EP4075422B1 - Mikrometrischer lautsprecher - Google Patents

Mikrometrischer lautsprecher Download PDF

Info

Publication number
EP4075422B1
EP4075422B1 EP22168299.0A EP22168299A EP4075422B1 EP 4075422 B1 EP4075422 B1 EP 4075422B1 EP 22168299 A EP22168299 A EP 22168299A EP 4075422 B1 EP4075422 B1 EP 4075422B1
Authority
EP
European Patent Office
Prior art keywords
micrometric
frame
mechanical
speaker
acoustic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22168299.0A
Other languages
English (en)
French (fr)
Other versions
EP4075422A1 (de
Inventor
Romain LIECHTI
Fabrice Casset
Thierry Hilt
Stephane Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Le Mans Universite
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Le Mans Universite
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Le Mans Universite, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4075422A1 publication Critical patent/EP4075422A1/de
Application granted granted Critical
Publication of EP4075422B1 publication Critical patent/EP4075422B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • G10K9/125Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means with a plurality of active elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/24Tensioning by means acting directly on free portions of diaphragm or cone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • H04R1/288Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2207/00Details of diaphragms or cones for electromechanical transducers or their suspension covered by H04R7/00 but not provided for in H04R7/00 or in H04R2307/00
    • H04R2207/021Diaphragm extensions, not necessarily integrally formed, e.g. skirts, rims, flanges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present invention relates to the field of micrometric loudspeakers. Its particularly advantageous application is the integration of at least one loudspeaker into computers, mobile phones and other headphones, particularly wireless ones.
  • the loudspeaker is used to transform an electrical signal into sound pressure.
  • speakers have been miniaturized to be integrated into computers, mobile phones, connected speakers and other headphones, for example wireless.
  • the loudspeaker is an electro-mechano-acoustic transducer. In its linear principle, the operation of the loudspeaker involves the actuation of a membrane or a rigid plate, coupled to the ambient air.
  • the electrical signal passes through an electromechanical transducer which converts the speaker supply voltage into displacement.
  • a mechanical-acoustic transducer very often a membrane, converts this displacement into acoustic pressure.
  • a good loudspeaker is one that reproduces all perceptible sound frequencies (typically 20 Hz to 20 kHz) at the same amplitude, with a low distortion rate.
  • the lowest frequency at which a loudspeaker effectively produces sound is determined by the resonant frequency of the mechanical-acoustic transducer.
  • the membrane guidance system is more rigid and the mass of the mechano-acoustic transducer is lower, which increases the resonance frequency of the system and therefore reduces the bandwidth.
  • the sound pressure level radiated by a loudspeaker depends on the volume of air accelerated by the mechanical-acoustic transducer.
  • the volume of air accelerated by a loudspeaker depends on the product of the area of the mechanical-acoustic transducer and the maximum displacement of the mechanical-acoustic transducer.
  • Micrometric loudspeakers also known as “MEMS loudspeakers” or micro-loudspeakers
  • MEMS loudspeakers are mainly based on exploiting the compliance of flexible membranes.
  • these are becoming more rigid under the effect of their deformations, which explains why micrometric drivers with flexible membranes suffer from high geometric nonlinearities.
  • micrometric speakers with flexible membrane fitted to mobile phones have dimensions, typically 11 ⁇ 15 ⁇ 3 mm 3 , advantageous for their integration, and make it possible to generate a satisfactory radiated pressure, typically 85 dB, over a wide range of frequencies relative to the extent of the range of perceptible sound frequencies.
  • a satisfactory radiated pressure typically 85 dB
  • the bulk of this type of speaker is less and less compatible with the thickness of portable devices which continues to be reduced.
  • piezoelectric transduction Another means of converting the loudspeaker's supply voltage into displacement of its membrane (or its rigid plate), which shows notable performance, is piezoelectric transduction. Although not necessarily conferring large displacements on the membrane or the rigid plate, piezoelectric transduction has the advantage of being compatible with microfabrication processes. More particularly, by using the bimetallic effect of a piezoelectric transducer positioned on the membrane to be moved, as for example in the patent document US 2012/057730 A1 , performances comparable to those of electromagnetic transducers are achievable.
  • piezoelectric actuators tend to adopt non-linear behaviors which have a direct negative impact on the performance of the loudspeaker.
  • the loudspeaker is made up of a “MEMS motor” and a membrane, for example made of polymer, assembled in a heterogeneous manner, non-linearities linked to the deformation of the polymer membrane appear which again affect, negatively affects the performance of the speaker.
  • An object of the present invention is therefore to propose a micrometric loudspeaker which makes it possible to overcome at least one of the disadvantages of the state of the art.
  • An object of the present invention is more particularly to propose a micrometric loudspeaker which has satisfactory performance, in particular in terms of bandwidth and/or pressure level produced and/or which has improved performance, in particular by avoiding that piezoelectric actuators adopt non-linear behaviors.
  • each elastic blade is in a so-called “recessed-guided” bending configuration according to which, when the piezoelectric actuators are electrically powered, the elastic blades deform and cause with them a movement of the rigid plate of the mechanical-acoustic transducer in a direction substantially perpendicular to a main extension plane of the frame.
  • the mechanical-acoustic transducer further comprises at least two linearization springs each extending from one of the lateral coupling edges to a lateral edge of the rigid plate which is located opposite, the linearization springs being configured so as to allow, during deformation of the elastic blades, a movement of at least part of the two lateral coupling edges towards the central crosspiece of the frame.
  • linearization springs advantageously affect the pressure level produced, allowing optimal flexibility over the entire stroke of the rigid plate, and thus reduce, or even cancel, the geometric nonlinearities which would be linked in particular to the aforementioned stiffening phenomenon if it was observed.
  • Another aspect concerns a method of manufacturing a micrometric loudspeaker as introduced above, comprising or even being limited to, deposition and etching steps relating to microelectronics.
  • the micrometric loudspeaker according to the first aspect of the invention can therefore advantageously be microfabricated.
  • each of the two piezoelectric actuators extends at most over half of the elastic blade associated with it from the lateral coupling edge of the mechanical-acoustic transducer which is engaged by said elastic blade.
  • each of the two piezoelectric actuators extends at least over a quarter of the elastic blade associated with it from the lateral coupling rim of the mechanical-acoustic transducer which is engaged by said elastic blade.
  • the micrometric loudspeaker is preferably substantially symmetrical with respect to a longitudinal section plane of the central crosspiece of the frame which is perpendicular to the main extension plane of the frame.
  • the micrometric speaker is free of an actuator, in particular a piezoelectric actuator, directly covering all or part of the rigid plate.
  • the piezoelectric actuators of the electromechanical transducer are offset relative to the rigid plate; that is, the piezoelectric actuators of the electromechanical transducer are at a distance from the rigid plate.
  • the mechano-acoustic transducer is free of an electromechanical transducer and/or the electromechanical transducer is free of a mechano-acoustic transducer.
  • the rigid plate is free from, or is not directly covered, preferably even partially, with an electromechanical transducer.
  • the rigid plate is free of a flexible membrane.
  • the electromechanical transducer and the mechano-acoustic transducer are mechanically coupled to each other, preferably only via the two lateral coupling edges of the mechano-acoustic transducer.
  • the mechanical-acoustic transducer only includes two lateral coupling edges.
  • the two lateral coupling edges extend from lateral edges of the rigid plate which are opposite each other and/or extend from lateral edges of the rigid plate substantially perpendicular to a plane in which the rigid plate.
  • the other lateral edges of the rigid plate than those through which the rigid plate extends to form the two lateral coupling edges do not extend beyond the rigid plate.
  • each of the two lateral coupling edges is linked only to one edge of one of the two linearization springs and to one edge of one of the two elastic blades.
  • the mechanical-acoustic transducer is free of a lateral rim other than said two lateral coupling rims.
  • the mechanical-acoustic transducer is free of a lateral rim linking together the two lateral coupling rims of the mechanical-acoustic transducer.
  • the rigid plate only extends outside the plane in which it fits via the two lateral coupling edges of the mechanical-acoustic transducer.
  • the elastic blades are each uniform over their extent.
  • the mechanical-acoustic transducer does not extend beyond an area delimited by the interior periphery of the exterior edges of the frame. According to another example, the mechanical-acoustic transducer does not cover, nor intersect, the outer edges of the frame.
  • each linearization spring has a stiffness at least ten times, preferably at least one hundred times, greater than a stiffness of the elastic blades. In this way, we ensure not to alter the linear behavior of the micrometric loudspeaker, over the entire range of perceptible sound frequencies.
  • the central crosspiece of the frame extends at most over a first half of a thickness of the frame and the two elastic blades comprise the same layer secured to one face of the central crosspiece which is oriented towards a center of the frame. It is thus structurally easy to provide that the assembly formed of the electromechanical transducer and the mechano-acoustic transducer moves within the frame, so as to be protected by it.
  • Said layer is for example made from silicon.
  • no elastic blade extends from a face of the central crosspiece which is different from the face of the central crosspiece oriented towards the center of the frame.
  • the rigid plate and the linearization springs comprise the same layer, a greater stiffness of the rigid plate relative to a stiffness of the linearization springs being due to structuring patterns that the rigid plate includes and which are extend, from said layer, over a surface of the latter defining an extent of the rigid plate, the linearization springs being made up of portions of said layer which extend on either side of said surface.
  • Said layer is for example made from silicon.
  • said portions which extend on either side of the surface from which the structuring patterns extend are themselves free of structuring patterns. structuring.
  • the frame is configured so that the mechanical-acoustic transducer is located, on all sides, at a distance from the interior periphery of the frame of between 1 and 100 ⁇ m, preferably between 2 and 80 ⁇ m, for example substantially equal to 9 ⁇ m.
  • the gap between the frame and the mechanical-acoustic transducer is thus such that, at this gap, the propagation of acoustic waves is mainly dominated by thermo-viscous behavior. This avoids any acoustic short-circuit phenomenon.
  • the frame has, in its main extension plane, dimensions each between 1 and 10 mm, preferably between 3 and 8 mm.
  • the lateral coupling edges of the mechanical-acoustic transducer extend from one of the two linearization springs over a distance greater than 750 ⁇ m, preferably greater than 500 ⁇ m.
  • the thermo-viscous losses due to the compression of the air below the rigid plate are thus advantageously minimized.
  • the elastic blades have a thickness of between 1 and 100 ⁇ m, preferably between 5 and 20 ⁇ m.
  • the two piezoelectric actuators are based on, or even made of, PZT and each extend on one face of one of the two elastic blades which is opposite the rigid plate of the mechanical-acoustic transducer.
  • the elastic blades of the electromechanical transducer have a first resonance frequency and the linearization springs of the mechanical-acoustic transducer have a second resonance frequency, the second resonance frequency being at least a hundred times, preferably at least a thousand times , greater than the first resonance frequency. This gives the micrometric speaker a wide bandwidth.
  • the frame comprises first and second parts superimposed and concentric with each other, a second part of the frame supports the central crosspiece and comprises two electrical connection pads to the piezoelectric actuators, the electrical connection pads being preferably located in the extension of the central crosspiece, and the second part of the frame comprising two notches configured to each be located opposite one of the two electrical connection pads.
  • micrometric is meant the quality of a device or element having a volume, or included in an envelope, of less than 1 cm 3 , preferably less than 0.5 cm 3 .
  • the term "rigid” describes a part or an element of the loudspeaker which does not deform or only slightly under the effect of the constraints generally applied to it in operation. normal. More particularly, it can be considered that the rigidity of the plate of the mechano-acoustic transducer is ten times, or even a hundred times, greater than the rigidity of the actuators.
  • the term “elastic” describes a part or an element of the loudspeaker which deforms under the effect of the stresses generally applied to it in normal operation. More particularly, it can be considered that the rigidity of the elastic blades is ten times, or even a hundred times, lower than the rigidity of the so-called rigid plate of the mechanical-acoustic transducer.
  • the terms “elastic blades” could be reformulated more specifically by the terms “bending deformable blades”.
  • a film based on a material A is meant a film comprising this material A and possibly other materials.
  • a parameter “substantially equal/greater/less than” a given value we mean that this parameter is equal/greater/less than the given value, to plus or minus 20%, or even 10%, close to this value.
  • this parameter is at least equal to the smallest given value, plus or minus 20%, or even 10%, close to this value, and at most equal to the largest large given value, plus or minus 20%, or even 10%, close to this value.
  • the mechanical-acoustic transducer 13 comprises a rigid plate 131 movably mounted in the frame 11.
  • the micrometric loudspeaker according to the first aspect of the invention is distinguished from micrometric speakers with flexible membrane.
  • the electromechanical transducer 12 and the mechanical-acoustic transducer 13 are coupled together so that a bias of the electromechanical transducer 12 moves the mechanical-acoustic transducer 13 relative to the frame 11 and a corresponding movement of the mechanical-acoustic transducer 13 is converted in sound pressure.
  • the electromechanical transducer 12 comprises two piezoelectric actuators 121a, 121b and two elastic blades 122a, 122b.
  • Each piezoelectric actuator is associated with an elastic blade to induce, when electrically powered, a deformation of the elastic blade by bimetallic effect.
  • each piezoelectric actuator is associated with an elastic blade so that, when an electrical voltage is applied to the piezoelectric actuator, the blade deforms in flexion.
  • the frame 11 comprises a central crosspiece 111 from which the two elastic blades 122a, 122b extend, integrally and opposite each other.
  • the two elastic blades 122a, 122b extend from the central crosspiece 111 of the frame 11 to engage two so-called coupling lateral edges 132a, 132b of the mechanical-acoustic transducer 13.
  • each elastic blade 122a, 122b is in a so-called “recessed-guided” bending configuration.
  • the piezoelectric actuators 121a, 121b are electrically powered, the elastic blades 122a, 122b deform in flexion and cause with them a movement of the rigid plate 131 of the mechanical-acoustic transducer 13 in a direction substantially perpendicular to a plane main extension of the frame 11. It thus appears that the mechano-acoustic transducer 13 is more particularly movably mounted in the frame 11 via the electromechanical transducer 12.
  • the mechanical-acoustic transducer 13 further comprises at least two linearization springs 133a, 133b.
  • the two linearization springs 133a, 133b each extend from one of the lateral coupling edges 132a, 132b of the mechanical-acoustic transducer 13 to a lateral edge of its rigid plate 131 which is located opposite.
  • the linearization springs 133a, 133b are thus configured so as to allow, during deformation of the elastic blades 122a, 122b, a movement of at least part of the two lateral coupling edges 132a, 132b towards the central crosspiece 111 of the frame 11.
  • the piezoelectric actuators 121a, 121b When the piezoelectric actuators 121a, 121b are electrically powered, the elastic blades each adopt a deformation with a substantially central inflection point and undergo longitudinal stresses, due to their recessed-guided bending configuration.
  • the linearization springs 133a, 133b then make it possible to absorb at least part of these longitudinal stresses.
  • the piezoelectric actuators 121a, 121b are made from PZT, which can only contract in the direction x as illustrated in the figure 7 , the piezoelectric actuators 121a, 121b are preferably arranged only on half of the surface of the elastic blades 122a, 122b.
  • the piezoelectric actuators 121a, 121b each extend continuously from the edge of the elastic blade 122a, 122b with which it is associated, as shown in the figure.
  • Figure 10 preferably on at least a quarter of the surface of said elastic blade, and preferably on at most half of this surface.
  • the linearization springs 133a, 133b add, to the micrometric loudspeaker 1, a degree of freedom by authorizing a movement of at least part of the two lateral coupling edges 132a, 132b of the mechanical-acoustic transducer 13 towards the central crosspiece 111 of the frame 11, during deformations of the elastic blades 122a, 122b. They thus make it possible to reduce the particularly longitudinal stresses experienced by the elastic blades 122a, 122b; however, such constraints could be the cause of a stiffening of the elastic blades 122a, 122b, which would have the consequence of inducing non-linear behavior of the rigid plate 131 during its movements, or at least for certain large amplitudes of its movements. Since the longitudinal stresses experienced by the elastic blades 122a, 122b are reduced, or even made negligible, we understand that the performance of the micrometric loudspeaker 1 is increased.
  • the micrometric loudspeaker 1 is preferably substantially symmetrical with respect to a longitudinal section plane of the central crosspiece 111 of the frame 11 which is perpendicular to the main extension plane of the frame 11.
  • the micrometric loudspeaker 1 can also be considered as comprising two parts superimposed on each other concentrically.
  • the frame 11 can be seen as consisting of two parts 11a and 11b, of which a first part 11a supports, preferably by itself, the central crosspiece 111 of the frame 11 and a second part 11b configured to closely accommodate the transducer there. mechano-acoustic 13.
  • FIG 7 shows a cutaway view of the loudspeaker in operation. It more particularly shows two superimposed views of the electromechanical transducer 12 and the mechanical-acoustic transducer 13, on the one hand in a non-deformation configuration of the elastic blades 122a, 122b (where the piezoelectric actuators are not electrically powered), d 'on the other hand in a configuration of deformation of the elastic blades 122a, 122b (where the piezoelectric actuators are electrically powered), relative to the central crosspiece 111 of the frame 11, the latter remaining fixed due to the fixing of the frame 11 itself, for example on a support (not shown).
  • the piezoelectric actuators 121a, 121b When the piezoelectric actuators 121a, 121b are then no longer electrically supplied, the elasticity of the elastic blades 122a, 122b makes it possible to return the whole formed of the electromechanical transducer 12 and the mechano-acoustic transducer 13 to its starting position. In this so-called starting position, or equivalently of non-power supply to the piezoelectric actuators 121a, 121b, the rigid plate 131 can come flush with the periphery of the face of the frame 11 which is oriented upwards in the figures.
  • the piezoelectric actuators 121a, 121b When the micrometric speaker 1 only allows movements of the rigid plate 131 in the -z direction by electrical supply of the piezoelectric actuators 121a, 121b, in particular because these are made from PZT, it is necessary to 'add a direct voltage across each piezoelectric actuator 121a, 121b to obtain a rest point in the middle of the dynamics of the speaker 1, to obtain an alternating movement around this operating point.
  • the piezoelectric actuators operate with an electrical supply voltage range substantially between 0 and 30 V, and the direct voltage added to the terminals of each piezoelectric actuator 121a, 121b is substantially equal to 15 V.
  • FIG 8 schematically shows the operating principle of the micrometric loudspeaker 1 according to the first aspect of the invention comprising an additional degree of freedom which is given to it by the linearization springs 133a, 133b.
  • the elastic blades 122a, 122b deform and move the rigid plate 131 by a distance ⁇ 0 along -z.
  • the length of the curve of each deformed elastic blade 122a, 122b must be identical to the length of the undeformed elastic blade 122a, 122b.
  • the difference between the position of the distal end of the elastic blade 122a, before and after deformation, and in the y direction, is denoted ⁇ 0 .
  • This difference is authorized by the linearization spring 133a secured to the rigid plate 131 by its end opposite to that by which the linearization spring 133a is secured to the distal end of the elastic blade 122a.
  • the idea is that the displacement ⁇ 0 deforms the linearization spring 133a using the height h 0 of the lateral coupling rim 132a of the mechanical-acoustic transducer 13 as a lever arm.
  • each linearization spring actuated via the lateral coupling rim, of height ho, which is associated with it and serving as a lever, is 10 times, preferably 100 times , lower than the apparent stiffness of the actuators along the axis outside the main extension plane of the frame.
  • the micrometric speaker 1 allows guidance of the mechanical-acoustic transducer 13 similar to that which the system would allow equivalent shown on the Figure 9 .
  • the diagram in this figure shows a piezoelectric actuator 121a and the elastic blade 122a associated with it in a deformed state, the elastic blade 122a being linked to the rigid plate 131 by a spring representing the stiffness of the linearization spring 133a along the axis z.
  • the piezoelectric actuator 121a and the elastic blade 122a as a mechanical actuator, and knowing that, according to the principle diagram of the Figure 9 , the characteristic of the mechanical actuator thus defined is the straight line connecting its blocked force (force generated by the actuator when the translation of its end is blocked according to z) and its free movement (maximum movement of the end of the actuator without load at its end), the stiffness of the spring illustrated on the Figure 9 cuts the mechanical actuator characteristic at its operating point. For a spring as shown in the Figure 9 which is quite stiff, the force corresponding to the operating point differs little from the blocked force of the mechanical actuator, which advantageously makes it possible to give the mechanical actuator a linear behavior over its operating range.
  • each linearization spring 133a, 133b has a stiffness at least ten times, preferably at least a hundred times, greater than a stiffness of the elastic blades 122a, 122b.
  • the additional degree of freedom conferred by the linearization springs helps reduce nonlinearities.
  • the fact that the linearization springs are more rigid than the actuators means that the frequency response of the micrometric speaker is not altered.
  • Another characteristic reflecting this same preference in a different way consists of specifying that the elastic blades of the electromechanical transducer 12 have a first resonance frequency and the linearization springs 133a, 133b of the mechanical-acoustic transducer 13 have a second resonance frequency, the second resonance frequency being at least one hundred times, preferably at least one thousand times, greater than the first resonance frequency. This ensures that the second resonance frequency is outside the desired bandwidth reached by the micrometric loudspeaker 1, and we thus give, to the micrometric loudspeaker 1, a wide bandwidth for a optimized range of perceptible sound frequencies.
  • the rigid plate 131 moves up and down and generates acoustic waves, as illustrated in the Figure 10 .
  • the acoustic short circuit resulting from the interference between the positive (or negative) waves created by the front of the rigid plate in vibration, and the negative (or positive) waves created by the rear of this same plate, can be prevented by a deformable suspension.
  • the acoustic short circuit is prevented by using a dimension d of gap 2 between the frame 11 and the rigid plate 131, and more particularly between the inner periphery of the frame 11 and the side edges coupling 132a, 132b of the mechanical-acoustic transducer 13, such that the thermo-viscous behavior dominates in this gap 2.
  • the Figure 11 shows a schematic representation of a part of the mechanical-acoustic transducer 13, the frame 11 and the gap 2 in question, on which the dimension d of the gap 2 is represented.
  • the frame 11 is configured so that the mechanical-acoustic transducer 13 is located, on all sides, at an interstitial distance from the interior periphery of the frame 11 of between 1 and 100 ⁇ m, preferably between 2 and 80 ⁇ m.
  • a finite element simulation can make it possible to determine, for each dimensioning of the micrometric loudspeaker 1 according to the first aspect of the invention, the interstitial distance making it possible to optimize the thermo-viscous behavior of the air in the gap 2. For the specific dimensions given below for purely illustrative purposes, this finite element simulation shows that the optimal dimension of gap 2 is approximately equal to 9 ⁇ m.
  • the gap 2 between the frame 11 and the mechanical-acoustic transducer 13 is thus such that, at this gap 2, the propagation of the acoustic waves is mainly dominated by thermo-viscous behavior. This avoids any acoustic short-circuit phenomenon.
  • the dimensions of the micrometric loudspeaker 1 are obviously important because they influence the dimensions of the rigid plate 131 and the dimensions of the elastic blades 122a, 122b, and consequently on those of the piezoelectric actuators 121a, 121b.
  • a larger loudspeaker will have a larger, heavier rigid plate 131, softer spring blades 122a, 122b and will generate more force. It will therefore have a lower resonant frequency, and therefore a wider bandwidth in low frequencies.
  • FIG 12 shows the frequency response of a micrometric loudspeaker 1 according to the first aspect of the invention, the rigid plate 131 of which has dimensions of 8x8 mm 2 . We only observe that the resonance frequency of such a micrometric speaker 1 is substantially equal to 1 kHz.
  • micrometric loudspeaker 1 Smaller dimensions will give a higher resonant frequency, and therefore a narrower bandwidth. However, dimensions ranging from 1 ⁇ 1 mm 2 to 10 ⁇ 10 mm 2 of the micrometric loudspeaker 1 according to the first aspect of the invention are envisaged. Dimensions ranging from 3x3 mm 2 to 8x8 mm 2 will for example be favored for reasons of compromise between performance and size.
  • the height h 0 of the lateral coupling edges 132a, 132b shown on the figure 8 is optimized so that the thermo-viscous losses due to the compressed air below the rigid plate 131 are minimized.
  • the thermo-viscous losses do not significantly modify the frequency response of the micrometric loudspeaker 1. This height, however, depends on the other dimensions of the micrometric loudspeaker 1. This is why, more generally, the lateral coupling edges 132a, 132b of the mechanical-acoustic transducer 13 extend from one of the two linearization springs 133a, 133b over a distance greater than 750 ⁇ m, preferably greater than 500 ⁇ m.
  • the frequency response of the micrometer loudspeaker 1 can also be greatly affected by the thickness of the elastic blades 122a, 122b supporting the piezoelectric actuators 121a, 121b. Thinner elastic blades 122a, 122b will give a lower resonance frequency and thicker elastic blades 122a, 122b will give more force to the micrometric loudspeaker 1 and therefore a higher level of radiated pressure. A compromise is therefore preferably to be determined in order to have a low resonance frequency and a satisfactory pressure level. This dimension again depends on the other dimensions of the micrometric loudspeaker 1.
  • the elastic blades 122a, 122b can have a thickness of between 1 and 100 ⁇ m, preferably between 5 and 20 ⁇ m, and for example substantially equal to 12 ⁇ m.
  • THE figures 13 to 16 give an example of a method of manufacturing a micrometric loudspeaker 1 according to one embodiment of the first aspect of the invention.
  • This process advantageously implements technological steps, in particular deposition and etching, which are common in microelectronics. These technological stages are for example carried out from two silicon wafers (or “wafer” according to Anglo-Saxon terminology). More particularly, as already introduced above and according to the example illustrated, two silicon wafers can be processed individually, assembled together, then the assembly can be processed in turn to obtain the micrometric speaker 1 according to one embodiment of the first aspect of the invention. However, any other conventional mechanical assembly method, than that illustrated in the figures, can be used.
  • manufacturing begins with a BESOI wafer, composed of two layers of silicon separated by a layer of silicon oxide 201.
  • a stack comprising a first electrode layer, a layer of a piezoelectric material, then a second electrode layer, is deposited.
  • a hard mask 202 is etched on the rear face FAR1 in order to subsequently carry out a deep etching step by this back side.
  • the piezoelectric transducers 121a, 121b are then etched and protected by a passivation 203.
  • Electrical contacts 204 allowing the electrical supply of the upper electrodes 205a, 206a and lower 205b, 206b of the piezoelectric actuators 121a, 121b and a material 207 intended to allow the bonding of the treated BESOI wafer to the second treated wafer are then deposited by the front face FAV1 of the BESOI wafer.
  • the second wafer composed of two layers of silicon separated from an oxide layer 208, is intended to constitute a second part of the speaker 1, and in particular the rigid plate 131 and the second part 11b of the frame 11.
  • a mask hard 209 is engraved on the front face FAR2 to allow the deep engraving of a rear cavity 210.
  • a hard mask 211 is engraved on the rear face FAR2 to allow the subsequent engraving of structuring patterns 130b, taking for example the form of bars of reinforcement, of the rigid plate 131.
  • the two wafers are assembled together by their respective front faces FAV1 and FAV 2, in the manner illustrated on the Figure 15 .
  • the structuring patterns 130b of the rigid plate 131, as well as the gap d between the rigid plate 131 and the frame 11 are then etched by the rear face FAR2 of the second silicon wafer.
  • the rear face FAR1 of the BESOI wafer is then etched to reach speaker 1 as illustrated on the Figure 16 .
  • the two elastic blades 122a, 122b comprise the same layer 120a secured to one face of the central crosspiece 111 which is oriented towards a center of the frame 11.
  • Said layer 120a is made from silicon.
  • the rigid plate 131 and the linearization springs 133a, 133b comprise the same layer 130a.
  • a greater stiffness of the rigid plate 131 relative to a stiffness of the linearization springs 133a, 133b is due to the structuring patterns 130b that the rigid plate (131) comprises. More particularly, these structuring patterns 130b extend, from said layer 130a, over a surface of the latter defining the extent of the rigid plate 131.
  • the linearization springs 133a, 133b are for their part made up of portions 130c, 130d of said layer 130a which extend on either side of said surface. Furthermore, it appears that said layer 130a is made from silicon.
  • the frame 11 includes a periphery, preferably closed.
  • the crosspiece 111 of the frame 11 is integral with the inner periphery of the frame 11 by its two ends.
  • the frame 11 is represented as having a parallelepiped geometry, other shapes of the frame 11 are possible, whether for its interior periphery or its exterior periphery. Thus, a frame 11 of annular or oblong shape can be envisaged. Where applicable, the micrometric loudspeaker 1 will include more than two piezoelectric actuators each associated with each of a corresponding plurality of elastic blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Mechanical Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Claims (15)

  1. Mikrometrischer Lautsprecher (1), umfassend:
    • einen Rahmen (11),
    • einen elektromechanischen Wandler (12), und
    • einen mechanisch-akustischen Wandler (13), der eine starre Platte (131), die in dem Rahmen (11) beweglich montiert ist, umfasst,
    wobei der elektromechanische Wandler (12) und der mechanisch-akustische Wandler (13) miteinander derart gekoppelt sind, dass eine Belastung des elektromechanischen Wandlers (12) den mechanisch-akustischen Wandler (13) in Bezug auf den Rahmen (11) verlagert, und dass eine entsprechende Verlagerung des mechanisch-akustischen Wandlers (13) in Schalldruck umgewandelt wird,
    • der elektromechanische Wandler (12) mindestens zwei piezoelektrische Aktuatoren (121a, 121b) und mindestens zwei elastische Klingen (122a, 122b) umfasst, wobei jeder piezoelektrische Aktuator einer elastischen Klinge zugeordnet ist, um, wenn er bestromt wird, eine Verformung der elastischen Klinge durch Bimetalleffekt einzuleiten,
    • der Rahmen (11) eine zentrale Querleiste (111) umfasst, von welcher ausgehend sich die zwei elastischen Klingen (122a, 122b) fest verbunden und einander entgegengesetzt erstrecken,
    dadurch gekennzeichnet, dass:
    • sich die zwei elastischen Klingen (122a, 122b) von der zentralen Querleiste (111) des Rahmens (11) erstrecken, bis zwei seitliche Ränder, als Kopplungsränder (132a, 132b) bezeichnet, des mechanisch-akustischen Wandlers (13) derart zum Eingriff kommen, dass sich jede elastische Klinge (122a, 122b) in einer Biegekonfiguration, als "eingelassen-geführt" bezeichnet, befindet, gemäß der, wenn die piezoelektrischen Aktuatoren (121a, 121b) bestromt werden, sich die elastischen Klingen (122a, 122b) verformen und miteinander eine Bewegung der starren Platte (131) des mechanisch-akustischen Wandlers (13) gemäß einer Richtung im Wesentlichen senkrecht zu einer Haupterstreckungsebene des Rahmens (11) mitnehmen,
    und dass:
    • der mechanisch-akustische Wandler (13) außerdem mindestens zwei Linearisierungsfedern (133a, 133b) umfasst, die sich jeweils von einem der seitlichen Kopplungsränder (132a, 132b) bis zu einem seitlichen Rand der starren Platte (131) erstrecken, der gegenüber liegt, wobei die Linearisierungsfedern (133a, 133b) dazu konfiguriert sind, bei einer Verformung der elastischen Klingen (122a, 122b) eine Verlagerung mindestens eines Teils der zwei seitlichen Kopplungsränder (132a, 132b) zu der zentralen Querleiste (111) des Rahmens (11) zu erlauben.
  2. Mikrometrischer Lautsprecher (1) nach dem vorstehenden Anspruch, wobei sich jeder der zwei piezoelektrischen Aktuatoren (121a, 121b) höchstens auf einer Hälfte der elastischen Klinge (122a, 122b), die ihm zugeordnet ist, von dem seitlichen Kopplungsrand (132a, 132b) des mechanisch-akustischen Wandlers (13), der durch die elastische Klinge (122a, 122b) in Eingriff gebracht ist, erstreckt.
  3. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei jede Linearisierungsfeder (133a, 133b) eine Steifigkeit aufweist, die mindestens zehn Mal, bevorzugt mindestens einhundert Mal größer ist als eine Steifigkeit der elastischen Klingen (122a, 122b).
  4. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei sich die zentrale Querleiste (111) des Rahmens (11) höchstens auf einer ersten Hälfte einer Dicke des Rahmens (11) erstreckt, und die zwei elastischen Klingen (122a, 122b) dieselbe Schicht (120a) umfassen, die mit einer Fläche der zentralen Querleiste (111) fest verbunden ist, die zu einer Mitte des Rahmens (11) ausgerichtet ist.
  5. Mikrometrischer Lautsprecher (1) nach dem vorstehenden Anspruch, wobei die Schicht (120a) auf der Grundlage von Silizium gebildet ist.
  6. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei die starre Platte (131) und die Linearisierungsfedern (133a, 133b) dieselbe Schicht (130a) umfassen, wobei eine größere Steifigkeit der starren Platte (131) in Bezug auf eine Steifigkeit der Linearisierungsfedern (133a, 133b) auf strukturierte Strukturierungsmuster (130b) zurückzuführen ist, welche die starre Platte (131) umfasst, und die sich von der Schicht (130a) auf einer Oberfläche, die ein Ausmaß der starren Platte (131) definiert, dieser Letzteren erstrecken, wobei die Linearisierungsfedern (133a, 133b) ihrerseits aus Abschnitten (130c, 130d) der Schicht (130a) bestehen, die sich zu beiden Seiten der Oberfläche erstrecken.
  7. Mikrometrischer Lautsprecher (1) nach dem vorstehenden Anspruch, wobei die Schicht (130a) auf der Grundlage von Silizium gebildet ist.
  8. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei der Rahmen (11) derart konfiguriert ist, dass der mechanisch-akustische Wandler (13) überall in einem Abstand von dem Innenumfang des Rahmens (11) liegt, der zwischen 1 und 100 µm, bevorzugt zwischen 2 und 80 µm, beispielsweise im Wesentlichen 9 µm beträgt.
  9. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei der Rahmen (11) in seiner Haupterstreckungsebene Maße aufweist, die jeweils zwischen 1 und 10 mm, bevorzugt zwischen 3 und 8 mm liegen.
  10. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei sich die seitlichen Kopplungsränder (132a, 132b) des mechanisch-akustischen Wandlers (13) von einer der zwei Linearisierungsfedern (133a, 133b) auf einem Abstand größer als 750 µm, bevorzugt größer als 500 µm erstrecken.
  11. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei die elastischen Klingen (122a, 122b) eine Dicke zwischen 1 und 100 µm, bevorzugt zwischen 5 und 20 µm aufweisen.
  12. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei die zwei piezoelektrischen Aktuatoren (121a, 121b) auf der Grundlage von PZT sind oder sogar daraus bestehen, und sich jeweils auf einer Fläche einer der zwei elastischen Klingen (122a, 122b), die der starren Platte (131) des mechanisch-akustischen Wandlers (13) entgegengesetzt ist, erstrecken.
  13. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei die elastischen Klingen (122a, 122b) des elektromechanischen Wandlers (12) eine erste Resonanzfrequenz aufweisen, und die Linearisierungsfedern (133a, 133b) des mechanisch-akustischen Wandlers (13) eine zweite Resonanzfrequenz aufweisen, wobei die zweite Resonanzfrequenz mindestens einhundert Mal, bevorzugt mindestens eintausend Mal größer als die erste Resonanzfrequenz ist.
  14. Mikrometrischer Lautsprecher (1) nach einem der vorstehenden Ansprüche, wobei der Rahmen (11) einen ersten und einen zweiten Teil (11a, 11b) umfasst, die übereinander liegen und miteinander konzentrisch sind, ein zweiter Teil (11a) des Rahmens (11) die zentrale Querleiste (111) trägt und zwei elektrische Verbindungsstücke (112a, 112b) zu den piezoelektrische Aktuatoren (121a, 121b) umfasst, wobei die elektrischen Verbindungsstücke (112a, 112b) bevorzugt in der Verlängerung der zentralen Querleiste (111) liegen, und der zweite Teil (11b) des Rahmens (11) zwei Kerben (113a, 113b) umfasst, die dazu konfiguriert sind, jeweils gegenüber einem der zwei elektrischen Verbindungsstücke (112a, 112b) zu liegen.
  15. Verfahren zur Herstellung eines mikrometrischen Lautsprechers (1) nach einem der vorstehenden Ansprüche, das Schritte zum Abscheiden und Ätzen gemäß Mikroelektronik umfasst oder sogar darauf beschränkt ist.
EP22168299.0A 2021-04-15 2022-04-14 Mikrometrischer lautsprecher Active EP4075422B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2103908A FR3122023B1 (fr) 2021-04-15 2021-04-15 Haut-parleur micrométrique

Publications (2)

Publication Number Publication Date
EP4075422A1 EP4075422A1 (de) 2022-10-19
EP4075422B1 true EP4075422B1 (de) 2024-07-17

Family

ID=76034832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22168299.0A Active EP4075422B1 (de) 2021-04-15 2022-04-14 Mikrometrischer lautsprecher

Country Status (3)

Country Link
US (1) US11785391B2 (de)
EP (1) EP4075422B1 (de)
FR (1) FR3122023B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE546029C2 (en) * 2022-12-22 2024-04-16 Myvox Ab A mems-based micro speaker device and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989412B2 (en) * 2009-05-25 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric acoustic transducer
CN103477656B (zh) * 2012-02-15 2018-04-27 松下知识产权经营株式会社 扬声器
DE102014106753B4 (de) 2014-05-14 2022-08-11 USound GmbH MEMS-Lautsprecher mit Aktuatorstruktur und davon beabstandeter Membran
FR3090613B1 (fr) 2018-12-20 2021-01-22 Commissariat Energie Atomique Articulation pour systemes micro et nanoelectromecaniques a deplacement hors-plan offrant une non-linearite reduite
CN111918179B (zh) * 2020-07-10 2021-07-09 瑞声科技(南京)有限公司 发声装置及具有其的电子设备

Also Published As

Publication number Publication date
FR3122023B1 (fr) 2023-12-29
EP4075422A1 (de) 2022-10-19
FR3122023A1 (fr) 2022-10-21
US11785391B2 (en) 2023-10-10
US20220337954A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
EP2410768B1 (de) Akustischer Druckimpuls-Generator vom Typ MEMS
EP1902453B1 (de) Kapazitive vorrichtung mit optimiertem kapazitivem volumen
EP4075422B1 (de) Mikrometrischer lautsprecher
FR2820834A1 (fr) Procede de fabrication d'un micro-miroir optique et micro-miroir ou matrice de micro-miroirs obtenu par ce procede
EP3257808B1 (de) Mikroelektromechanische und/oder nanoelektromechanische vorrichtung mit bewegung ausserhalb der ebene, die mit kapazitiven mitteln zur änderung der oberfläche ausgestattet ist
EP3070963B1 (de) Mems und/oder nems drucksensor mit verbesserten leistungen und dynamisches mikrofon mit einem solchen sensor.
EP3975584B1 (de) Verfahren zur herstellung eines elektroakustischen transducers
EP2595763A2 (de) Verfahren und vorrichtung zur erzeugung von ultraschalls mithilfe von cmuts sowie verfahren und system zur medizinischen bildgebung
WO2016097302A2 (fr) Capteur de pression dynamique a fonctionnement ameliore
EP1705151A1 (de) Mikroelektromechanisches System mit einem sich biegendem Balken
EP3975588B1 (de) Verfahren zur herstellung eines elektroakustischen transducers
EP3065415A1 (de) Vorrichtung mit betätigbaren membranen, und digitaler lautsprecher, der mindestens eine solche vorrichtung umfasst
EP0754959B1 (de) Mikroabtastelemente für optisches System
WO2019141952A1 (fr) Procedes de conception et de fabrication d'un dispositif comprenant un reseau d'elements micro-usines, dispositif obtenu a l'issu de tels procedes
EP4047954B1 (de) Mems-lautsprecher und verfahren zur herstellung eines solchen lautsprechers
EP4075526A1 (de) Vorrichtung mit piezoresistiver transduktion
EP3391664A1 (de) Akustische membran für einen lautsprecher und entsprechender lautsprecher
EP3469812A1 (de) Breitbandiger elektrodynamischer wandler für kopfhörer und zugehörige kopfhörer
EP4047954A1 (de) Mems-lautsprecher und verfahren zur herstellung eines solchen lautsprechers
Dagher et al. First MEMS Microphone Based on Capacitive Transduction in Vacuum
EP2201681A1 (de) Auf nanometrischem oder mikrometrischem massstab vibrierende elektromechanische komponente mit verbessertem detektionsniveau
FR2952626A1 (fr) Microtransducteur capacitif a membrane vibrante
FR3143256A1 (fr) Elément actif piézoélectrique pour système électromécanique
FR3131291A1 (fr) Procédé de fonctionnalisation d’une membrane d’un capteur électromécanique résonant
FR3077161A1 (fr) Transducteur acoustique piezoelectrique accordable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022004561

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH