EP4077451A1 - Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionen - Google Patents
Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionenInfo
- Publication number
- EP4077451A1 EP4077451A1 EP20820425.5A EP20820425A EP4077451A1 EP 4077451 A1 EP4077451 A1 EP 4077451A1 EP 20820425 A EP20820425 A EP 20820425A EP 4077451 A1 EP4077451 A1 EP 4077451A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stream
- monomer
- polymer
- extruder
- monomers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000009826 distribution Methods 0.000 title claims abstract description 53
- 238000006068 polycondensation reaction Methods 0.000 title claims abstract description 19
- 239000000178 monomer Substances 0.000 claims abstract description 202
- 229920000642 polymer Polymers 0.000 claims abstract description 154
- 238000006243 chemical reaction Methods 0.000 claims abstract description 57
- 238000002156 mixing Methods 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 35
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 22
- 238000010992 reflux Methods 0.000 claims description 19
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 18
- 239000012948 isocyanate Substances 0.000 claims description 18
- 150000002513 isocyanates Chemical class 0.000 claims description 18
- 229920005862 polyol Polymers 0.000 claims description 17
- 150000003077 polyols Chemical class 0.000 claims description 17
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 14
- 239000005056 polyisocyanate Substances 0.000 claims description 13
- 229920001228 polyisocyanate Polymers 0.000 claims description 13
- 229920002635 polyurethane Polymers 0.000 claims description 13
- 239000004814 polyurethane Substances 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 12
- 239000002699 waste material Substances 0.000 claims description 12
- -1 cycloaliphatic Chemical group 0.000 claims description 11
- 238000007872 degassing Methods 0.000 claims description 11
- 125000005442 diisocyanate group Chemical group 0.000 claims description 10
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 claims description 10
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 9
- 125000001931 aliphatic group Chemical group 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 9
- 239000006227 byproduct Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 150000002009 diols Chemical class 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- 238000013022 venting Methods 0.000 claims description 3
- 150000003384 small molecules Chemical class 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000002427 irreversible effect Effects 0.000 abstract description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 16
- 230000003068 static effect Effects 0.000 description 13
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000007792 addition Methods 0.000 description 6
- 239000006085 branching agent Substances 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 239000005058 Isophorone diisocyanate Substances 0.000 description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- CDBAMNGURPMUTG-UHFFFAOYSA-N 4-[2-(4-hydroxycyclohexyl)propan-2-yl]cyclohexan-1-ol Chemical compound C1CC(O)CCC1C(C)(C)C1CCC(O)CC1 CDBAMNGURPMUTG-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 150000007973 cyanuric acids Chemical class 0.000 description 2
- BIYRBPAUTLBNTB-UHFFFAOYSA-N cyclooctane-1,4-diol Chemical compound OC1CCCCC(O)CC1 BIYRBPAUTLBNTB-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000007155 step growth polymerization reaction Methods 0.000 description 2
- XSMIOONHPKRREI-UHFFFAOYSA-N undecane-1,11-diol Chemical compound OCCCCCCCCCCCO XSMIOONHPKRREI-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- VNMOIBZLSJDQEO-UHFFFAOYSA-N 1,10-diisocyanatodecane Chemical compound O=C=NCCCCCCCCCCN=C=O VNMOIBZLSJDQEO-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 1
- OHTRJOZKRSVAOX-UHFFFAOYSA-N 1,3-diisocyanato-2-methylcyclohexane Chemical compound CC1C(N=C=O)CCCC1N=C=O OHTRJOZKRSVAOX-UHFFFAOYSA-N 0.000 description 1
- WZZDGHUQRSGHLQ-UHFFFAOYSA-N 1,3-diisocyanato-5,7-dimethyladamantane Chemical compound C1C(C2)(C)CC3(N=C=O)CC1(C)CC2(N=C=O)C3 WZZDGHUQRSGHLQ-UHFFFAOYSA-N 0.000 description 1
- MLXLDKWQJYBKOH-UHFFFAOYSA-N 1,3-diisocyanatoadamantane Chemical compound C1C(C2)CC3CC1(N=C=O)CC2(N=C=O)C3 MLXLDKWQJYBKOH-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- AGJCSCSSMFRMFQ-UHFFFAOYSA-N 1,4-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=C(C(C)(C)N=C=O)C=C1 AGJCSCSSMFRMFQ-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- ROHUXHMNZLHBSF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCC(CN=C=O)CC1 ROHUXHMNZLHBSF-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- OUJCKESIGPLCRN-UHFFFAOYSA-N 1,5-diisocyanato-2,2-dimethylpentane Chemical compound O=C=NCC(C)(C)CCCN=C=O OUJCKESIGPLCRN-UHFFFAOYSA-N 0.000 description 1
- AHBNSOZREBSAMG-UHFFFAOYSA-N 1,5-diisocyanato-2-methylpentane Chemical compound O=C=NCC(C)CCCN=C=O AHBNSOZREBSAMG-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- QGLRLXLDMZCFBP-UHFFFAOYSA-N 1,6-diisocyanato-2,4,4-trimethylhexane Chemical compound O=C=NCC(C)CC(C)(C)CCN=C=O QGLRLXLDMZCFBP-UHFFFAOYSA-N 0.000 description 1
- QUPKOUOXSNGVLB-UHFFFAOYSA-N 1,8-diisocyanatooctane Chemical compound O=C=NCCCCCCCCN=C=O QUPKOUOXSNGVLB-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- WXIOQJUEBPUFHH-UHFFFAOYSA-N 1-isocyanato-4-(2-isocyanatopropan-2-yl)-1-methylcyclohexane Chemical compound O=C=NC(C)(C)C1CCC(C)(N=C=O)CC1 WXIOQJUEBPUFHH-UHFFFAOYSA-N 0.000 description 1
- FQXGHZNSUOHCLO-UHFFFAOYSA-N 2,2,4,4-tetramethyl-1,3-cyclobutanediol Chemical compound CC1(C)C(O)C(C)(C)C1O FQXGHZNSUOHCLO-UHFFFAOYSA-N 0.000 description 1
- VZDIRINETBAVAV-UHFFFAOYSA-N 2,4-diisocyanato-1-methylcyclohexane Chemical compound CC1CCC(N=C=O)CC1N=C=O VZDIRINETBAVAV-UHFFFAOYSA-N 0.000 description 1
- MZEGJNMYXWIQFF-UHFFFAOYSA-N 2,5-diisocyanato-1,1,3-trimethylcyclohexane Chemical compound CC1CC(N=C=O)CC(C)(C)C1N=C=O MZEGJNMYXWIQFF-UHFFFAOYSA-N 0.000 description 1
- PENBGMOHUOUMMG-UHFFFAOYSA-N 2-ethylcyclohexane-1,4-diol Chemical compound CCC1CC(O)CCC1O PENBGMOHUOUMMG-UHFFFAOYSA-N 0.000 description 1
- LCRAQVLYPVUBKY-UHFFFAOYSA-N 2-methylcycloheptane-1,4-diol Chemical compound CC1CC(O)CCCC1O LCRAQVLYPVUBKY-UHFFFAOYSA-N 0.000 description 1
- LYZMKCWNBRTLTJ-UHFFFAOYSA-N 2-methylcyclohexane-1,4-diol Chemical compound CC1CC(O)CCC1O LYZMKCWNBRTLTJ-UHFFFAOYSA-N 0.000 description 1
- ZDKYYMRLZONTFK-UHFFFAOYSA-N 3,4-bis(isocyanatomethyl)bicyclo[2.2.1]heptane Chemical compound C1CC2(CN=C=O)C(CN=C=O)CC1C2 ZDKYYMRLZONTFK-UHFFFAOYSA-N 0.000 description 1
- UMJUHGFIVJJRAE-UHFFFAOYSA-N 4-methylcycloheptane-1,3-diol Chemical compound CC1CCCC(O)CC1O UMJUHGFIVJJRAE-UHFFFAOYSA-N 0.000 description 1
- MGYGFNQQGAQEON-UHFFFAOYSA-N 4-tolyl isocyanate Chemical compound CC1=CC=C(N=C=O)C=C1 MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- KRMQZDYVIWRFGR-UHFFFAOYSA-N 5-butylcyclooctane-1,4-diol Chemical compound CCCCC1CCCC(O)CCC1O KRMQZDYVIWRFGR-UHFFFAOYSA-N 0.000 description 1
- SGJRVSIZCLGOJM-UHFFFAOYSA-N 5-methylcyclooctane-1,4-diol Chemical compound CC1CCCC(O)CCC1O SGJRVSIZCLGOJM-UHFFFAOYSA-N 0.000 description 1
- GKCPSVGUNGIHDF-UHFFFAOYSA-N 5-propylcyclooctane-1,4-diol Chemical compound CCCC1CCCC(O)CCC1O GKCPSVGUNGIHDF-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1
- 238000005618 Fries rearrangement reaction Methods 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- XMUZQOKACOLCSS-UHFFFAOYSA-N [2-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC=C1CO XMUZQOKACOLCSS-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000006295 amino methylene group Chemical group [H]N(*)C([H])([H])* 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- STENYDAIMALDKF-UHFFFAOYSA-N cyclobutane-1,3-diol Chemical compound OC1CC(O)C1 STENYDAIMALDKF-UHFFFAOYSA-N 0.000 description 1
- MFXVLOBVCPRXDJ-UHFFFAOYSA-N cycloheptane-1,3-diol Chemical compound OC1CCCCC(O)C1 MFXVLOBVCPRXDJ-UHFFFAOYSA-N 0.000 description 1
- ZXJWWZPUERUHLC-UHFFFAOYSA-N cycloheptane-1,4-diol Chemical compound OC1CCCC(O)CC1 ZXJWWZPUERUHLC-UHFFFAOYSA-N 0.000 description 1
- FDODVZVWGKVMBO-UHFFFAOYSA-N cyclohex-2-ene-1,4-diol Chemical compound OC1CCC(O)C=C1 FDODVZVWGKVMBO-UHFFFAOYSA-N 0.000 description 1
- DNJRSNYMHOVSGB-UHFFFAOYSA-N cyclooctane-1,3-diol Chemical compound OC1CCCCCC(O)C1 DNJRSNYMHOVSGB-UHFFFAOYSA-N 0.000 description 1
- BDNXUVOJBGHQFD-UHFFFAOYSA-N cyclooctane-1,5-diol Chemical compound OC1CCCC(O)CCC1 BDNXUVOJBGHQFD-UHFFFAOYSA-N 0.000 description 1
- NUUPJBRGQCEZSI-UHFFFAOYSA-N cyclopentane-1,3-diol Chemical compound OC1CCC(O)C1 NUUPJBRGQCEZSI-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- AVIYEYCFMVPYST-UHFFFAOYSA-N hexane-1,3-diol Chemical compound CCCC(O)CCO AVIYEYCFMVPYST-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- CUNPJFGIODEJLQ-UHFFFAOYSA-M potassium;2,2,2-trifluoroacetate Chemical compound [K+].[O-]C(=O)C(F)(F)F CUNPJFGIODEJLQ-UHFFFAOYSA-M 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3206—Polyhydroxy compounds aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/0895—Manufacture of polymers by continuous processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
Definitions
- the invention relates to a method for adjusting the molecular weight distribution of a polymer in a preferably predominantly irreversible polycondensation reaction and / or polyaddition reaction of the AA + BB type.
- the invention also relates to the polymer obtained with the process according to the invention and to the further conversion of this polymer with the addition of further monomers.
- the invention also relates to a device for carrying out the method according to the invention.
- a large number of technically important polymers are known to be produced in step growth reactions in which multifunctional monomers which have different end groups react with one another.
- Examples are polyesters, polyurethanes, polycarbonates, polysulfones or polyamides. All of these reactions are characterized in that end groups of one type A react with other end groups of type B. If different end groups A and B are combined on one molecule, one speaks of an AB-type reaction. Examples are polylactide from lactic acid or polyamide 6, from the ring-opening product of caprolactam. If two end groups of type A are combined on one molecule and two end groups of type B are combined on another molecule, one speaks of a reaction of type AA + BB.
- polyethylene terephthalate made from diethylene glycol and terephthalic acid
- polycarbonate made from bisphenol A and diphenyl carbonate
- polyurethanes from diisocyanates and diols
- polyamide 6.6 from hexamethylene diamine and adipic acid
- step growth reactions there are two types of step growth reactions, polycondensations and polyadditions.
- a low molecular weight reaction product (often water, but also other molecules such as phenol or sodium chloride or chloride, which is then reacted with sodium hydroxide to form sodium chloride) is separated off during the reaction; in polyadditions, such as the production of polyurethanes, there is no low molecular weight reaction product that is split off.
- the present invention relates to all types of step growth reactions, both polycondensations in the narrower sense and polyadditions.
- polycondensation is sometimes used as a synonym for the step growth reaction defined above. “Polyaddition” is used as a synonym for “polyaddition reaction”, and “polycondensation” is also used as a synonym for “polycondensation reaction”.
- the molecular weight distribution in particular the polydispersity
- the material properties in particular the viscosity, also depend on whether the breadth of the molecular weight distribution was achieved through branching of the polymers or through a corresponding mix of different linear chains.
- the intrinsic viscosity of branched polymers is higher than that of a mixture of different linear chains. Long molecular chains are known to be intertwined with the other molecules in the environment and therefore have longer relaxation times.
- a proportion of molecules with a high molar mass therefore leads - with the same number-averaged molar mass - to a higher zero viscosity and a higher structural viscosity.
- Which effect is desired depends on the use and further processing of the polymer.
- low viscosities are generally aimed for in order to enable long flow paths.
- the decisive factor is how stable the material remains under the influence of gravity when it is pressed out of the extruder nozzle.
- the molar mass distribution is preferably measured with the method of gel permeation chromatography (GPC), which is familiar to the person skilled in the art, in particular using polystyrene standards. “Molecular weight distribution” is used synonymously with “molar mass distribution”.
- the polydispersity cannot be adjusted after rectification, since the type of polymerization reaction affects the distribution of the molecular weights.
- a broad molar mass distribution is established in a targeted manner by radical degradation and subsequent compounding.
- this method can only be used with polymers that can be broken down with radicals.
- the breadth of the distribution is usually achieved by adding so-called branching agents, i.e. monomers with more than 2 functional groups, or by the targeted addition of high-molecular chains in a separate process. These processes are complex because they require further process steps or special catalysis.
- An example of the preparation of polymers in a step growth reaction of the AA + BB type is the preparation, familiar to the person skilled in the art, of thermoplastic polyurethanes from diisocyanates and polyols by reaction in a reactor with a narrow residence time distribution.
- DE 2302564 describes the production of polyurethane by reaction on a multi-screw, self-cleaning extruder. The adjustment of the breadth of the molecular weight distribution is not discussed there.
- twin-screw extruders have a narrow residence time distribution. This is shown, for example, in “Residence time distribution in a corotating twin-screw extruder”, Chemical Engineering Science 55 (2000) 1641-1651. Typically, a twin screw extruder has a narrow residence time distribution, which corresponds to a theoretical number of stirred tanks of more than six.
- DE 10 2011 085 944 relates to the continuous production of polyurethane in a loop reactor with flexibly adjustable mixing conditions and discloses that the use of catalysts can be reduced if part of the reaction mixture is returned to the input stream of the mixing device after passing through a mixing device. The publication does not deal with the polydispersity of the polymers obtained, but with the question of how a sufficient conversion can be achieved even with small amounts of catalyst.
- EP 0 598 283 describes a continuous process for the preparation of polyurethane prepolymers.
- the publication discloses that the conversion of the reaction can be controlled by back-mixing prepolymers already formed with monomers and subsequent chain extension, that is to say reacting the prepolymer with a low molecular weight diol or triol.
- the publication does not deal with the distribution of the molecular weights. It is also taught that increasing the residence time in the reactor leads to an intolerable reduction in output.
- EP 2371 868 discloses the synthesis of a prepolymer by bulk polymerization, that is to say with the addition of a free radical initiator in a circuit that contains a mixer and an extruder. Part of the prepolymer obtained is branched off from the circuit and fed into a static mixer. This publication is also not concerned with setting the molecular weights.
- Mno 2 / (l-KZl) -l or, if branches are present,
- Mn v Mn 0 / (l- (f-2) * p / 2 * Mn 0 );
- Mwo (l-KZl) / (l + KZl) + 8 * KZ1 * (F 0 - KZ1 + 1) / (1+ KZ1) / (1+ F 0 ) / (l- KZ1) L 2 or, if Branches are present,
- P is critical ⁇ (Mw u - 1 - p) and MW y is the weight average of the molecular weight distribution in number of monomer units obtained by measurement; and the molecular weights are adjusted by changing the key figure KZI and / or by changing the F recyde .
- This process is particularly suitable for polyaddition reactions and very particularly suitable for the production of polyurethane polymers or prepolymers from diisocyanates and polyols with adjustable molar mass distributions.
- the desired setpoints for Mn (KZI) and Mw (F recyde ) are preset.
- the presetting according to the relationships given above surprisingly leads to good approximations for the setpoint values, although the formulas only represent empirical approximations. In general, apart from the finite accuracy of the approximation, further deviations from the desired setpoints occur due to measurement errors or inaccuracies and fluctuations in the dosage as well as the process conditions (e.g. temperature). If necessary, these are corrected by a regulation in a further step.
- control or regulation is understood to mean a process in accordance with the standard DIN IEC 60050-351: 2013 in which a variable, the controlled variable, is continuously compared with another variable, the setpoint, and in the sense of a Adjustment to the setpoint is influenced.
- the closed action sequence is characteristic of the control, in which the controlled variable continuously influences itself in the action path of a control loop.
- the choice of the regulation law and the interpretation of the regulation is known to the person skilled in the art and can be carried out according to standard methods known in literature (e.g. Heinz Unbehauen, regulation technology I-III, Springer Vieweg (2008) ISBN 978-3-8348-9491-5).
- a measurement of the desired output variable (s) Mn and / or Mw (e.g. measurement of GPC or melt viscosity, intrinsic viscosity or NMR) is made available and the setting values are changed accordingly in order to achieve the desired setpoint (s) of Mn and / or Mw to achieve.
- the present invention relates to:
- a method for adjusting the molecular weight distribution of a, preferably branched, polymer or prepolymer of the AA + BB type in a polyaddition reaction and / or polycondensation reaction comprising the following steps:
- Mn v Mn 0 / (l- (f-2) * p / 2 * Mn 0 );
- Mwo (l-KZl) / (l + KZl) + 8 * KZ1 * (F 0 - KZ1 + 1) / (1+ KZ1) / (1+ F 0 ) / (l- KZ1) L 2 or, if Branches are present,
- Mw v Mwo (1 + p) / (l- (f-2) * p (Mwo-1)), where Mno and Mwo are respectively the number and weight average of the molecular distribution which would result without branching, and Mn v and Mw v are each the number and weight average of the molecular distribution that would result with branches, f the functionality of the branch, which is equal to 3 or 4,
- KZI is the molar ratio of the monomer streams A to B
- Fo Fratio * ( l-KZl)
- Fratio is the ratio of the mass flow rate of the return flow to the sum of the mass flows of the monomers A and B
- p is the branching density, defined as the molar proportion of the branches based on the number of monomer units in the polymer
- Mw u is the weight average molecular weight distribution in number of monomer units obtained by measurement; and the molecular weights are adjusted by changing the key figure KZI and / or by changing the F recyde
- both Mn and Mw can be set for a given branch density p and functionality f of the branch. If, for example, an increase in Mn is desired, KZI is increased. If an increase in the Mw is desired, Frec is increased.
- the correction is carried out in accordance with current control engineering procedures.
- the formulas also enable a correction in accordance with model-based control methods.
- the temperature and the throughput of the method are kept constant in order to avoid a change in the branching density.
- Process according to Claim 1 or 2 characterized in that the M w of the polymers in the polymer stream (E) is determined by GPC and is compared with a theoretical value MWGPC which is obtained by correcting the empirical formulas for Mw v according to
- reaction r u ck> is irreversibly or almost irreversibly with an equilibrium constant of k towards / k 10;
- the monomer stream (A) contains or consists of a polyisocyanate; and / or the monomer stream (B) contains or consists of a polyol and / or that the monomer streams (A) and (B) are essentially free of water.
- the monomer stream (A) contains or consists of at least one aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanate or mixtures thereof, in particular 1,6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, 4,4 -
- the monomer stream (A) preferably containing or consisting of 1,6-hexamethylene diisocyanate or 1,5-pentamethylene diisocyanate and very particularly preferably containing 1,6-hexamethylene diisocyanate consists of it; and / or the monomer stream (B) contains or consists of at least one aliphatic, araliphatic, aromatic or cycloaliphatic diol or mixtures thereof, in particular 1,4-butanediol, ethanediol, 1,6-hexanediol, 1,4-bis (ß- hydroxyethoxy-) benzene or mixtures thereof, the monomer stream (B) preferably containing or consisting of 1,4-butanediol.
- KZI in the mixture stream (C) is from 0.50 to 0.95, preferably from 0.75 to 0.85; and / or that the F ratio is 2 to 200 [kg / kg], preferably 4 to 32.
- the monomer stream is from 0.50 to 0.95, preferably from 0.75 to 0.85; and / or that the F ratio is 2 to 200 [kg / kg], preferably 4 to 32.
- (A) from at least 85% by weight, preferably at least 95% by weight and very particularly preferably 99% by weight from 1,6-hexamethylene diisocyanate or 1,5-pentamethylene diisocyanate, preferably from 1,6- Hexamethylene diisocyanate and / or the monomer stream (B) consists of at least 75% by weight, preferably at least 90% by weight and very particularly preferably 98% by weight of 1,4-butanediol and / or the temperature of the reflux stream (D) is from 160 to 200 ° C, preferably 170 to 190 ° C.
- a method for adjusting the molecular weight distribution of a, preferably branched, polymer or prepolymer in a polyaddition reaction and / or polycondensation reaction of the AA + BB type comprising the following steps:
- Mwo, ext Mwo, loo P + 2 * pp * Mno.ext or in the case of branches
- MWv.ext Mwo.ext (1 + p) / (l- (f-2) * p (Mwo.ext -1 ))
- Mno.ext is the number average molecular weight
- Mwo.ext is the weight average of the
- the mass flow of the reflux flow to the sum of the mass flows of the monomers A and B is and p is the branching density, defined as the molar proportion of the branches based on the
- Mw u is the weight average molecular weight distribution in number of monomer units obtained by measurement.
- Method according to embodiment 10 characterized in that deviations from Mn are corrected by varying the manipulated variable KZ2 and / or from Mw by varying the manipulated variable F recyde and / or with a defined KZ2 deviations from Mw are corrected by varying the manipulated variable KZI.
- KZ2 is between 0.9 and 0.999, preferably between 0.94 and 0.99, particularly preferably between 0.96 and 0.985, the reactor being preferably an extruder.
- Method according to one of the embodiments 10 to 12 characterized in that the conversion of the polymer stream (E) comprises the following steps:
- the monomer feed stream (F) contains or consists of at least one polyisocyanate, the monomer feed stream (F) and monomer stream (A) preferably having the same composition.
- the polymer stream (E) was preferably obtained by a process according to one of embodiments 6 to 9 and the monomer feed stream (F) is at least one aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanate or mixtures thereof contains or consists of, in particular 1,6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, 4,4-methylenediphenyl diisocyanate, isophorone diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate) or mixtures thereof, the monomer feed stream (F) preferably 1,6- Contains or consists of hexamethylene diisocyanate or 1,5-pentamethylene
- Polymer obtainable by a method of the present invention the polymer having an allophanate content of ⁇ 0.75 mol%, the polymer preferably having an allophanate content of ⁇ 0.50 mol%, more preferably ⁇ 0.30 mol%.
- Apparatus for performing a method of the present invention comprising: a monomer A storage container (1) from which a monomer A line (22) to
- Conveyance of a monomer stream (B) discharges which opens into the first mixing device (7), the monomer B line (25) being combined with the monomer A line (22), in particular upstream of the first mixing device (7); a circuit feed line (27) for conveying a mixed flow (C) emerging from the first mixing device (7), which flows into a circuit line (29) for conveying the return flow (D), while maintaining a recirculation flow (X) and chemical conversion of the components of the return flow (D) opens with the components of the mixed flow (C);
- the circulation line (29) preferably comprising, in the flow direction, a second mixing device (8), a temperature-controlled mixing device (9) and a temperature-controlled conveying device (10); and a polymer feed line (30) emerging from the circulation line (29) for conveying a polymer flow (E).
- the device characterized in that the polymer feed line (30) opens into an extruder (18) on the inlet side and the device comprises the following additional components: a pressure control valve (12) provided in the polymer feed line (30) for regulating the pressure the polymer stream (E); a three-way valve (13) arranged in the polymer feed line (30) and in particular positioned downstream of the pressure regulating valve (12), from which a waste line (31) opens into a waste container (14) and via which the polymer stream (E), especially when starting up, taking out of operation or failure of the device can be wholly or partially fed into the waste container (14); a venting device (17), preferably arranged at the confluence of the polymer feed line (30) in the extruder (18), for removing gases and gaseous by-products from the polymer stream (E); one from the monomer A reservoir (1) or the monomer A line (22) outgoing and in the extruder working direction, preferably downstream of the polymer feed line (30) in the extruder (18) opening monomer A feed
- the monomer stream A preferably contains or consists of at least one aliphatic, cycloaliphatic, aromatic or araliphatic diisocyanate or mixtures thereof.
- Suitable aliphatic diisocyanates are 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2 , 2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,8-diisocyanatooctane and 1,10-diisocyanatodecane.
- BDI 1,4-diisocyanatobutane
- PDI 1,5-diisocyanatopentane
- HDI 1,6-diisocyanatohexane
- 2-methyl-1,5-diisocyanatopentane 1,5-diisocyanato-2
- 2-dimethylpentane 2,2,4- or
- Suitable cycloaliphatic diisocyanates are 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3,5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato-4-methylcyclohexane , l-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate; IPDI), l-isocyanato-l-methyl-4 (3) -isocyanatomethylcyclohexane, 2,4'- and 4,4'- Diisocyanatodicyclohexylmethane (H12MDI), 1,3- and 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) norbornane (NB DI), 4,4'-diiso
- aromatic diisocyanates examples include 2,4- and 2,6-diisocyanatotoluene (TDI), 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI) and 1,5-diisocyanatonaphthalene.
- TDI 2,4- and 2,6-diisocyanatotoluene
- MDI 2,4'- and 4,4'-diisocyanatodiphenylmethane
- 1,5-diisocyanatonaphthalene examples include 2,4- and 2,6-diisocyanatotoluene (TDI), 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI) and 1,5-diisocyanatonaphthalene.
- araliphatic diisocyanates are 1,3- and 1,4-bis (isocyanatomethyl) benzene (xylylene diisocyanate; XDI), 1,3- and 1,4-bis (l-isocyanato-1-methylethyl) benzene (TMXDI ).
- triisocyanates examples include triphenylmethane-4,4 ', 4 "-triisocyanate or 4-isocyanatomethyl-1,8-octane diisocyanate (TIN).
- the monomer stream A preferably contains or consists of 1,6-hexamethylene diisocyanate, 4,4-methylenediphenyl diisocyanate, isophorone diisocyanate or mixtures thereof.
- the polyisocyanate stream contains or consists of 1,6-hexamethylene diisocyanate.
- the monomer stream B contains or consists of at least one aliphatic, araliphatic, aromatic or cycloaliphatic diol or mixtures thereof.
- aliphatic, araliphatic, aromatic or cycloaliphatic diols are 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1, 5- pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11- undecanediol, 1,12-dodecanediol, 1,3- Cyclobutanediol, 1,3-cyclopentanediol, 1,2-, 1,3- and 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-cyclohexene-1,4-
- 1,4-cyclooctanediol 5-propyl-1,4-cyclooctanediol, 5-butyl-1,4-cyclooctanediol, 1,2-benzene dimethanol and 1,4-bis ( ⁇ -hydroxyethoxy) benzene.
- the monomer stream B preferably contains or consists of 1,4-butanediol, ethanediol, 1,6-hexanediol,
- 1,4-bis (ß-hydroxyethoxy) benzene or mixtures thereof 1,4-bis (ß-hydroxyethoxy) benzene or mixtures thereof.
- the polyol stream contains or consists of 1,4-butanediol.
- the monomer stream A preferably has a temperature of 20 to 80.degree. C. and, independently of this, the monomer stream B has a temperature of 35 to 80.degree.
- the mass flow rates of the polyisocyanate flow and the polyol flow are adjusted so that the isocyanate index in the mixture flow is from 0.50 to 0.95, preferably from 0.75 to 0.85.
- the monomer feed stream F can be identical to the monomer streams A or B described above, preferably to A. Alternatively, it can contain or consist of monomers that are different from the monomer streams A and B, but can react with the polymer in the polymer stream E.
- the isocyanate index (also called index or isocyanate index) is understood to mean the quotient of the amount of substance [mol] of isocyanate groups actually used and the amount of substance [mol] of isocyanate-reactive groups actually used:
- the NCO value (also: NCO content, isocyanate content) is determined using EN ISO 11909: 2007. Unless otherwise stated, the values are at 25 ° C.
- branching plays a subordinate role in the shape of the molecular weight distribution because of the low weight average.
- Oteooo p / pkrit6ooo
- Suitable branching agents for the purposes of the present inventions can be internally generated branching structures such as allophanates, biureths or cyanurates in polyurethanes - or structures resulting from Fries rearrangements in polycarbonates, and external branching agents added to the monomer stream.
- branching agents such as allophanates, biureths or cyanurates in polyurethanes - or structures resulting from Fries rearrangements in polycarbonates
- external branching agents added to the monomer stream.
- alcohols polyols
- cyanurates or other tri- or tetrafunctional isocyanates for example, can be added to the monomer stream of the isocyanates.
- the added branching agents are preferably limited to a functionality of 3 or 4.
- the temperature of the reflux stream (D) is preferably 160 to 200.degree. C., more preferably 170 to 190.degree.
- the mean molecular weights are given here by Mn Ext and MW EI , preferably denoted from the mean molecular weights in the loop, initially without branching:
- the allophanate content in mol% of the polymers or prepolymers obtained is preferably 0.2 to 1.0, more preferably 0.21 to 0.85, even more preferably 0.5 to 0.77.
- Mn of the polymers in the polymer stream E or of the polymers G is preferably 1,000 to 10,000 g / mol, more preferably 1,100 to 8,000 g / mol and / or the Mw 8,000 to 120,000, more preferably 10,000 to 100,000 g / mol.
- the polydispersity pd that is to say the ratio of the weight-average and number-average molecular masses, is preferably 2.0 to 20.0, more preferably 4.0 to 18.0, even more preferably 6.5 to 17.0.
- the Mp in g / mol is preferably 8,000 to 50,000, more preferably 9,500 to 35,000.
- the fratio in kg / kg is preferably 5.0 to 35.0, more preferably 8 to 20.0, most preferably 10.0 to 17.0.
- a is preferably 0.2 to 0.7, more preferably 0.3 to 0.5.
- the F reCyde value in kg / h is preferably 50 to 500, more preferably 60 to 350, in particular 80 to 320.
- the product temperature in the loop at different positions is between 160.degree. C. and 200.degree. C., preferably between 170.degree. C. and 190.degree.
- the product temperature in the extruder is between 160.degree. C. and 260.degree. C., preferably between 170.degree. C. and 250.degree. Description of the drawing
- the device comprises a monomer A storage container 1, from which a monomer A line 22 for conveying a monomer stream A branches off and opens into a first mixing device 7.
- a first junction 23 is arranged at the monomer A line 22, at which a monomer A feed stream F is separated from the monomer stream A as a partial stream and is guided in a monomer A feed line 24.
- the monomer A feed line 24 starts at the first junction 23 and opens into an extruder 18.
- the monomer A feed line 24 has a third conveying device 15 for conveying the monomer A feed stream F and is connected to the monomer A feed line.
- a third mass flow meter 16 is connected to the supply line.
- the monomer A line 22 is a first downstream of the first junction 23
- Conveyor 2 for conveying monomer stream A is arranged.
- a first mass flow meter 3 is connected to the monomer A line 22.
- a second junction 26 in the monomer A line 22 is arranged between the first conveying device 2 and the first mixing device 7.
- the device 32 comprises a polyol storage container 4, from which a polyol line 25 for conveying a polyol flow B branches off and opens into the second junction 26.
- a second conveying device 5 is arranged on the polyol line 25 and a second mass flow meter 6 is connected.
- the isocyanate line 22 opens into the first mixing device 7.
- One of the first mixing device 7 runs
- Circulation feed line 27 which opens into the third junction 28.
- a mixture stream C is promoted, which from the first
- the circulation line 29 comprises a second mixing device 8, a temperature-controllable mixing device 9 and a temperature-controllable conveying device 10 in the flow direction
- Return flow D is divided off at a fourth confluence 11, a polymer flow E as a partial flow.
- the fourth junction 11 is provided between the temperature-controlled mixing device 9 and the temperature-controlled conveying device 10.
- a polymer feed line 30 for conveying the polymer stream E branches off from the fourth junction 11 and opens into the extruder 18 on the inlet side.
- a pressure control valve 12 for regulating the pressure of polymer stream E is provided in the polymer feed line 30, a pressure control valve 12 for regulating the pressure of polymer stream E is provided.
- a three-way valve 13 is positioned in the polymer feed line 30 downstream of the pressure regulating valve 12, from which a waste line 31 branches off and opens into a waste container 14.
- the polymer stream E can be wholly or partially conducted into the waste container 14 via the waste line 31 when the device 32 is put into operation, taken out of operation or when the device 32 is disrupted.
- the device comprises a venting device 17 arranged at the confluence of the polymer feed line 30 into the extruder 18 for removing gases and gaseous by-products from the polymer stream E.
- the monomer A - Feed stream F passed into the extruder 18.
- the extruder 18 is suitable for reacting the components of the polymer stream E with the components of the monomer A feed stream F to form a polymer G.
- the extruder 18 is assigned a degassing shaft 19 for removing gases and gaseous by-products by means of negative pressure of 50 mbar to 800 mbar under normal pressure from this reaction, which is downstream of the introduction of the monomer A feed stream (F) and in the last third of the extruder in the extruder working direction 18 is arranged.
- a cooling device 20 is arranged downstream of the outlet of the extruder 18 for cooling the thermoplastic polyurethane G below its melting point.
- a comminution device 21 for comminuting the cooled thermoplastic polyurethane G is connected to the cooling device 20.
- FBDO monomer flow B, in particular input flow BDO, in kg / h
- molecular weights Mno, Mn v , Mwo, Mw v , MWGPC and Mw u are given in the number of monomer units - ie both the AA and the BB monomer.
- the molecular weights can also carry the subscripts Ext (reactor, in particular extruder) or loop (return flow) in order to display them in the respective process step.
- MWGPC Weight average of the MGV corrected for branches and radius of gyration i.e. the theoretical molecular weight that one would theoretically obtain from a GPC measurement.
- Mn number average of the MGV from 1-H NMR in this case the branching is also taken into account Mw weight average of the MGV from GPC
- p a for allophanates, since they have a functionality of 3.
- p (f-2) * a applies.
- the molecular weight of a unit is the average of the molecular weight of monomers A and B (especially BDO and HDI).
- Mw from the GPC has to be divided by the average molecular weight of a monomer unit.
- the molar masses of the polymers were determined with the aid of gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the sample to be measured was dissolved in a solution of 3 g of potassium trifluoroacetate in 400 cubic centimeters of hexafluoroisopropanol (sample concentration approx. 2 mg / cubic centimeter).
- the respective GPCs were measured with the following components at a flow rate of 1 cubic centimeter / minute:
- GPC provides the mean values Mn, Mw and Mz as well as the peak molecular weight Mp.
- Mn was determined from the used ratio KZ of A / B or A + F / B, in particular HDI / BDO, and the NMR data according to the following formula:
- Mn ⁇ M W HDI * KZ * (1 + X) + M W BDO * (1 + X) ⁇ / ⁇ (1 + X) * KZ -1 + xa ⁇
- Mw was determined directly from the GPC data.
- a polyisocyanate stream as monomer stream A consisting of 1,6-hexamethylene diisocyanate was conveyed to a static mixer 7 from a 250 liter receiver 1 for 1,6-hexamethylene diisocyanate with the aid of a toothed ring pump 2 (from HNP, MZR 7255).
- the throughput of the polyisocyanate stream was measured by means of a mass flow meter 3 (Bronkhorst Company, Mini Cori-Flow MIX, max. Flow rate 12 kg / h).
- the temperature of the 1,6-hexamethylene diisocyanate was room temperature.
- a polyol stream as monomer stream B consisting of 1,4-butanediol was conveyed to the static mixer 7 from a 250 liter receiver 4 for 1,4-butanediol with the aid of a gerotor pump 5 (from HNP, MZR 7205).
- the throughput of the polyol stream was measured by means of a mass flow meter 6 (Bronkhorst Company, Mini Cori-Flow MIX, max. Flow rate 8 kg / h).
- the temperature of the 1,4-butanediol was 40 ° C.
- the polyisocyanate stream and the polyol stream were mixed with one another, so that a mixture stream C was obtained.
- the mass flows of the polyisocyanate flow and the polyol flow were adjusted to the index given below for the respective example.
- the circulating stream X was passed into a static mixer 9 that could be heated. There, the reaction of the monomers originating from the mixture stream C, with one another or with the molecules originating from the reflux stream D, took place for the most part and the heat of reaction generated was dissipated.
- the temperature-controllable static mixer 9 was constructed similarly to a Sulzer SMR reactor with internal, crossed tubes. It had an internal volume of 1.9 liters and a heat exchange area of 0.44 square meters. It was heated / cooled with thermal oil.
- the circulating stream X emerged from the temperature-controllable static mixer 9. Downstream of the temperature-controllable static mixer 9, a polymer stream E was separated from the circulating stream X at a junction 11 and the remaining return stream D was passed on to a gear pump 10. The polymer stream E was passed into an extruder 18 if the polymer in the respective example was further reacted in the extruder.
- the pressure of the return flow D was increased at a gear pump 10.
- the gear pump 10 (Witte Chem 25.6-3) had a volume per revolution of 25.6 cubic centimeters and a speed of 50 per minute.
- the return flow D was combined with the mixture flow C at the confluence 28 downstream of the pump, as already described.
- the circulation line 29 consisted of double-walled pipes that were heated with thermal oil.
- the static mixer 8, the temperature-controlled static mixer 9 and the gear pump 10 consisted of apparatuses which were heated with thermal oil. Further implementation of the polymer
- the further conversion of the polymer was carried out as a reactive extrusion in an extruder 18 at a temperature of 200 ° C. and a speed of 66 revolutions per minute.
- the extruder 18 was a ZSK 26 MC from Coperion, with a screw diameter of 26 mm and a length to diameter ratio of 36 to 40.
- vent 17 On the extruder 18 there was a vent 17 which was operated at about 1 mbar negative pressure compared to normal pressure and in which the polymer stream E was freed of any inert gases and possible gaseous reaction products entrained with the polyisocyanate stream and the polyol stream.
- An isocyanate feed stream F consisting of 1,6-hexamethylene diisocyanate was taken from template 1 with the aid of a micro annular gear pump 15 (MZR 6355 from HNP).
- the throughput of the isocyanate feed stream as monomer stream F was measured by means of a mass flow meter 16 (Bronkhorst, Mini Cori-Flow, MIX, maximum flow rate 2 kg / h).
- the temperature of the 1,6-hexamethylene diisocyanate was room temperature.
- the isocyanate feed stream as monomer stream F was passed into the extruder 18 downstream of the prepolymer stream E. In the extruder 18, the prepolymer stream E was reacted with the isocyanate feed stream as monomer stream F at the isocyanate index of the respective example given below to form a thermoplastic polyurethane G.
- thermoplastic polyurethane as polymer G was freed of volatile constituents at 200 mbar under normal pressure with the aid of a vacuum dome, which was arranged on a degassing shaft of the extruder.
- the thermoplastic polyurethane as polymer G was cooled through two nozzles in a water bath 20 filled with deionized water (deionized water) and cut into granules by a granulator 21.
- Examples 1 to 3 show that a change in the ratio of the reflux stream in the reflux stream D to the sum of the monomer streams A and B leads to a broader distribution of the molecular weight, the number-average molecular weight in the examples deviating only insignificantly from one another.
- the characteristic number of the monomer streams A and B can also influence the distribution of the molecular weight under otherwise largely identical reaction conditions, as can be seen from Examples 4 to 6.
- an increase in the temperature to over 200 ° C leads to a relevant reverse reaction in the loop, which leads to a reduced breadth of the distribution of the molecular weights ( pd).
- Examples 9 and 10 show that the ratio of the return flow to the sum of the mass flows A and B also has an effect on the distribution of the molecular weight if additional monomer is metered in during a further reaction of the polymer.
- the molecular weight and the polydispersity can, however, also be influenced by the amount of the subsequent metering in of the monomer, i.e. the KZ 2.
- a desired breadth of the distribution of the molecular weights can therefore also be achieved by selecting KZ 1 and KZ 2.
- Example 15 according to the invention showed good granulability.
- Branching density is exceeded, showed gel lumps, so that granulability was not given.
- Reference example 17 showed a combination of high Mw and high branching concentration, which makes further condensation impossible without gel formation.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Polyurethanes Or Polyureas (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19216783.1A EP3838960A1 (de) | 2019-12-17 | 2019-12-17 | Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionen |
EP20207262 | 2020-11-12 | ||
PCT/EP2020/085487 WO2021122286A1 (de) | 2019-12-17 | 2020-12-10 | Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4077451A1 true EP4077451A1 (de) | 2022-10-26 |
Family
ID=73740422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20820425.5A Withdrawn EP4077451A1 (de) | 2019-12-17 | 2020-12-10 | Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4077451A1 (de) |
CN (1) | CN114746466A (de) |
WO (1) | WO2021122286A1 (de) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2302564C3 (de) | 1973-01-19 | 1985-02-07 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von Polyurethan-Elastomeren |
DE59307600D1 (de) | 1992-11-16 | 1997-12-04 | Bayer Ag | Kontinuierliches Verfahren zur Umsatzsteuerung von Polyurethan-Prepolymeren durch teilweise Vermischung des Prepolymeren mit den Monomeren |
JP2010502786A (ja) | 2006-08-30 | 2010-01-28 | インターテープ ポリマー コーポレーション | 再循環ループ反応装置によるバルク重合方法 |
US20120116030A1 (en) | 2010-11-10 | 2012-05-10 | Bayer Materialscience Ag | Process for continuously producing thermoplastically processable polyurethanes |
-
2020
- 2020-12-10 EP EP20820425.5A patent/EP4077451A1/de not_active Withdrawn
- 2020-12-10 CN CN202080086315.6A patent/CN114746466A/zh active Pending
- 2020-12-10 WO PCT/EP2020/085487 patent/WO2021122286A1/de unknown
Also Published As
Publication number | Publication date |
---|---|
WO2021122286A1 (de) | 2021-06-24 |
CN114746466A (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021122280A1 (de) | Thermoplastisches polyurethan mit hohem biegemodul | |
WO2021122286A1 (de) | Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionen | |
EP3838960A1 (de) | Verfahren zur einstellung der molekulargewichtsverteilung bei polykondensationen und/oder polyadditionen | |
EP4077444B1 (de) | Verfahren zur kontinuierlichen herstellung von thermoplastischem polyurethan | |
WO2021122307A1 (de) | Verfahren zur kontinuierlichen herstellung eines thermoplastischen polyurethans | |
WO2021122287A1 (de) | Verfahren zur herstellung von semikristallinen polyurethanen mit hoher reaktionsenthalpie | |
WO2022128171A1 (de) | Thermoplastische formmasse mit guten mechanischen eigenschaften | |
WO2021122284A1 (de) | Verfahren zur herstellung von hydroxy-terminierten prepolymeren | |
EP4077441B1 (de) | Thermoplastisches polyurethan mit hoher biegespannung | |
WO2021122283A1 (de) | Reaktivextrusion von tpu mit entgasung | |
WO2021122282A1 (de) | Reaktivextrusion von tpu unter zuführung von wasser | |
EP4077437A1 (de) | Verfahren zur herstellung von polyurethanen mit hoher reaktionsenthalpie | |
WO2021122297A1 (de) | Thermoplastisches aliphatisches polyurethanprepolymer mit niedriger schmelzenthalpie | |
EP4077442A1 (de) | Verfahren zur herstellung eines thermoplastischen polyurethans mit niedriger schmelzenthalpie | |
WO2021122310A1 (de) | Thermoplastisches polyurethan mit hohem hartsegmentanteil | |
WO2021122301A1 (de) | Thermoplastisches aliphatisches polyurethanpolymer mit niedriger kristallisationsenthalpie | |
EP4015549A1 (de) | Thermoplastische formmasse mit guten mechanischen eigenschaften | |
WO2022037819A1 (de) | Thermoplastische formmasse mit guten thermischen und mechanischen eigenschaften | |
EP4105255A1 (de) | Thermoplastische formmasse mit gutem kristallisationsverhalten | |
EP3838945A1 (de) | Thermoplastisches aliphatisches polyurethanpolymer mit verbessertem schmelzverhalten | |
WO2022128172A1 (de) | Thermoplastische formmasse mit guten mechanischen eigenschaften | |
WO2021122290A1 (de) | Thermoplastisches polyurethan mit verbesserter schmelzeelastizität | |
EP4105256A1 (de) | Thermoplastische formmasse mit guter bewitterungsstabilität |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220718 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230701 |