICP-OES device from SPECTRO according to the ASTM D7260 method,
MM(AI) : masse molaire de l’aluminium, en gramme/mole, MM(AI): molar mass of aluminium, in grams/mole,
Le nombre de moles de gallium par gramme de zéolithe IZM-2 se détermine à partir du pourcentage (%) poids (pds) en galium de la zéolithe selon la formule : nGa = (%pdsGa) / [MM(Ga) * 100] avec nGa : moles de galium par gramme de zéolithe, en mole/gramme, The number of moles of gallium per gram of IZM-2 zeolite is determined from the percentage (%) weight (wt) of gallium of the zeolite according to the formula: n Ga = (% wtGa) / [MM(Ga) * 100 ] with n Ga : moles of galium per gram of zeolite, in mole/gram,
%pdsGa : pourcentage poids de gallium dans la zéolithe (masse sèche), mesuré par plasma à couplage inductif (ICP) sur un appareil SPECTRO ARCOS ICP-OES de SPECTRO selon la méthode ASTM D7260, %wtGa: weight percentage of gallium in the zeolite (dry mass), measured by inductively coupled plasma (ICP) on a SPECTRO ARCOS ICP-OES device from SPECTRO according to the ASTM D7260 method,
MM(Ga) : masse molaire du galium, en gramme/mole, MM(Ga): molar mass of galium, in grams/mole,
Plus précisément, la préparation d’une zéolithe Ga-AI-IZM-2 est effectuée selon les étapes suivantes. Etape i) More specifically, the preparation of a Ga-Al-IZM-2 zeolite is carried out according to the following steps. Step i)
On mélange en milieu aqueux au moins une source d’un élément tétravalent X sous forme oxyde XO2, X étant le Silicium, au moins un mélange de deux sources d’éléments trivalents sous forme oxyde Y2O3, Y étant l’aluminium et le gallium, d’au moins un composé organique azoté 1 ,6-bis(méthylpiperidinium)hexane dibromure RBr2, d’au moins une source d’au moins un métal alcalin et/ou alcalino-terreux M de valence n. At least one source of a tetravalent element X in the oxide form XO2, X being silicon, at least one mixture of two sources of trivalent elements in the oxide form Y2O3, Y being aluminum and gallium, is mixed in an aqueous medium, at least one nitrogenous organic compound 1,6-bis(methylpiperidinium)hexane dibromide RBr2, at least one source of at least one alkali metal and/or alkaline-earth metal M of valence n.
Le mélange réactionnel présente préférentiellement la composition molaire suivante : The reaction mixture preferably has the following molar composition:
SiO2/(Al2O3+Ga2O3) compris entre 70 et 350, de préférence entre 80 et 300,SiO2/(Al2O3+Ga2O3) between 70 and 350, preferably between 80 and 300,
Ga2O3/(Al2O3+Ga2C>3) compris entre 0,01 et 0,99, de préférence entre 0,05 et 0,95, de préférence entre 0,10 et 0,90, de manière préférée entre 0,20 et 0,80 et de manière très préférée entre 0,35 et 0,65, Ga2O3/(Al2O3+Ga2C>3) between 0.01 and 0.99, preferably between 0.05 and 0.95, preferably between 0.10 and 0.90, preferably between 0.20 and 0 .80 and very preferably between 0.35 and 0.65,
H2O/SiO2 compris entre 1 à 100, de préférence de 10 à 70, H2O/SiO2 between 1 to 100, preferably from 10 to 70,
RBr2/SiO2 compris entre 0,02 à 2, de préférence de 0,05 à 0,5, RBr2/SiO2 between 0.02 and 2, preferably from 0.05 to 0.5,
M2/nO/SiO2 compris entre 0,005 à 1, de préférence de 0,005 et 0,5, M 2 /nO/SiO 2 between 0.005 and 1, preferably 0.005 and 0.5,
Dans la composition molaire du mélange réactionnel ci-dessus : In the molar composition of the above reaction mixture:
SiO2 désigne la quantité molaire de SiO2 apportée par la(les) source(s) de silicium,SiO2 designates the molar quantity of SiO2 provided by the source(s) of silicon,
AI2O3 désigne la quantité molaire de AI2O3 apportée par la(les) source(s) d’aluminium,AI2O3 designates the molar quantity of AI2O3 provided by the aluminum source(s),
Ga2Û3 désigne la quantité molaire de Ga2Û3 apportée par la(les) source(s) de gallium,Ga2Û3 designates the molar quantity of Ga2Û3 provided by the source(s) of gallium,
H2O désigne la quantité molaire d’eau dans le mélange, H2O is the molar amount of water in the mixture,
RBr2 désigne la quantité molaire de 1,6-bis(méthylpiperidinium)hexane dibromure RBr2 denotes the molar amount of 1,6-bis(methylpiperidinium)hexane dibromide
M2O désigne la quantité molaire exprimée sous forme oxyde d’un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d’au moins deux de ces métaux, de manière très préférence M est le sodium. M2O denotes the molar quantity, expressed in oxide form, of one or more alkali metal(s) and/or alkaline-earth metal(s) chosen from lithium, sodium, potassium, calcium, magnesium and the mixture of at least two of these metals, very preferably M is sodium.
L’étape i) permet l’obtention d’un gel précurseur. Etape ii) Step i) makes it possible to obtain a precursor gel. Step ii)
Le traitement hydrothermal dudit gel précurseur obtenue à l’issue de l’étape i) à une température comprise entre 150°C et 195°C, pendant une durée comprise entre 1 jour (soit 24 heures) et 4 jours (soit 96 heures) et de préférence entre 1 jour (soit 24 heures) et 3 jours (soit 72 heures) jusqu’à ce que ladite zéolithe Ga-AI-IZM-2 cristallise. The hydrothermal treatment of said precursor gel obtained at the end of step i) at a temperature of between 150° C. and 195° C., for a period of between 1 day (i.e. 24 hours) and 4 days (i.e. 96 hours) and preferably between 1 day (ie 24 hours) and 3 days (ie 72 hours) until said Ga-Al-IZM-2 zeolite crystallizes.
La mise en réaction s’effectue généralement sous agitation ou en absence d’agitation, de préférence sous agitation. The reaction is generally carried out with stirring or without stirring, preferably with stirring.
A la fin de la réaction, après mise en œuvre de ladite étape ii) du procédé de préparation selon l’invention, la phase solide formée d’une zéolithe Ga-AI-IZM-2 est de préférence filtrée, lavée puis séchée. At the end of the reaction, after carrying out said step ii) of the preparation process according to the invention, the solid phase formed of a Ga-Al-IZM-2 zeolite is preferably filtered, washed and then dried.
Après l’étape de séchage, le matériau cristallisé, avantageusement composé de la zéolithe Ga-AI-IZM-2, est prêt pour des étapes ultérieures telles que la calcination et/ou l’échange d’ions. Pour ces étapes, toutes les méthodes conventionnelles connues de l’homme du métier peuvent être employées. After the drying step, the crystallized material, advantageously composed of Ga-Al-IZM-2 zeolite, is ready for subsequent steps such as calcination and/or ion exchange. For these steps, all the conventional methods known to those skilled in the art can be used.
La zéolithe séchée peut ensuite être avantageusement calcinée, de préférence à une température comprise entre 450 et 700°C pendant une durée comprise entre 2 et 20 heures, la calcination pouvant être précédée d’une montée en température progressive. The dried zeolite can then be advantageously calcined, preferably at a temperature of between 450 and 700° C. for a period of between 2 and 20 hours, the calcination possibly being preceded by a gradual rise in temperature.
La zéolithe Ga-AI-IZM-2 obtenue à l’issue de l’étape de calcination est dépourvue de toute espèce organique et en particulier du structurant organique RBr2. La zéolithe Ga-AI-IZM-2 calcinée, est généralement analysée par diffraction des rayons X. The Ga-AI-IZM-2 zeolite obtained at the end of the calcination step is devoid of any organic species and in particular of the organic structurant RBr2. The calcined Ga-AI-IZM-2 zeolite is generally analyzed by X-ray diffraction.
Conformément à l’invention, le ratio molaire Si/(AI+Ga) et le ratio molaire Ga/(AI+Ga) de la zéolithe IZM-2 obtenue peuvent être aussi ajustés aux valeurs désirées par des méthodes de post traitement de la zéolithe Ga-AI-IZM-2 obtenue après synthèse. De telles méthodes sont connues de l’homme du métier, et permettent d’effectuer de la désalumination, de la dégalliation ou de la désilication de la zéolithe. De manière préférée le ratio molaire Si/(AI+Ga) de la zéolithe IZM-2 entrant dans la composition du catalyseur selon l’invention est ajusté par un choix approprié de la composition du gel de synthèse (étape i)) de ladite zéolithe. La zéolithe Ga-AI-IZM-2 présente dans le catalyseur selon l’invention se trouve très avantageusement sous sa forme acide c’est-à-dire sous forme protonée H+. Dans un tel cas, il est avantageux que le rapport du nombre de moles de cations autre que le proton par gramme de zéolithe Ga-AI-IZM-2 divisé par le nombre de moles d’aluminium et de gallium par gramme de zéolithe IZM-2 soit inférieur à 0,9, de préférence inférieur à 0,6 et de manière très préférée inférieur à 0,3. Pour ce faire, la zéolithe Ga-AI-IZM-2 entrant dans la composition du catalyseur selon l’invention peut être par exemple échangée par au moins un traitement par une solution d’au moins un sel d’ammonium de manière à obtenir la forme ammonium de la zéolithe Ga-AI-IZM-2 qui une fois calcinée conduit à la forme acide de ladite zéolithe Ga-AI-IZM-2. Cette étape d’échange peut être effectuée à toute étape de la préparation du catalyseur, c’est-à-dire après l’étape de préparation de la zéolithe Ga-AI-IZM- 2, après l’étape de mise en forme de la zéolithe Ga-AI-IZM-2 avec une matrice, ou encore après l’étape d’introduction du métal hydro-déshydrogénant. De préférence l’étape d’échange est effectuée avant l’étape de mise en forme de la zéolithe IZM-2. In accordance with the invention, the Si/(Al+Ga) molar ratio and the Ga/(Al+Ga) molar ratio of the IZM-2 zeolite obtained can also be adjusted to the desired values by post-treatment methods for the zeolite. Ga-Al-IZM-2 obtained after synthesis. Such methods are known to those skilled in the art, and make it possible to carry out dealumination, degalliation or desilication of the zeolite. Preferably, the Si/(Al+Ga) molar ratio of the IZM-2 zeolite entering into the composition of the catalyst according to the invention is adjusted by an appropriate choice of the composition of the synthesis gel (step i)) of said zeolite . The Ga-Al-IZM-2 zeolite present in the catalyst according to the invention is very advantageously in its acid form, that is to say in the protonated H + form. In such a case, it is advantageous that the ratio of the number of moles of cations other than the proton per gram of Ga-Al-IZM-2 zeolite divided by the number of moles of aluminum and gallium per gram of IZM- 2 is less than 0.9, preferably less than 0.6 and very preferably less than 0.3. To do this, the Ga-Al-IZM-2 zeolite entering into the composition of the catalyst according to the invention can for example be exchanged by at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the Ga-AI-IZM-2 zeolite which, once calcined, leads to the acid form of said Ga-AI-IZM-2 zeolite. This exchange step can be carried out at any step in the preparation of the catalyst, that is to say after the step for preparing the Ga-Al-IZM-2 zeolite, after the step for shaping the Ga-Al-IZM-2 zeolite with a matrix, or else after the step of introducing the hydro-dehydrogenating metal. Preferably, the exchange step is carried out before the step of shaping the IZM-2 zeolite.
Matrice Matrix
Conformément à l’invention, ledit catalyseur comprend au moins une matrice. Ladite matrice peut avantageusement être amorphe ou cristallisée. According to the invention, said catalyst comprises at least one matrix. Said matrix can advantageously be amorphous or crystallized.
De préférence, ladite matrice est avantageusement choisie dans le groupe formé par l’alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange ou bien on peut choisir également les aluminates. De préférence, l’alumine est utilisée comme matrice. De manière préférée, ladite matrice contient de l’alumine sous toutes ses formes connues de l’homme du métier, telles que par exemple les alumines de type alpha, gamma, êta, delta. Lesdites alumines diffèrent par leur surface spécifique et leur volume poreux. Le mélange de la matrice et de la zéolithe Ga-AI- IZM-2 mis en forme constitue le support du catalyseur. Preferably, said matrix is advantageously chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture or else aluminates can also be chosen. Preferably, alumina is used as the matrix. Preferably, said matrix contains alumina in all its forms known to those skilled in the art, such as for example alpha, gamma, eta, delta type aluminas. Said aluminas differ by their specific surface and their porous volume. The mixture of the matrix and the shaped Ga-Al-IZM-2 zeolite constitutes the catalyst support.
Ledit catalyseur comprend avantageusement de 10 à 99% poids, de préférence de 15 à 97% poids, de manière plus préférée de 20 à 96% poids et de manière encore plus préférée de 30 à 94% poids de ladite matrice. Said catalyst advantageously comprises from 10 to 99% by weight, preferably from 15 to 97% by weight, more preferably from 20 to 96% by weight and even more preferably from 30 to 94% by weight of said matrix.
Phase métallique metallic phase
Conformément à l’invention, le catalyseur comprend au moins un métal du groupe VIII de préférence choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l’osmium, l’iridium et le platine, seul ou en mélange de préférence choisi parmi les métaux nobles du groupe VIII, de manière très préférée choisi parmi le palladium et le platine et de manière encore plus préférée le platine. In accordance with the invention, the catalyst comprises at least one group VIII metal preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, alone or as a mixture preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum.
De préférence, ledit catalyseur comprend une teneur en métal du groupe VIII comprise entre 0,01 et 5% poids par rapport à la masse totale dudit catalyseur et de préférence comprise entre 0,1 et 4% poids. Preferably, said catalyst comprises a group VIII metal content of between 0.01 and 5% by weight relative to the total mass of said catalyst and preferably between 0.1 and 4% by weight.
Dans le cas où ledit catalyseur comprend au moins un métal noble du groupe VIII, la teneur en métal noble dudit catalyseur est avantageusement comprise entre 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids par rapport à la masse totale dudit catalyseur. In the case where said catalyst comprises at least one noble metal from group VIII, the noble metal content of said catalyst is advantageously between 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and very preferably between 0.1 and 2% by weight relative to the total mass of said catalyst.
La dispersion du(es) métal(ux) du groupe VIII, déterminée par chimisorption, par exemple par titration H2/O2 ou par chimisorption du monoxyde de carbone, est comprise entre 10% et 100%, de préférence entre 20% et 100% et de manière encore plus préférée entre 30% et 100%. Le coefficient de répartition macroscopique du(es) métal(ux) du groupe VIII, obtenu à partir de son (leur) profil déterminé par microsonde de Castaing, défini comme le rapport des concentrations du(es) métal(ux) du groupe VIII au cœur du grain par rapport au bord de ce même grain, est compris entre 0,7 et 1 ,3, de préférence entre 0,8 et 1 ,2. La valeur de ce rapport, voisine de 1, témoigne de l’homogénéité de la répartition du(es) métal(ux) du groupe VIII dans le catalyseur. The dispersion of the group VIII metal(s), determined by chemisorption, for example by H2/O2 titration or by chemisorption of carbon monoxide, is between 10% and 100%, preferably between 20% and 100% and even more preferably between 30% and 100%. The macroscopic distribution coefficient of the group VIII metal(s), obtained from its (their) profile determined by Castaing microprobe, defined as the ratio of the concentrations of the group VIII metal(s) to heart of the grain relative to the edge of this same grain, is between 0.7 and 1.3, preferably between 0.8 and 1.2. The value of this ratio, close to 1, testifies to the homogeneity of the distribution of the group VIII metal(s) in the catalyst.
Ledit catalyseur peut comprendre avantageusement au moins un métal additionnel choisi dans le groupe formé par les métaux des groupes IIIA, IVA et VI IB de la classification périodique des éléments et de préférence choisi parmi le gallium, l’indium, l’étain et le rhénium. Ledit métal additionnel est de préférence choisi parmi l’indium, l’étain et le rhénium. Dans ce cas, la teneur en métal choisi parmi les métaux des groupes IIIA, IVA et VI IB est de préférence comprise entre 0,01 et 2%, de préférence entre 0,05 et 1% poids par rapport à la masse totale dudit catalyseur. Said catalyst may advantageously comprise at least one additional metal chosen from the group formed by the metals of groups IIIA, IVA and VI IB of the periodic table of the elements and preferably chosen from gallium, indium, tin and rhenium. . Said additional metal is preferably chosen from indium, tin and rhenium. In this case, the content of metal chosen from metals of groups IIIA, IVA and VI IB is preferably between 0.01 and 2%, preferably between 0.05 and 1% by weight relative to the total mass of said catalyst. .
Préparation du catalyseur Preparation of the catalyst
Le catalyseur selon l’invention peut avantageusement être préparé selon toutes les méthodes bien connues de l’homme du métier. Etape i) mise en forme du support The catalyst according to the invention can advantageously be prepared according to all the methods well known to those skilled in the art. Step i) formatting of the support
Conformément à l’invention, le procédé comprend une étape i) de préparation du support du catalyseur par mise en forme de la zéolithe Ga-AI-IZM-2 avec une matrice de sorte que le pourcentage poids de la zéolithe soit avantageusement compris entre 1 et 90% par rapport au poids du support, de préférence de 3 à 85% et de manière plus préférée de 4 à 80% et de manière encore plus préférée de 6 à 70% poids. In accordance with the invention, the method comprises a step i) of preparing the catalyst support by shaping the Ga-Al-IZM-2 zeolite with a matrix so that the weight percentage of the zeolite is advantageously between 1 and 90% based on the weight of the support, preferably from 3 to 85% and more preferably from 4 to 80% and even more preferably from 6 to 70% by weight.
Le support du catalyseur utilisé dans le procédé selon l’invention peut avantageusement être mis en forme par toute technique connue de l’homme du métier. La mise en forme peut avantageusement être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte (« oil-drop »), par granulation au plateau tournant ou par toute autre méthode bien connue de l’homme du métier. Les supports ainsi obtenus peuvent se présenter sous différentes formes et dimensions. Avantageusement, les différents constituants du support ou du catalyseur peuvent être mis en forme par étape de malaxage pour former une pâte puis extrusion de la pâte obtenue, ou alors par mélange de poudres puis pastillage, ou alors par tout autre procédé connu d’agglomération d’une poudre contenant de l’alumine. Les supports ainsi obtenus peuvent se présenter sous différentes formes et dimensions. De manière préférée la mise en forme est effectuée par malaxage et extrusion. The catalyst support used in the process according to the invention can advantageously be shaped by any technique known to those skilled in the art. The shaping can advantageously be carried out, for example, by extrusion, by pelleting, by the drop coagulation method (“oil-drop”), by granulation on a turntable or by any other method well known to those skilled in the art. . The supports thus obtained can be in different shapes and sizes. Advantageously, the various constituents of the support or of the catalyst can be shaped by mixing step to form a paste then extrusion of the paste obtained, or else by mixing powders then pelletizing, or else by any other known method of agglomeration of a powder containing alumina. The supports thus obtained can be in different shapes and sizes. Preferably, the shaping is carried out by kneading and extrusion.
Lors de la mise en forme du support par malaxage puis extrusion, ladite zéolithe Ga-AI-IZM- 2 peut être introduite au cours de la mise en solution ou en suspension des composés de la matrice, en particulier d’alumine, ou précurseurs de la matrice, en particulier d’alumine tels que la boéhmite par exemple. Ladite zéolithe Ga-AI-IZM-2 peut être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, ladite zéolithe peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en Ga-AI-IZM-2 visée dans le catalyseur selon l’invention. Cette suspension appelée couramment une barbotine est alors mélangée avec les composés de la matrice, en particulier d’alumine ou précurseurs de la matrice, en particulier d’alumine. During the shaping of the support by kneading then extrusion, said Ga-Al-IZM-2 zeolite can be introduced during the dissolution or suspension of the compounds of the matrix, in particular alumina, or precursors of the matrix, in particular of alumina such as boehmite for example. Said Ga-Al-IZM-2 zeolite can be, without this being limiting, for example in the form of powder, ground powder, suspension, suspension having undergone a deagglomeration treatment. Thus, for example, said zeolite can advantageously be suspended acidulated or not at a concentration adjusted to the final content of Ga-Al-IZM-2 targeted in the catalyst according to the invention. This suspension commonly called a slurry is then mixed with the compounds of the matrix, in particular alumina or precursors of the matrix, in particular alumina.
Par ailleurs, l’utilisation d’additifs peut avantageusement être mise en œuvre pour faciliter la mise en forme et/ou améliorer les propriétés mécaniques finales des supports comme cela est bien connu par l’homme du métier. A titre d’exemple d’additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy-éthyl-cellulose, du tall-oil (huile de tall), les gommes xanthaniques, des agents tensio-actifs, des agents floculants comme les polyacrylamides, le noir de carbone, les amidons, l’acide stéarique, l’alcool polyacrylique, l’alcool polyvinylique, des biopolymères, le glucose, les polyéthylènes glycols, etc. Furthermore, the use of additives can advantageously be implemented to facilitate shaping and/or improve the final mechanical properties of the supports, as is well known to those skilled in the art. By way of example of additives, mention may be made in particular of cellulose, carboxymethyl-cellulose, carboxy-ethyl-cellulose, tall oil (tall oil), xanthan gums, surfactants, flocculants such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc
On peut avantageusement ajouter ou retirer de l’eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut avantageusement être réalisée à tout stade de l’étape de malaxage. It is advantageous to add or remove water to adjust the viscosity of the paste to be extruded. This step can advantageously be carried out at any stage of the mixing step.
Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut également ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate. On utilise de manière préférée un hydrate et de manière encore plus préférée un hydrate d’aluminium. La perte au feu de cet hydrate est avantageusement supérieure à 15%.To adjust the solid matter content of the paste to be extruded in order to make it extrudable, it is also possible to add a predominantly solid compound and preferably an oxide or a hydrate. A hydrate is preferably used and even more preferably an aluminum hydrate. The loss on ignition of this hydrate is advantageously greater than 15%.
L’extrusion de la pâte issue de l’étape de malaxage peut avantageusement être réalisée par n’importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est avantageusement extrudée à travers une filière, par exemple à l’aide d’un piston ou d’une mono-vis ou double vis d’extrusion. L’extrusion peut avantageusement être réalisée par toute méthode connue de l’homme de métier. The extrusion of the paste resulting from the mixing step can advantageously be carried out by any conventional tool, commercially available. The paste resulting from the mixing is advantageously extruded through a die, for example using a piston or a single or double extrusion screw. The extrusion can advantageously be carried out by any method known to those skilled in the art.
Les supports du catalyseur selon l’invention sont en général sous la forme d’extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d’anneaux, de billes et/ou de roues. De préférence, les supports du catalyseur selon l’invention ont la forme de sphères ou d’extrudés. Avantageusement le support se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée. ii) Séchage The catalyst supports according to the invention are generally in the form of cylindrical or polylobed extrudates such as bilobed, trilobed, polylobed in a straight or twisted shape, but can optionally be manufactured and used in the form of crushed powders, tablets, rings, balls and/or wheels. Preferably, the catalyst supports according to the invention have the form of spheres or extrudates. Advantageously, the support is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes may be cylindrical (which may or may not be hollow) and/or twisted cylindrical and/or multilobed (2, 3, 4 or 5 lobes for example) and/or rings. The multilobed shape is advantageously used in a preferred manner. ii) Drying
Le support ainsi obtenu peut ensuite être soumis à une étape de séchage. Ladite étape de séchage est avantageusement effectuée par toute technique connue de l’homme du métier.The support thus obtained can then be subjected to a drying step. Said drying step is advantageously carried out by any technique known to those skilled in the art.
De préférence, le séchage est effectué sous flux d’air. Ledit séchage peut également être effectué sous flux de tout gaz oxydant, réducteur ou inerte. De préférence, le séchage est avantageusement effectué à une température comprise entre 50 et 180°C, de manière préférée entre 60 et 150°C et de manière très préférée entre 80 et 130°C. iii) Calcination Preferably, the drying is carried out under air flow. Said drying can also be carried out under a flow of any oxidizing, reducing or inert gas. Preferably, the drying is advantageously carried out at a temperature between 50 and 180°C, preferably between 60 and 150°C and very preferably between 80 and 130°C. iii) Calcination
Ledit support, éventuellement séché, subit ensuite de préférence une étape de calcination.Said support, optionally dried, then preferably undergoes a calcining step.
Ladite étape de calcination est avantageusement réalisée en présence d’oxygène moléculaire, par exemple en effectuant un balayage d’air, à une température avantageusement supérieure à 200°C et inférieure ou égale à 1100°C. Ladite étape de calcination peut avantageusement être effectuée en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut être un four rotatif tournant ou être un four vertical à couches traversées radiales. De préférence, ladite étape de calcination est effectuée entre plus d’une heure à 200°C à moins d’une heure à 1100°C. La calcination peut avantageusement être opérée en présence de vapeur d’eau et/ou en présence d’une vapeur acide ou basique. Par exemple, la calcination peut être réalisée sous pression partielle d’ammoniaque. iv) Traitements post-calcination Said calcination step is advantageously carried out in the presence of molecular oxygen, for example by carrying out an air sweep, at a temperature advantageously greater than 200° C. and less than or equal to 1100° C. Said calcination step can advantageously be carried out in a traversed bed, in a licked bed or in a static atmosphere. For example, the kiln used can be a rotating rotary kiln or be a vertical kiln with radial traversed layers. Preferably, said calcining step is carried out between more than one hour at 200°C to less than one hour at 1100°C. The calcination can advantageously be carried out in the presence of water vapor and/or in the presence of an acid or basic vapor. For example, calcination can be carried out under partial pressure of ammonia. iv) Post-calcination treatments
Des traitements post-calcination peuvent éventuellement être effectués, de manière à améliorer les propriétés du support, notamment les propriétés texturales. Post-calcination treatments can optionally be carried out, so as to improve the properties of the support, in particular the textural properties.
Ainsi, le support du catalyseur mis en œuvre dans le procédé selon la présente invention peut être soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l’autoclave en présence d’eau à une température supérieure à la température ambiante, de préférence supérieure à 25°C, de préférence supérieure à 30°C. Thus, the catalyst support used in the process according to the present invention can be subjected to a hydrothermal treatment in a confined atmosphere. By hydrothermal treatment in a confined atmosphere is meant a treatment by passage through an autoclave in the presence of water at a temperature above ambient temperature, preferably above 25°C, preferably above 30°C.
Au cours de ce traitement hydrothermal, on peut avantageusement imprégner le support, préalablement à son passage à l’autoclave (l’autoclavage étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l’autoclave pouvant être acide ou non). Cette imprégnation, préalable à l’autoclavage, peut avantageusement être acide ou non. Cette imprégnation, préalable à l’autoclavage peut avantageusement être effectuée à sec ou par immersion du support dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact du support avec un volume de solution inférieur ou égal au volume poreux total du support. De préférence, l’imprégnation est réalisée à sec. L’autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP 0 387 109 A. La température pendant l’autoclavage peut être comprise entre 100 et 250°C pendant une période de temps comprise entre 30 minutes et 3 heures. v) Dépôt de la phase métallique During this hydrothermal treatment, the support can advantageously be impregnated, prior to its passage through the autoclave (the autoclaving being carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave possibly being acid or not). This impregnation, prior to the autoclaving, can advantageously be acidic or not. This impregnation, prior to autoclaving, can advantageously be carried out dry or by immersing the support in an acidic aqueous solution. By dry impregnation is meant bringing the support into contact with a volume of solution less than or equal to the total pore volume of the support. Preferably, the impregnation is carried out dry. The autoclave is preferably a rotating basket autoclave such as that defined in patent application EP 0 387 109 A. The temperature during the autoclaving can be between 100 and 250° C. for a period of time between 30 minutes and 3 hours. v) Deposition of the metallic phase
Pour le dépôt du métal du groupe VIII de la classification périodique des éléments, toutes les techniques de dépôt connues de l’homme du métier et tous les précurseurs de tels métaux peuvent convenir. On peut utiliser des techniques de dépôt par imprégnation à sec ou en excès d’une solution contenant les précurseurs des métaux, en présence de compétiteurs ou non. L’introduction du métal peut s’effectuer à toute étape de la préparation du catalyseur : sur la zéolithe Ga/AI-IZM-2 et/ou sur la matrice, notamment avant l’étape de mise en forme, pendant l’étape de mise en forme, ou après l’étape de mise en forme, sur le support du catalyseur. De manière préférée le dépôt du métal s’effectue après l’étape de mise en forme. For the deposition of the metal from group VIII of the periodic table of the elements, all the deposition techniques known to those skilled in the art and all the precursors of such metals may be suitable. It is possible to use deposition techniques by dry impregnation or in excess of a solution containing the precursors of the metals, in the presence of competitors or not. The metal can be introduced at any stage in the preparation of the catalyst: on the Ga/Al-IZM-2 zeolite and/or on the matrix, in particular before the shaping stage, during the shaping, or after the shaping step, on the catalyst support. Preferably, the metal is deposited after the shaping step.
Le contrôle de certains paramètres mis en œuvre lors du dépôt, en particulier la nature du précurseur du (des) métal(ux) du groupe VIII utilisé(s), permet d’orienter le dépôt du(es)dit(s) métal(ux) majoritairement sur la matrice ou sur la zéolithe. The control of certain parameters implemented during the deposition, in particular the nature of the precursor of the group VIII metal(s) used, makes it possible to direct the deposition of said metal(s). ux) mainly on the matrix or on the zeolite.
Ainsi, pour introduire le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, majoritairement sur la matrice, on peut mettre en œuvre un échange anionique avec de l’acide hexachloroplatinique et/ou de l’acide hexachloropalladique, en présence d’un agent compétiteur, par exemple de l’acide chlorhydrique, le dépôt étant en général suivi d’une calcination, par exemple à une température comprise entre 350 et 550°C et pendant une durée comprise entre 1 et 4 heures. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la matrice et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur. Thus, to introduce the group VIII metal(s), preferably platinum and/or palladium, mainly on the matrix, it is possible to implement an anion exchange with hexachloroplatinic acid and/or hexachloropalladic acid, in the presence of a competing agent, for example hydrochloric acid, the deposition generally being followed by calcination, for example at a temperature of between 350 and 550° C. and for a period of between 1 and 4 hours. With such precursors, the group VIII metal(s) is (are) deposited mainly on the matrix and said metal(s) exhibit(s) good dispersion and good macroscopic distribution through the catalyst grain.
On peut aussi envisager de déposer le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, par échange cationique de manière à ce que le(s)dit(s) métal(ux) soi(en)t déposé(s) majoritairement sur la zéolithe. Ainsi, dans le cas du platine, le précurseur peut être par exemple choisi parmi : It is also possible to envisage depositing the group VIII metal(s), preferably platinum and/or palladium, by cationic exchange so that the said metal(s) )t deposited mainly on the zeolite. Thus, in the case of platinum, the precursor can for example be chosen from:
- les composés ammoniaqués tels que les sels de platine (II) tétramines de formule Pt(NH3)4X2, les sels de platine (IV) hexamines de formule Pt(NH3)6X4 ; les sels de platine (IV) halogénopentamines de formule (PtX(NH3)5)X3 ; les sels de platine N-tétrahalogénodiamines de formule PtX4(NH3)2 ; et - ammonia compounds such as salts of platinum (II) tetramines of formula Pt(NH 3 ) 4 X 2 , salts of platinum (IV) hexamines of formula Pt (NH 3 ) 6 X 4 ; platinum (IV) salts halopentamines of formula (PtX(NH 3 ) 5 )X 3 ; N-tetrahalogenodiamine platinum salts of formula PtX 4 (NH 3 ) 2 ; and
- les composés halogénés de formule H(Pt(acac)2X) ; - halogenated compounds of formula H(Pt(acac) 2 X);
X étant un halogène choisi dans le groupe formé par le chlore, le fluor, le brome et l’iode, X étant de préférence le chlore, et « acac » représentant le groupe acétylacétonate (de formule brute C5H7O2), dérivé de l’acétylacétone. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la zéolithe et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur. X being a halogen chosen from the group formed by chlorine, fluorine, bromine and iodine, X preferably being chlorine, and "acac" representing the acetylacetonate group (of structural formula C 5 H 7 O 2 ), derivative of acetylacetone. With such precursors, the group VIII metal(s) is (are) deposited mainly on the zeolite and said metal(s) exhibit(s) good dispersion and good macroscopic distribution through the catalyst grain.
Dans le cas où le catalyseur de l’invention contient également au moins un métal choisi parmi les métaux des groupes 111 A, IVA et VI I B, toutes les techniques de dépôt d’un tel métal connues de l’homme du métier et tous les précurseurs de tels métaux peuvent convenir. In the case where the catalyst of the invention also contains at least one metal chosen from the metals of groups IIIA, IVA and VI I B, all the techniques for depositing such a metal known to those skilled in the art and all the precursors of such metals may be suitable.
On peut ajouter le(s) métal(ux) du groupe VIII et celui(ceux) des groupes I HA, IVA et VI IB, soit séparément soit simultanément dans au moins une étape unitaire. Lorsqu’au moins un métal des groupes I HA, IVA et VI IB est ajouté séparément, il est préférable qu’il soit ajouté après le métal du groupe VIII. The metal(s) of group VIII and that(those) of groups I HA, IVA and VI IB can be added, either separately or simultaneously in at least one unitary step. When at least one Group I HA, IVA and VI IB metal is added separately, it is preferred that it be added after the Group VIII metal.
Le métal additionnel choisi parmi les métaux des groupes II IA, IVA et VI IB peut être introduit par l’intermédiaire de composés tels que par exemple les chlorures, les bromures et les nitrates des métaux des groupes I HA, IVA et VII B. Par exemple dans le cas de l’indium, on utilise avantageusement le nitrate ou le chlorure et dans le cas du rhénium, on utilise avantageusement l’acide perrhénique. Le métal additionnel choisi parmi les métaux des groupes 111 A, IVA et VI I B peut également être introduit sous la forme d’au moins un composé organique choisi dans le groupe constitué par les complexes dudit métal, en particulier les complexes polycétoniques du métal et les hydrocarbylmétaux tels que les alkyles, les cycloalkyles, les aryles, les alkylaryles et les arylalkyles de métaux. Dans ce dernier cas, l’introduction du métal est avantageusement effectuée à l’aide d’une solution du composé organométallique dudit métal dans un solvant organique. On peut également employer des composés organohalogénés du métal. Comme composés organiques de métaux, on peut citer en particulier le tétrabutylétain, dans le cas de l’étain, et le triphénylindium, dans le cas de l’indium. Si le métal additionnel choisi parmi les métaux des groupes IIIA, IVA et VIIB est introduit avant le métal du groupe VIII, le composé du métal IIIA, IVA et/ou VIIB utilisé est généralement choisi dans le groupe constitué par l’halogénure, le nitrate, l’acétate, le tartrate, le carbonate et l’oxalate du métal. L’introduction est alors avantageusement effectuée en solution aqueuse. Mais il peut également être introduit à l’aide d’une solution d’un composé organométallique du métal par exemple le tétrabutylétain. Dans ce cas, avant de procéder à l’introduction d’au moins un métal du groupe VIII, on procédera à une calcination sous air. The additional metal chosen from metals from groups II IA, IVA and VI IB can be introduced via compounds such as, for example, the chlorides, bromides and nitrates of metals from groups I HA, IVA and VII B. example in the case of indium, nitrate or chloride is advantageously used and in the case of rhenium, perrhenic acid is advantageously used. The additional metal chosen from the metals of groups IIIA, IVA and VI IB can also be introduced in the form of at least one organic compound chosen from the group consisting of the complexes of the said metal, in particular the polyketone complexes of the metal and the hydrocarbyl metals such as metal alkyls, cycloalkyls, aryls, alkylaryls and arylalkyls. In the latter case, the introduction of the metal is advantageously carried out using a solution of the organometallic compound of said metal in an organic solvent. It is also possible to employ organohalogen compounds of the metal. As organic metal compounds, mention may be made in particular of tetrabutyltin, in the case of tin, and triphenylindium, in the case of indium. If the additional metal chosen from metals of groups IIIA, IVA and VIIB is introduced before the metal of group VIII, the compound of metal IIIA, IVA and/or VIIB used is generally chosen from the group consisting of the halide, the nitrate , acetate, tartrate, carbonate and oxalate of the metal. The introduction is then advantageously carried out in aqueous solution. But it can also be introduced using a solution of an organometallic compound of the metal, for example tetrabutyltin. In this case, before proceeding with the introduction of at least one group VIII metal, a calcination in air will be carried out.
De plus, des traitements intermédiaires tels que par exemple une calcination et/ou une réduction peuvent être appliqués entre les dépôts successifs des différents métaux. In addition, intermediate treatments such as for example calcination and/or reduction can be applied between the successive depositions of the different metals.
Avant son utilisation dans le procédé selon l’invention, le catalyseur est de préférence réduit. Cette étape de réduction est avantageusement réalisée par un traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 Mpa. Par exemple, une réduction consiste en un palier à 150°C de deux heures puis une montée en température jusqu’à 450°C à la vitesse de 1 °C/min puis un palier de deux heures à 450°C ; durant toute cette étape de réduction, le débit d’hydrogène est de 1000 normaux m3 d’hydrogène par tonne catalyseur et la pression totale maintenue constante à 0,2 Mpa. Toute méthode de réduction ex-situ peut avantageusement être envisagée. Une réduction préalable du catalyseur final ex situ, sous courant d’hydrogène, peut être mise en œuvre, par exemple à une température de 450°C à 600°C, pendant une durée de 0,5 à 4 heures. Before its use in the process according to the invention, the catalyst is preferably reduced. This reduction step is advantageously carried out by a treatment under hydrogen at a temperature of between 150° C. and 650° C. and a total pressure of between 0.1 and 25 MPa. For example, a reduction consists of a plateau at 150°C for two hours then a rise in temperature to 450°C at the rate of 1°C/min then a plateau for two hours at 450°C; throughout this reduction step, the hydrogen flow rate is 1000 normal m 3 of hydrogen per tonne of catalyst and the total pressure is kept constant at 0.2 MPa. Any ex-situ reduction method can advantageously be considered. A preliminary reduction of the final catalyst ex situ, under a stream of hydrogen, can be implemented, for example at a temperature of 450° C. to 600° C., for a period of 0.5 to 4 hours.
Ledit catalyseur comprend également avantageusement du soufre. Dans le cas où le catalyseur de l’invention contient du soufre, celui-ci peut être introduit à n’importe quelle étape de la préparation du catalyseur : avant ou après étape de mise en forme, et/ou séchage et/ou calcination, avant et/ou après l’introduction du ou des métaux cités précédemment, ou encore par sulfuration in situ et ou ex-situ avant la réaction catalytique. Dans le cas d’une sulfuration in situ, la réduction, si le catalyseur n’a pas été préalablement réduit, intervient avant la sulfuration. Dans le cas d’une sulfuration ex situ, on effectue également la réduction puis la sulfuration. La sulfuration s’effectue de préférence en présence d’hydrogène en utilisant tout agent sulfurant bien connu de l’homme de métier, tel que par exemple le sulfure de diméthyle ou le sulfure d’hydrogène. Said catalyst also advantageously comprises sulfur. In the case where the catalyst of the invention contains sulfur, the latter can be introduced at any stage of the preparation of the catalyst: before or after the shaping stage, and/or drying and/or calcination, before and/or after the introduction of the metal(s) mentioned above, or alternatively by sulfurization in situ and or ex-situ before the catalytic reaction. In the case of in situ sulfurization, the reduction, if the catalyst has not been previously reduced, takes place before the sulfurization. In the case of ex situ sulphurization, reduction and then sulphurization are also carried out. The sulfurization is preferably carried out in the presence of hydrogen using any sulfurizing agent well known to those skilled in the art, such as for example dimethyl sulphide or hydrogen sulphide.
Les catalyseurs selon l’invention se présentent sous différentes formes et dimensions. Ils sont utilisés en général sous la forme d’extrudés cylindriques et/ou polylobés tels que bilobés, trilobés, polylobés de forme droite et/ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d’anneaux, de billes et/ou de roues. De préférence, les catalyseurs mis en œuvre dans le procédé selon l’invention ont la forme de sphères ou d’extrudés. Avantageusement le catalyseur se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée. Le dépôt du métal ne change pas la forme du support. The catalysts according to the invention come in different shapes and sizes. They are generally used in the form of cylindrical and/or polylobed extrudates such as bi-lobed, tri-lobed, poly-lobed in straight and/or twisted shape, but can optionally be manufactured and used in the form of crushed powders, tablets, rings, balls and/or wheels. Preferably, the catalysts used in the process according to the invention have the form of spheres or extrudates. Advantageously, the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes may be cylindrical (which may or may not be hollow) and/or twisted cylindrical and/or multilobed (2, 3, 4 or 5 lobes for example) and/or rings. The multilobed shape is advantageously used in a preferred manner. The deposition of the metal does not change the shape of the support.
Ledit catalyseur selon l’invention comprend plus préférentiellement, et de préférence est constitué de : Said catalyst according to the invention more preferably comprises, and preferably consists of:
- de 1 à 90% poids, de préférence de 3 à 85% poids et de manière plus préférée de 4 à 80% poids et de manière encore plus préférée de 6 à 70% poids de la zéolithe Ga-AI-IZM-2 selon l’invention, - from 1 to 90% by weight, preferably from 3 to 85% by weight and more preferably from 4 to 80% by weight and even more preferably from 6 to 70% by weight of the Ga-Al-IZM-2 zeolite according to invention,
- de 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids d’au moins un métal noble du groupe VIII de la classification périodique des éléments, de préférence le platine, - 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and very preferably between 0.1 and 2% by weight of at least one noble metal from group VIII of the periodic table elements, preferably platinum,
- éventuellement de 0,01 à 2%, de préférence de 0,05 à 1% poids d’au moins un métal additionnel choisi dans le groupe formé par les métaux des groupes 11 IA, IVA et VI I B,- optionally from 0.01 to 2%, preferably from 0.05 to 1% by weight of at least one additional metal chosen from the group formed by the metals of groups 11 IA, IVA and VI IB,
- éventuellement une teneur en soufre, de préférence telle que le rapport du nombre de moles de soufre sur le nombre de moles de(s) métal(ux) du groupe VIII soit compris entre 0,3 et 3, - optionally a sulfur content, preferably such that the ratio of the number of moles of sulfur to the number of moles of group VIII metal(s) is between 0.3 and 3,
- au moins une matrice, de préférence l’alumine, assurant le complément à 100% poids dans le catalyseur. - at least one matrix, preferably alumina, ensuring the complement to 100% by weight in the catalyst.
Un autre objet de l’invention concerne un procédé d’isomérisation de charges paraffiniques ayant un nombre d'atomes de carbone compris entre 9 et 25, ladite charge paraffinique étant produite à partir de ressources renouvelables, ou par un procédé mettant en jeu une étape de valorisation par la voie Fischer-Tropsch, ledit procédé opérant à une température comprise entre 200°C et 500°C, à une pression comprise entre 0,45 MPa et 7 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 kilogramme de charge introduite par kilogramme de catalyseur et par heure, en présence d’hydrogène à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, et mettant en œuvre le catalyseur selon l’invention. Another object of the invention relates to a process for the isomerization of paraffinic fillers having a number of carbon atoms between 9 and 25, said paraffinic filler being produced from renewable resources, or by a process involving a step recovery by the Fischer-Tropsch route, said process operating at a temperature of between 200°C and 500°C, at a pressure of between 0.45 MPa and 7 MPa, at an hourly space velocity of between 0.1 and 10 kilogram of load introduced by kilogram of catalyst and per hour, in the presence of hydrogen at a partial pressure of hydrogen of between 0.3 and 5.5 MPa, and implementing the catalyst according to the invention.
Le procédé d’isomérisation The isomerization process
Conformément à l’invention, le procédé d’isomérisation d’une charge paraffinique comprenant des paraffines ayant un nombre d'atomes de carbone compris entre 9 et 25, ladite charge paraffinique étant produite à partir de ressources renouvelables, est mis en œuvre à une température comprise entre 200°C et 500°C, à une pression comprise entre 0,45 MPa et 7 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 kilogramme de charge introduite par kilogramme de catalyseur et par heure et en présence d’hydrogène, à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa. De préférence, ledit procédé est effectué à une température comprise entre 200 et 450°C, et de manière plus préférée entre 220 et 430°C. La pression à laquelle le procédé selon l’invention est mis en œuvre est de préférence comprise entre 0,6 et 6 MPa. De préférence, le procédé est mis en œuvre à une vitesse spatiale horaire avantageusement comprise entre 0,2 et 7 h-1 et de manière préférée, entre 0,5 et 5 h’1. In accordance with the invention, the process for isomerizing a paraffinic feedstock comprising paraffins having a number of carbon atoms between 9 and 25, said paraffinic feedstock being produced from renewable resources, is implemented at a temperature between 200°C and 500°C, at a pressure between 0.45 MPa and 7 MPa, at an hourly space velocity between 0.1 and 10 kilograms of charge introduced per kilogram of catalyst and per hour and in the presence of hydrogen, at a hydrogen partial pressure of between 0.3 and 5.5 MPa. Preferably, said process is carried out at a temperature between 200 and 450°C, and more preferably between 220 and 430°C. The pressure at which the method according to the invention is implemented is preferably between 0.6 and 6 MPa. Preferably, the method is implemented at an hourly space velocity advantageously between 0.2 and 7 h −1 and preferably between 0.5 and 5 h −1 .
Selon l’invention, le procédé d’isomérisation comprend la mise en contact d’une charge paraffinique avec au moins ledit catalyseur selon l’invention présent dans un réacteur catalytique, en présence d’hydrogène. La pression partielle d’hydrogène est comprise entre 0,3 et 5,5 MPa, de préférence comprise entre 0,4 et 4,8 MPa. According to the invention, the isomerization process comprises bringing a paraffinic feed into contact with at least said catalyst according to the invention present in a catalytic reactor, in the presence of hydrogen. The hydrogen partial pressure is between 0.3 and 5.5 MPa, preferably between 0.4 and 4.8 MPa.
Les paraffines de ladite charge paraffinique présentent un nombre d’atomes de carbone compris entre 9 et 25, de préférence compris entre 10 et 25 et de manière très préférée entre 10 et 22. La teneur en paraffines dans ladite charge mise en œuvre dans le procédé selon l’invention est avantageusement supérieure à 90% poids, de préférence supérieure à 95% poids, de manière encore plus préférée supérieure à 98% poids. Au sein desdites paraffines, le pourcentage massique d’isoparaffines est inférieur à 15%, de manière préférée inférieur à 10% et de manière très préférée inférieur à 5%. The paraffins of said paraffinic charge have a number of carbon atoms comprised between 9 and 25, preferably comprised between 10 and 25 and very preferably between 10 and 22. The paraffin content in said charge implemented in the process according to the invention is advantageously greater than 90% by weight, preferably greater than 95% by weight, even more preferably greater than 98% by weight. Within said paraffins, the mass percentage of isoparaffins is less than 15%, preferably less than 10% and very preferably less than 5%.
Selon l’invention, ladite charge paraffinique utilisée dans le procédé selon l’invention peut être produite à partir de ressources renouvelables. According to the invention, said paraffinic filler used in the process according to the invention can be produced from renewable resources.
Selon un premier mode de réalisation, ladite charge paraffinique est produite à partir de ressources renouvelables choisies parmi les huiles végétales, les huiles d’algues ou algales, les huiles de poissons et les graisses d’origine végétale ou animale, ou des mélanges de telles charges. According to a first embodiment, said paraffinic filler is produced from renewable resources chosen from vegetable oils, algae or algal oils, fish oils and fats of vegetable or animal origin, or mixtures of such fillers.
Lesdites huiles végétales peuvent avantageusement être brutes ou raffinées, totalement ou en partie, et issues des végétaux choisis parmi le colza, le tournesol, le soja, le palmier, l’olive, la noix de coco, le coprah, le ricin, le coton, les huiles d’arachides, de lin et de crambe et toutes les huiles issues par exemple du tournesol ou du colza par modification génétique ou hybridation, cette liste n’étant pas limitative. Lesdites graisses animales sont avantageusement choisies parmi le lard et les graisses composées de résidus de l’industrie alimentaire ou issus des industries de la restauration. Les huiles de fritures, les huiles animales variées comme les huiles de poisson, le suif, le saindoux peuvent également être utilisées. Said vegetable oils can advantageously be raw or refined, totally or partly, and derived from plants chosen from rapeseed, sunflower, soy, palm, olive, coconut, copra, castor, cotton , peanut, linseed and crambe oils and all oils derived, for example, from sunflower or rapeseed by genetic modification or hybridization, this list not being exhaustive. Said animal fats are advantageously chosen from lard and fats composed of residues from the food industry or from catering industries. Frying oils, various animal oils such as fish oils, tallow, lard can also be used.
Dans ce mode de réalisation, les ressources renouvelables à partir desquelles est produite la charge paraffinique utilisée dans le procédé selon l’invention contiennent essentiellement des structures chimiques de type triglycérides que l’homme du métier connait également sous l’appellation triester d’acides gras ainsi que des acides gras libres, dont les chaînes grasses contiennent un nombre d’atomes de carbone compris entre 9 et 25. In this embodiment, the renewable resources from which the paraffinic filler used in the process according to the invention is produced essentially contain chemical structures of the triglyceride type which those skilled in the art also know under the name fatty acid triester as well as free fatty acids, whose fatty chains contain a number of carbon atoms between 9 and 25.
La structure et la longueur de chaîne hydrocarbonée de ces derniers est compatible avec les hydrocarbures présents dans le gazole et le kérosène, c’est-à-dire la coupe distillats moyens. Un triester d’acide gras est ainsi composé de trois chaînes d’acides gras. Ces chaînes d’acide gras sous forme de triester ou sous forme d’acide gras libres, possèdent un nombre d’insaturations par chaîne, également appelé nombre de doubles liaisons carbone- carbone par chaîne, généralement compris entre 0 et 3 mais qui peut être plus élevé notamment pour les huiles issues d’algues qui présentent généralement un nombre d’insaturations par chaînes de 5 à 6. The structure and length of the hydrocarbon chain of the latter is compatible with the hydrocarbons present in diesel and kerosene, i.e. the middle distillate cut. A fatty acid triester is thus composed of three chains of fatty acids. These fatty acid chains in the form of triesters or in the form of free fatty acids, have a number of unsaturations per chain, also called the number of carbon-carbon double bonds per chain, generally between 0 and 3 but which can be higher in particular for oils derived from algae which generally have a number of unsaturations per chain of 5 to 6.
Les molécules présentes dans lesdites ressources renouvelables pouvant être utilisées dans la présente invention présentent donc un nombre d’insaturations, exprimé par molécule de triglycéride, avantageusement compris entre 0 et 18. Dans ces charges, le taux d’insaturation, exprimé en nombre d’insaturations par chaîne grasse hydrocarbonée, est avantageusement compris entre 0 et 6. The molecules present in said renewable resources that can be used in the present invention therefore have a number of unsaturations, expressed per molecule of triglyceride, advantageously between 0 and 18. In these fillers, the level of unsaturation, expressed as a number of unsaturation per hydrocarbon fatty chain, is advantageously between 0 and 6.
Les ressources renouvelables comportent généralement également différentes impuretés et notamment des hétéroatomes tels que l’azote. Les teneurs en azote dans les huiles végétales sont généralement comprises entre 1 ppm et 100 ppm poids environ, selon leur nature. Elles peuvent atteindre jusqu’à 1% poids sur des charges particulières. Renewable resources generally also include various impurities and in particular heteroatoms such as nitrogen. Nitrogen levels in oils plants are generally between 1 ppm and 100 ppm by weight approximately, depending on their nature. They can reach up to 1% weight on particular loads.
Ladite charge paraffinique utilisée dans le procédé selon l’invention est avantageusement produite à partir de ressources renouvelables, en particulier choisies parmi les huiles végétales, les huiles d’algues ou algales, les huiles de poissons et les graisses d’origine végétale ou animale, ou leurs mélanges, selon des procédés connus de l’homme du métier. Une voie possible est la transformation catalytique desdites ressources renouvelables en effluent paraffinique désoxygéné en présence d’hydrogène et, en particulier, l’hydrotraitement. Said paraffinic filler used in the process according to the invention is advantageously produced from renewable resources, in particular chosen from vegetable oils, algae or algal oils, fish oils and fats of vegetable or animal origin, or mixtures thereof, according to methods known to those skilled in the art. One possible route is the catalytic transformation of said renewable resources into deoxygenated paraffinic effluent in the presence of hydrogen and, in particular, hydrotreating.
De préférence, ladite charge paraffinique est produite par hydrotraitement desdites ressources renouvelables. Ces procédés d’hydrotraitement de ressources renouvelables sont déjà bien connus et sont décrits dans de nombreux brevets. A titre d’exemple, ladite charge paraffinique utilisée dans le procédé selon l’invention peut avantageusement être produite, de préférence par hydrotraitement puis par séparation gaz/liquide, à partir desdites ressources renouvelables comme par exemple dans le brevet FR 2 910 483 ou dans le brevet FR 2 950 895. Preferably, said paraffinic feedstock is produced by hydrotreating said renewable resources. These processes for hydrotreating renewable resources are already well known and are described in numerous patents. By way of example, said paraffinic feedstock used in the process according to the invention can advantageously be produced, preferably by hydrotreatment then by gas/liquid separation, from said renewable resources as for example in patent FR 2 910 483 or in patent FR 2 950 895.
Selon un deuxième mode de réalisation, ladite charge paraffinique utilisée dans le procédé selon l’invention peut aussi être une charge paraffinique produite par un procédé mettant en jeu une étape de valorisation par la voie Fischer-Tropsch. Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide. Lesdits produits obtenus peuvent constituer la charge paraffinique du procédé selon l’invention. Le gaz de synthèse (CO+H2) est avantageusement produit à partir de gaz naturel, de charbon, de biomasse, de toute source de composés hydrocarbonés ou d’un mélange de ces sources. Ainsi, les charges paraffiniques obtenues, selon un procédé de synthèse Fischer-Tropsch, à partir d’un gaz de synthèse (CO+H2) produit à partir de ressources renouvelables, de gaz naturel ou de charbon peuvent être utilisées dans le procédé selon l’invention. De préférence, ladite charge paraffinique produite par synthèse Fischer-Tropsch et utilisée dans le procédé selon l’invention comprend majoritairement des n-paraffines. Ainsi, ladite charge comprend une teneur en n-paraffines supérieure à 60% poids par rapport à la masse totale de ladite charge. Ladite charge peut également comprendre une teneur en produits oxygénés de préférence inférieure à 10% poids, une teneur en insaturés, c’est-à-dire de préférence en produits oléfiniques, de préférence inférieure à 20% en poids et une teneur en iso-paraffines de préférence inférieure à 10% en poids par rapport à la masse totale de ladite charge. According to a second embodiment, said paraffinic filler used in the process according to the invention can also be a paraffinic filler produced by a process involving a step of upgrading by the Fischer-Tropsch route. In the Fischer-Tropsch process, synthesis gas (CO+H2) is catalytically transformed into oxygenates and essentially linear hydrocarbons in gaseous, liquid or solid form. Said products obtained can constitute the paraffinic charge of the process according to the invention. The synthesis gas (CO+H2) is advantageously produced from natural gas, coal, biomass, any source of hydrocarbon compounds or a mixture of these sources. Thus, the paraffinic feedstocks obtained, according to a Fischer-Tropsch synthesis process, from a synthesis gas (CO+H2) produced from renewable resources, natural gas or coal can be used in the process according to 'invention. Preferably, said paraffinic filler produced by Fischer-Tropsch synthesis and used in the process according to the invention mainly comprises n-paraffins. Thus, said filler comprises an n-paraffin content greater than 60% by weight relative to the total mass of said filler. Said charge may also comprise a content of oxygenated products, preferably less than 10% by weight, a content of unsaturates, that is to say preferably of olefinic products, preferably less than 20% by weight and a content of iso-paraffins preferably less than 10% by weight relative to the total mass of said filler.
De préférence, ladite charge paraffinique produite par synthèse Fischer-Tropsch est exempte d’impuretés hétéroatomiques telles que, par exemple, le soufre, l’azote ou des métaux. Preferably, said paraffinic feed produced by Fischer-Tropsch synthesis is free of heteroatomic impurities such as, for example, sulfur, nitrogen or metals.
LISTE DES FIGURES LIST OF FIGURES
La figure 1 représente le diagramme de diffraction de rayons X effectué sur le solide calciné de l’exemple 3. Figure 1 represents the X-ray diffraction diagram performed on the calcined solid of Example 3.
La figure 2 représente un cliché au Microscope Electronique au Balayage (MEB) du solide de l’exemple 3. Figure 2 represents a Scanning Electron Microscope (SEM) snapshot of the solid of Example 3.
EXEMPLES EXAMPLES
Les exemples suivants illustrent l’invention sans toutefois en limiter la portée. The following examples illustrate the invention without however limiting its scope.
Exemple 1 (non conforme à l’invention) : préparation du catalyseur A Example 1 (not in accordance with the invention): preparation of catalyst A
Synthèse d’une zéolithe Ga-IZM-2 Synthesis of a Ga-IZM-2 zeolite
51 ,9 g d’une solution aqueuse de dibromure de 1 ,6-bis(méthylpiperidinium)hexane (19,06% en poids) sont mélangés avec 25,778 g d’eau déionisée. 1 ,684 g d’hydroxyde de sodium (98% en poids, Aldrich) sont ajoutés au mélange précédent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. Par la suite, 0,489 g nitrate de galium (Ga(NOs)3 XH2O), 99% traces metals basis, Sigma-Aldrich) sont incorporés et le gel de synthèse est maintenu sous agitation pendant 15 minutes. Au final, 20,169 g de silice colloïdale (Ludox HS40, 40% en poids, Aldrich) sont incorporés dans le mélange de synthèse qui est maintenu sous agitation pendant une demi-heure pour évaporer le solvant jusqu’à obtenir la composition du gel précurseur désirée, c’est-à-dire une composition molaire du mélange suivante : 60 SiO2 : 0,25 Ga2Û3 : 10 RBr2 : 10 Na2Û : 2000 H2O, soit un ratio SiO2/Ga2O3 de 240. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 72 heures avec une rampe de montée en température de 3°C/min jusqu’à 170°C sous agitation à 300 tr/min. Le produit cristallisé obtenu est filtré, lavé à l’eau déionisée, puis séché une nuit à 100°C. La perte au feu PAF du solide séché est de 3,28%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination : le cycle de calcination comprend une montée de 1 ,5°C/min en température jusqu’à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1°C/min en température jusqu’à 550°C suivi d’un palier à 550°C maintenu durant 8 heures puis un retour à la température ambiante. Le produit solide calciné a été analysé par diffraction des rayons X et identifié comme étant constitué d’une zéolithe Ga-IZM-2 de pureté supérieure à 99,8%. Le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d’ammonium (10 ml de solution par gramme de solide, concentration en nitrate d’ammonium de 3 M) afin d’échanger les cations alcalins sodium par des ions ammonium. Cette étape de mise sous reflux est effectuée quatre fois, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme protonique (acide) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le solide ainsi obtenu a été analysé par Diffraction des Rayons X et identifié comme étant constitué par de la zéolithe Ga-IZM-2. Des caractérisations par fluorescence X et ICP permettent d’accéder aux résultats suivants pour la zéolithe Ga-IZM-2 : 51.9 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (19.06% by weight) are mixed with 25.778 g of deionized water. 1.684 g of sodium hydroxide (98% by weight, Aldrich) are added to the previous mixture, the preparation obtained is kept under stirring for 10 minutes. Subsequently, 0.489 g galium nitrate (Ga(NOs)3 XH2O), 99% trace metals basis, Sigma-Aldrich) are incorporated and the synthesis gel is kept stirred for 15 minutes. In the end, 20.169 g of colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained. , i.e. a molar composition of the following mixture: 60 SiO2: 0.25 Ga2O3: 10 RBr2: 10 Na2O: 2000 H2O, i.e. a SiO2/Ga2O3 ratio of 240. The precursor gel is then transferred, after homogenization , in a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on fire PAF of the dried solid is 3.28%. The solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature. The calcined solid product was analyzed by X-ray diffraction and identified as consisting of a Ga-IZM-2 zeolite of greater than 99.8% purity. The solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions. This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C. Finally, to obtain the zeolite in its protonic (acid) form, a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid). The solid thus obtained was analyzed by X-ray diffraction and identified as consisting of Ga-IZM-2 zeolite. Characterizations by X-ray fluorescence and ICP give access to the following results for the Ga-IZM-2 zeolite:
- rapport du nombre de moles de silicium divisé par le nombre de moles d’aluminium et de gallium, en mol/mol, Si/(AI+Ga) : 62 ; - ratio of the number of moles of silicon divided by the number of moles of aluminum and gallium, in mol/mol, Si/(Al+Ga): 62;
- rapport du nombre de moles de gallium divisé par le nombre de moles d’aluminium et de gallium, en mol/mol, Ga/(AI+Ga) : 1 ; - ratio of the number of moles of gallium divided by the number of moles of aluminum and gallium, in mol/mol, Ga/(Al+Ga): 1;
- rapport du nombre de moles de sodium divisé par le nombre de moles d’aluminium et de gallium, en mol/mol, Na/(AI+Ga) : 0,06. - ratio of the number of moles of sodium divided by the number of moles of aluminum and gallium, in mol/mol, Na/(Al+Ga): 0.06.
Dépôt du platine platinum deposit
Le platine est déposé par imprégnation en excès de billes d’alumine GGD200 (fournies par la société AXENS) par une solution aqueuse contenant de l’acide hexachloroplatinique. La concentration en acide hexachloroplatinique dans la solution est de 2,38 10'2 mol/l. On utilise 20 grammes d’alumine dont on remplit le volume poreux par de l’eau distillée et on laisse le solide à maturer durant une heure à température ambiante. Le solide est ensuite immergé dans 90 ml d’une solution d’acide chlorhydrique HCl de concentration 2,13 10'1 mol/l dans un erlenmeyer puis l’ensemble est mis sur agitation sur une table d’agitation (100 tours/min) à température ambiante durant une heure. La solution d’acide chlorhydrique est ensuite soutirée puis le solide est immergé dans 90 ml de la solution d’acide hexachloroplatinique précédemment décrite puis l’ensemble est mis sur agitation sur une table d’agitation (100 tours/min) à température ambiante durant 24 heures. La solution d’imprégnation est ensuite soutirée et le solide est rincé avec 160 ml d’eau distillée. Le solide est ensuite mis à sécher en étuve ventilée durant la nuit à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (2 normaux litres par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes : The platinum is deposited by impregnation in excess of GGD200 alumina balls (supplied by the company AXENS) with an aqueous solution containing hexachloroplatinic acid. The concentration of hexachloroplatinic acid in the solution is 2.38×10 −2 mol/l. 20 grams of alumina are used, the pore volume of which is filled with distilled water and the solid is left to mature for one hour at ambient temperature. The solid is then immersed in 90 ml of a solution of hydrochloric acid HCl with a concentration of 2.13 10' 1 mol/l in an Erlenmeyer flask then the whole is stirred on a stirring table (100 revolutions/min ) at room temperature for one hour. The hydrochloric acid solution is then withdrawn then the solid is immersed in 90 ml of the hexachloroplatinic acid solution described above then the whole is stirred on a stirring table (100 rpm) at room temperature for 24 hours. The impregnation solution is then drawn off and the solid is rinsed with 160 ml of distilled water. The solid is then dried in a ventilated oven overnight at 110° C. and a calcining step is finally carried out under a flow of dry air (2 normal liters per hour and per gram of solid) in a tube furnace under the conditions following:
- montée de la température à l’ambiante à 500°C à 5°C/min ; - rise in temperature to ambient at 500°C at 5°C/min;
- palier de deux heures à 500°C ; - stage of two hours at 500°C;
- descente à l’ambiante. - ambient descent.
La teneur en Pt mesurée par FX sur l’alumine calcinée est de 1 ,7% en poids, sa dispersion mesurée par titrage H2/O2 est de 86%, son coefficient de répartition mesuré par microsonde de Castaing de 0,99. The Pt content measured by FX on the calcined alumina is 1.7% by weight, its dispersion measured by H2/O2 titration is 86%, its distribution coefficient measured by Castaing microprobe 0.99.
Mise en forme du catalyseur Catalyst shaping
La mise en forme du catalyseur A est effectuée par pastillage et concassage de la zéolithe Ga-IZM-2 avec l’alumine imprégnée de Pt. Tout d’abord on s’assure de la maitrise de la granulométrie des poudres de départ par tamisage de la poudre de Ga-IZM-2 et broyage- tamisage des billes d’alumine imprégnée de Pt pour obtenir une granulométrie inférieure à 63 microns. Après pesée des masses de solides désirées (1 gramme de masse sèche pour chaque solide), le mélange mécanique (2 grammes masse sèche) des deux poudres est effectué à l’aide d’un broyeur à godet durant 2 minutes, avec une boule et une fréquence de 30 Hz. Le mélange est ensuite pastillé avec une presse hydraulique (4 ton métrique) puis broyé et tamisé à la granulométrie de 250-500 microns. Catalyst A is shaped by pelletizing and crushing the Ga-IZM-2 zeolite with alumina impregnated with Pt. the Ga-IZM-2 powder and grinding-screening of the alumina balls impregnated with Pt to obtain a particle size of less than 63 microns. After weighing the masses of solids desired (1 gram of dry mass for each solid), the mechanical mixing (2 grams of dry mass) of the two powders is carried out using a bucket mill for 2 minutes, with a ball and a frequency of 30 Hz. The mixture is then pelletized with a hydraulic press (4 ton metric) then ground and sieved to a particle size of 250-500 microns.
La composition du catalyseur A est la suivante : 50% poids Ga-IZM-2 / 0,85% poids Pt / 49,15% poids Alumine. Exemple 2 (conforme à l’invention) : préparation du catalyseur B The composition of catalyst A is as follows: 50% weight Ga-IZM-2/0.85% weight Pt/49.15% weight Alumina. Example 2 (in accordance with the invention): preparation of catalyst B
Synthèse d’une zéolithe Ga-AI-IZM-2 n°1 Synthesis of a Ga-AI-IZM-2 zeolite n°1
Cette zéolithe Ga-AI-IZM-2 a été synthétisée conformément à l’enseignement de la demande de brevet FR 2 918 050. 51 ,892 g d’une solution aqueuse de dibromure de 1 ,6- bis(méthylpiperidinium)hexane (19,06% en poids) sont mélangés avec 25,892 g d’eau déionisée. 1 ,676 g d’hydroxyde de sodium (98% en poids, Aldrich) sont ajoutés au mélange précédent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. 0,027 g d’aluminate de sodium (NaAIC>2, 53,00% AI2O3, 42.32% Na2<D, Carlo Erba) sont incorporés dans le mélange précèdent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. Par la suite, 0,366 g nitrate de galium (Ga(NOs)3 XH2O), 99% traces metals basis, Sigma-Aldrich) sont incorporés et le gel de synthèse est maintenu sous agitation pendant 15 minutes. Au final, 20,167 g de silice colloïdale (Ludox HS40, 40% en poids, Aldrich) sont incorporés dans le mélange de synthèse qui est maintenu sous agitation pendant une demi- heure pour évaporer le solvant jusqu’à obtenir la composition du gel précurseur désirée, c’est-à-dire une composition molaire du mélange suivante : 60 SiO2 : 0,063 AI2O3 : 0,188 Ga2Û3 : 10 RBr2 : 10 Na2Û : 2000 H2O, soit un ratio molaire SiO2/(Al2O3+Ga2O3) de 240 et un ratio molaire Ga2O3/(Al2O3+Ga2O3) de 0,75. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 72 heures avec une rampe de montée en température de 3°C/min jusqu’à 170°C sous agitation à 300 tr/min. Le produit cristallisé obtenu est filtré, lavé à l’eau déionisée, puis séché une nuit à 100°C. La perte au feu PAF du solide séché est de 3,02%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination : le cycle de calcination comprend une montée de 1 ,5°C/min en température jusqu’à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1°C/min en température jusqu’à 550°C suivi d’un palier à 550°C maintenu durant 8 heures puis un retour à la température ambiante. Le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d’ammonium (10 ml de solution par gramme de solide, concentration en nitrate d’ammonium de 3 M) afin d’échanger les cations alcalins sodium par des ions ammonium. Cette étape de mise sous reflux est effectuée quatre fois, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme protonique (acide) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide. Le produit solide calciné est analysé par diffraction des rayons X et identifié comme étant constitué d’une zéolithe IZM-2 de pureté supérieure à 99,8%. Des caractérisations par fluorescence X et ICP permettent d’accéder aux résultats suivants pour la zéolithe Ga-AI-IZM-2 n°1 : This Ga-Al-IZM-2 zeolite was synthesized in accordance with the teaching of patent application FR 2 918 050. 51.892 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (19 .06% by weight) are mixed with 25.892 g of deionized water. 1.676 g of sodium hydroxide (98% by weight, Aldrich) are added to the preceding mixture, the preparation obtained is kept under stirring for 10 minutes. 0.027 g of sodium aluminate (NaAIC>2, 53.00% Al2O3, 42.32% Na2<D, Carlo Erba) are incorporated into the above mixture, the preparation obtained is kept under stirring for 10 minutes. Subsequently, 0.366 g galium nitrate (Ga(NOs)3 XH2O), 99% trace metals basis, Sigma-Aldrich) are incorporated and the synthesis gel is kept stirred for 15 minutes. In the end, 20.167 g of colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained. , i.e. a molar composition of the following mixture: 60 SiO2: 0.063 Al2O3: 0.188 Ga2O3: 10 RBr2: 10 Na2O: 2000 H2O, i.e. a SiO2/(Al2O3+Ga2O3) molar ratio of 240 and a molar ratio Ga2O3/(Al2O3+Ga2O3) of 0.75. The precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on ignition PAF of the dried solid is 3.02%. The solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature. The solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions. This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C. Finally, to obtain the zeolite in its protonic (acid) form, a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and by gram of solid. The calcined solid product is analyzed by X-ray diffraction and identified as consisting of an IZM-2 zeolite with a purity greater than 99.8%. Characterizations by X-ray fluorescence and ICP give access to the following results for the zeolite Ga-AI-IZM-2 n°1:
- rapport du nombre de moles de silicium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Si/(AI+Ga) : 68 ; - ratio of the number of moles of silicon divided by the number of moles of gallium and aluminum, in mol/mol, Si/(Al+Ga): 68;
- rapport du nombre de moles de gallium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Ga/(AI+Ga) : 0,73 ; - ratio of the number of moles of gallium divided by the number of moles of gallium and aluminum, in mol/mol, Ga/(Al+Ga): 0.73;
- rapport du nombre de moles de sodium divisé par le nombre de moles d’aluminium et gallium, en mol/mol, Na/(AI+Ga) : 0,02. - ratio of the number of moles of sodium divided by the number of moles of aluminum and gallium, in mol/mol, Na/(Al+Ga): 0.02.
Dépôt du platine platinum deposit
Le dépôt du platine est réalisé de la même manière que pour le catalyseur A. The deposition of platinum is carried out in the same way as for catalyst A.
Mise en forme du catalyseur Catalyst shaping
La mise en forme du catalyseur est la même que pour le catalyseur A. The shaping of the catalyst is the same as for catalyst A.
La composition du catalyseur B est la suivante : 50% poids Ga-AI-IZM-2 n°1 / 0,85% poids Pt / 49,15% poids Alumine. The composition of catalyst B is as follows: 50% by weight Ga-Al-IZM-2 No. 1/0.85% by weight Pt/49.15% by weight Alumina.
Exemple 3 (conforme à l’invention) : préparation du catalyseur C Example 3 (in accordance with the invention): preparation of catalyst C
Synthèse d’une zéolithe Ga-AI-ZM-2 n°2 Synthesis of a zeolite Ga-AI-ZM-2 n°2
Cette zéolithe IZM-2 a été synthétisée conformément à l’enseignement de la demande de brevet FR 2 918 050. 51 ,908 g d’une solution aqueuse de dibromure de 1,6- bis(méthylpiperidinium)hexane (19,06% en poids) sont mélangés avec 25,976 g d’eau déionisée. 1,654 g d’hydroxyde de sodium (98% en poids, Aldrich) sont ajoutés au mélange précédent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. 0,055 g d’aluminate de sodium (NaAIO2, 53,00% AI2O3, 42.32% Na2Û, Carlo Erba) sont incorporés dans le mélange précèdent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. Par la suite, 0,245 g nitrate de galium (Ga(NOs)3 XH2O, 99% traces metals basis, Sigma-Aldrich) sont incorporés et le gel de synthèse est maintenu sous agitation pendant 15 minutes. Au final, 20,177 g de silice colloïdale (Ludox HS40, 40% en poids, Aldrich) sont incorporés dans le mélange de synthèse qui est maintenu sous agitation pendant une demi- heure pour évaporer le solvant jusqu’à obtenir la composition du gel précurseur désirée, c’est-à-dire une composition molaire du mélange suivante : 60 SiC>2 : 0,125 AI2O3 : 0,125 Ga2Û3 : 10 RBr2 : 10 Na2<D : 2000 H2O, soit un ratio molaire SiO2/(Al2O3+Ga2C>3) de 240 et un ratio molaire Ga2O3/(Al2O3+Ga2O3) de 0,50. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 72 heures avec une rampe de montée en température de 3°C/min jusqu’à 170°C sous agitation à 300 tr/min. Le produit cristallisé obtenu est filtré, lavé à l’eau déionisée, puis séché une nuit à 100°C. La perte au feu PAF du solide séché est de 1 ,9%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination : le cycle de calcination comprend une montée de 1 ,5°C/min en température jusqu’à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1°C/min en température jusqu’à 550°C suivi d’un palier à 550°C maintenu durant 8 heures puis un retour à la température ambiante. Le diagramme de diffraction de rayons X effectué sur le solide calciné est donné sur la Figure 1 . Le cliché au Microscope Electronique au Balayage (MEB) est donné sur la Figure 2. Le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d’ammonium (10 ml de solution par gramme de solide, concentration en nitrate d’ammonium de 3 M) afin d’échanger les cations alcalins sodium par des ions ammonium. Cette étape de mise sous reflux est effectuée quatre fois, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme protonique (acide) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le produit solide calciné est analysé par diffraction des rayons X et identifié comme étant constitué d’une zéolithe Ga-/AI-IZM-2 de pureté supérieure à 99,8%. Des caractérisations par fluorescence X et ICP permettent d’accéder aux résultats suivants pour la zéolithe Ga-AI-IZM-2 n°2 : This IZM-2 zeolite was synthesized in accordance with the teaching of patent application FR 2 918 050. 51.908 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (19.06% in weight) are mixed with 25.976 g of deionized water. 1.654 g of sodium hydroxide (98% by weight, Aldrich) are added to the preceding mixture, the preparation obtained is kept under stirring for 10 minutes. 0.055 g of sodium aluminate (NaAIO2, 53.00% Al2O3, 42.32% Na2O, Carlo Erba) are incorporated into the above mixture, the preparation obtained is kept stirring for 10 minutes. Subsequently, 0.245 g galium nitrate (Ga(NOs)3 XH2O, 99% trace metals basis, Sigma-Aldrich) are incorporated and the synthesis gel is kept stirred for 15 minutes. In the end, 20.177 g of colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained, that is to say a molar composition of the following mixture: 60 SiC>2: 0.125 Al2O3: 0.125 Ga2O3: 10 RBr2: 10 Na2<D: 2000 H2O, i.e. a SiO2/(Al2O3+Ga2C>3) molar ratio of 240 and a Ga2O3/(Al2O3+Ga2O3) molar ratio of 0.50. The precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on ignition PAF of the dried solid is 1.9%. The solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature. The X-ray diffraction pattern performed on the calcined solid is given in Figure 1. The Scanning Electron Microscope (SEM) photograph is given in Figure 2. The solid thus obtained is then refluxed for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, concentration in 3 M ammonium nitrate) to exchange sodium alkali cations for ammonium ions. This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C. Finally, to obtain the zeolite in its protonic (acid) form, a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid). The calcined solid product is analyzed by X-ray diffraction and identified as consisting of a Ga-/Al-IZM-2 zeolite of purity greater than 99.8%. Characterizations by X-ray fluorescence and ICP give access to the following results for the zeolite Ga-AI-IZM-2 n°2:
- rapport du nombre de moles de silicium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Si/(AI+Ga) : 73 ; - ratio of the number of moles of silicon divided by the number of moles of gallium and aluminum, in mol/mol, Si/(Al+Ga): 73;
- rapport du nombre de moles de gallium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Ga/(AI+Ga) : 0,5 ; - ratio of the number of moles of gallium divided by the number of moles of gallium and aluminum, in mol/mol, Ga/(Al+Ga): 0.5;
- rapport du nombre de moles de sodium divisé par le nombre de moles d’aluminium et gallium, en mol/mol, Na/(AI+Ga) : 0,07. Dépôt du platine - ratio of the number of moles of sodium divided by the number of moles of aluminum and gallium, in mol/mol, Na/(Al+Ga): 0.07. platinum deposit
Le dépôt du platine est réalisé de la même manière que pour le catalyseur A. The deposition of platinum is carried out in the same way as for catalyst A.
Mise en forme du catalyseur Catalyst shaping
La mise en forme du catalyseur est la même que pour le catalyseur A. The shaping of the catalyst is the same as for catalyst A.
La composition du catalyseur C est la suivante : 50% poids Ga-AI-IZM-2 n°2 / 0,85% poids Pt / 49, 15% poids Alumine. The composition of catalyst C is as follows: 50% by weight Ga-Al-IZM-2 No. 2/0.85% by weight Pt/49.15% by weight Alumina.
Exemple 4 (conforme à l’invention) : préparation du catalyseur D Example 4 (in accordance with the invention): preparation of catalyst D
Synthèse d’une zéolithe Ga-AI-IZM-2 n°3 Synthesis of a zeolite Ga-AI-IZM-2 n°3
Cette zéolithe IZM-2 a été synthétisée conformément à l’enseignement de la demande de brevet FR 2 918 050. 46,023 g d’une solution aqueuse de dibromure de 1 ,6- bis(méthylpiperidinium)hexane (21 ,50% en poids) sont mélangés avec 31 ,98 g d’eau déionisée. 1 ,64 g d’hydroxyde de sodium (98% en poids, Aldrich) sont ajoutés au mélange précédent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. 0,082 g d’aluminate de sodium (NaAIC>2, 53,00% AI2O3, 42.32% Na2<D, Carlo Erba) sont incorporés dans le mélange précèdent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. Par la suite, 0,122 g nitrate de galium (Ga(NOs)3 XH2O, 99% traces metals basis, Sigma-Aldrich) sont incorporés et le gel de synthèse est maintenu sous agitation pendant 15 minutes. Au final, 20,172 g de silice colloïdale (Ludox HS40, 40% en poids, Aldrich) sont incorporés dans le mélange de synthèse qui est maintenu sous agitation pendant une demi- heure pour évaporer le solvant jusqu’à obtenir la composition du gel précurseur désirée, c’est-à-dire une composition molaire du mélange suivante : 60 SiO2 : 0,188 AI2O3 : 0,063 Ga2Û3 : 10 RBr2 : 10 Na2Û : 2000 H2O, soit un ratio molaire SiO2/(Al2O3+Ga2O3) de 240 et un ratio molaire Ga2O3/(Al2O3+Ga2O3) de 0,25. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 72 heures avec une rampe de montée en température de 3°C/min jusqu’à 170°C sous agitation à 300 tr/min. Le produit cristallisé obtenu est filtré, lavé à l’eau déionisée, puis séché une nuit à 100°C. La perte au feu PAF du solide séché est de 0,8%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination : le cycle de calcination comprend une montée de 1 ,5°C/min en température jusqu’à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1°C/min en température jusqu’à 550°C suivi d’un palier à 550°C maintenu durant 8 heures puis un retour à la température ambiante. Le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d’ammonium (10 ml de solution par gramme de solide, concentration en nitrate d’ammonium de 3 M) afin d’échanger les cations alcalins sodium par des ions ammonium. Cette étape de mise sous reflux est effectuée quatre fois, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme protonique (acide) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le produit solide calciné est analysé par diffraction des rayons X et identifié comme étant constitué d’une zéolithe Ga-AI-IZM-2 de pureté supérieure à 99,8%. Des caractérisations par fluorescence X et ICP permettent d’accéder aux résultats suivants pour la zéolithe Ga-AI-IZM-2 n°3 : This IZM-2 zeolite was synthesized in accordance with the teaching of patent application FR 2 918 050. 46.023 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (21.50% by weight) are mixed with 31.98 g of deionized water. 1.64 g of sodium hydroxide (98% by weight, Aldrich) are added to the previous mixture, the preparation obtained is kept under stirring for 10 minutes. 0.082 g of sodium aluminate (NaAIC>2, 53.00% Al2O3, 42.32% Na2<D, Carlo Erba) are incorporated into the above mixture, the preparation obtained is kept under stirring for 10 minutes. Subsequently, 0.122 g galium nitrate (Ga(NOs)3 XH2O, 99% trace metals basis, Sigma-Aldrich) are incorporated and the synthesis gel is kept stirred for 15 minutes. In the end, 20.172 g of colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained. , i.e. a molar composition of the following mixture: 60 SiO2: 0.188 Al2O3: 0.063 Ga2O3: 10 RBr2: 10 Na2O: 2000 H2O, i.e. a SiO2/(Al2O3+Ga2O3) molar ratio of 240 and a molar ratio Ga2O3/(Al2O3+Ga2O3) of 0.25. The precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The loss on ignition PAF of the dried solid is 0.8%. The solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1°C/min in temperature up to 550°C followed by a plateau at 550°C maintained for 8 hours then a return to ambient temperature. The solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions. This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C. Finally, to obtain the zeolite in its protonic (acid) form, a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid). The calcined solid product is analyzed by X-ray diffraction and identified as consisting of a Ga-Al-IZM-2 zeolite of purity greater than 99.8%. Characterizations by X-ray fluorescence and ICP give access to the following results for the zeolite Ga-AI-IZM-2 n°3:
- rapport du nombre de moles de silicium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Si/(AI+Ga) : 77 ; - ratio of the number of moles of silicon divided by the number of moles of gallium and aluminum, in mol/mol, Si/(Al+Ga): 77;
- rapport du nombre de moles de gallium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Ga/(AI+Ga) : 0,25 ; - ratio of the number of moles of gallium divided by the number of moles of gallium and aluminum, in mol/mol, Ga/(Al+Ga): 0.25;
- rapport du nombre de moles de sodium divisé par le nombre de moles d’aluminium et gallium, en mol/mol, Na/(AI+Ga) : 0,1. - ratio of the number of moles of sodium divided by the number of moles of aluminum and gallium, in mol/mol, Na/(Al+Ga): 0.1.
Dépôt du platine platinum deposit
Le dépôt du platine est réalisé de la même manière que pour le catalyseur A. The deposition of platinum is carried out in the same way as for catalyst A.
Mise en forme du catalyseur Catalyst shaping
La mise en forme du catalyseur est la même que pour le catalyseur A. The shaping of the catalyst is the same as for catalyst A.
La composition du catalyseur D est la suivante : 50% poids Ga-AI-IZM-2 n°3 / 0,85% poids Pt / 49, 15% poids Alumine. Exemple 5 (non conforme à l’invention) : préparation du catalyseur E The composition of catalyst D is as follows: 50% by weight Ga-Al-IZM-2 No. 3/0.85% by weight Pt/49.15% by weight Alumina. Example 5 (not in accordance with the invention): preparation of catalyst E
Synthèse d’une zéolithe AI-IZM-2 Synthesis of an AI-IZM-2 zeolite
46,050 g d’une solution aqueuse de dibromure de 1 ,6-bis(méthylpiperidinium)hexane (19,06% en poids) sont mélangés avec 32,107 g d’eau déionisée. 1 ,62 g d’hydroxyde de sodium (98% en poids, Aldrich) sont ajoutés au mélange précédent, la préparation obtenue est maintenue sous agitation pendant 10 minutes. Par la suite, 0,109 g d’aluminate de sodium (NaAIC>2, 53,00% AI2O3, 42.32% Na2<D, Carlo Erba) sont incorporés et le gel de synthèse est maintenu sous agitation pendant 15 minutes. Au final, 20,165 g de silice colloïdale (Ludox HS40, 40% en poids, Aldrich) sont incorporés dans le mélange de synthèse qui est maintenu sous agitation pendant une demi-heure pour évaporer le solvant jusqu’à obtenir la composition du gel précurseur désirée, c’est-à-dire une composition molaire du mélange suivante : 60 SiC>2 : 0,25 AI2O3 : 10 RBr2 : 10 Na2<D : 2000 H2O, soit un ratio SiO2/AhO3 de 240. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 72 heures avec une rampe de montée en température de 3°C/min jusqu’à 170°C sous agitation à 300 tr/min. Le produit cristallisé obtenu est filtré, lavé à l’eau déionisée, puis séché une nuit à 100°C. La PAF du solide séché est de 2,8%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination : le cycle de calcination comprend une montée de 1 ,5°C/min en température jusqu’à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1 °C/min en température jusqu’à 550°C suivi d’un palier à 550°C maintenu durant 8 heures puis un retour à la température ambiante. Le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d’ammonium (10 ml de solution par gramme de solide, concentration en nitrate d’ammonium de 3 M) afin d’échanger les cations alcalins sodium par des ions ammonium. Cette étape de mise sous reflux est effectuée quatre fois, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme protonique (acide) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le produit solide calciné est analysé par diffraction des rayons X et identifié comme étant constitué d’une zéolithe AI-IZM- 2 de pureté supérieure à 99,8%. Des caractérisations par fluorescence X et ICP permettent d’accéder aux résultats suivants pour la zéolithe AI-IZM-2 : - rapport du nombre de moles de silicium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Si/(AI+Ga) : 90 ; 46.050 g of an aqueous solution of 1,6-bis(methylpiperidinium)hexane dibromide (19.06% by weight) are mixed with 32.107 g of deionized water. 1.62 g of sodium hydroxide (98% by weight, Aldrich) are added to the preceding mixture, the preparation obtained is kept under stirring for 10 minutes. Subsequently, 0.109 g of sodium aluminate (NaAIC>2, 53.00% Al2O3, 42.32% Na2<D, Carlo Erba) are incorporated and the synthesis gel is kept stirred for 15 minutes. In the end, 20.165 g of colloidal silica (Ludox HS40, 40% by weight, Aldrich) are incorporated into the synthesis mixture which is kept under stirring for half an hour to evaporate the solvent until the composition of the desired precursor gel is obtained. , i.e. a molar composition of the following mixture: 60 SiC>2: 0.25 Al2O3: 10 RBr2: 10 Na2<D: 2000 H2O, i.e. a SiO2/AhO3 ratio of 240. The precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades. The reactor is closed, then heated for 72 hours with a temperature rise ramp of 3° C./min up to 170° C. with stirring at 300 rpm. The crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100°C. The PAF of the dried solid is 2.8%. The solid is then introduced into a muffle furnace where a calcination step is carried out: the calcination cycle includes a rise of 1.5°C/min in temperature up to 200°C, a plateau at 200°C maintained for 2 hours, a rise of 1° C./min in temperature up to 550° C. followed by a plateau at 550° C. maintained for 8 hours then a return to ambient temperature. The solid thus obtained is then put under reflux for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M) in order to exchange the sodium alkali cations with ammonium ions. This refluxing step is carried out four times, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100°C. Finally, to obtain the zeolite in its protonic (acid) form, a calcination step is carried out at 550°C for ten hours (temperature rise ramp of 5°C/min) in a bed traversed under dry air (2 normal liters per hour and per gram of solid). The calcined solid product is analyzed by X-ray diffraction and identified as consisting of an AI-IZM-2 zeolite with a purity greater than 99.8%. Characterizations by X-ray fluorescence and ICP provide the following results for the AI-IZM-2 zeolite: - ratio of the number of moles of silicon divided by the number of moles of gallium and aluminum, in mol/mol, Si/(Al+Ga): 90;
- rapport du nombre de moles de gallium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Ga/(AI+Ga) : 0 ; - ratio of the number of moles of gallium divided by the number of moles of gallium and aluminum, in mol/mol, Ga/(Al+Ga): 0;
- rapport du nombre de moles de sodium divisé par le nombre de moles de gallium et aluminium, en mol/mol, Na/(AI+Ga) : 0,07. - ratio of the number of moles of sodium divided by the number of moles of gallium and aluminum, in mol/mol, Na/(Al+Ga): 0.07.
Dépôt du platine platinum deposit
Le dépôt du platine est réalisé de la même manière que pour le catalyseur A. The deposition of platinum is carried out in the same way as for catalyst A.
Mise en forme du catalyseur Catalyst shaping
La mise en forme du catalyseur est la même que pour le catalyseur A. The shaping of the catalyst is the same as for catalyst A.
La composition du catalyseur E est la suivante : 50% poids AI-IZM-2 / 0,85% poids Pt / 49,15% poids Alumine. The composition of catalyst E is as follows: 50% by weight AI-IZM-2/0.85% by weight Pt/49.15% by weight Alumina.
Exemple 6 : évaluation des propriétés catalytiques des catalyseurs B, C et D conformes à l’invention et A et E non conformes à l’invention, en isomérisation d’une charge paraffiniqueExample 6: evaluation of the catalytic properties of catalysts B, C and D in accordance with the invention and A and E not in accordance with the invention, in isomerization of a paraffinic charge
Les catalyseurs ont été testés en isomérisation d’une charge paraffinique composée par du n-hexadécane. Les tests ont été effectués dans une micro-unité mettant en œuvre un réacteur lit fixe et travaillant en courant descendant sans recyclage. L’analyse des effluents hydrocarbonés est effectuée en ligne par chromatographie en phase gazeuse. Une fois chargé dans l’unité, le catalyseur subit une première étape de séchage sous azote dans les conditions suivantes : The catalysts were tested in isomerization of a paraffinic charge composed of n-hexadecane. The tests were carried out in a micro-unit implementing a fixed bed reactor and working in downdraft without recycling. The analysis of hydrocarbon effluents is carried out online by gas chromatography. Once loaded into the unit, the catalyst undergoes a first stage of drying under nitrogen under the following conditions:
- débit d’azote : 2 normaux litres par heure et par gramme de catalyseur, - nitrogen flow: 2 normal liters per hour and per gram of catalyst,
- pression totale : 0,1 MPa, - total pressure: 0.1 MPa,
- rampe de montée en température de l’ambiante à 150°C : 5°C/min, - temperature rise ramp from ambient to 150°C: 5°C/min,
- palier à 150°C de 30 minutes. - plateau at 150°C for 30 minutes.
Après séchage l’azote est remplacé par l’hydrogène et une étape de réduction sous débit d’hydrogène pur est effectuée ensuite dans les conditions suivantes : - débit d’hydrogène : 5 normaux litres par heure et par gramme de catalyseur,After drying, the nitrogen is replaced by hydrogen and a reduction step under a flow of pure hydrogen is then carried out under the following conditions: - hydrogen flow: 5 normal liters per hour and per gram of catalyst,
- pression totale : 1 ,1 MPa, - total pressure: 1.1 MPa,
- rampe de montée en température de 150 à 450°C : 5°C/min, - temperature rise ramp from 150 to 450°C: 5°C/min,
- palier à 450°C de 1 heure. Après étape de réduction, la température est descendue à 230°C, et le catalyseur est mis en contact du n-hexadécane dans les conditions suivantes : - plateau at 450°C for 1 hour. After the reduction step, the temperature has dropped to 230° C., and the catalyst is brought into contact with n-hexadecane under the following conditions:
- vitesse spatiale horaire de 2 grammes de n-hexadécane par heure et par gramme de catalyseur, - hourly space velocity of 2 grams of n-hexadecane per hour and per gram of catalyst,
- pression partielle en hydrogène de 1 ,0 MPa, - pression totale de 1 ,1 MPa. - hydrogen partial pressure of 1.0 MPa, - total pressure of 1.1 MPa.
La conversion est modifiée en faisant varier la température ; et à chaque palier de température deux analyses de l’effluent sont effectuées, ce qui permet de calculer les performances catalytiques et de vérifier la stabilité des performances catalytiques pour ledit palier de température. Typiquement on fait varier la température entre 230 et 350°C par palier de température de 5°C. L’analyse des effluents s’effectue intégralement par le biais d’un système GC (chromatographie en phase gazeuse) en ligne. La température nécessaire pour atteindre 50% de conversion fait office de descripteur de l’activité du catalyseur alors que le rendement maximal obtenu en isomères de l’hexadécane fait office de descripteur des propriétés isomérisantes du catalyseur.
Figure imgf000036_0001
Tableau 2 : performances catalytiques des catalyseurs A, B, C, D et E en hydroconversion du n-hexadécane.
The conversion is modified by varying the temperature; and at each temperature level two analyzes of the effluent are carried out, which makes it possible to calculate the catalytic performances and to check the stability of the catalytic performances for said temperature level. Typically, the temperature is varied between 230 and 350°C in temperature steps of 5°C. Effluent analysis is performed entirely through an online GC (gas chromatography) system. The temperature necessary to reach 50% conversion acts as a descriptor of the activity of the catalyst, while the maximum yield obtained of hexadecane isomers acts as a descriptor of the isomerizing properties of the catalyst.
Figure imgf000036_0001
Table 2: catalytic performances of catalysts A, B, C, D and E in hydroconversion of n-hexadecane.
On constate que le catalyseur E, non conforme, qui met en œuvre une AI-IZM-2 (pas de présence de gallium) est le catalyseur le moins sélectif de la série, avec un rendement maximum en isomères de 81 ,3% alors qu’il est supérieur à 85% pour les autres catalyseurs A B C et D . La présence de gallium permet d’améliorer la sélectivité en isomérisation des catalyseurs. Cependant, le catalyseur A, non conforme, qui met en œuvre une Ga-IZM-2 (pas de présence d’aluminium) est le moins actif de la série. Il présente une température à 50% de conversion élevée à 278°C, soit un déficit d’activité de 15°C par rapport au catalyseur E, non conforme, qui lui présente une température à 50% de conversion à 263°C.It can be seen that the non-compliant catalyst E, which implements an AI-IZM-2 (no presence of gallium) is the least selective catalyst of the series, with a maximum isomer yield of 81.3% whereas it is greater than 85% for the other catalysts A B C and D . The presence of gallium makes it possible to improve the isomerization selectivity of the catalysts. However, catalyst A, non-compliant, which implements a Ga-IZM-2 (no presence of aluminum) is the least active of the series. It has a temperature at 50% conversion high at 278°C, i.e. an activity deficit of 15°C compared to catalyst E, which does not conform, which has a temperature at 50% conversion at 263°C.
Les catalyseurs B, C et D conformes, qui mettent en œuvre des Ga-AI-IZM-2, présentent à la fois une sélectivité plus importante que le catalyseur E non conforme, (rendements max. en isomères entre 85,6% et 89,3% pour les catalyseurs conformes B C D par rapport à un rendement de 81,3% pour le catalyseur E non conforme) et une activité plus importante que le catalyseur A non conforme (températures à 50% de conversion entre 259 et 271 °C par rapport à une température à 50% de conversion de 278°C pour le catalyseur A non conforme). Le catalyseur C conforme est particulièrement intéressant car il combine à la fois une sélectivité en isomérisation élevée et une activité comparable au catalyseur E. Compliant catalysts B, C and D, which use Ga-Al-IZM-2, exhibit both greater selectivity than non-compliant catalyst E (max. isomer yields between 85.6% and 89 .3% for compliant catalysts B C D compared to a yield of 81.3% for non-compliant catalyst E) and greater activity than non-compliant catalyst A (temperatures at 50% conversion between 259 and 271 °C per compared to a temperature at 50% conversion of 278° C. for non-compliant catalyst A). The conformal catalyst C is particularly interesting because it combines both a high isomerization selectivity and an activity comparable to catalyst E.

Claims

37 37
REVENDICATIONS Catalyseur comprenant au moins un métal du groupe VIII de la classification périodique des éléments, au moins une matrice et au moins une zéolithe IZM-2 contenant à la fois de l’aluminium et du gallium, ladite zéolithe IZM-2 présentant un ratio molaire entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) compris entre 35 et 175 et un ratio molaire entre le nombre de moles de gallium et le nombre de moles d’aluminium et de gallium Ga/(Ga+AI) compris entre 0,10 et 0,90. Catalyseur selon la revendication 1 dans lequel ledit métal du groupe VIII est choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l’osmium, l’iridium et le platine, seul ou en mélange. Catalyseur selon la revendication 2 dans lequel ledit métal du groupe VIII est choisi parmi les métaux nobles du groupe VIII, de manière préférée choisi parmi le palladium et le platine et de manière préférée le platine. Catalyseur selon la revendication 3 dans lequel la teneur en métal noble dudit catalyseur est comprise entre 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids par rapport à la masse totale dudit catalyseur. Catalyseur selon l'une des revendications 1 à 4 dans lequel ladite matrice est choisie dans le groupe formé par l’alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore, les aluminates et la zircone, pris seuls ou en mélange. Catalyseur selon la revendication 5 dans lequel ladite matrice est l’alumine. Catalyseur selon l'une des revendications 1 à 6 dans lequel le ratio molaire entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) de la zéolithe IZM-2 est compris entre 40 et 150. Catalyseur selon la revendication 7 dans lequel le ratio molaire entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) de la zéolithe IZM-2 est compris entre 50 et 135. 38 Catalyseur selon l'une des revendications 1 à 8 dans lequel le ratio molaire entre le nombre de moles de silicium et le nombre de moles d’aluminium et de gallium Si/(AI+Ga) de la zéolithe IZM-2 est compris entre 55 et 120. Catalyseur selon l'une des revendications 1 à 9 dans lequel le ratio molaire entre le nombre de moles de gallium et le nombre de moles d’aluminium et de gallium Ga/(Ga+AI) de la zéolithe IZM-2 est compris entre 0,20 et 0,80 et de manière très préférée entre 0,35 et 0,65. Procédé d'isomérisation d’une charge paraffinique comprenant des paraffines ayant un nombre d'atomes de carbone compris entre 9 et 25, ladite charge paraffinique étant produite à partir de ressources renouvelables ou par un procédé mettant en jeu une étape de valorisation par la voie Fischer-Tropsch, opérant à une température comprise entre 200°C et 500°C, à une pression comprise entre 0,45 MPa et 7 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h-1 , exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, en présence d’hydrogène et à une pression partielle d’hydrogène comprise entre 0,3 et 5,5 MPa, et mettant en œuvre le catalyseur selon l’une des revendications 1 à 10. Procédé selon la revendication 11 dans lequel ladite charge paraffinique comprenant des paraffines ayant un nombre d'atomes de carbone compris entre 10 et 22. Procédé selon l'une des revendications 11 ou 12 dans lequel ladite charge paraffinique est produite à partir de ressources renouvelables choisies parmi les huiles végétales, les huiles d'algues ou algales, les huiles de poissons et les graisses d'origine végétale ou animale, ou des mélanges de telles charges. CLAIMS Catalyst comprising at least one metal from group VIII of the periodic table of elements, at least one matrix and at least one IZM-2 zeolite containing both aluminum and gallium, said IZM-2 zeolite having a molar ratio between the number of moles of silicon and the number of moles of aluminum and of gallium Si/(Al+Ga) between 35 and 175 and a molar ratio between the number of moles of gallium and the number of moles of aluminum and of gallium Ga/(Ga+Al) between 0.10 and 0.90. Catalyst according to Claim 1, in which the said Group VIII metal is chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, alone or as a mixture. Catalyst according to Claim 2, in which the said group VIII metal is chosen from among the noble metals of group VIII, preferably chosen from palladium and platinum and preferably platinum. Catalyst according to Claim 3, in which the noble metal content of the said catalyst is between 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and very preferably between 0.1 and 2% by weight. weight relative to the total mass of said catalyst. Catalyst according to one of Claims 1 to 4, in which the said matrix is chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide, aluminates and zirconia, taken alone or as a mixture. Catalyst according to claim 5 wherein said matrix is alumina. Catalyst according to one of Claims 1 to 6, in which the molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of the IZM-2 zeolite is between 40 and 150. Catalyst according to claim 7, in which the molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of the IZM-2 zeolite is between 50 and 135 . 38 Catalyst according to one of claims 1 to 8 wherein the molar ratio between the number of moles of silicon and the number of moles of aluminum and gallium Si/(Al+Ga) of the IZM-2 zeolite is between 55 and 120. Catalyst according to one of Claims 1 to 9, in which the molar ratio between the number of moles of gallium and the number of moles of aluminum and gallium Ga/(Ga+Al) of the IZM-2 zeolite is between 0.20 and 0.80 and very preferably between 0.35 and 0.65. Process for isomerizing a paraffinic feedstock comprising paraffins having a number of carbon atoms between 9 and 25, said paraffinic feedstock being produced from renewable resources or by a process involving a step of recovery by Fischer-Tropsch, operating at a temperature between 200°C and 500°C, at a pressure between 0.45 MPa and 7 MPa, at an hourly space velocity between 0.1 and 10 h -1 , expressed in kilograms of charge introduced per kilogram of catalyst and per hour, in the presence of hydrogen and at a partial pressure of hydrogen of between 0.3 and 5.5 MPa, and implementing the catalyst according to one of Claims 1 to 10 Process according to Claim 11, in which the said paraffinic load comprises paraffins having a number of carbon atoms comprised between 10 and 22. Process according to one of Claims 11 or 12, in which the said paraffinic load is produced from res renewable sources chosen from vegetable oils, algae or algal oils, fish oils and fats of vegetable or animal origin, or mixtures of such fillers.
PCT/EP2021/082847 2020-12-01 2021-11-24 Izm-2 catalyst containing aluminium and gallium and use thereof in the isomerisation of long paraffinic feedstocks to middle distillates WO2022117414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012483 2020-12-01
FR2012483A FR3116737B1 (en) 2020-12-01 2020-12-01 CATALYST BASED ON IZM-2 CONTAINING ALUMINUM AND GALLIUM AND ITS USE FOR THE ISOMERIZATION OF LONG PARAFFINIC CHARGERS INTO MIDDLE DISTILLATES

Publications (1)

Publication Number Publication Date
WO2022117414A1 true WO2022117414A1 (en) 2022-06-09

Family

ID=75108437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082847 WO2022117414A1 (en) 2020-12-01 2021-11-24 Izm-2 catalyst containing aluminium and gallium and use thereof in the isomerisation of long paraffinic feedstocks to middle distillates

Country Status (2)

Country Link
FR (1) FR3116737B1 (en)
WO (1) WO2022117414A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387109A1 (en) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Process for the preparation of activated alumina agglomerates, as-produced agglomerates and apparatus for their preparation
FR2910483A1 (en) 2006-12-21 2008-06-27 Inst Francais Du Petrole Treating charge from renewable source, useful to produce diesel fuel base, comprises hydrotreating in presence of catalyst having hydro-dehydrogenating group and amorphous support and separating hydrogen, gas and diesel comprising sulfur
FR2918050A1 (en) 2007-06-29 2009-01-02 Inst Francais Du Petrole IZM-2 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
FR2950895A1 (en) 2009-10-06 2011-04-08 Inst Francais Du Petrole Treating charges comprises hydrotreating charges in presence of fixed bed catalyst, separating gas and hydrocarbon base from effluent of hydrogen, hydroisomerizing the base in presence of catalyst and separating gas and diesel base
FR2984911A1 (en) 2011-12-22 2013-06-28 IFP Energies Nouvelles PROCESS FOR CONVERTING BIOMASS PARAFFINIC CHARGES TO MEDIUM DISTILLATE BASES USING AT LEAST ONE IZM-2 ZEOLITE CATALYST
US9758734B2 (en) 2013-03-13 2017-09-12 Basf Corporation Hydroisomerization catalysts based on Fe containing molecular sieves
FR3074428A1 (en) 2017-12-06 2019-06-07 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A IZM-2 CATALYST FROM A SOLUTION COMPRISING SPECIFIC PRECURSORS AND USE FOR THE ISOMERIZATION OF PARAFFINIC CHARGES
FR3082521A1 (en) 2018-06-15 2019-12-20 IFP Energies Nouvelles USE OF A BIFUNCTIONAL CATALYST BASED ON IZM-2 WITH A SPECIFIC SI / AL RATIO FOR THE ISOMERIZATION OF LONG PARAFFINIC LOADS IN MEDIUM DISTILLATES
FR3101342A1 (en) * 2019-09-26 2021-04-02 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A ZEOLITH IZM-2 IN THE PRESENCE OF A MIXTURE OF ORGANIC NITROGEN STRUCTURANTS IN HYDROXIDE AND BROMIDE FORM AND OF A METAL ALKALINE CHLORIDE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387109A1 (en) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Process for the preparation of activated alumina agglomerates, as-produced agglomerates and apparatus for their preparation
FR2910483A1 (en) 2006-12-21 2008-06-27 Inst Francais Du Petrole Treating charge from renewable source, useful to produce diesel fuel base, comprises hydrotreating in presence of catalyst having hydro-dehydrogenating group and amorphous support and separating hydrogen, gas and diesel comprising sulfur
FR2918050A1 (en) 2007-06-29 2009-01-02 Inst Francais Du Petrole IZM-2 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
FR2950895A1 (en) 2009-10-06 2011-04-08 Inst Francais Du Petrole Treating charges comprises hydrotreating charges in presence of fixed bed catalyst, separating gas and hydrocarbon base from effluent of hydrogen, hydroisomerizing the base in presence of catalyst and separating gas and diesel base
FR2984911A1 (en) 2011-12-22 2013-06-28 IFP Energies Nouvelles PROCESS FOR CONVERTING BIOMASS PARAFFINIC CHARGES TO MEDIUM DISTILLATE BASES USING AT LEAST ONE IZM-2 ZEOLITE CATALYST
US9758734B2 (en) 2013-03-13 2017-09-12 Basf Corporation Hydroisomerization catalysts based on Fe containing molecular sieves
FR3074428A1 (en) 2017-12-06 2019-06-07 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A IZM-2 CATALYST FROM A SOLUTION COMPRISING SPECIFIC PRECURSORS AND USE FOR THE ISOMERIZATION OF PARAFFINIC CHARGES
FR3082521A1 (en) 2018-06-15 2019-12-20 IFP Energies Nouvelles USE OF A BIFUNCTIONAL CATALYST BASED ON IZM-2 WITH A SPECIFIC SI / AL RATIO FOR THE ISOMERIZATION OF LONG PARAFFINIC LOADS IN MEDIUM DISTILLATES
FR3101342A1 (en) * 2019-09-26 2021-04-02 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A ZEOLITH IZM-2 IN THE PRESENCE OF A MIXTURE OF ORGANIC NITROGEN STRUCTURANTS IN HYDROXIDE AND BROMIDE FORM AND OF A METAL ALKALINE CHLORIDE

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. BERNDTA. MARTINH. KOSSLICKB. LÜCKE, MICROPOROUS MATERIALS, vol. 2, no. 3, 1994, pages 197 - 204
M. GUISNETF.R. RIBEIRO: "les zéolithes, un nanomonde au service de la catalyse", EDP SCIENCES, 2006

Also Published As

Publication number Publication date
FR3116737A1 (en) 2022-06-03
FR3116737B1 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
EP2313344B1 (en) Process for producing middle distillates by hydrocracking of feedstocks resulting from the fischer-tropsch process in the presence of a catalyst comprising an izm-2 solid
FR2805762A1 (en) Extruded catalyst contains at least one matrix, at least one noble metal and at least one zeolite
EP2607457B1 (en) Method for converting paraffin feedstock from biomass into middle distillate bases using at least one catalyst based on the IZM-2 zeolite
WO2009103881A2 (en) Multistep process for producing middle distillates by hydroisomerization and hydrocracking of an effluent produced by the fischer-tropsch process
FR3054454A1 (en) CATALYST COMPRISING IZM-2 ZEOLITE HAVING SI / AL MOLAR RATIO OPTIMIZED FOR ISOMERIZING C8 AROMATIC CUTTERS
EP3498371A1 (en) Method for preparing a catalyst made of izm-2 from a solution comprising specific precursors and use for the isomerisation of paraffin feedstock
EP0911380B1 (en) Process for improving the pour point of paraffinic feedstocks with zeolite IM-5 based catalysts
EP3581634B1 (en) Use of a bifunctional catalyst made of izm-2 with specific si/al ratio for the isomerisation of long paraffin charges into medium distillates
FR2765206A1 (en) ZEOLITHE EU-1, CATALYST AND METHOD FOR IMPROVING THE FLOW POINT CONTAINING PARAFFINS
WO2022117414A1 (en) Izm-2 catalyst containing aluminium and gallium and use thereof in the isomerisation of long paraffinic feedstocks to middle distillates
WO2021122198A1 (en) Use of a catalyst based on izm-2 with a low content of alkali metal for the isomerization of paraffinic feedstocks to middle distillates
EP2781497B1 (en) Method for converting loads from renewable sources using a catalyst including an Nu-10 zeolite and a ZSM-48 zeolite
EP4232195A1 (en) Method for preparing an izm-2 based catalyst by a specific heat treatment and use of said catalyst for the isomerisation of paraffinic feedstocks in middle distillates
FR2765236A1 (en) PROCESS FOR IMPROVING THE FLOW POINT OF LOADS CONTAINING PARAFFINS WITH A MODIFIED ZEOLITH NU-87 CATALYST
WO2018099832A1 (en) Use of a catalyst based on izm-2 zeolite and a catalyst based on euo zeolite for the isomerisation of aromatic c8 fractions
FR3084082A1 (en) USE OF A BIFUNCTIONAL CATALYST BASED ON ZEOLITE IZM-2 FOR THE HYDROISOMERIZATION OF LIGHT PARAFFINIC LOADS DERIVED FROM THE FISCHER-TROPSCH SYNTHESIS
WO2013153318A1 (en) Method for the hydrotreatment and dewaxing of a middle distillate feedstock using an izm-2 zeolite-based catalyst
WO2013153317A1 (en) Method for the dewaxing of hydrocarbon feedstocks using an izm-2 zeolite-based catalyst
EP2781583B1 (en) Method for converting loads from renewable sources using a catalyst including an Nu-10 zeolite and a silica-alumina
WO2013014340A2 (en) Oligomerising hydrocracking method using a catalyst based on dispersed beta zeolite
FR2765209A1 (en) Modified zeolite, for improving setting point of charge comprising paraffin(s)
EP2794522A1 (en) Method for isomerizing an aromatic c8 fraction in the presence of a catalyst containing an euo zeolite and a specific binder
FR3003562A1 (en) METHOD OF HYDROISOMERIZING A FISCHER-TROPSCH SYNTHESIS LOAD USING A CATALYST COMPRISING A NU-10 ZEOLITE AND AN ALUMINUM SILICA
FR2765237A1 (en) Improving the setting point of paraffin charge
FR2765208A1 (en) Production of modified zeolite catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE