EP4076932A1 - Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé - Google Patents

Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé

Info

Publication number
EP4076932A1
EP4076932A1 EP20829576.6A EP20829576A EP4076932A1 EP 4076932 A1 EP4076932 A1 EP 4076932A1 EP 20829576 A EP20829576 A EP 20829576A EP 4076932 A1 EP4076932 A1 EP 4076932A1
Authority
EP
European Patent Office
Prior art keywords
cid
substrate
deformation layer
stiffness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20829576.6A
Other languages
German (de)
English (en)
Inventor
Jean-Philippe Court
Hamza ABBAD EL ANDALOUSSI
Firas SAYED AHMAD
Pierre MONTAUFRAY
Alexandre Monteil
Thierry ROURE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
COLD PAD
Original Assignee
Electricite de France SA
COLD PAD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, COLD PAD filed Critical Electricite de France SA
Publication of EP4076932A1 publication Critical patent/EP4076932A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B13/06Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B13/12Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/16Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side secured to a flexible backing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0076Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised in that the layers are not bonded on the totality of their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/142Variation across the area of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention relates to techniques for producing glued assemblies.
  • Fixing or connection solutions by gluing make it possible to remedy these drawbacks.
  • such fixings or connections by gluing are vulnerable to significant mechanical stresses.
  • stress concentrations or edge effects appear in particular at the periphery of the adhesive layer which can damage the fixing or the connection.
  • the assembly of two substrates bonded with an adhesive can be subjected to external forces, in particular causing differential deformations between the substrates.
  • the adhesive should generally perform at least two functions:
  • FIG. 1A an example of a conventional adhesive bonded ACC assembly has been illustrated comprising a first substrate S1 and a second substrate S2, which substrates are secured by means of a conventional adhesive ADC.
  • a and B marks are shown at the corners of the ADC adhesive to see an example of the deformation undergone by the adhesive below.
  • FIG. 1B illustrates an example of a sectional view of the adhesive assembly ACC when the latter is subjected to deformation forces F (for example opposite forces applied respectively to the substrates S1 and S2).
  • F deformation forces
  • ADC adhesive deforms under the influence of stresses imposed by F forces. The most pronounced deformations usually occur at the edges of ADC adhesive.
  • FIG. 1 C there is shown an example of the evolution of the shear stresses t, inherent to the forces F applied, undergone by the ADC adhesive between the marks A and B. Due to the application of the forces F, the ADC adhesive also undergoes peel stresses o between the marks A and B as shown in FIG. 1 C.
  • the differential displacements of the substrates S1 and S2 generate shear and peel stresses which are high in particular in the region of the edges of the ADC adhesive.
  • the ADC adhesive is little, or in some cases not at all, constrained in a central zone between the marks A and B.
  • the forces are mainly transmitted from one substrate to another by the edge regions.
  • Figures 2A to 2C illustrate by way of example the first substrate S1 whose role is to reinforce the second substrate S2 which may be a structural part. It should be noted that when the second substrate S2 is subjected to deformations under the stress of forces F for example (produced by deformations of the structure typically), the adhesive at least partially absorbs the differential deformations, generating stresses of high shear t and peel o at the edges of the adhesive (at marks A and B and their vicinity).
  • a solution can consist in increasing the adhesion surface of the adhesive with that of the substrates, more particularly by lengthening the length of this surface ( i.e. increasing the distance between marks A and B). Indeed, with such an increase in the adhesion surface of the adhesive with that of the substrates, the mechanical capacities of the glued assembly are improved, at least up to a certain limit.
  • Figure 3 is illustrated a graphical representation of the force F necessary to obtain a rupture of the adhesive, and this as a function of the length L of the contact surface of the adhesive with the substrates (i.e. i.e. length separating marks A and B). It should be noted that the force F applied to the break increases linearly up to a limit value F m corresponding to a limit length Lmax from which the force applied for a break is substantially identical.
  • the adhesive when the adhesive is installed between a structure and a reinforcing element of the structure, it is appropriate to perform the operation of adding excess adhesive on site, which can be restrictive, or even impossible, due to external conditions or the configuration of the structure.
  • an adhesive to perform the aforementioned functions (adhesion to substrates and absorption of deformations) may turn out to be antagonistic. Indeed, it is generally observed that the more flexible an adhesive is (ie better absorption capacity), the more the adhesion capacities are reduced. Conversely, the stiffest adhesives provide the best adhesion capacities, but are more sensitive to deformation stresses.
  • the present invention improves the situation.
  • the invention relates to a glued assembly comprising at least:
  • the intermediate deformation layer secured to the first substrate, the intermediate deformation layer comprising a material in which recesses are provided so that the intermediate deformation layer has a stiffness which is variable in a direction parallel to the intermediate deformation layer,
  • variable stiffness provides the intermediate layer and adhesive assembly with deformation absorption capacities which may vary in parallel with the first substrate. These variations in stiffness make it possible to locally control the level of deformation, and therefore the stresses.
  • the deformation behavior can in particular be controlled so as to distribute shear and peel stresses more evenly, which are usually localized in the vicinity of the edges of the adhesive (as explained above).
  • the local deformations are effectively absorbed by the intermediate deformation layer whose stiffness (the reverse of flexibility) is controlled, the edges of the adhesive then being less exposed to the stresses generated by external forces applied to glued assembly.
  • the edge effects and more generally the stress concentrations in the intermediate deformation layer, in the adhesive as well as on the surface of the substrates can be significantly reduced, correspondingly increasing the strength and integrity capacities of the adhesive. , and reinforcing the bonding of the substrates and the structural capacities of the glued assembly.
  • the force necessary to obtain a rupture is therefore much higher than in the state of the art. It will be understood that the bonded assembly is thus less vulnerable to deformation forces which are absorbed or distributed along the intermediate deformation layer.
  • the object of the present invention is to maintain good deformability without compromising the adhesive function by selecting high performance and stiff adhesives.
  • the deformation behavior of the intermediate deformation layer can be controlled so as to reduce the stresses transmitted between the intermediate deformation layer and the substrate at these areas (for example by reducing the stiffness of the intermediate deformation layer which faces the weak or highly stressed area).
  • the control of the deformation behavior which takes place by varying the stiffness of the intermediate deformation layer in a direction parallel to the latter is obtained by means of recesses located in the intermediate deformation layer.
  • the intermediate deformation layer is made from a single material and recesses are provided in the mass of the material forming the intermediate deformation layer.
  • the recesses are configured to give the intermediate deformation layer a stiffness which is variable in a direction parallel to the intermediate deformation layer.
  • the stiffness that is to say the macroscopic stiffness
  • the microscopic stiffness Young's modulus
  • the CID can be entirely formed of a material having such a Young's modulus value.
  • the intermediate deformation layer nevertheless retains a good ability to deform without compromising the adhesive function.
  • the value of Young's modulus of the material can be similar to a value of Young's modulus of the adhesive.
  • adhesive affinity is meant a good compatibility between two materials resulting in good mechanical strength and, in the ultimate state, a cohesive rupture, that is to say a rupture of one of the two materials involved (CID , Adhesive) and not a rupture at the interface between the adhesive and the CID.
  • CID Adhesive
  • shape of the recesses it is understood the geometry thereof, the recesses form microstructures within the intermediate deformation layer.
  • density of the recesses or density of the microstructures is meant the number of recesses or microstructures per unit area or volume of the intermediate deformation layer.
  • the intermediate deformation layer comprises perforated volumes.
  • the openwork volumes can give way to residual elements forming microstructures.
  • stiffness which is variable in a direction parallel to the intermediate deformation layer
  • stiffness varies along the substrate, that is to say that the stiffness of the intermediate deformation layer (CID ) at points located in a (possibly planar) surface substantially parallel to the CID varies in that surface.
  • the parallel surfaces considered are, for example, all the surfaces included between the two faces of the CID and parallel to one of them. In other words, the stiffness is variable from one portion of the intermediate deformation layer to another portion, the two portions being distributed longitudinally.
  • stiffness is meant the stiffness in one or more directions, for example, the stiffness in a direction of vector (z) to the intermediate deformation layer or the stiffness in a direction parallel to the intermediate deformation layer, for example the direction of vector (x) or vector (y) or even according to a linear combination of vector (x) and vector (y) ((vector (x), vector (y), vector (z)) forming a reference of l 'space and (vector (x), vector (y)) forming a coordinate system of the surface parallel to the intermediate deformation layer, the vector (z) being optionally orthogonal to the coordinate system (vector (x), vector (y)), with vector (u) the notation designating).
  • the stiffness at a point (x, y) of the surface parallel to the CID can be represented by the triplet (Rvector (x) (x, y); Rvector (y) (x, y); R vector (z) (x, y)), where Rvector (x) (x, y) represents the value of the stiffness in the direction of vector (x) at the point (x, y), Rvector (y) (x, y) represents the value of the stiffness in the direction of vector (y) at point (x, y) and Rvector (z) (x, y) represents the value at point (x, y) of the stiffness in the direction of vector (z) which is optionally orthogonal to the intermediate strain layer.
  • stiffness which is variable in a direction parallel to the intermediate deformation layer it may for example be the stiffness Rvector (z) (x, y) in the direction of vector (z) at the intermediate layer of deformation which is variable and / or of the stiffnesses Rvector (x) (x, y) and / or Rvector (y) (x, y) in the directions parallel to the intermediate deformation layer.
  • the edge effects are particularly attenuated when the stiffness Rvector (z) (x, y) is reduced in the direction of vector (z) (which may be orthogonal to the intermediate deformation layer) at the edges of the intermediate deformation layer.
  • the forces on the weakened areas or subjected to significant stresses are particularly attenuated when the stiffness of the intermediate deformation layer facing the zones is reduced in the same direction as those of the forces generating these forces.
  • the substrate and the intermediate deformation layer are joined to each other so as to form an inseparable whole, this can be obtained with adhesives, but it is also possible to form the intermediate deformation layer directly on the substrate with which it becomes integral.
  • a first face of the intermediate deformation layer and / or a second face of the intermediate deformation layer respectively have complementary shapes to the surface of the first substrate and / or of the second substrate.
  • the intermediate deformation layer is complementary to the surfaces of the substrates, the intermediate deformation layer matches the surfaces of the substrates better, creating a uniform and almost constant adhesive layer thickness between the intermediate deformation layer and the substrates.
  • the microstructures formed by the recesses can be elongated elements connecting the two faces of the intermediate deformation layer.
  • the intermediate deformation layer can comprise two outer layers forming the two faces of the intermediate deformation layer.
  • Elongated elements connect the two outer layers.
  • the set of the two outer layers and the elongated elements thus form the intermediate deformation layer.
  • the elongated elements form spacers between the two outer layers.
  • the elongated elements can have constant or variable sections and the sections can be circular, triangular, rectangular or any other shape.
  • the outer layers which are made of the intermediate strain layer material can be continuous, in order to adhere more strongly to each substrate.
  • the use of elongated shapes makes it possible to create a structure having the desired mechanical characteristics, namely that the intermediate deformation layer has a stiffness in at least one direction which is suitable and varies in a direction parallel to the layer. intermediate deformation.
  • the stiffness of the intermediate deformation layer in one direction can be adapted by adapting the sections of the elongated elements and / or the spacings between the elongated elements and / or the directions of the elongated elements.
  • the stiffness in one direction can be increased by orienting the elongated elements in this same direction.
  • the adaptation of the elongated elements makes it possible to adapt the stiffness in one direction regardless of the level of stiffness in another direction.
  • the elongated elements can form a lattice or mesh structure.
  • a lattice structure makes it possible in particular to adapt the stiffness as a function of the direction. Thus, it is easier in a trellis structure to adapt a stiffness in a weak direction and to maintain a high stiffness in another direction (for example a low Rvector (z) value and a high Rvector (x) value).
  • the elongated elements can be aligned in a direction orthogonal to the intermediate deformation layer, for example, arranged in a comb.
  • Such a structure of the intermediate deformation layer makes it possible to adapt the stiffness Rvector (z) in the direction orthogonal to the intermediate deformation layer while maintaining a low stiffness in the direction parallel to the intermediate deformation layer.
  • the Rvector stiffness (z) in the orthogonal direction can easily be reduced (respectively increased), for example by reducing (respectively increasing) the section of the elongated elements or by spacing (respectively narrowing) the elongated elements.
  • the recesses provided are not compartmentalized from each other.
  • non-compartmentalized is meant that the recesses do not form a compartment and are therefore open.
  • fluid flow is made possible between the recesses of the intermediate straining layer and the exterior of the intermediate straining layer, at least before it is secured to the first and second substrates. This allows when photopolymerization type 3D printing techniques are used to fabricate the strainer interlayer to drain the uncured liquid polymer contained in the strainer interlayer at the end of printing.
  • the intermediate deformation layer is formed of a material which is homogeneous in composition.
  • a material which may be, for example, of the type:
  • the material can be:
  • an adhesion primer or an interface layer may be used between the intermediate deformation layer and the adhesive.
  • the first substrate is a reinforcing part suitable for reinforcing the second substrate.
  • the term “reinforcing part” is understood to mean a part providing structural and / or mechanical reinforcement of the second substrate.
  • the first substrate is integral with an attachment means.
  • a mechanical connector is secured to the substrate (it can for example be glued to the latter).
  • the stiffness of the intermediate layer varies gradually. This makes it possible to reduce the stress concentrations which appear at the level of the zones of excessively sudden transition of the stiffness within the zone concerned, involving at the same time, adhesive, intermediate deformation layer and substrate. In fact, in these transition zones, phenomena similar to those of edge effects appear between the parts of high stiffness and the parts of low stiffness. In addition, this ensures good control of the deformation and absorption behavior of the intermediate deformation layer, over its entire length.
  • the intermediate layer comprises a portion disposed at the edge of the intermediate layer and having, in one direction, a lower stiffness than the stiffness in the direction of another. portion of the middle layer. That is, the stiffness of the intermediate deformation layer is lower at the periphery of the intermediate deformation layer.
  • This lower stiffness at the periphery or in the portion arranged at the edge of the intermediate deformation layer is obtained by means of recesses suitably arranged in the intermediate deformation layer: for example, by increasing the density of the recesses at the periphery or in the portion arranged at the edge. It is also possible to obtain a lower stiffness in these same portions of the intermediate deformation layer by increasing the size of the recesses or even by adapting the shape of the recesses.
  • the shape of the edge can also be adapted to progressively reduce the stiffness at the periphery of the intermediate deformation layer, for example with an edge of the intermediate deformation layer bevelled or in the shape of a nose.
  • the peripheral stiffness can be reduced for all directions (Rvector (x), Rvector (y), Rvector (z)) or mainly in one direction.
  • Rvector (x), Rvector (y), Rvector (z) or mainly in one direction.
  • stiffness Rvector (z) in a direction of vector (z) (which can be orthogonal or mainly orthogonal to the intermediate deformation layer) when the bonded assembly works mainly in tension.
  • the stiffness can optionally be reduced locally at the precise location where the tensile force is applied.
  • portion of the intermediate deformation layer is meant a localized part of the intermediate deformation layer for which a desired level of stiffness has been assigned during manufacture.
  • edge of the intermediate deformation layer or in an equivalent manner the edge of the intermediate deformation layer, it is meant the peripheral zone of the intermediate deformation layer.
  • the portion disposed at the edge may for example be the part of the intermediate deformation layer located at a distance less than a threshold (for example 10mm) from the edge; the other portion of the intermediate deformation layer being for example a portion located at a distance greater than the threshold of the edge.
  • the intermediate deformation layer comprises a portion covering a zone of weakness of the second substrate and / or a crack of the second substrate, said portion of the intermediate deformation layer having, in one direction, a stiffness lower than a stiffness in said direction of another portion of the intermediate deformation layer. That is to say, the stiffness of the intermediate deformation layer is lower at the level of the portion covering the zone of weakness or the crack. This lower stiffness of the intermediate strain layer at the portion covering the area of weakness or the crack of the intermediate strain layer is achieved by means of recesses suitably disposed in the intermediate strain layer.
  • the stiffness of this portion can be reduced for all directions (Rvector (x), Rvector (y), Rvector (z)) or mainly in one direction.
  • region of weakness of the substrate or area of high stress of the substrate it is meant any area where the substrate presents risks of rupture or crack, either because of its structure or because of the forces which are applied to it.
  • the mechanical resistance in traction and / or in shear of the intermediate deformation layer is less than a mechanical resistance of at least one of the first substrate and the second substrate. This resistance can be determined in a preliminary step.
  • a gap between the substrates comprises, around the intermediate layer, a seal arranged so as to be compressed by the substrates held relative to each other by means of the adhesive.
  • the compressed gasket isolates the entire intermediate layer and adhesive from the environment surrounding the bonded assembly. This isolation provided by the seal keeps this assembly in conditions of use that ensure good durability. It is thus possible to choose the material of the intermediate layer and of the adhesive as a function of the desired properties and of the compositions of the substrates to be maintained with respect to one another, while being confident in the effective and lasting obtaining of these. properties.
  • the invention relates to a method of manufacturing an element of a glued assembly, the method comprising:
  • an intermediate deformation layer comprising a material, said formation of the intermediate deformation layer being carried out so in obtaining recesses in the material so that the intermediate deformation layer has a stiffness which is variable in a direction parallel to the intermediate deformation layer;
  • the intermediate deformation layer is formed on a support consisting of one of the aforementioned substrates.
  • the formation of the intermediate layer is carried out by an additive manufacturing technique.
  • additive manufacturing technique is meant the techniques defined as such by ASTM.
  • Additive manufacturing is also called 3D printing.
  • the additive manufacturing techniques which can in particular be used are:
  • the method further comprises:
  • the data relating to a shape of a surface of the substrate characterize the surface of the substrate and more precisely its relief. Obtaining a surface of the CID of a shape complementary to the shape of the surface of the second substrate is achieved by means of these data relating to the shape of the surface of the second substrate.
  • the invention relates to a method of manufacturing a glued assembly comprising the manufacture of an element of a glued assembly according to one of the methods as described above, the method further comprising the bonding of the intermediate deformation layer to the second substrate by means of an adhesive.
  • the bonding of the intermediate deformation layer to the second substrate by means of the adhesive is carried out so that said surface of the intermediate deformation layer is secured to the surface of the second substrate in a complementary manner .
  • the invention relates to a method for reinforcing a structure comprising at least one substrate to be reinforced, the method comprising:
  • an intermediate layer comprising a material in which recesses are provided so that the intermediate deformation layer has a stiffness which is variable in a direction parallel to the intermediate deformation layer
  • FIG. 1A] to [Fig. 1C] illustrate examples of typical embodiments of a glued assembly, and represent the deformations and shear stresses conventionally undergone by the adhesive, in particular at its edges.
  • FIG. 2A] to [Fig. 2C] illustrate examples of embodiments of a reinforcing element bonded to a structure, generating deformations and stresses similar to the examples of FIGS. 1A to 1C.
  • FIG. 3 shows the evolution, as a function of the overlapping length of two substrates of the adhesive bonding interface, of the ultimate force to be applied to achieve a rupture of the conventional bonded joint adhesive.
  • FIG. 4A] to [Fig. 4B] illustrate examples of a bonded assembly according to the invention.
  • FIG. 5A] to [Fig. 5G] illustrate examples of an intermediate deformation layer according to the invention.
  • FIG. 6 illustrates a method of manufacturing an AC according to the invention.
  • FIGS. 4A and 4B are illustrated examples of an AC bonded assembly according to the invention.
  • the assembly includes a first substrate S1 and a second substrate S2.
  • a mechanical connector (CM) is secured to the first substrate S1, the second substrate may be a wall.
  • the glued assembly (AC) forms an attachment means on the wall.
  • the first substrate S1 is a reinforcing element intended to repair, protect and / or reinforce a structure comprising the second substrate S2.
  • the reinforcing element can take the form of a rigid plate superimposed on a wall of the structure, typically a metal plate, composite or any other material of sufficient rigidity to reinforce the structure. This reinforcement can in particular be used to reinforce:
  • the AC assembly comprises an intermediate deformation layer, CID, called “deformation”, and an AD adhesive.
  • the adhesive AD is placed between the substrates S1 and S2 and it is intended to make them integral with one another via the CID.
  • the CID comprises a first connection interface INT1 with the substrate S1, and a second connection interface INT2 with the adhesive AD.
  • the CID has varying stiffness along the INT1 and INT2 interfaces.
  • CID and AD adhesive can be made from the same material.
  • CID may have a Young's modulus, close to that of AD adhesive.
  • the material used for the CID can in particular be chosen from the following list of polymers:
  • the stiffness Rvector (v) (xi, yi) of the CID at a point (xi; yi) thereof according to vector (v), expresses the relation of proportionality between the force F applied at this point and according to the same direction as that of vector (v) and the resulting deflection at this point.
  • the vector (v) is perpendicular to the CID one speaks of stiffness in traction and compression
  • the vector (v) is parallel to the CID one speaks of stiffness in shear. This is expressed in newtons per meter (N / m).
  • AD adhesive can be relatively rigid and has good adhesion capacities:
  • the intermediate deformation layer CID makes it possible to improve:
  • variable stiffness CID allows in this case to obtain a controlled behavior which more evenly distributes the shear and peel stresses generated by external forces applied to the bonded assembly AC.
  • the desired value of the stiffness of the CID along a direction and the variation of the stiffness along the CID are obtained via recesses within the layer, as specified previously.
  • Rvector (v) (xi, yi) at the point (xi, yi) it is, for example, possible to:
  • a portion P1 disposed at the edge of the CID is shown.
  • This portion has a lower level of stiffness of the CID than that of the portion P2 disposed in a central part of the CID.
  • the portion P1 can be for example the peripheral part of the CID, namely the part representing the 20% of the CID furthest at the edge in the longitudinal direction. More specifically, the edge effects are greatly reduced when we reduce in P1:
  • FIG. 4B there is shown a portion P3 disposed at a region of weakness of the CID, namely a crack in the wall.
  • the portion P3 of the CID has a lower level of stiffness than that of the portion P2.
  • the transfer of stresses between the first substrate (S1) and the second substrate (S2) in the vicinity of the crack is greatly reduced when the stiffness in P3 is reduced according to the direction or directions in which the stresses are applied at the level of P3 (namely along the direction perpendicular to the CID if the stresses are peel stresses and / or along one or more longitudinal directions if the stresses are shear stresses).
  • FIG. 4A relates to a mechanical connector and that of FIG. 4B relates to a reinforcement
  • the CID described in FIG. 4A can also include a portion P3 as described in FIG. 4B when the second substrate (S2) shows areas of weakness.
  • the CID described in Figure 4B may also include a portion P1 as described in Figure 4A when the glued assembly (AC) is subjected to high stresses resulting in edge effects.
  • FIGS. 5A to 5G in which embodiments of the intermediate deformation layer (CID) with variable stiffness have been shown. All of these CIDs can be used both in the embodiment of Figure 4A and that of Figure 4B.
  • Figure 5A is a sectional view of the CID shown in Figure 5B.
  • the CID comprises a first outer layer CEx1 which is secured to the first substrate S1, and a second layer CEx2 which is secured to the second substrate S2 via the adhesive AD.
  • Microstructures, MS connect the two outer layers CEx1 and CEx2.
  • the MS form spacers between the two outer layers CEx1 and CEx2.
  • the recesses, EV are the spaces not occupied by the MS between the CEx1 and CEx2 of the CID.
  • Each CID, and in particular its stiffness and the variation thereof in the plane of the CID, are characterized by the material used to form the CID and the structure formed by the MS or, in an equivalent manner, the structure formed by the recesses.
  • the MS of Figures 5A and 5B are elongated elements of rectangular section.
  • the MS form a lattice.
  • the stiffness of the CID can be adapted to obtain the desired properties as described in FIGS. 4A and 4B. For example, to reduce the stiffness at the edge of the CID in all directions:
  • the MS at the edge of the layer may have a thinner section than the MS at the heart of the CID, for example MS2;
  • the MS which are not located at the edge of the CID, for example MS2, can also be adapted in the same way to vary the stiffness, in particular in the case where the second substrate S2 exhibits areas of weakness, for example at the level of MS2.
  • Such a trellis structure of the MS makes it possible to adapt the stiffness in the direction orthogonal to the CID and the stiffness in a direction parallel to the CID without being constrained with respect to each other.
  • the MS of Figures 5C and 5D are elongated elements of rectangular section.
  • the MS are substantially aligned in the direction orthogonal to the CID.
  • the stiffness of the CID can be adapted to obtain the desired properties as described in FIGS. 4A and 4B. For example, to reduce the stiffness at the edge of the CID in all directions:
  • the MS at the edge of the layer may have a thinner section than the MS at the heart of the CID, for example MS4;
  • the MS which are not located at the edge of the CID, for example MS4, can also be adapted in the same way to vary the stiffness, in particular in the case where the second substrate S2 would have areas of weakness for example. at the level of MS4.
  • the MS of FIG. 5E are elements of elongated shape and of rectangular section.
  • the embodiment of Figure 5E combines MS substantially aligned in the direction orthogonal to the CID and MS tilted to CEx1 and CEx2.
  • the stiffness of the CID of FIG. 5E can be adapted to obtain the desired properties as described in FIGS. 4A and 4B. [0125] For example, to reduce the stiffness at the edge of the CID in all directions:
  • the MS at the edge of the layer for example MS5
  • the MS which are not located at the edge of the CID, for example MS6, can also be adapted in the same way to vary the stiffness, in particular in the case where the second substrate S2 would present areas of weakness for example. at MS6.
  • FIG. 5F is an alternative to the embodiment of Figure 5D, where the MS are elongated elements aligned in the direction orthogonal to the CID. However, here, the MS are of circular section.
  • the MS are free-form allowing great adaptability of the stiffness within the CID. These free forms can be obtained by numerical simulation.
  • the thickness of the CID is for example between 2 and 20mm.
  • the material of the CID namely the CEx1 and CEx2 as well as the MS are in a material which is homogeneous in composition with a Young's modulus value of between 1000 and 5000 MPa.
  • the CID can be the same material as the adhesive or have a Young's modulus comparable to that of the AD adhesive. This homogeneity of stiffness between the CID and the adhesive ensures good adhesion conditions between the CID and the AD adhesive.
  • a first step ST1 data relating to the shape of the surface of the second substrate are obtained.
  • the second substrate S2 is scanned by means of a 3D laser or structured light scanner, or even by photogrammetry.
  • the CID is formed.
  • the stiffness thereof is obtained by an appropriate arrangement of the MS as previously described.
  • the CID can in particular be formed by an additive manufacturing technique, for example by photopolymerization. As the recesses do not form a partition, it is possible to extract the non-solidified polymer.
  • the CEx2 is formed so that its surface forming the outer face of the CID is complementary with the second substrate S2.
  • the CID is made integral (for example by means of an adhesive) with the first substrate (this joining can be carried out in the factory). This step is not performed when the CID is formed directly on the first substrate.
  • the assembly formed by the CID and the first substrate S1 is bonded to the second substrate S2 by means of the adhesive AD.
  • the second substrate S2 is prepared beforehand (cleaning, surfacing, etc.).
  • a dab of adhesive is placed on the CID, more precisely on the INT2 securing interface.
  • the CID is then positioned facing the second substrate S2 so that the surfaces face each other in a complementary fashion.
  • the assembly made up of the first substrate S1, the CID and the adhesive nut is translated onto the second substrate S2 and held in position during the exposure time.
  • a fifth step ST5 in the case where the bonded assembly AC forms an attachment means on the wall, an item of equipment can be attached to the bonded assembly AC via the mechanical connector, for example by bolting.
  • the present invention is not limited to the embodiments described above by way of example and they extend to other variants.
  • the layers making up the intermediate deformation layer may for example comprise a chamfered profile in which cells are also provided.
  • Such an embodiment of the glued assembly can in particular make it possible to refine the control of the deformation behavior of the adhesive, in particular at the edges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

L'invention concerne un assemblage collé comprenant au moins : - un premier substrat (S1), - un deuxième substrat (S2), - une couche intermédiaire de déformation (CID) solidarisée au premier substrat, la couche intermédiaire de déformation (CID) comprenant un matériau dans lequel des évidements sont prévus de sorte que la couche intermédiaire de déformation (CID) présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire déformation (CID), - un adhésif (AD) entre ladite couche intermédiaire et le deuxième substrat (S2).

Description

Description
Titre : Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé
Domaine technique
[0001] La présente invention concerne les techniques de réalisation d’assemblages collés.
[0002] Elle trouve des applications dans des domaines très variés parmi lesquels on peut citer la connexion d’un élément à un substrat (par exemple un substrat en béton), notamment à un substrat sur lequel aucun élément d’accrochage n’a été initialement prévu, ou encore le renforcement de structures ayant besoin d’être rendues plus résistantes afin de réparer ou prévenir l’apparition de défauts structurels.
Technique antérieure
[0003] Dans l’industrie et le bâtiment, des éléments sont souvent fixés ou connectés aux structures (substrats), notamment aux structures porteuses en béton ou en métal, aux moyens de procédés connus de l’état de la technique comme le chevillage, le soudage, la perforation, le boulonnage. Ces techniques présentent des inconvénients. Par exemple, l’insertion de chevilles peut être rendue très difficile dans les structures en béton armé, lorsque celles-ci sont très ferraillées (par exemple, collisions de l’outil de perçage/forage avec les aciers structuraux du béton). Lorsque les structures sont métalliques, le soudage peut être très complexe: risque d’explosion, déformation due à la température, nécessité de repeindre les surfaces peintes endommagées par l’élévation de température, etc. Ces techniques de fixation sont chronophages pour l’installation et nécessitent du temps de préparation ou des précautions de mise en oeuvre. De plus, ces techniques de fixation peuvent aussi affaiblir les structures existantes.
[0004] Des solutions de fixation ou de connexion par collage permettent de remédier à ces inconvénients. Toutefois de telles fixations ou connexions par collage sont vulnérables aux efforts mécaniques importants. De plus, lorsque le substrat a subi ou subit des déformations mécaniques ou des efforts importants, des concentrations de contraintes ou des effets de bord apparaissent notamment au niveau de la périphérie de la couche adhésive pouvant endommager la fixation ou la connexion.
[0005] Plus généralement, l’assemblage de deux substrats collés par un adhésif peut être soumis à des forces extérieures, provoquant notamment des déformations différentielles entre les substrats. A cet effet, il convient généralement que l’adhésif assure au minimum deux fonctions :
- adhérer à chacun des deux substrats (fonction première souhaitée) et
- absorber les contraintes inhérentes aux déformations différentielles (fonction secondaire subie).
[0006] A la figure 1A, il a été illustré un exemple d’assemblage collé classique ACC comprenant un premier substrat S1 et un deuxième substrat S2, lesquels substrats sont solidarisés par l’intermédiaire d’un adhésif classique ADC. Des repères A et B sont représentés aux coins de l’adhésif ADC pour observer ci- après un exemple de déformation subie par l’adhésif.
[0007] On a illustré sur la figure 1B un exemple de vue en coupe de l’assemblage collé ACC lorsque celui-ci est soumis à des forces F de déformation (par exemple des forces opposées appliquées respectivement aux substrats S1 et S2). L’adhésif ADC se déforme sous l’influence des contraintes imposées par les forces F. Les déformations les plus prononcées apparaissent habituellement aux bords de l’adhésif ADC.
[0008] A la figure 1 C, on a représenté un exemple d’évolution des contraintes en cisaillement t, inhérentes aux forces F appliquées, subies par l’adhésif ADC entre les repères A et B. Du fait de l’application des forces F, l’adhésif ADC subit également des contraintes en pelage o entre les repères A et B comme cela est représenté à la figure 1 C.
[0009] Les déplacements différentiels des substrats S1 et S2 génèrent des contraintes en cisaillement et en pelage qui sont élevées notamment dans la région des bords de l’adhésif ADC. En revanche, il convient de constater que l’adhésif ADC est peu, voire dans certains cas aucunement, contraint dans une zone centrale entre les repères A et B. Ainsi, les efforts sont principalement transmis d’un substrat à l’autre par les régions de bords.
[0010] On comprendra qu’une corrélation existe entre la déformation de l’adhésif ADC observé à la figure 1B et les contraintes subies par celui-ci comme représenté à la figure 1C. Cette corrélation est aussi connue sous le nom de « effet de bord ». La déformation et donc les contraintes localisées aux bords de l’adhésif impactent significativement l’intégrité de l’adhésif ADC sur ces zones. L’assemblage collé ACC est ainsi vulnérable aux déformations différentielles précitées ce qui réduit fortement ses capacités mécaniques, surtout quand les efforts à véhiculer deviennent importants.
[0011] Les capacités mécaniques de l’assemblage collé sont de ce fait limitées, et d’autant plus lorsque les déformations différentielles auxquelles est exposé l’assemblage deviennent élevées.
[0012] Ce phénomène apparaît également lorsque l’assemblage collé est destiné au renfort d’une structure. En effet, l’adhésif peut alors être soumis à des déformations inhérentes aux mouvements de la structure à renforcer.
[0013] Les figures 2A à 2C illustrent à titre d’exemple le premier substrat S1 ayant pour rôle de renforcer le deuxième substrat S2 qui peut être un pan de structure. Il convient de constater que lorsque le deuxième substrat S2 est soumis à des déformations sous la contrainte de forces F par exemple (produites par des déformations de la structure typiquement), l’adhésif absorbe au moins en partie les déformations différentielles, générant des contraintes de cisaillement t et de pelage o élevées au niveau des bords de l’adhésif (aux repères A et B et à leur voisinage).
[0014] Pour renforcer les capacités mécaniques de l’assemblage collé, limitées par ces contraintes localisées, une solution peut consister à augmenter la surface d’adhésion de l’adhésif avec celle des substrats, plus particulièrement en allongeant la longueur de cette surface (c.-à-d. augmentation de la distance entre les repères A et B). En effet, avec une telle augmentation de la surface d’adhésion de l’adhésif avec celle des substrats, les capacités mécaniques de l’assemblage collé sont améliorées, tout au moins jusqu’à une certaine limite. [0015] A la figure 3 est illustrée une représentation graphique de la force F nécessaire pour obtenir une rupture de l’adhésif, et ce en fonction de la longueur L de la surface de contact de l’adhésif avec les substrats (c.-à-d. longueur séparant les repères A et B). Il convient de noter que la force F appliquée à la rupture augmente linéairement jusqu’à une valeur limite Fm correspondant à une longueur limite Lmax à partir de laquelle la force appliquée pour une rupture est sensiblement identique.
[0016] Cette stabilisation de la force F à la rupture à partir d’une certaine longueur de surface d’adhésion est en grande partie causée par les effets de bord qui persistent à fortement déformer et contraindre l’adhésif en ses bords, fragilisant localement l’adhésif et entraînant son décollement des substrats par ruine adhésive ou cohésive. On observe alors dans l’adhésif (ou dans le substrat s’il est plus faible) une rupture « en cascade » qui commence aux bords et se propage au reste de l’adhésif.
[0017] Pour limiter les effets de bord, il peut être prévu d’amener un surplus de matière adhésive (sous forme d’un bourrelet d’adhésif par exemple) de part et d’autre de la surface d’adhésion pour améliorer la résistance de l’adhésif aux bords. Toutefois, l’application d’un surplus de matière peut s’avérer difficile à réaliser dans certaines configurations, occasionnant une incertitude quant au comportement exact au voisinage des bords suite aux ajouts d’adhésif. En outre, cette réalisation est plus onéreuse, nécessitant des précautions supplémentaires lors de l’installation et/ou la fabrication. Le bénéfice obtenu est en outre assez limité.
[0018] A titre d’exemple, lorsque l’adhésif est installé entre une structure et un élément de renfort de la structure, il convient d’effectuer l’opération d’ajout de surplus d’adhésif sur site, ce qui peut être contraignant, voire impossible, du fait des conditions extérieures ou de la configuration de la structure.
[0019] En outre, il convient de noter que la nécessité pour un adhésif d’assurer les fonctions susmentionnées (adhésion aux substrats et absorption des déformations) peut se révéler antagoniste. En effet, il est généralement observé que plus un adhésif est souple (c.-à-d. meilleure capacité d’absorption), plus les capacités d’adhésion sont diminuées. Inversement, les adhésifs les plus raides procurent les meilleures capacités d’adhésion, mais sont plus sensibles aux contraintes en déformation.
Résumé
[0020] La présente invention vient améliorer la situation.
[0021] A cet effet, selon un premier aspect, l’invention concerne un assemblage collé comprenant au moins :
- un premier substrat,
- un deuxième substrat,
- une couche intermédiaire de déformation solidarisée au premier substrat, la couche intermédiaire de déformation comprenant un matériau dans lequel des évidements sont prévus de sorte que la couche intermédiaire de déformation présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire de déformation,
- un adhésif entre ladite couche intermédiaire et le deuxième substrat.
[0022] La raideur variable procure à l’ensemble couche intermédiaire et adhésif, des capacités d’absorption des déformations pouvant varier parallèlement au premier substrat. Ces variations de raideur permettent de maîtriser localement le niveau de déformation, et donc les contraintes.
[0023] Le comportement en déformation peut notamment être contrôlé de sorte à répartir plus uniformément des contraintes en cisaillement et en pelage, lesquelles sont habituellement localisées au voisinage des bords de l’adhésif (comme expliqué précédemment).
[0024] Ainsi, les déformations locales sont efficacement absorbées par la couche intermédiaire de déformation dont la raideur (l’inverse de la souplesse) est maîtrisée, les bords de l’adhésif étant alors moins exposés aux contraintes engendrées par des forces extérieures appliquées à l’assemblage collé. Les effets de bord et plus généralement les concentrations de contraintes dans la couche intermédiaire de déformation, dans l’adhésif ainsi qu’en surface des substrats peuvent être notablement réduits, augmentant d’autant les capacités de résistance et d’intégrité de l’adhésif, et renforçant la solidarisation des substrats et les capacités structurelles de l’assemblage collé. La force nécessaire pour obtenir une rupture est dès lors bien plus élevée que dans l’état de la technique. On comprend que l’assemblage collé est ainsi moins vulnérable à des efforts en déformation qui sont absorbés ou répartis le long de la couche intermédiaire de déformation.
[0025] Ainsi, l’objet de la présente invention est de conserver une bonne aptitude de déformation sans pour autant compromettre la fonction adhésive en sélectionnant des adhésifs performants et raides.
[0026] De plus, si l’un des deux substrats présente des zones de faiblesse (fissure, soudure, etc.) ou des zones où le substrat est soumis à de plus fortes contraintes, le comportement en déformation de la couche intermédiaire de déformation peut être contrôlé de sorte à réduire les contraintes transmises entre la couche intermédiaire de déformation et le substrat au niveau de ces zones (par exemple en réduisant la raideur de la couche intermédiaire de déformation qui fait face à la zone de faiblesse ou fortement contrainte).
[0027] Le contrôle du comportement en déformation qui s’opère en faisant varier la raideur de la couche intermédiaire de déformation selon une direction parallèle à cette dernière est obtenu au moyen d’évidements situés dans la couche intermédiaire de déformation. Par exemple, la couche intermédiaire de déformation est réalisée dans une unique matière et des évidements sont prévus dans la masse de la matière formant la couche intermédiaire de déformation. Ainsi en disposant les évidements de manière appropriée, par exemple en adaptant la densité des évidements, en adaptant la taille des évidements ou encore en adaptant la forme des évidements, il est possible d’adapter localement la raideur de la couche intermédiaire de déformation et notamment de faire varier selon une direction parallèle à la couche intermédiaire de déformation la raideur de celle-ci. Ainsi, les évidements sont configurés pour conférer à la couche intermédiaire de déformation une raideur qui est variable selon une direction parallèle à la couche intermédiaire déformation.
[0028] De plus, la variation de la raideur étant obtenue par la présence des évidements, la raideur (c’est-à-dire la raideur macroscopique) et la raideur microscopique (module de Young) ne sont plus directement dépendantes l’une de l’autre. Un plus large choix de matériaux peut être utilisé pour former la couche intermédiaire de déformation. [0029] Ainsi, il est possible de choisir des matériaux avec une valeur de module de Young élevé, par exemple des matériaux avec une valeur de module de Young comprise entre 1000 et 5000 MPa et avantageusement entre 2000 et 5000. Ainsi, la CID peut être entièrement formée d’un matériau ayant une telle valeur de module de Young. Ainsi, la couche intermédiaire de déformation conserve néanmoins une bonne aptitude à se déformer sans pour autant compromettre la fonction adhésive.
[0030] De plus, de tels matériaux ont une meilleure résistance mécanique qu’un matériau de plus faible raideur avec notamment :
- une résistance à la rupture plus importante (par exemple supérieure à 10MPa et avantageusement comprise entre 30 et 100MPa),
- un meilleur comportement au fluage (permettant de soumettre l’assemblage collé à des charges importantes sur de longues périodes), et
- un meilleur comportement à la relaxation, et cela à des températures supérieures (par exemple comprises entre 50 et 250°C).
[0031] De plus, la valeur du module de Young du matériau peut être semblable à une valeur d’un module de Young de l’adhésif. L’adhésif et le matériau employé pour la couche intermédiaire de déformation ayant le même module de Young ou des modules de Young proches, ceux-ci ont des comportements mécaniques proches ce qui réduit les écarts de raideur entre l’adhésif et la couche intermédiaire de déformation entraînant une meilleure fixation de l’adhésif sur la couche intermédiaire de déformation.
[0032] Il est aussi possible de choisir des matériaux avec de bonnes affinités adhésives avec l’adhésif, permettant d’assurer une solidarisation plus importante de la couche intermédiaire de déformation et de l’adhésif. Par affinité adhésive il est entendu une bonne compatibilité entre deux matériaux se traduisant par une bonne tenue mécanique et, à l’état ultime, une rupture cohésive, c’est-à-dire une rupture d’un des deux matériaux en jeu (CID, Adhésif) et non une rupture au niveau de l’interface entre l’adhésif et la CID. [0033] Par forme des évidements il est entendu la géométrie de ceux-ci, les évidements forment des microstructures au sein de la couche intermédiaire de déformation.
[0034] Par densité des évidements ou densité des microstructures il est entendu le nombre d’évidements ou de microstructures par unité de surface ou de volume de la couche intermédiaire de déformation.
[0035] Par évidement on entend que la couche intermédiaire de déformation comprend des volumes ajourés. Les volumes ajourés peuvent laisser place à des éléments résiduels formant des microstructures.
[0036] Par raideur qui est variable selon une direction parallèle à la couche intermédiaire de déformation, il est entendu ici que la raideur varie le long du substrat, c’est-à-dire que la raideur de la couche intermédiaire de déformation (CID) aux points situés dans une surface (possiblement plane) sensiblement parallèle à la CID varie dans cette surface. Les surfaces parallèles considérées sont par exemple toutes les surfaces comprises entre les deux faces de la CID et parallèles à l’une d’entre elles. Autrement dit, la raideur est variable d’une portion de la couche intermédiaire de déformation à une autre portion, les deux portions étant réparties de manière longitudinale.
[0037] Par raideur on entend la raideur selon une ou plusieurs directions, par exemple, la raideur selon une direction de vecteur(z) à la couche intermédiaire de déformation ou la raideur selon une direction parallèle à la couche intermédiaire de déformation, par exemple la direction de vecteur(x) ou vecteur(y) ou encore selon une combinaison linéaire de vecteur(x) et vecteur(y) ((vecteur(x), vecteur(y), vecteur(z)) formant un repère de l’espace et (vecteur(x), vecteur(y)) formant un repère de la surface parallèle à la couche intermédiaire de déformation, le vecteur(z) étant éventuellement orthogonal au repère (vecteur(x), vecteur(y)), avec vecteur(u) la notation désignant). La raideur en un point (x, y) de la surface parallèle à la CID peut être représentée par le triplet (Rvecteur(x)(x,y) ; Rvecteur(y)(x,y); R vecteu r(z) (x , y ) ) , où Rvecteur(x)(x,y) représente la valeur de la raideur dans la direction de vecteur (x) au point (x,y), Rvecteur(y)(x,y) représente la valeur de la raideur dans la direction de vecteur (y) au point (x,y) et Rvecteur(z)(x,y) représente la valeur au point (x,y) de la raideur dans la direction de vecteur (z) qui est éventuellement orthogonale à la couche intermédiaire de déformation.
[0038] Par raideur qui est variable selon une direction parallèle à la couche intermédiaire de déformation, il peut par exemple s’agir de la raideur Rvecteur(z)(x,y) selon la direction de vecteur(z) à la couche intermédiaire de déformation qui est variable et/ou des raideurs Rvecteur(x)(x,y) et/ou Rvecteur(y)(x,y) selon les directions parallèles à la couche intermédiaire de déformation.
[0039] Les effets de bord sont particulièrement atténués lorsque l’on réduit la raideur Rvecteur(z)(x,y) selon la direction de vecteur(z) (qui peut être orthogonale à la couche intermédiaire de déformation) aux bords de la couche intermédiaire de déformation.
[0040] Les efforts sur les zones fragilisées ou soumises à des contraintes importantes sont particulièrement atténués lorsque l’on réduit la raideur de la couche intermédiaire de déformation faisant face aux zones selon la même direction que celles des forces engendrant ces efforts.
[0041] Par solidarisés il est entendu que le substrat et la couche intermédiaire de déformation sont joints l’un à l’autre de sorte à former un ensemble indissociable, cela peut être obtenu avec des adhésifs, mais il est également possible de former la couche intermédiaire de déformation directement sur le substrat avec lequel elle devient solidaire.
[0042] Selon un mode de réalisation, une première face de la couche intermédiaire de déformation et/ou une deuxième face de la couche intermédiaire de déformation ont respectivement des formes complémentaires à la surface du premier substrat et/ou du deuxième substrat.
[0043] Cela permet d’avoir une adhérence optimale entre les surfaces de la couche intermédiaire de déformation et les substrats. En effet, les surfaces de la couche intermédiaire de déformation étant complémentaires des surfaces des substrats, la couche intermédiaire de déformation épouse mieux les surfaces des substrats, créant une épaisseur de couche adhésive uniforme et quasiment constante, entre la couche intermédiaire de déformation et les substrats. [0044] Les microstructures formées par les évidements peuvent être des éléments de forme allongée reliant les deux faces de la couche intermédiaire de déformation.
[0045] Ainsi, la couche intermédiaire de déformation peut comprendre deux couches extérieures formant les deux faces de la couche intermédiaire de déformation. Les éléments de forme allongée relient les deux couches extérieures. L’ensemble des deux couches extérieures et des éléments de forme allongée forme ainsi la couche intermédiaire de déformation. Les éléments de forme allongée forment des entretoises entre les deux couches extérieures.
[0046] Les éléments de forme allongée peuvent avoir des sections constantes ou variables et les sections peuvent être de forme circulaire, triangulaire, rectangulaire ou de toutes autres formes. Les couches extérieures qui sont faites dans le matériau de la couche intermédiaire de déformation peuvent être continues, afin d’adhérer plus fortement sur chaque substrat.
[0047] L’emploi de formes allongées permet de créer une structure disposant des caractéristiques mécaniques souhaitées, à savoir que la couche intermédiaire de déformation dispose d’une raideur selon au moins une direction qui est adaptée et varie selon une direction parallèle à la couche intermédiaire de déformation.
[0048] Pour cela la raideur de la couche intermédiaire de déformation dans une direction peut être adaptée en adaptant les sections des éléments de forme allongée et/ou les espacements entre les éléments de forme allongée et/ou les directions des éléments de forme allongée. La raideur selon une direction peut être augmentée en orientant les éléments de forme allongée selon cette même direction.
[0049] L’adaptation des éléments de forme allongée permet d’adapter la raideur selon une direction indépendamment du niveau de raideur selon une autre direction. Ainsi, il est possible de paramétrer les éléments de forme allongée pour avoir au même point de la couche intermédiaire de déformation, selon une direction une raideur importante et selon une autre direction une raideur faible.
[0050] Les éléments de forme allongée peuvent former une structure en treillis ou en maillage. [0051] Une structure en treillis permet notamment d’adapter la raideur en fonction de la direction. Ainsi, il est plus aisé dans une structure en treillis d’adapter une raideur selon une direction faible et de maintenir une raideur élevée selon une autre direction (par exemple une valeur Rvecteur(z) faible et une valeur Rvecteur(x) élevée).
[0052] Les éléments de forme allongée peuvent être alignés dans une direction orthogonale à la couche intermédiaire de déformation, par exemple, disposés en peigne.
[0053] Une telle structure de la couche intermédiaire de déformation permet d’adapter la raideur Rvecteur(z) selon la direction orthogonale à la couche intermédiaire de déformation tout en maintenant une raideur faible selon la direction parallèle à la couche intermédiaire de déformation. En effet, la raideur Rvecteur(z) selon la direction orthogonale peut aisément être réduite (respectivement augmentée), par exemple en réduisant (respectivement augmentant) la section des éléments de forme allongée ou en espaçant (respectivement resserrant) les éléments de forme allongée.
[0054] Selon un mode de réalisation les évidements prévus ne sont pas compartimentés les uns des autres.
[0055] Par non compartimentés on entend que les évidements ne forment pas de compartiment et sont donc ouverts. Ainsi, l’écoulement de fluide est rendu possible entre les évidements de la couche intermédiaire de déformation et l’extérieur de la couche intermédiaire de déformation, au moins avant sa solidarisation aux premiers et deuxièmes substrats. Cela permet lorsque des techniques d’impression 3D de type photo polymérisation sont utilisées pour fabriquer la couche intermédiaire de déformation de drainer le polymère liquide non polymérisé contenu dans la couche intermédiaire de déformation à la fin de l’impression.
[0056] Selon un mode de réalisation, la couche intermédiaire de déformation est formée d’un matériau homogène en composition.
[0057] Cette caractéristique de matériau homogène permet un ajustement plus précis et mieux maîtrisé de la raideur de la CID au moyen des évidements (par exemple des microstructures). Avantageusement il sera choisi comme matériau homogène un matériau qui peut-être, par exemple, du type :
[0058] Le matériau peut être :
- un époxyde ;
- un élastomère ;
- un plastique ;
- du polyuréthane ;
- un composite ;
- un métal.
[0059] Plus généralement, on peut utiliser tout matériau possédant une bonne affinité adhésive avec les adhésifs employés. En cas d’affinité adhésive insuffisante, un primaire d’adhésion ou une couche d’interface pourra être utilisé entre la couche intermédiaire de déformation et l’adhésif.
[0060] Selon un mode de réalisation, le premier substrat est une pièce de renfort adaptée à renforcer le deuxième substrat. Par pièce de renfort, il est entendu une pièce réalisant un renfort structurel et/ou mécanique du deuxième substrat.
[0061] Selon un mode de réalisation, le premier substrat est solidaire d’un moyen d’attache. Par exemple, un connecteur mécanique est solidarisé au substrat (il peut par exemple être collé à celui-ci).
[0062] Selon un mode de réalisation, la raideur de la couche intermédiaire varie progressivement. Cela permet de réduire les concentrations de contraintes qui apparaissent au niveau des zones de transition trop brutale de la raideur au sein de la zone concernée, impliquant à la fois, adhésif, couche intermédiaire de déformation et substrat. En effet, dans ces zones de transition des phénomènes analogues à ceux des effets de bords apparaissent entre les parties de raideur élevée et les parties de raideur faible. De plus, cela assure une bonne maîtrise du comportement en déformation et en absorption de la couche intermédiaire de déformation, et ce sur toute sa longueur.
[0063] Selon un mode de réalisation, la couche intermédiaire comprend une portion disposée en bordure de la couche intermédiaire et présentant, selon une direction, une raideur plus faible que la raideur selon la direction d’une autre portion de la couche intermédiaire. C’est-à-dire que la raideur de la couche intermédiaire de déformation est plus faible à la périphérie de la couche intermédiaire de déformation. Cette raideur plus faible en périphérie ou dans la portion disposée en bordure de la couche intermédiaire de déformation est obtenue au moyen d’évidements disposés de manière appropriée dans la couche intermédiaire de déformation : par exemple, en augmentant la densité des évidements à la périphérie ou dans la portion disposée en bordure. Il est également possible d’obtenir une raideur plus faible dans ces mêmes portions de la couche intermédiaire de déformation en augmentant la taille des évidements ou encore en adaptant la forme des évidements. Cela permet de réduire les effets de bords. La forme du bord peut également être adaptée pour réduire progressivement la raideur à la périphérie de la couche intermédiaire de déformation, par exemple avec un bord de la couche intermédiaire de déformation en biseau ou en forme de bec. La raideur périphérique peut être réduite pour toutes les directions (Rvecteur(x), Rvecteur(y), Rvecteur(z)) ou principalement selon une direction. Lorsque les forces exercées sur l’un des deux substrats ou les deux substrats suivent une direction spécifique alors il peut être avantageux pour réduire les effets de bords de réduire la raideur selon cette direction (principalement une direction orthogonale à la couche intermédiaire de déformation ou une direction longitudinale). Par exemple, il est avantageux de réduire la raideur Rvecteur(z) selon une direction de vecteur(z) (qui peut être orthogonale ou principalement orthogonal à la couche intermédiaire de déformation) lorsque l’assemblage collé travaille principalement en traction. La raideur peut éventuellement être réduite localement à l’endroit précis où s’applique la force de traction.
[0064] Par portion de la couche intermédiaire de déformation, il est entendu une partie localisée de la couche intermédiaire de déformation pour laquelle un niveau de raideur souhaité a été attribué lors de la fabrication.
[0065] Par bordure de la couche intermédiaire de déformation ou de manière équivalente le bord de la couche intermédiaire de déformation, il est entendu la zone périphérique de la couche intermédiaire de déformation. [0066] La portion disposée en bordure peut être par exemple la partie de la couche intermédiaire de déformation située à une distance inférieure à un seuil (par exemple 10mm) du bord ; l’autre portion de la couche intermédiaire de déformation étant par exemple une portion située à une distance supérieure au seuil du bord.
[0067] Selon un mode de réalisation, la couche intermédiaire de déformation comprend une portion recouvrant une zone de faiblesse du deuxième substrat et/ou une fissure du deuxième substrat, ladite portion de la couche intermédiaire de déformation présentant, selon une direction, une raideur plus faible qu’une raideur selon ladite direction d’une autre portion de la couche intermédiaire de déformation. C’est-à-dire que la raideur de la couche intermédiaire de déformation est plus faible au niveau de la portion recouvrant la zone de faiblesse ou la fissure. Cette raideur plus faible de la couche intermédiaire de déformation au niveau de la portion recouvrant la zone de faiblesse ou la fissure de la couche intermédiaire de déformation est obtenue au moyen d’évidements disposés de manière appropriée dans la couche intermédiaire de déformation. Par exemple, en augmentant la densité des évidements dans la couche intermédiaire de déformation au niveau de la portion recouvrant la zone de faiblesse ou la fissure la périphérie ou dans la portion disposée en bordure. Il est également possible d’obtenir une raideur plus faible dans cette même portion de la couche intermédiaire de déformation en augmentant la taille des évidements ou encore en adaptant la forme des évidements. Les efforts sur les zones fragilisées ou soumises à des contraintes importantes sont ainsi particulièrement atténués. La raideur de cette portion peut être réduite pour toutes les directions (Rvecteur(x), Rvecteur(y), Rvecteur(z)) ou principalement selon une direction. Lorsque les forces exercées sur l’un des deux substrats ou les deux substrats suivent une direction spécifique alors il peut être avantageux de réduire la raideur selon cette direction (principalement une direction orthogonale à la couche intermédiaire de déformation ou une direction longitudinale). Par exemple, il est avantageux de réduire la raideur Rvecteur(z) selon une direction de vecteur(z) (qui peut être orthogonale ou principalement orthogonal à la couche intermédiaire de déformation) lorsque l’assemblage collé travaille principalement en traction (notamment réduire la raideur à l’endroit précis où s’applique la force).
[0068] Par zone de faiblesse du substrat ou zone de forte contrainte du substrat, il est entendu toute zone où le substrat présente des risques de rupture ou de fissure, soit du fait de sa structure ou du fait des forces qui lui sont appliquées.
[0069] Selon un mode de réalisation la résistance mécanique en traction et/ou en cisaillement de la couche intermédiaire de déformation est inférieure à une résistance mécanique de l’un au moins parmi le premier substrat et le deuxième substrat. Cette résistance pouvant être déterminée dans une étape préalable.
[0070] Par résistance mécanique en traction et en cisaillement de la couche intermédiaire, il est entendu la résistance ultime totale selon l’axe vertical Z ou le plan horizontal X, Y, ou bien une combinaison des deux.
[0071] Cela permet d’éviter la rupture du substrat. En effet, lorsque des contraintes importantes sont transmises du premier substrat au deuxième substrat via la couche intermédiaire de déformation, ces contraintes entraîneront en premier lieu la rupture de la couche intermédiaire de déformation avant celle du substrat, préservant ainsi le substrat.
[0072] Avantageusement, un intervalle entre les substrats comporte, autour de la couche intermédiaire, un joint disposé de sorte à être comprimé par les substrats maintenus l’un par rapport à l’autre par l’intermédiaire de l’adhésif.
[0073] Le joint comprimé permet d’isoler l’ensemble couche intermédiaire et adhésif du milieu qui environne l’assemblage collé. Cet isolement assuré par le joint conserve cet ensemble dans des conditions d’utilisation qui permettent de garantir une bonne durabilité. On peut ainsi choisir le matériau de la couche intermédiaire et de l’adhésif en fonction des propriétés recherchées et des compositions des substrats à maintenir l’un par rapport à l’autre, tout en étant confiant dans l’obtention effective et durable de ces propriétés.
[0074] Selon un deuxième aspect, l’invention concerne un procédé de fabrication d’un élément d’un assemblage collé, le procédé comprenant :
- la formation d’une couche intermédiaire de déformation comprenant un matériau, la dite formation de la couche intermédiaire de déformation étant réalisée de sorte à obtenir des évidements dans le matériau de sorte que la couche intermédiaire de déformation présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire déformation;
- la solidarisation de la couche intermédiaire formée avec un premier substrat.
[0075] Selon un mode de réalisation, la couche intermédiaire de déformation est formée sur un support consistant en l’un des substrats précités.
[0076] Selon un mode de réalisation, la formation de la couche intermédiaire est réalisée par une technique de fabrication additive.
[0077] Par technique de fabrication additive, on entend les techniques définies comme telles par l’ASTM. La fabrication additive est également appelée impression 3D.
[0078] Cela permet d’obtenir une précision importante dans la fabrication des microstructures et de leur positionnement permettant ainsi de contrôler précisément la raideur de la couche intermédiaire de déformation et sa variation au sein de la couche intermédiaire de déformation.
[0079] Les techniques de fabrication additive qui peuvent notamment être utilisées sont :
- la photo polymérisation,
- la fusion sur lit de poudre,
- la projection de liant,
- l’extrusion de matériaux (exemple : FDM),
- la projection de matière (exemple : MJ, NPF, DOD),
- le laminage de feuille (exemple : LOM, SL),
- le dépôt sous énergie concentrée (exemple : DED, LENS, EBAM).
[0080] Selon un mode de réalisation, dans lequel le procédé comprend en outre :
- l’obtention de données relatives à une forme d’une surface du deuxième substrat; dans lequel la formation de la couche intermédiaire de déformation est réalisée de sorte à obtenir une surface de la couche intermédiaire de déformation de forme complémentaire à la forme de la surface du deuxième substrat. [0081] Les données relatives à une forme d’une surface du substrat caractérisent la surface du substrat et plus précisément son relief. L’obtention d’une surface de la CID de forme complémentaire à la forme de la surface du deuxième substrat est réalisée au moyen de ces données relatives à la forme de la surface du deuxième substrat.
[0082] Selon un troisième aspect, l’invention concerne un procédé de fabrication d’un assemblage collé comprenant la fabrication d’un élément d’un assemblage collé selon l’un des procédés tel que décrit précédemment, le procédé comprenant en outre le collage de la couche intermédiaire de déformation au deuxième substrat au moyen d’un adhésif.
[0083] Selon un mode de réalisation, le collage de la couche intermédiaire de déformation au deuxième substrat au moyen de l’adhésif est réalisé de sorte que ladite surface de la couche intermédiaire de déformation soit solidarisée à la surface du deuxième substrat de manière complémentaire.
[0084] Selon un quatrième aspect, l’invention concerne un procédé de renforcement d’une structure comportant au moins un substrat à renforcer, le procédé comprenant :
- solidariser avec un substrat de renforcement une couche intermédiaire comprenant un matériau dans lequel des évidements sont prévus de sorte que la couche intermédiaire de déformation présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire déformation,
- maintenir le substrat de renforcement et la couche intermédiaire de déformation sur le substrat à renforcer par l’intermédiaire d’un adhésif.
Brève description des dessins
[0085] D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés sur lesquels :
[0086] [Fig. 1A] à [Fig. 1C] illustrent des exemples de réalisations typiques d’un assemblage collé, et représentent les déformations et contraintes de cisaillement classiquement subies par l’adhésif, notamment en ses bords. [0087] [Fig. 2A] à [Fig. 2C] illustrent des exemples de réalisations d’un élément de renfort collé à une structure, générant des déformations et contraintes semblables aux exemples des figures 1A à 1C.
[0088] [Fig. 3] représente l’évolution, en fonction de la longueur en recouvrement de deux substrats de l’interface d’adhésion de l’adhésif, de la force ultime à appliquer pour obtenir une rupture de l’adhésif d’assemblage collé classique.
[0089] [Fig. 4A] à [Fig. 4B] illustrent des exemples d’un assemblage collé selon l’invention.
[0090] [Fig. 5A] à [Fig. 5G] illustrent des exemples de couche intermédiaire de déformation selon l’invention.
[0091] [Fig. 6] illustre un procédé de fabrication d’un AC selon l’invention.
Description des modes de réalisation
[0092] On se réfère aux figures 4A et 4B sur lesquelles sont illustrés des exemples d’un assemblage collé AC selon l’invention. L’assemblage comporte un premier substrat S1 et un deuxième substrat S2.
[0093] Dans l’exemple représenté à la figure 4A, un connecteur mécanique (CM) est solidarisé au premier substrat S1, le deuxième substrat peut être une paroi. Une fois le premier substrat (S1) fixé au deuxième substrat (S2) l’assemblage collé (AC) forme un moyen d’attache sur la paroi.
[0094] Dans l’exemple représenté à la figure 4B, le premier substrat S1 est un élément de renfort destiné à réparer, protéger et/ou renforcer une structure comportant le deuxième substrat S2. L’élément de renfort peut prendre la forme d’une plaque rigide superposée à une paroi de la structure, typiquement une plaque métallique, en composite ou tout autre matériau de rigidité suffisante pour renforcer la structure. Ce renfort peut notamment être utilisé pour renforcer :
- des structures béton en zone sismique pouvant entraîner des fissures d’ordre de grandeur millimétrique ;
- des structures métalliques subissant des charges cycliques importantes ;
- des structures métalliques ou béton subissant des déformations instantanées ou différées (retrait, endommagement, fluage, corrosion). [0095] L’assemblage AC comprend une couche intermédiaire de déformation, CID, dite de « déformation », et un adhésif AD. L’adhésif AD est disposé entre les substrats S1 et S2 et il est destiné à les solidariser l’un avec l’autre par l’intermédiaire de la CID. La CID comporte une première interface de solidarisation INT1 avec le substrat S1, et une deuxième interface de solidarisation INT2 avec l’adhésif AD. La CID a une raideur variable le long des interfaces INT1 et INT2.
[0096] La CID et l’adhésif AD peuvent être réalisés à base d’un même matériau. La CID peut en particulier avoir un module de Young, proche de celui de l’adhésif AD.
[0097] Le matériau utilisé pour la CID peut en particulier être choisi parmi la liste suivante de polymères:
- un époxyde ;
- un élastomère ;
- un plastique ;
- du polyuréthane ; ou
- un composite.
[0098] L’utilisation d’époxy et/ou polyuréthane s’avère particulièrement efficace. En effet, les affinités adhésives entre la CID et l’adhésif AD sont alors améliorées.
[0099] La raideur Rvecteur(v)(xi ,yi ) de la CID en un point (xi ;yi) de celle-ci selon vecteur(v), exprime la relation de proportionnalité entre la force F appliquée en ce point et selon la même direction que celle du vecteur(v) et la déflexion résultante en ce point. Lorsque le vecteur(v) est perpendiculaire à la CID on parle de raideur en traction-compression, lorsque le vecteur(v) est parallèle à la CID on parle de raideur en cisaillement. Celle-ci s’exprime en newtons par mètre (N/m).
[0100] L’adhésif AD peut être relativement rigide et présente quant à lui de bonnes capacités d’adhésion :
- avec le substrat S2, en raison de sa rigidité ; et
- avec la CID grâce aux affinités adhésives de leur matériau et éventuellement grâce au module d’Young de la CID qui peut être semblable à celui de l’adhésif AD. [0101] La couche intermédiaire CID de déformation permet d’améliorer :
- l’absorption des déformations différentielles à la périphérie de la couche d'adhésif AD (par l’intermédiaire de la CID) ; et
- les capacités générales d’adhésion aux interfaces INT1 et INT2 avec les substrats par l’intermédiaire de l’adhésif AD dont les contraintes sont réparties plus uniformément.
[0102] La CID à raideur variable permet en l’occurrence d’obtenir un comportement maîtrisé qui répartit plus uniformément les contraintes en cisaillement et en pelage générées par des forces extérieures appliquées à l’assemblage collé AC.
[0103] Le comportement en absorption de déformations de la CID permet de réduire, voire de supprimer, les effets de bord survenant habituellement au niveau de l’adhésif AD dans l’état de la technique.
[0104] La valeur souhaitée de la raideur de la CID selon une direction et la variation de la raideur le long de la CID sont obtenues via des évidements au sein de la couche, comme précisé précédemment. Ainsi, pour réduire la raideur Rvecteur(v)(xi ,yi) au point (xi , yi) il est, par exemple, possible de :
- réduire le nombre et/ou la section des microstructures (éléments de forme allongée) orientées selon la direction de vecteur(v); et/ou
- augmenter la densité des évidements autour du point (xi, yi) ;et/ou
- orienter avantageusement les éléments allongés.
[0105] Des exemples de CID avec différentes microstructures sont présentés ci- après.
[0106] Dans le cas de la figure 4A une portion P1 disposée en bordure de la CID est représentée. Cette portion présente un niveau de raideur plus faible de la CID que celui de la portion P2 disposée dans une partie centrale de la CID. La portion P1 peut être par exemple la partie périphérique de la CID, à savoir la partie représentant les 20% de la CID le plus au bord dans le sens longitudinal. Plus spécifiquement, les effets de bords sont fortement réduits lorsque l’on réduit dans P1:
- la raideur selon une direction perpendiculaire à la CID (vecteur(v)=vecteur(z)) pour réduire les effets de bord relatifs aux contraintes en pelage ; et/ou - la raideur, dans un voisinage d’un point du bord, selon une direction perpendiculaire au bord en ce point de la CID et parallèle au plan de la CID (c’est- à-dire la direction radiale du bord dans le plan de la CID, vecteur(v)=vecteur(r) pour un repère polaire de la CID lorsque celle-ci est un disque) pour réduire les effets de bord relatifs au cisaillement.
[0107] Les effets de bords étant réduits (longueur limite Lmax est sensiblement augmenté), la résistance à la rupture de la CID est améliorée.
[0108] Dans le cas de la figure 4B il est représenté une portion P3 disposée au niveau d’une zone de faiblesse de la CID, à savoir une fissure dans la paroi. La portion P3 de la CID présente un niveau de raideur plus faible que celui de la portion P2.
[0109] Plus spécifiquement, le transfert de contraintes entre le premier substrat (S1) et le deuxième substrat (S2) au voisinage de la fissure est fortement réduit lorsque l’on réduit dans P3 la raideur selon la ou les directions selon lesquelles les contraintes sont appliquées au niveau de P3 (à savoir selon la direction perpendiculaire à la CID si les contraintes sont des contraintes en pelage et/ou selon une ou des directions longitudinales si les contraintes sont des contraintes en cisaillement).
[0110] Bien que l’exemple de la figure 4A concerne un connecteur mécanique et que celui de la figure 4B concerne un renfort, la CID décrite à la figure 4A peut également comporter une portion P3 comme décrit dans la figure 4B lorsque le deuxième substrat (S2) présente des zones de faiblesse. De même, la CID décrite à la figure 4B peut également comporter une portion P1 comme décrit dans la figure 4A lorsque l’assemblage collé (AC) est soumis à de fortes contraintes entraînant des effets de bords.
[0111] On se réfère maintenant aux figures 5A à 5G sur lesquelles on a représenté des modes de réalisation de la couche intermédiaire de déformation (CID) à raideur variable. Toutes ces CID peuvent être utilisées aussi bien dans le mode de réalisation de la figure 4A que de celui de la figure 4B. La figure 5A est une vue en coupe de la CID représentée à la figure 5B. [0112] La CID comprend une première couche extérieure CEx1 qui est solidarisée au premier substrat S1, et une deuxième couche CEx2 qui est solidarisée au deuxième substrat S2 par l’intermédiaire de l’adhésif AD.
[0113] Des microstructures, MS, relient les deux couches extérieures CEx1 et CEx2. Les MS forment des entretoises entre les deux couches extérieures CEx1 et CEx2. Les évidements, EV, sont les espaces non occupés par les MS entre les CEx1 et CEx2 de la CID. Chaque CID, et notamment sa raideur et la variation de celle-ci dans le plan de la CID sont caractérisées par le matériau employé pour former la CID et la structure formée par les MS ou de manière équivalente la structure formée par les évidements.
[0114] Les MS des figures 5A et 5B sont des éléments de forme allongée de section rectangulaire. Les MS forment un treillis. La raideur de la CID peut être adaptée pour obtenir les propriétés recherchées comme décrit à la figure 4A et 4B. Par exemple, pour réduire la raideur au bord de la CID selon toutes les directions :
- les MS en bord de couche, par exemple MS1, peuvent être de section plus fine que les MS au cœur de la CID, par exemple MS2 ;
- il est possible de disposer moins de MS en bord de CID.
[0115] Pour réduire la raideur selon la direction orthogonale à la CID au bord de la CID et augmenter la raideur selon une direction parallèle à la CID, il est possible de :
- réduire l’angle d’inclinaison des MS en bord de CID par rapport aux CEx1 et CEx2.
[0116] Inversement, lorsque l’angle d’inclinaison des MS en bord de CID par rapport aux CEx1 et CEx2 est augmenté, la raideur selon la direction orthogonale à la CID est augmentée au bord de la CID et la raideur selon une direction parallèle à la CID est réduite. Plus généralement, lorsque l’on modifie les MS de manière inverse à celles décrites ci-dessus, on obtient une modification inverse de la raideur.
[0117] Les MS qui ne sont pas situées au bord de la CID, par exemple MS2, peuvent également être adaptées de la même manière pour faire varier la raideur, notamment dans le cas où le deuxième substrat S2 présenterait des zones de faiblesses par exemple au niveau de MS2.
[0118] Une telle structure en treillis des MS, permet d’adapter la raideur selon la direction orthogonale à la CID et la raideur selon une direction parallèle à la CID sans être contrainte l’une par rapport à l’autre.
[0119] Les MS des figures 5C et 5D sont des éléments de forme allongée de section rectangulaire. Les MS sont sensiblement alignées dans la direction orthogonale à la CID. La raideur de la CID peut être adaptée pour obtenir les propriétés recherchées comme décrit à la figure 4A et 4B. Par exemple, pour réduire la raideur au bord de la CID selon toutes les directions :
- les MS en bord de couche, par exemple MS3, peuvent être de section plus fine que les MS au cœur de la CID, par exemple MS4 ;
- il est possible de disposer moins de MS en bord de CID.
[0120] Dans le cas de la figure 5C il est également possible de réduire la raideur selon la direction orthogonale à la CID au bord de la CID en modifiant la forme des MS au bord de la CID, par exemple en augmentant la courbure des MS.
[0121] Lorsque l’on modifie les MS de manière inverse à celles décrites ci-dessus, on obtient une modification inverse de la raideur.
[0122] Les MS qui ne sont pas situées au bord de la CID, par exemple MS4, peuvent également être adaptées de la même manière pour faire varier la raideur, notamment dans le cas où le deuxième substrat S2 présenterait des zones de faiblesses par exemple au niveau de MS4.
[0123] Une telle structure où les MS sont alignées dans la direction orthogonale à la CID permet d’obtenir une raideur importante selon cette même direction, tout en permettant de faire varier celle-ci le long de la CID.
[0124] Les MS de la figure 5E sont des éléments de forme allongée et de section rectangulaire. Le mode de réalisation de la figure 5E combine des MS sensiblement alignées dans la direction orthogonale à la CID et des MS inclinées par rapport au CEx1 et CEx2. La raideur de la CID de la figure 5E peut être adaptée pour obtenir les propriétés recherchées comme décrit à la figure 4A et 4B. [0125] Par exemple, pour réduire la raideur au bord de la CID selon toutes les directions :
- les MS en bord de couche, par exemple MS5, peuvent être de section plus fine que les MS au cœur de la CID, par exemple MS6 ;
- il est possible de disposer moins de MS en bord de CID.
[0126] Pour réduire la raideur selon la direction orthogonale à la CID au bord de la CID et augmenter la raideur selon une direction parallèle à la CID, il est possible de :
- réduire l’angle d’inclinaison des MS en bord de CID par rapport aux CEx1 et CEx2.
[0127] Il est également possible de réduire la raideur selon la direction orthogonale à la CID au bord de la CID en modifiant la forme des MS au bord de la CID, par exemple en augmentant la courbure des MS.
[0128] Lorsque l’on modifie les MS de manière inverse à celles décrites ci-dessus, on obtient une modification inverse de la raideur.
[0129] Les MS qui ne sont pas situés au bord de la CID, par exemple MS6, peuvent également être adaptées de la même manière pour faire varier la raideur, notamment dans le cas où le deuxième substrat S2 présenterait des zones de faiblesses par exemple au niveau de MS6.
[0130] Une telle structure avec des MS dont l’inclinaison varie fortement par rapport aux CEx1 et CEx2 permet d’obtenir des raideurs de la CID selon la direction orthogonale et selon les directions parallèles à la CID variant fortement et de manière indépendante les unes des autres.
[0131] Le mode de réalisation de la figure 5F est une alternative au mode de réalisation de la figure 5D, où les MS sont des éléments de forme allongée alignés dans la direction orthogonale à la CID. Toutefois, ici, les MS sont de section circulaire.
[0132] Dans le mode de réalisation de la figure 5G les MS sont de forme libre permettant une grande adaptabilité de la raideur au sein de la CID. Ces formes libres peuvent être obtenues par simulation numérique. [0133] En complément, il est possible de prévoir une fissure dans P3, c’est-à-dire la portion de la CID qui fait face à la zone de faiblesse. Cela permet de réduire les efforts imposés par une éventuelle apparition de fissure dans le deuxième substrat S2.
[0134] L’épaisseur de la CID est par exemple comprise entre 2 et 20mm. Le matériau de la CID, à savoir les CEx1 et CEx2 ainsi que les MS sont dans un matériau homogène en composition avec une valeur de module de Young comprise entre 1000 et 5000 MPa. La CID peut être dans le même matériau que l’adhésif ou avoir un module de Young comparable à celui de l’adhésif AD. Cette homogénéité de raideur entre la CID et l’adhésif assure de bonnes conditions d’adhésion entre la CID et l’adhésif AD.
[0135] A la figure 6 il est illustré un procédé de fabrication d’un AC tel que décrit précédemment.
[0136] Selon une première étape ST1, des données relatives à la forme de la surface du deuxième substrat sont obtenues. Par exemple, le deuxième substrat S2 est scanné au moyen d’un scanner laser 3D ou lumière structurée, voire par photogrammétrie.
[0137] Selon une deuxième étape ST2, la CID est formée. La raideur de celle-ci est obtenue par une disposition appropriée des MS comme précédemment décrit.
[0138] La CID peut notamment être formée par une technique de fabrication additive, par exemple par photo polymérisation. Les évidements ne formant pas de cloisonnement, il est possible d’extraire le polymère non solidifié.
[0139] Sur la base des données obtenues à l’étape ST1, la CEx2 est formée de sorte que sa surface formant la face externe de la CID soit complémentaire avec le deuxième substrat S2.
[0140] Selon une troisième étape ST3, la CID est solidarisée (par exemple au moyen d’un adhésif) avec le premier substrat (cette solidarisation peut être effectuée en usine). Cette étape n’est pas réalisée lorsque la CID est formée directement sur le premier substrat. [0141] Selon une quatrième étape ST4, l’ensemble formé de la CID et du premier substrat S1 est collé au deuxième substrat S2 au moyen de l’adhésif AD. Pour cela le deuxième substrat S2 est préalablement préparé (nettoyage, surfaçage ...). Une noix d’adhésif est placée sur la CID, plus précisément sur l’interface de solidarisation INT2. La CID est ensuite positionnée face au deuxième substrat S2 de sorte que les surfaces se fassent face de manière complémentaire. L’ensemble composé du premier substrat S1 , de la CID et de la noix d’adhésif est translaté sur le deuxième substrat S2 et maintenu en position pendant le temps de pose.
[0142] Selon une cinquième étape ST5, dans le cas où l’assemblage collé AC forme un moyen d’attache sur la paroi, un équipement peut être fixé à l’assemblage collé AC via le connecteur mécanique, par exemple par boulonnage.
[0143] On note que les applications de l’assemblage collé AC selon l’invention ne sont pas limitées au mode de réalisation décrit ci-dessus et peuvent également servir de :
- réparation d’une zone structurelle endommagée (par la corrosion typiquement) ;
- réparation d’une canalisation;
- réparation, renforcement et/ou connexion sur des ouvrages industriels, des aéronefs, des navires, des véhicules ou autre.
[0144] Bien entendu, la présente invention ne se limite pas aux formes de réalisation décrites ci-avant à titre d’exemple et elles s’étendent à d’autres variantes. A ce titre, selon un autre mode de réalisation, les couches composant la couche intermédiaire de déformation peuvent comporter par exemple un profil chanfreiné dans lequel des alvéoles sont en outre prévues. Une telle réalisation de l’assemblage collé peut notamment permettre d’affiner la maîtrise du comportement en déformation de l’adhésif, notamment aux bords.

Claims

Revendications
[Revendication 1] Assemblage collé (AC) comprenant au moins :
- un premier substrat (S1 ),
- un deuxième substrat (S2),
- une couche intermédiaire de déformation (CID) solidarisée au premier substrat, la couche intermédiaire de déformation (CID) comprenant un matériau dans lequel des évidements non compartimentés les uns des autres sont prévus de sorte que la couche intermédiaire de déformation (CID) présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire de déformation (CID),
- un adhésif (AD) entre ladite couche intermédiaire et le deuxième substrat (S2).
[Revendication 2] Assemblage collé (AC) selon la revendication 1 dans lequel une première face de la couche intermédiaire de déformation et/ou une deuxième face de la couche intermédiaire de déformation ont respectivement des formes complémentaires au premier substrat (S1) et/ou au deuxième substrat (S2).
[Revendication 3] Assemblage collé (AC) selon l’une des revendications 1 et 2, dans lequel la couche intermédiaire de déformation (CID) comprend des éléments de forme allongée reliant deux faces de la couche intermédiaire de déformation (CID).
[Revendication 4] Assemblage collé (AC) selon la revendication 3, dans lequel les éléments de forme allongée forment une structure en treillis.
[Revendication 5] Assemblage collé (AC) selon la revendication 3, dans lequel les éléments de forme allongée sont alignés dans une direction orthogonale à la couche intermédiaire de déformation (CID).
[Revendication 6] Assemblage collé (AC) selon l’une des revendications 3 à 5, dans lequel la raideur de la couche intermédiaire de déformation (CID) selon une direction est adaptée en adaptant des sections des éléments et/ou des espacements entre des éléments et/ou des directions des éléments.
[Revendication 7] Assemblage collé (AC) selon l’une des revendications précédentes, dans lequel le matériau a une même valeur d’un module de Young qu’une valeur d’un module de Young de l’adhésif.
[Revendication 8] Assemblage collé (AC) selon l’une des revendications précédentes, dans lequel la raideur de la couche intermédiaire varie progressivement.
[Revendication 9] Assemblage collé (AC) selon l’une des revendications précédentes, dans lequel la couche intermédiaire (CID) comprend une portion (P1) disposée en bordure de la couche intermédiaire et présentant, selon une direction, une raideur plus faible qu’une raideur selon ladite direction d’une autre portion (P2) de la couche intermédiaire.
[Revendication 10] Assemblage collé (AC) selon l’une des revendications précédentes, dans lequel la couche intermédiaire de déformation (CID) comprend une portion (P3) recouvrant une zone de faiblesse du deuxième substrat et/ou une fissure du deuxième substrat et/ou une zone de forte contrainte, ladite portion de la couche intermédiaire de déformation (CID) présentant, selon une direction, une raideur plus faible qu’une raideur selon ladite direction d’une autre portion (P2) de la couche intermédiaire de déformation (CID).
[Revendication 11] Assemblage collé (AC) selon l’une des revendications précédentes, dans lequel une résistance mécanique en traction et/ou en cisaillement de la couche intermédiaire de déformation (CID) est inférieure à une résistance mécanique de l’un au moins parmi le premier substrat (S1) et le deuxième substrat (S2).
[Revendication 12] Assemblage collé (AC) selon l’une des revendications précédentes, dans lequel la couche intermédiaire de déformation (CID) est formée d’un matériau homogène en composition.
[Revendication 13] Procédé de fabrication d’un élément d’un assemblage collé (AC), le procédé comprenant :
- la formation d’une couche intermédiaire de déformation (CID) comprenant un matériau, la dite formation étant réalisée de sorte à obtenir des évidements dans le matériau de sorte que la couche intermédiaire de déformation (CID) présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire déformation (CID);
- la solidarisation de la couche intermédiaire formée avec un premier substrat.
[Revendication 14] Procédé de fabrication selon la revendication 13, dans lequel la formation de la couche intermédiaire est réalisée par une technique de fabrication additive.
[Revendication 15] Procédé de fabrication selon l’une des revendications 13 et 14, le procédé comprenant en outre :
- l’obtention de données relatives à une forme d’une surface d’un deuxième substrat (S2); dans lequel la formation de la couche intermédiaire de déformation (CID) est réalisée de sorte à obtenir une surface de la couche intermédiaire de déformation (CID) de forme complémentaire à la forme de la surface du deuxième substrat (S2).
[Revendication 16] Procédé de fabrication d’un assemblage collé (AC) comprenant :
- la fabrication d’un élément d’un assemblage collé (AC) selon l’une des revendications 13 et 14, le procédé comprenant en outre le collage de la couche intermédiaire de déformation (CID) à un deuxième substrat au moyen d’un adhésif (AD), ou
- la fabrication d’un élément d’un assemblage collé (AC) selon la revendication 15, le procédé comprenant en outre le collage de la couche intermédiaire de déformation (CID) au deuxième substrat au moyen d’un adhésif (AD).
[Revendication 17] Procédé de fabrication selon la revendication 16, dans lequel la fabrication de l’élément de l’assemblage collé (AC) est réalisée selon la revendication 15, dans lequel le collage de la couche intermédiaire de déformation (CID) au deuxième substrat (S2) au moyen de l’adhésif (AD) est réalisé de sorte que ladite surface de la couche intermédiaire de déformation (CID) soit solidarisée à la surface du deuxième substrat (S2) de manière complémentaire. [Revendication 18] Procédé de renforcement d’une structure comportant au moins un substrat à renforcer (S2), le procédé comprenant :
- solidariser avec un substrat de renforcement (S1) une couche intermédiaire (CID) comprenant un matériau dans lequel des évidements non compartimentés les uns des autres sont prévus de sorte que la couche intermédiaire de déformation (CID) présente une raideur qui est variable selon une direction parallèle à la couche intermédiaire déformation (CID),
- maintenir le substrat de renforcement (S1) et la couche intermédiaire de déformation (CID) sur le substrat à renforcer (S2) par l’intermédiaire d’un adhésif (AD).
EP20829576.6A 2019-12-17 2020-12-15 Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé Pending EP4076932A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914681A FR3104488B1 (fr) 2019-12-17 2019-12-17 Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé
PCT/EP2020/086309 WO2021122660A1 (fr) 2019-12-17 2020-12-15 Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé

Publications (1)

Publication Number Publication Date
EP4076932A1 true EP4076932A1 (fr) 2022-10-26

Family

ID=71661900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20829576.6A Pending EP4076932A1 (fr) 2019-12-17 2020-12-15 Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé

Country Status (8)

Country Link
US (1) US20230038948A1 (fr)
EP (1) EP4076932A1 (fr)
JP (1) JP2023506568A (fr)
CN (1) CN115103763A (fr)
CA (1) CA3165094A1 (fr)
FR (1) FR3104488B1 (fr)
WO (1) WO2021122660A1 (fr)
ZA (1) ZA202207712B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210309001A1 (en) * 2018-07-25 2021-10-07 James Warren GERE Core and method for automated hollow door and panel assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1402716A (en) * 1971-07-27 1975-08-13 Nat Res Dev Energy-absorbing composite structures
FR2640006B1 (fr) * 1988-12-05 1991-03-29 Armines Procede d'assemblage, par collage, de deux pieces ou substrats
US7678440B1 (en) * 2006-03-01 2010-03-16 Mcknight Geoffrey P Deformable variable-stiffness cellular structures
FR3012068B1 (fr) * 2013-10-21 2017-12-22 Cold Pad Assemblage colle muni d'une couche intermediaire de deformation a souplesse variable
KR102590012B1 (ko) * 2017-11-30 2023-10-16 엘지디스플레이 주식회사 접착제 및 이를 적용한 플렉서블 디스플레이
US11135763B2 (en) * 2018-05-02 2021-10-05 Northrop Grumman Systems Corporation Assemblies formed by additive manufacturing, radar absorbing structures, and related methods
US11260582B2 (en) * 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures

Also Published As

Publication number Publication date
US20230038948A1 (en) 2023-02-09
WO2021122660A1 (fr) 2021-06-24
CA3165094A1 (fr) 2021-06-24
FR3104488B1 (fr) 2022-04-01
FR3104488A1 (fr) 2021-06-18
JP2023506568A (ja) 2023-02-16
ZA202207712B (en) 2023-03-29
CN115103763A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CA2623240C (fr) Dispositif pour la fixation d'un panneau leger sur un support
EP2764510A1 (fr) Panneau d'atténuation acoustique structural
EP2053255B1 (fr) Dispositif structural d'amélioration de la tenue d'une structure aux dilatations en température
BE1021537B1 (fr) Bielle monobloc
FR2997034A1 (fr) Procede de collage de deux pieces soumises a des efforts de traction, pieces collees obtenues
FR3031146A1 (fr) Dispositif de fixation amortissant entre deux elements a assembler, procede de fabrication d'un tel dispositif, ensemble de deux elements assembles a l'aide d'un tel dispositif, et procede d'assemblage
EP2271850B1 (fr) Procédé d'assemblage entre une pièce en matériau métallique et une pièce en matériau composite
EP3060391B1 (fr) Assemblage collé muni d'une couche intermédiaire de déformation à souplesse variable
EP4076932A1 (fr) Couche intermédiaire de déformation à raideur macroscopique ajustable pour assemblage collé
EP3827159A1 (fr) Aube de turbomachine comportant un renfort structurel a adherence renforcee
FR3075690A1 (fr) Procede de reparation de panneaux sandwich en materiaux composites ou metaliques avec un procede de production additive
FR2971233A1 (fr) Substrat amortissant pour panneau structurel de satellite
FR2702272A1 (fr) Matériau composite pour blindage mécanique.
EP0559568B1 (fr) Ancrage d'une structure en matériaux composites sur une structure métallique
FR3064228A1 (fr) Poutre de pare-chocs pour vehicule automobile
FR2984794A1 (fr) Piece en materiau composite a protection integree contre un impact mecanique
WO2023152256A1 (fr) Ensemble vitré pour un aéronef, procédé de fabrication d'un tel ensemble vitré, et aéronef comprenant un tel ensemble vitré
FR3140572A1 (fr) Procédé de fabrication d’une pièce par assemblage de pièces intermédiaires obtenues par fabrication additive par dépôt de filament
EP4197918A1 (fr) Pièce de coin flexible destinée à contribuer à une liaison entre au moins trois parois d' au moins un caisson d' aéronef
WO2015118258A1 (fr) Procédé pour améliorer l'étanchéité d'un réservoir à paroi en béton, et réservoir de fluide obtenu par ce procédé
EP4093606A1 (fr) Elément de blindage anti-abrasion et procédé de fabrication associé
FR3067650A1 (fr) Structure composite monolithique pour gamme de temperatures etendue et procede de fabrication associe
FR3133868A1 (fr) Connecteur de liaison destiné à lier entre eux des premier et second éléments d’un ouvrage.
EP4153408A1 (fr) Structure d'assemblage d'une pièce comprenant une première partie métallique et une deuxième partie en matériau composite à matrice organique
FR3124975A1 (fr) Pièce en matériau composite thermoplastique comprenant au moins une couche d’accroche à base d’au moins une résine thermoplastique amorphe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)