EP4069642A1 - Positive electrode active material - Google Patents

Positive electrode active material

Info

Publication number
EP4069642A1
EP4069642A1 EP20841971.3A EP20841971A EP4069642A1 EP 4069642 A1 EP4069642 A1 EP 4069642A1 EP 20841971 A EP20841971 A EP 20841971A EP 4069642 A1 EP4069642 A1 EP 4069642A1
Authority
EP
European Patent Office
Prior art keywords
positive electrode
active material
carbon
cell
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20841971.3A
Other languages
German (de)
French (fr)
Inventor
Qing Wang
Jean-Marie Tarascon
Mohamed Chakir
Sathiya Mariyappan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Sorbonne Universite
College de France
Ampere SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Renault SAS
Sorbonne Universite
College de France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Renault SAS, Sorbonne Universite, College de France filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4069642A1 publication Critical patent/EP4069642A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the general field of rechargeable batteries, sodium-ion (Na-ion) and lithium-ion (Li-ion) batteries, in particular Na-ion batteries.
  • the invention relates more precisely to the active materials of positive electrode, and to the positive electrodes comprising them.
  • Na-ion batteries represent one of the most promising alternative solutions to lithium-ion batteries, sodium being more economically interesting than lithium, in particular because of its abundance and its low cost.
  • the first category contains polyanionic compounds.
  • the compound Na 3 V 2 (PO 4 ) 2 F 3 has been identified as being suitable for use in Na-ion batteries. Indeed, it is characterized in particular by ease of synthesis, stability when used in humid conditions, stability in air during storage, or even high specific energy, such as document WO 2014/009710. describes it.
  • the second category contains the lamellar oxides of sodium. These particular oxides have the general formula Na b MO 2 , where b is less than or equal to 1, and M denotes at least one transition metal. These lamellar oxides seem more promising than the polyanionic compounds because they have in particular a lower molecular mass. They are also interesting by their structural and compositional richness and their ease of synthesis. In addition, the gravimetric energy density of the lamellar sodium oxides is higher than that of the compound Na 3 V 2 (PO 4 ) 2 F 3 (approximately 4.5 g / cm 3 vs approximately 3 g / cm 3 ). Thus, many studies on lamellar sodium oxides have been undertaken, with particular attention given to the nature of the metals. Certain transition metals are preferably to be avoided, in particular metals such as V, Co and Ni because of their toxic nature.
  • a particular positive electrode active material achieves a cell capacity comprising said improved active material, which does not deteriorate with repetition of the charging and discharging cycles, with improved stability at humidity.
  • the subject of the invention is therefore an active material for a positive electrode of the following formula (I): Na x Li y Mn 1-y O 2 (1), in which:
  • - x is a number ranging from 0.8 to 1;
  • - y is a number strictly greater than 0 and less than or equal to 1/3.
  • Another subject of the invention is a process for manufacturing the active material according to the invention.
  • the subject of the invention is also a positive electrode comprising at least one active material according to the invention.
  • Another object of the invention is an Na-ion battery cell, comprising the electrode according to the invention and also an Na-ion battery comprising at least one Na-ion battery cell.
  • the invention also relates to a Li-ion battery cell, comprising the electrode according to the invention and also a Li-ion battery comprising at least one Li-ion battery cell as defined above.
  • FIG 1 is a graph representing the capacity of several Na-ion battery cells, as a function of the number of charge and discharge cycles;
  • FIG 2 is a graph showing the voltage of a Na-ion battery cell, as a function of the number of charge and discharge cycles;
  • FIG 3 is a representation of two diffractograms of two active materials
  • FIG 4 is a representation of two diffractograms of two active materials
  • FIG 5 is a representation of two diffractograms of two active materials
  • FIG 6 is a graph showing the voltage of a Li-ion battery cell, as a function of capacity.
  • the positive electrode active material according to the invention is of formula (I) as mentioned above.
  • y varies from 0.1 to 1/3, preferably from 0.2 to 1/3, more preferably y is equal to 1/3.
  • x varies from 0.9 to 1, preferably x is equal to 1.
  • the material of formula (I) as defined above is of formula NaLi 1/3 Mm 2/3 O 2 .
  • a subject of the invention is also a process for manufacturing the active material according to the invention comprising the following steps:
  • step (b) heating the mixture obtained at the end of step (a) up to a temperature ranging from 500 to 900 ° C;
  • the transition metal salt is a manganese salt.
  • the lithium precursor is chosen from an oxide, a peroxide, a salt and their mixtures, more preferably chosen from lithium carbonate, lithium nitrate, lithium acetate, lithium sulphate, lithium hydroxide. , Li 2 O, Li 2 O 2 and mixtures thereof.
  • the sodium precursor is chosen from an oxide, a peroxide, a salt and their mixtures, more preferably chosen from sodium carbonate, sodium nitrate, sodium acetate, sodium sulfate. , soda, Na 2 O, Na 2 O 2 .
  • the mixture obtained at the end of step (a) is heated to a temperature ranging from 600 to 900 ° C.
  • step (b) takes place for a period ranging from 6 hours to 20 hours, preferably 6 hours to 16 hours, more preferably 6 to 12 hours, particularly preferably 8 hours.
  • step (b) is carried out under a flow of argon.
  • step (b) is followed by a cooling step.
  • the mixture is heated to 700 ° C in an oven for 8 hours, then cooled to a temperature of 300 ° C or less, then removed from the oven.
  • Another object of the invention is a positive electrode comprising at least one active material according to the invention.
  • the positive electrode according to the invention further comprises at least one conductive compound.
  • the conductive compound is chosen from metallic particles, carbon, and mixtures thereof, preferably carbon.
  • Said metallic particles can be particles of silver, copper or nickel.
  • the carbon can be in the form of graphite, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, carbon nanospheres, preferably carbon black.
  • the positive electrode according to the invention advantageously comprises the SuperP® carbon black sold by Timcal.
  • the content of active material according to the invention varies from 50 to 90% by weight, preferably from 70 to 90% by weight, relative to the total weight of the positive electrode.
  • the content of conductive compound varies from 10 to 50% by weight, preferably from 10 to 30% by weight, more preferably from 15 to 25% by weight, relative to the total weight of the positive electrode.
  • the present invention also relates to an Na-ion battery cell comprising a positive electrode comprising the active material according to the invention, a negative electrode, a separator and an electrolyte.
  • the battery cell comprises a separator located between the electrodes and acting as an electrical insulator.
  • separators are generally composed of porous polymers, preferably of polyethylene and / or of polypropylene. They can also be glass microfibers.
  • the separator used is a CAT No. 1823-070® glass microfiber separator sold by Whatman.
  • said electrolyte is liquid.
  • This electrolyte can comprise one or more sodium salts and one or more solvents.
  • the sodium salt (s) can be chosen from NaPF 6 , NaClO 4 , NaBF 4 , NaTFSI, NaFSI, and NaODFB.
  • the sodium salt (s) are preferably dissolved in one or more solvents selected from aprotic polar solvents, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • aprotic polar solvents for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • the electrolyte comprises propylene carbonate mixed with the sodium salt NaPFe at 1 M.
  • a subject of the present invention is also an Na-ion battery comprising at least one cell as described above.
  • the present invention also relates to a Li-ion battery cell comprising a positive electrode comprising the active material according to the invention, a negative electrode, a separator and an electrolyte.
  • a subject of the present invention is also a Li-ion battery comprising at least one Li-ion battery cell as described above.
  • the present invention is illustrated in a non-limiting manner by the following examples.
  • This comparative active material is called material A.
  • This comparative active material is called material B.
  • This active material according to the invention is called material C,
  • This active material according to the invention is called material D.
  • This active material according to the invention is called material E.
  • the positive electrodes EN-A and EN-B are comparative electrodes.
  • the EN-C positive electrode is an electrode according to the invention.
  • the EN-A positive electrode is made by mixing 80% by weight of the active material A, which was transferred directly into the glove box from the oven without exposure to air, and 20% by weight of the SuperP® carbon black , the mixture then being ground for 15 minutes using a SPEX 8000M mixer.
  • EN-B and EN-C positive electrodes are made by mixing 80% by weight of the active material, respectively B and C, and 20% by weight of SuperP® carbon black, the mixtures then being ground in the same way as for the positive electrode EN-A.
  • the active materials B and C were directly transferred to the glove box from the oven without exposure to air.
  • Three electro-chemical half-cells were then prepared comprising respectively the positive electrodes EN-A to EN-C.
  • the half-cells are called CE-A, CE-B and CE-C, respectively.
  • the assembly of the electro-chemical half-cells is carried out in a glove box using a device consisting of a 12 mm diameter Swagelok® connector.
  • Each of the half-cells includes a separator, a negative electrode and an electrolyte.
  • Three layers of CAT No. 1823-070® glass microfiber separator are used to prevent short circuits between the positive electrode and the negative electrode during the charge and discharge cycles. These separators are cut to a diameter of 12 mm and a thickness of 675 micrometers.
  • Negative electrode Pellets 10 mm in diameter are cut from a sheet of sodium metal. The pellet obtained is then glued by pressure on a stainless steel current collector. This collector is then deposited on the separator membrane in the half-cell.
  • the electrolyte used comprises a solution composed of 1M of NaPF 6 dissolved in propylene carbonate.
  • the separators, negative electrodes and electrolytes are identical to those used in the CE-A half-cell.
  • Galvanostatic cycling is performed using a BioLogic cycler at a C / 8 cycling rate.
  • the capacitance of the CE-A half-cell was measured as a function of the number of cycles, at voltages ranging from 4.3 to 1.5 V, as shown in figure 1.
  • the evolution of the capacitance is observed on curve A.
  • the potential window of charge and discharge of this material is that which is described in the document “P2- type Nax [Fe 1/2 Mn 1/2 ] O 2 ruade from earth-abundant elements for rechargeable Na batteries ”, N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012).
  • a capacity of approximately 145 mAh.g '1 is measured after 20 cycles and of approximately 106 mAh.g -1 after 40 cycles.
  • Galvanostatic cycling is performed using a BioLogic cycler at a C / 8 cycling rate.
  • the capacitance of the CE-B half-cell was measured as a function of the number of cycles, at voltages ranging from 3.8 to 2.0 V as shown in figure 1.
  • the evolution of the capacitance is observed on the curve B.
  • the charge and discharge potential window of this material is that which is described in the document “Electrochemical Properties of Monoclinic NaMnO 2 ”, X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc., 158, A1307 (2011).
  • Galvanostatic cycling is performed using a BioLogic cycler at a C / 8 cycling rate.
  • the capacitance of the CE-C half-cell was measured as a function of the number of cycles, at voltages ranging from 4.5 to 1.5 V, as shown in figure 1.
  • the evolution of the capacitance is observed on curve C.
  • a capacity of approximately 170 mAh.g -1 is measured after 20 cycles, and of approximately 173 mAh.g '1 after 40 cycles.
  • the capacity of the half-cell CE-C according to the invention is higher and more stable over the charge and discharge cycles.
  • the capacity of the half-cell comprising the active material according to the invention is improved.
  • the average potential of the half-cell CE-C was measured as a function of the number of cycles, as shown in FIG. 2.
  • the change in the average potential is observed on curve C1.
  • the active materials A, B and C are synthesized according to the synthetic methods described above in Example 1.
  • the material A after synthesis, is characterized using a diffractogram, as indicated in FIG. 3 (curve Al).
  • the material A was also characterized using a diffractogram, after having been washed with water, as indicated in FIG. 3 (curve A2). Material A was washed in water with a ratio of 100 mg of powder in 10 mL of water, for 30 minutes, before being dried at 80 ° C under vacuum overnight.
  • the material B after synthesis, is characterized using a diffractogram, as indicated in FIG. 4 (curve B1).
  • Material B was also characterized using a diffractogram, after having undergone washing with water according to the same protocol as that described for material ⁇ , as indicated in FIG. 4 (curve B2).
  • this material B is very sensitive to humidity, much more sensitive than material A.
  • the two diffraetograms absolutely do not overlap. We can indeed see many differences between the two diffraetograms, indicating structural changes.
  • the material C after synthesis, is characterized using a diffractogram, as indicated in FIG. 5 (curve C2).
  • Material C was also characterized using a diffractogram, after having undergone washing with water according to the same protocol as that described for material A, as indicated in FIG. 5 (curve C3).
  • the material according to the invention exhibits improved stability to humidity, compared with the materials of the prior art.
  • the material C according to the invention and the positive electrode were manufactured according to the methods described above in Example 1.
  • the half-cell is assembled in a glove box using a device consisting of a 12 mm diameter Swagelok® connector.
  • the half-cell includes a separator, a negative electrode and an electrolyte.
  • Two layers of CAT No. 1823-070® glass microfiber separator are used to prevent any short circuit between the positive electrode and the negative electrode during charge and discharge cycles. These separators are cut to a diameter of 12 mm and a thickness of 675 micrometers.
  • Pellets 10 mm in diameter are cut from a sheet of lithium metal. The pellet obtained is then glued by pressure on a stainless steel current collector. This collector is then deposited on the separator membrane in the half-cell.
  • the electrolyte used comprises a solution composed of IM of LiPF 6 dissolved in a 50/50 mixture by volume of ethylene carbonate and dimethyl carbonate. he. Electrochemical test
  • a cycling process comprising applying a plurality of charge and discharge cycles at voltages ranging from 2 to 4.8 V, was performed, at a cycling rate of C / 10.
  • the half-cell voltage was measured as a function of capacitance, as shown in Figure 6 (curve C4).
  • the capacity of the half-cell does not deteriorate with repeated charge and discharge cycles.
  • the material C according to the invention can be an active material for a Li-ion battery, with good electrochemical behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a positive electrode active material of the following formula (I): NaxLiyMnl-yO2 (I), where x is a number from 0.8 to 1; y is a number strictly greater than 0 and smaller than or equal to 1/3.

Description

DESCRIPTION DESCRIPTION
TITRE : Matériau actif d'électrode positive TITLE: Positive electrode active material
Domaine technique L'invention concerne le domaine général des batteries rechargeables, les batteries sodium-ion (Na-ion) et lithium-ion (Li-ion), en particulier les batteries Na- ion. Technical Field The invention relates to the general field of rechargeable batteries, sodium-ion (Na-ion) and lithium-ion (Li-ion) batteries, in particular Na-ion batteries.
L'invention concerne plus précisément les matériaux actifs d'électrode positive, et les électrodes positives les comprenant, Techniques antérieures The invention relates more precisely to the active materials of positive electrode, and to the positive electrodes comprising them.
Les batteries Na-ion représentent l'une des solutions alternatives les plus prometteuses aux batteries lithium-ion, le sodium étant plus intéressant que le lithium sur le plan économique, notamment en raison de son abondance et de son bas coût. Na-ion batteries represent one of the most promising alternative solutions to lithium-ion batteries, sodium being more economically interesting than lithium, in particular because of its abundance and its low cost.
Des recherches intensives ont été effectuées sur les électrodes positives pour batteries Na-ion. Ces travaux ont conduit à un classement des électrodes positives en deux catégories principales. Extensive research has been carried out on positive electrodes for Na-ion batteries. This work has led to a classification of positive electrodes into two main categories.
La première catégorie contient les composés polyanioniques. Parmi ces composés polyanioniques, le composé Na3V2(PO4)2F3 a été identifié comme pouvant convenir dans le cadre d'une utilisation au sein de batteries Na-ion. En effet, il se caractérise notamment par une facilité de synthèse, une stabilité lorsqu'il est utilisé dans des conditions humides, une stabilité à l'air lors de son stockage, ou encore une énergie spécifique élevée, comme le document WO 2014/009710 le décrit. The first category contains polyanionic compounds. Among these polyanionic compounds, the compound Na 3 V 2 (PO 4 ) 2 F 3 has been identified as being suitable for use in Na-ion batteries. Indeed, it is characterized in particular by ease of synthesis, stability when used in humid conditions, stability in air during storage, or even high specific energy, such as document WO 2014/009710. describes it.
Cependant, la présence du vanadium au sein de l'électrode peut poser problème au cours de l'utilisation de la batterie Na-ion à moyen/long terme, compte tenu de son caractère toxique. Par ailleurs, bien que les meilleurs résultats soient obtenus avec ce composé polyanionique, la capacité spécifique de ce dernier est limitée due à sa masse moléculaire relativement élevée. However, the presence of vanadium within the electrode can pose a problem during medium / long term use of the Na-ion battery, given its toxic nature. Moreover, although the best results are obtained with this polyanionic compound, the specific capacity of the latter is limited due to its relatively high molecular mass.
La seconde catégorie renferme les oxydes lamellaires de sodium. Ces oxydes particuliers sont de formule générale NabMO2, où b est inférieur ou égal à 1, et M désigne au moins un métal de transition. Ces oxydes lamellaires semblent plus prometteurs que les composés polyanioniques car ils présentent notamment une masse moléculaire plus faible. Ils sont également intéressants par leur richesse structurelle et compositionnelle et leur facilité de synthèse. En outre, la densité gravimétrique d'énergie des oxydes lamellaires de sodium est plus élevée que celle du composé Na3V2(PO4)2F3 (environ 4,5 g/cm3 vs environ 3 g/cm3). Ainsi, de nombreux travaux sur les oxydes lamellaires de sodium ont été entrepris, avec une attention particulière donnée sur la nature des métaux. Certains métaux de transition sont préférablement à éviter, notamment les métaux tels que V, Co et Ni à cause de leur caractère toxique. The second category contains the lamellar oxides of sodium. These particular oxides have the general formula Na b MO 2 , where b is less than or equal to 1, and M denotes at least one transition metal. These lamellar oxides seem more promising than the polyanionic compounds because they have in particular a lower molecular mass. They are also interesting by their structural and compositional richness and their ease of synthesis. In addition, the gravimetric energy density of the lamellar sodium oxides is higher than that of the compound Na 3 V 2 (PO 4 ) 2 F 3 (approximately 4.5 g / cm 3 vs approximately 3 g / cm 3 ). Thus, many studies on lamellar sodium oxides have been undertaken, with particular attention given to the nature of the metals. Certain transition metals are preferably to be avoided, in particular metals such as V, Co and Ni because of their toxic nature.
Dans ce contexte, des matériaux intéressants ont été identifiés, notamment le matériau NadFe0,5Mn0,5O2, où d est inférieur ou égal à 1, comme le document « P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant éléments for rechargeable Na batteries», N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012), ou encore le matériau NafMnO2, où f est inférieur ou égal à 1, comme le décrit le document « Electrochemical Properties of Monoclinic NaMnO2 », X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc., 158, A1307 (2011), et le document « β-NaMnO2: A High- Performance Cathode for Sodium-Ion Batteries », J. Billaud et al., J. Am. Chem. Soc., 136, 17243-17248 (2014). In this context, interesting materials have been identified, in particular the material Na d Fe 0.5 Mn 0.5 O 2 , where d is less than or equal to 1, such as the document “P2-type Nax [Fe 1/2 Mn 1/2 ] O 2 made from earth-abundant elements for rechargeable Na batteries ”, N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012), or the material Na f MnO 2 , where f is less or equal to 1, as described in the document “Electrochemical Properties of Monoclinic NaMnO 2 ”, X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc., 158, A1307 (2011), and the document “β-NaMnO 2 : A High-Performance Cathode for Sodium-Ion Batteries”, J. Billaud et al., J. Am. Chem. Soc., 136, 17243-17248 (2014).
Cependant, malgré la promesse que ces matériaux offrent du fait de leur capacité théorique élevée (240 rnAh/g), il s'avère que la capacité de ces matériaux se détériore au cours des cycles de charge et de décharge de la batterie Na-ion. Ces oxydes lamellaires sont également très sensibles à l'humidité, ce qui complique le stockage et le traitement. However, despite the promise that these materials offer due to their high theoretical capacity (240 rnAh / g), it turns out that the capacity of these materials deteriorates during the charge and discharge cycles of the Na-ion battery. . These lamellar oxides are also very sensitive to humidity, which complicates storage and processing.
Ainsi, il existe un besoin de développer de nouveaux matériaux actifs d'électrode positive permettant de surmonter les inconvénients cités précédemment, en particulier celui de la détérioration de la capacité, et de la stabilité à l'humidité. Thus, there is a need to develop new positive electrode active materials which make it possible to overcome the aforementioned drawbacks, in particular that of the deterioration of the capacitance, and of the stability to humidity.
Il a été découvert qu'un matériau actif d'électrode positive particulier permettait d'obtenir une capacité de cel lule comprenant ledit matériau actif améliorée, qui ne se détériorait pas avec la répétition des cycles de charge et de décharge, avec une stabilité améliorée à l'humidité. It has been found that a particular positive electrode active material achieves a cell capacity comprising said improved active material, which does not deteriorate with repetition of the charging and discharging cycles, with improved stability at humidity.
Exposé de l'invention Disclosure of the invention
L'invention a donc pour objet un matériau actif d'électrode positive de formule (I) suivante : NaxLiyMn1-yO2 (1), dans laquelle : The subject of the invention is therefore an active material for a positive electrode of the following formula (I): Na x Li y Mn 1-y O 2 (1), in which:
- x est un nombre allant de 0,8 à 1 ; - x is a number ranging from 0.8 to 1;
- y est un nombre strictement supérieur à 0 et inférieur ou égal à 1/3. - y is a number strictly greater than 0 and less than or equal to 1/3.
Un autre objet de l'invention est un procédé de fabrication du matériau actif selon l'invention. Another subject of the invention is a process for manufacturing the active material according to the invention.
L'invention a également pour objet une électrode positive comprenant au moins un matériau actif selon l'invention. Un autre objet de l'invention est une cellule de batterie Na-ion, comportant l'électrode selon l'invention et également une batterie Na-ion comprenant au moins une cellule de batterie Na-ion. The subject of the invention is also a positive electrode comprising at least one active material according to the invention. Another object of the invention is an Na-ion battery cell, comprising the electrode according to the invention and also an Na-ion battery comprising at least one Na-ion battery cell.
L'invention concerne également une cellule de batterie Li-ion, comportant l'électrode selon l'invention et également une batterie Li-ion comprenant au moins une cellule de batterie Li-ion telle que définie ci-avant. The invention also relates to a Li-ion battery cell, comprising the electrode according to the invention and also a Li-ion battery comprising at least one Li-ion battery cell as defined above.
D'autres avantages et caractéristiques de l'invention apparaîtront plus clairement à l'examen de la description détaillée et des dessins annexés sur lesquels : [Fig 1] est un graphe représentant la capacité de plusieurs cellules de batterie Na-ion, en fonction du nombre de cycles de charge et de décharge ; Other advantages and characteristics of the invention will emerge more clearly on examination of the detailed description and the appended drawings in which: [Fig 1] is a graph representing the capacity of several Na-ion battery cells, as a function of the number of charge and discharge cycles;
[Fig 2] est un graphe représentant la tension d'une cellule de batterie Na-ion, en fonction du nombre de cycles de charge et de décharge ; [Fig 2] is a graph showing the voltage of a Na-ion battery cell, as a function of the number of charge and discharge cycles;
[Fig 3] est une représentation de deux diffractogrammes de deux matériaux actifs ;[Fig 3] is a representation of two diffractograms of two active materials;
[Fig 4] est une représentation de deux diffractogrammes de deux matériaux actifs ;[Fig 4] is a representation of two diffractograms of two active materials;
[Fig 5] est une représentation de deux diffractogrammes de deux matériaux actifs ;[Fig 5] is a representation of two diffractograms of two active materials;
[Fig 6] est un graphe représentant la tension d'une cellule de batterie Li-ion, en fonction de la capacité. [Fig 6] is a graph showing the voltage of a Li-ion battery cell, as a function of capacity.
Il est précisé que l'expression « de... à... » utilisée dans la présente description de l'invention doit s'entendre comme incluant chacune des bornes mentionnées. It is specified that the expression "from ... to ..." used in the present description of the invention must be understood as including each of the limits mentioned.
Le matériau actif d'électrode positive selon l'invention est de formule (I) telle que mentionnée ci-dessus. The positive electrode active material according to the invention is of formula (I) as mentioned above.
De manière préférée, y varie de varie de 0,1 à 1/3, de préférence de 0,2 à 1/3, plus préférentiellement y est égal à 1/3. Preferably, y varies from 0.1 to 1/3, preferably from 0.2 to 1/3, more preferably y is equal to 1/3.
Selon un mode de réalisation particulier de l'invention, x varie de 0,9 à 1, de préférence x est égal à 1. According to a particular embodiment of the invention, x varies from 0.9 to 1, preferably x is equal to 1.
Selon un mode particulièrement préféré de l'invention, le matériau de formule (I) telle que définie ci-avant est de formule NaLi1/3Mm2/3O2. According to a particularly preferred embodiment of the invention, the material of formula (I) as defined above is of formula NaLi 1/3 Mm 2/3 O 2 .
L'invention a également pour objet un procédé de fabrication du matériau actif selon l'invention comprenant les étapes suivantes : A subject of the invention is also a process for manufacturing the active material according to the invention comprising the following steps:
(a) mélanger au moins un sel de métal de transition ou de métaux de transition avec au moins un précurseur de lithium et au moins un précurseur de sodium ; (a) mixing at least one transition metal or transition metal salt with at least one lithium precursor and at least one sodium precursor;
(b) chauffer le mélange obtenu à l'issue de l'étape (a) jusqu'à une température allant de 500 à 900°C ; (b) heating the mixture obtained at the end of step (a) up to a temperature ranging from 500 to 900 ° C;
(c)récupérer ledit matériau. De manière préférée, le sel de métal de transition est un sel de manganèse.(c) recovering said material. Preferably, the transition metal salt is a manganese salt.
Avantageusement, le précurseur de lithium est choisi parmi un oxyde, un peroxyde, un sel et leurs mélanges, plus préférentiellement choisi parmi le carbonate de lithium, le nitrate de lithium, l'acétate de lithium, le sulfate de lithium, P hydroxyde de lithium, Li2O, Li2O2 et leurs mélanges. Advantageously, the lithium precursor is chosen from an oxide, a peroxide, a salt and their mixtures, more preferably chosen from lithium carbonate, lithium nitrate, lithium acetate, lithium sulphate, lithium hydroxide. , Li 2 O, Li 2 O 2 and mixtures thereof.
Selon un mode de réalisation particulier, le précurseur de sodium est choisi parmi un oxyde, un peroxyde, un sel et leurs mélanges, plus préférentiellement choisi parmi le carbonate de sodium, le nitrate de sodium, l'acétate de sodium, le sulfate de sodium, la soude, Na2O, Na2O2. According to a particular embodiment, the sodium precursor is chosen from an oxide, a peroxide, a salt and their mixtures, more preferably chosen from sodium carbonate, sodium nitrate, sodium acetate, sodium sulfate. , soda, Na 2 O, Na 2 O 2 .
Selon un mode de réalisation préféré, le mélange obtenu à l'issue de l'étape (a) est chauffé jusqu'à une température allant de 600 à 900°C. According to a preferred embodiment, the mixture obtained at the end of step (a) is heated to a temperature ranging from 600 to 900 ° C.
De préférence, l'étape (b) se déroule pendant une période allant de 6 heures à 20 heures, de préférence de 6 heures à 16 heures, plus préférentiellement de 6 à 12 heures, de manière particulièrement préférée, de 8 heures. Preferably, step (b) takes place for a period ranging from 6 hours to 20 hours, preferably 6 hours to 16 hours, more preferably 6 to 12 hours, particularly preferably 8 hours.
Selon un mode de réalisation particulier, l'étape (b) est réalisée sous flux d'argon. According to a particular embodiment, step (b) is carried out under a flow of argon.
Avantageusement, l'étape (b) est suivie d'une étape de refroidissement.Advantageously, step (b) is followed by a cooling step.
Par exemple, le mélange est chauffé à 700°C dans un four pendant 8 heures, puis refroidi jusqu'à une température inférieure ou égale à 300°C, puis retiré du four. For example, the mixture is heated to 700 ° C in an oven for 8 hours, then cooled to a temperature of 300 ° C or less, then removed from the oven.
Un autre objet de l'invention est une électrode positive comprenant au moins un matériau actif selon l'invention. Another object of the invention is a positive electrode comprising at least one active material according to the invention.
De manière préférée, l'électrode positive selon l'invention comprend en outre au moins un composé conducteur. Preferably, the positive electrode according to the invention further comprises at least one conductive compound.
Selon un mode de réalisation particulier, le composé conducteur est choisi parmi les particules métalliques, le carbone, et leurs mélanges, de préférence le carbone. According to a particular embodiment, the conductive compound is chosen from metallic particles, carbon, and mixtures thereof, preferably carbon.
Lesdites particules métalliques peuvent être des particules d'argent, de cuivre ou de nickel. Said metallic particles can be particles of silver, copper or nickel.
Le carbone peut se présenter sous la forme de graphite, de noir de carbone, de fibres de carbone, de nanofils de carbone, de nanotubes de carbone, de nanosphères de carbone, de préférence de noir de carbone. The carbon can be in the form of graphite, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, carbon nanospheres, preferably carbon black.
En particulier, l'électrode positive selon l'invention comprend avantageusement le noir de carbone SuperP® commercialisé par Timcal. De manière préférée, la teneur en matériau actif selon l'invention varie de 50 à 90% en poids, de préférence de 70 à 90% en poids, par rapport au poids total de l'électrode positive. In particular, the positive electrode according to the invention advantageously comprises the SuperP® carbon black sold by Timcal. Preferably, the content of active material according to the invention varies from 50 to 90% by weight, preferably from 70 to 90% by weight, relative to the total weight of the positive electrode.
Avantageusement, la teneur en composé conducteur varie de 10 à 50% en poids, de préférence de 10 à 30% en poids, plus préférentiellement de 15 à 25% en poids, par rapport au poids total de l'électrode positive. Advantageously, the content of conductive compound varies from 10 to 50% by weight, preferably from 10 to 30% by weight, more preferably from 15 to 25% by weight, relative to the total weight of the positive electrode.
La présente invention concerne également une cellule de batterie Na-ion comprenant une électrode positive comprenant le matériau actif selon l'invention, une électrode négative, un séparateur et un électrolyte. The present invention also relates to an Na-ion battery cell comprising a positive electrode comprising the active material according to the invention, a negative electrode, a separator and an electrolyte.
De préférence, la cellule de baterie comprend un séparateur localisé entre les électrodes et jouant le rôle d'isolant électrique. Plusieurs matériaux peuvent être utilisés comme séparateurs. Les séparateurs sont généralement composés de polymères poreux, de préférence de polyéthylène et/ou de polypropylène. Ils peuvent également être en rnicrofibres de verre. Preferably, the battery cell comprises a separator located between the electrodes and acting as an electrical insulator. Several materials can be used as separators. The separators are generally composed of porous polymers, preferably of polyethylene and / or of polypropylene. They can also be glass microfibers.
Avantageusement, le séparateur utilisé est un séparateur en microfibres de verre CAT No. 1823-070® commercialisé par Whatman. Advantageously, the separator used is a CAT No. 1823-070® glass microfiber separator sold by Whatman.
Préférentiellement, ledit électrolyte est liquide. Preferably, said electrolyte is liquid.
Cet électrolyte peut comprendre un ou plusieurs sels de sodium et un ou plusieurs solvants. This electrolyte can comprise one or more sodium salts and one or more solvents.
Le ou les sels de sodium peuvent être choisis parmi NaPF6, NaClO4, NaBF4, NaTFSI, NaFSI, et NaODFB. The sodium salt (s) can be chosen from NaPF 6 , NaClO 4 , NaBF 4 , NaTFSI, NaFSI, and NaODFB.
Le ou les sels de sodium sont, de préférence, dissous dans un ou plusieurs solvants choisis parmi les solvants polaires aprotiques, par exemple, le carbonate d'éthylène, le carbonate de propylène, le carbonate de diméthyle, le carbonate de diéthyle, et le carbonate de méthyle et d'éthyle. The sodium salt (s) are preferably dissolved in one or more solvents selected from aprotic polar solvents, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
Avantageusement, l'électrolyte comprend du carbonate de propylène en mélange avec le sel de sodium NaPFe à IM. Advantageously, the electrolyte comprises propylene carbonate mixed with the sodium salt NaPFe at 1 M.
La présente invention a également pour objet une batterie Na-ion comprenant au moins une cellule telle que décrite ci-dessus. A subject of the present invention is also an Na-ion battery comprising at least one cell as described above.
La présente invention concerne également une cellule de batterie Li-ion comprenant une électrode positive comprenant le matériau actif selon l'invention, une électrode négative, un séparateur et un électrolyte. The present invention also relates to a Li-ion battery cell comprising a positive electrode comprising the active material according to the invention, a negative electrode, a separator and an electrolyte.
La présente invention a également pour objet une batterie Li-ion comprenant au moins une cellule de batterie Li-ion telle que décrite ci-dessus. La présente invention est illustrée de manière non-limitative par les exemples suivants. A subject of the present invention is also a Li-ion battery comprising at least one Li-ion battery cell as described above. The present invention is illustrated in a non-limiting manner by the following examples.
Exemples Exemple 1 Examples Example 1
I. Préparation des demi-cellules électrochimiques Na-ion 1, Synthèse des matériaux actifs I. Preparation of Na-ion 1 electrochemical half-cells, Synthesis of active materials
1.1 Synthèse du matériau actif Na2/3 Fe0,5Mn0,5O2 1.1 Synthesis of the active material Na 2/3 Fe 0.5 Mn 0.5 O 2
777,30 mg de Fe2O3 768,50 mg de Mn2O3, et 687,90 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l'ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite sorti du four. 777.30 mg of Fe 2 O 3 768.50 mg of Mn 2 O 3 , and 687.90 mg of sodium carbonate are added. The temperature is brought to 900 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 900 ° C. for 12 hours in an oven. The mixture is then taken out of the oven.
Ce matériau est synthétisé selon le procédé décrit dans le document « P2-type Nax[Fe1/2Mn1/2]O2 made ffom earth-abundant éléments for rechargeable Na batteries», N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012). This material is synthesized according to the process described in the document “P2-type Nax [Fe 1/2 Mn 1/2 ] O 2 made ffom earth-abundant elements for rechargeable Na batteries”, N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012).
Ce matériau actif comparatif est dénommé matériau A. This comparative active material is called material A.
1.2 Synthèse du matériau actif NaMnO2 1.2 Synthesis of the active material NaMnO 2
1436,10 mg de Mn2O3 et 964,16 mg de carbonate de sodium sont ajoutés. La température est portée à 700°C à raison de 3°C par minute, puis l'ensemble est calciné à 700°C pendant 10 heures dans un four. Le mélange est ensuite sorti du four. 1436.10 mg of Mn 2 O 3 and 964.16 mg of sodium carbonate are added. The temperature is brought to 700 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 700 ° C. for 10 hours in an oven. The mixture is then taken out of the oven.
Ce matériau actif comparatif est dénommé matériau B. This comparative active material is called material B.
1.3 Synthèse du matériau actif NaLi1/3Mn2/3O2 1.3 Synthesis of the active material NaLi 1/3 Mn 2/3 O 2
1078,40 mg de Mn2O3, 103,00 mg de Li2O, et 809,50 mg de Na2O2 sont ajoutés. La température est portée à 700°C à raison de 2°C par minute, puis l'ensemble est calciné à 700°C pendant 8 heures dans un four sous flux d'argon. Le mélange est ensuite refroidi jusqu'à 300°C à raison de 1°C par minute. 1078.40 mg of Mn 2 O 3 , 103.00 mg of Li 2 O, and 809.50 mg of Na2O 2 are added. The temperature is brought to 700 ° C. at a rate of 2 ° C. per minute, then the whole is calcined at 700 ° C. for 8 hours in an oven under a flow of argon. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute.
Ce matériau actif selon l'invention est dénommé matériau C, This active material according to the invention is called material C,
1.4 Synthèse du matériau actif NaLi0,2Mn0,8O2 1.4 Synthesis of the active material NaLi 0.2 Mn 0.8 O 2
617,78 mg de Na2O, 59,56 mg de Li2O , 693,30 mg de MnO2 et 629,40 mg de Mn2O3 sont ajoutés. La température est portée à 600°C à raison de 3°C par minute, puis l'ensemble est calciné à 600°C pendant 8 heures dans un four sous flux d'argon. Le mélange est ensuite refroidi jusqu'à 300°C à raison de 1°C par minute. 617.78 mg of Na 2 O, 59.56 mg of Li 2 O, 693.30 mg of MnO 2 and 629.40 mg of Mn 2 O 3 are added. The temperature is brought to 600 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 600 ° C. for 8 hours in an oven under a flow of argon. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute.
Ce matériau actif selon l'invention est dénommé matériau D. This active material according to the invention is called material D.
1.5 Synthèse du matériau actif NaLi0,1Mn0,9O2 1.5 Synthesis of the active material NaLi 0.1 Mn 0.9 O 2
70,29 mg de Li2CO3, 1488,60 mg de MnO2 et 1008,21 mg de Na2CO3 sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l'ensemble est calciné à 900°C pendant 12 heures sous flux d'argon dans un four. Le mélange est ensuite refroidi jusqu'à 300°C à raison de 1°C par minute. 70.29 mg of Li 2 CO 3 , 1488.60 mg of MnO 2 and 1008.21 mg of Na 2 CO 3 are added. The temperature is brought to 900 ° C at a rate of 3 ° C per minute, then the whole is calcined at 900 ° C for 12 hours under a flow of argon in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute.
Ce matériau actif selon l'invention est dénommé matériau E. This active material according to the invention is called material E.
2. Préparation des électrodes positives 2. Preparation of positive electrodes
A partir des matériaux A, B et C, trois électrodes positives ont été préparées, respectivement nommées EN-A, EN -B, et EN-C. Les électrodes positives EN-A et EN- B sont des électrodes comparatives. L'électrode positive EN-C est une électrode selon l'invention. From the materials A, B and C, three positive electrodes were prepared, respectively named EN-A, EN -B, and EN-C. The positive electrodes EN-A and EN-B are comparative electrodes. The EN-C positive electrode is an electrode according to the invention.
L'électrode positive EN-A est fabriquée en mélangeant 80% en poids du matériau actif A, qui a été directement transféré en boite à gant depuis le four sans exposition a l'air, et 20% en poids du noir de carbone SuperP®, le mélange étant ensuite broyé pendant 15 minutes à l'aide un mixeur SPEX 8000M. The EN-A positive electrode is made by mixing 80% by weight of the active material A, which was transferred directly into the glove box from the oven without exposure to air, and 20% by weight of the SuperP® carbon black , the mixture then being ground for 15 minutes using a SPEX 8000M mixer.
Les autres électrodes positives EN-B et EN-C sont fabriquées en mélangeant 80% en poids du matériau actif, respectivement B et C, et 20% en poids du noir de carbone SuperP®, les mélanges étant ensuite broyés de la même façon que pour l'électrode positive EN-A. De la même façon que pour le matériau actif A, les matériaux actifs B et C ont été directement transférés en boîte à gants depuis le four sans exposition à l'air. The other EN-B and EN-C positive electrodes are made by mixing 80% by weight of the active material, respectively B and C, and 20% by weight of SuperP® carbon black, the mixtures then being ground in the same way as for the positive electrode EN-A. In the same way as for the active material A, the active materials B and C were directly transferred to the glove box from the oven without exposure to air.
3. Assemblage des demi-cellules électrochimiques 3. Assembly of the electrochemical half-cells
Trois demi-cellules électroehimiques ont ensuite été préparées comprenant respectivement les électrodes positives EN-A à EN-C. Les demi-cellules sont nommées respectivement CE-A, CE-B et CE-C. Three electro-chemical half-cells were then prepared comprising respectively the positive electrodes EN-A to EN-C. The half-cells are called CE-A, CE-B and CE-C, respectively.
L'assemblage des demi-cellules électroehimiques est réalisé en boîte à gants à l'aide d'un dispositif constitué d'un raccord Swagelok® de 12 mm de diamètre. Chacune des demi-cellules comprend un séparateur, une électrode négative et un électrolyte. The assembly of the electro-chemical half-cells is carried out in a glove box using a device consisting of a 12 mm diameter Swagelok® connector. Each of the half-cells includes a separator, a negative electrode and an electrolyte.
3.1 Assemblage de la demi-cellule CE-A Electrode positive 3.1 Assembly of the CE-A half-cell Positive electrode
Une masse de 6 mg de l'électrode EN-A, sous la forme d'une poudre, est ensuite étalée sur un piston en aluminium placé dans la demi-cellule CE-A. A mass of 6 mg of the EN-A electrode, in the form of a powder, is then spread on an aluminum piston placed in the CE-A half-cell.
Séparateur Separator
Trois couches de séparateur en microfibres de verre CAT No. 1823-070® sont utilisées afin d'éviter tout court-circuit entre l'électrode positive et l'électrode négative durant les cycles de charge et de décharge. Ces séparateurs sont découpés selon un diamètre de 12 mm et une épaisseur de 675 micromètres. Three layers of CAT No. 1823-070® glass microfiber separator are used to prevent short circuits between the positive electrode and the negative electrode during the charge and discharge cycles. These separators are cut to a diameter of 12 mm and a thickness of 675 micrometers.
Electrode négative Des pastilles de 10 mm de diamètre sont découpées dans une feuille de sodium métal. La pastille obtenue est alors collée par pression sur un collecteur de courant en acier inoxydable. Ce collecteur est ensuite déposé sur la membrane séparatrice dans la demi- cellule. Negative electrode Pellets 10 mm in diameter are cut from a sheet of sodium metal. The pellet obtained is then glued by pressure on a stainless steel current collector. This collector is then deposited on the separator membrane in the half-cell.
Electrolyte Electrolyte
L'électrolyte utilisé comprend une solution composée d'1M de NaPF6 dissous dans du carbonate de propylène. The electrolyte used comprises a solution composed of 1M of NaPF 6 dissolved in propylene carbonate.
3.2 Assemblage des demi-cellules CE-B et CE-C Electrodes positives 3.2 Assembly of the CE-B and CE-C half-cells Positive electrodes
Une masse de 6 mg de chacune des électrodes EN-B et EN-C, respectivement, sous la forme d'une poudre, est ensuite étalée sur un piston en aluminium placé dans les demi- cellules CE-B et CE-C, respectivement. A mass of 6 mg of each of the EN-B and EN-C electrodes, respectively, in the form of a powder, is then spread on an aluminum piston placed in the half-cells CE-B and CE-C, respectively .
Les séparateurs, électrodes négatives et électrolytes sont identiques à ceux utilisés dans la demi-cellule CE-A. The separators, negative electrodes and electrolytes are identical to those used in the CE-A half-cell.
IL Tests électrochimiques IL Electrochemical tests
1. Demi-cellule CE-A comparative 1. Comparative CE-A half cell
Un cyclage galvanostatique est réalisé à l'aide d'un cycleur BioLogic à un régime de cyclage de C/8. La capacité de la demi-cellule CE-A a été mesurée en fonction du nombre de cycles, à des tensions allant de 4,3 à 1,5 V, comme le montre la figure 1. L'évolution de la capacité est observée sur la courbe A. La fenêtre de potentiel de charge et de décharge de ce matériau est celle qui est décrite dans le document « P2- type Nax[Fe1/2Mn1/2]O2 ruade from earth-abundant éléments for rechargeable Na batteries», N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012). Galvanostatic cycling is performed using a BioLogic cycler at a C / 8 cycling rate. The capacitance of the CE-A half-cell was measured as a function of the number of cycles, at voltages ranging from 4.3 to 1.5 V, as shown in figure 1. The evolution of the capacitance is observed on curve A. The potential window of charge and discharge of this material is that which is described in the document “P2- type Nax [Fe 1/2 Mn 1/2 ] O 2 ruade from earth-abundant elements for rechargeable Na batteries ”, N. Yabuuchi et al., Nature Materials, 11, 512-517 (2012).
Ainsi, une dégradation de la capacité peut être observée avec les cycles de charge et de décharge. Une capacité d'environ 145 mAh.g' 1 est mesurée après 20 cycles et d'environ 106 mAh.g-1 après 40 cycles. Thus, a degradation of the capacity can be observed with the charging and discharging cycles. A capacity of approximately 145 mAh.g '1 is measured after 20 cycles and of approximately 106 mAh.g -1 after 40 cycles.
2. Demi-cellule CE-B comparative 2. Comparative CE-B half-cell
Un cyclage galvanostatique est réalisé à l'aide d'un cycleur BioLogic à un régime de cyclage de C/8. La capacité de la demi-cellule CE-B a été mesurée en fonction du nombre de cycles, à des tensions allant de 3,8 à 2,0 V comme le montre la figure 1. L'évolution de la capacité est observée sur la courbe B. La fenêtre de potentiel de charge et de décharge de ce matériau est celle qui est décrite dans le document « Electrochemical Properties of Monoclinic NaMnO2 », X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc., 158, A1307 (2011). Galvanostatic cycling is performed using a BioLogic cycler at a C / 8 cycling rate. The capacitance of the CE-B half-cell was measured as a function of the number of cycles, at voltages ranging from 3.8 to 2.0 V as shown in figure 1. The evolution of the capacitance is observed on the curve B. The charge and discharge potential window of this material is that which is described in the document “Electrochemical Properties of Monoclinic NaMnO 2 ”, X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc., 158, A1307 (2011).
Ainsi, une dégradation très rapide de la capacité peut être observée avec les cycles de charge et de décharge. En effet, au bout de seulement 20 cycles de charge et de décharge, la capacité mesurée est déjà inférieure à celle de la demi-cellule CE-A, après le même nombre de cycles, soit environ 120 mAh.g 1 après 20 cycles. Thus, a very rapid degradation of the capacity can be observed with the cycles of charge and discharge. Indeed, after only 20 charging and discharging cycles, the measured capacity is already lower than that of the half-cell CE-A, after the same number of cycles, ie approximately 120 mAh.g 1 after 20 cycles.
3. Demi-cellule CE-C selon l'invention 3. CE-C half-cell according to the invention
Un cyclage galvanostatique est réalisé à l'aide d'un cycleur BioLogic à un régime de cyclage de C/8. La capacité de la demi-cellule CE-C a été mesurée en fonction du nombre de cycles, à des tensions allant de 4,5 à 1,5 V, comme le montre la figure 1. L'évolution de la capacité est observée sur la courbe C. Galvanostatic cycling is performed using a BioLogic cycler at a C / 8 cycling rate. The capacitance of the CE-C half-cell was measured as a function of the number of cycles, at voltages ranging from 4.5 to 1.5 V, as shown in figure 1. The evolution of the capacitance is observed on curve C.
Ainsi, une capacité d'environ 170 mAh.g-1 est mesurée après 20 cycles, et d'environ 173 mAh.g'1 après 40 cycles. Thus, a capacity of approximately 170 mAh.g -1 is measured after 20 cycles, and of approximately 173 mAh.g '1 after 40 cycles.
Comparativement aux capacités des demi-cellules CE-A et CE-B, la capacité de la demi-cellule CE-C selon l'invention est plus élevée et plus stable au fil des cycles de charge et de décharge. Compared with the capacities of the half-cells CE-A and CE-B, the capacity of the half-cell CE-C according to the invention is higher and more stable over the charge and discharge cycles.
Ainsi, la capacité de la demi-cellule comprenant le matériau actif selon l'invention est améliorée. Thus, the capacity of the half-cell comprising the active material according to the invention is improved.
Par ailleurs, le potentiel moyen de la demi-cellule CE-C a été mesurée en fonction du nombre de cycles, comme le montre la figure 2. L'évolution du potentiel moyen est observée sur la courbe Cl. Furthermore, the average potential of the half-cell CE-C was measured as a function of the number of cycles, as shown in FIG. 2. The change in the average potential is observed on curve C1.
Il est clairement constaté que le potentiel moyen de la demi-cellule CE-C ne se détériore avec la répétition des cycles de charge et de décharge, et est donc stable. Exemple 2 It is clearly seen that the average potential of the half-cell CE-C does not deteriorate with the repetition of the charge and discharge cycles, and is therefore stable. Example 2
L Synthèse des matériaux actifs L Summary of active materials
Les matériaux actifs A, B et C sont synthétisés selon les procédés de synthèse décrits ci-avant dans l'exemple 1. The active materials A, B and C are synthesized according to the synthetic methods described above in Example 1.
IL Evaluation de la sensibilité à l'humidité ! . Matériau A comparatif IL Evaluation of sensitivity to humidity! . Material A comparative
Le matériau A, après synthèse, est caractérisé à l'aide d'un diffractogramme, comme cela est indiqué sur la figure 3 (courbe Al). The material A, after synthesis, is characterized using a diffractogram, as indicated in FIG. 3 (curve Al).
Le matériau A a également été caractérisé à l'aide d'un diffractogramme, après avoir été lavé à l'eau, comme cela est indiqué sur la figure 3 (courbe A2). Le matériau A a été lavé à l'eau avec un ratio de 100 mg de poudre dans 10 mL d'eau, pendant 30 minutes, avant d'être séché à 80 °C sous vide pendant une nuit. The material A was also characterized using a diffractogram, after having been washed with water, as indicated in FIG. 3 (curve A2). Material A was washed in water with a ratio of 100 mg of powder in 10 mL of water, for 30 minutes, before being dried at 80 ° C under vacuum overnight.
Il est observé que ce matériau A est très sensible à l'humidité. En effet, les deux diffractogrammes ne se superposent pas. On peut en effet constater des différences, matérialisées par le symbole # sur la figure 3, entre les deux diffraetogrammes, dénotant ainsi des changements structuraux, It is observed that this material A is very sensitive to humidity. Indeed, the two diffractograms do not overlap. We can indeed see differences, materialized by the symbol # in figure 3, between the two diffraetograms, thus denoting structural changes,
2, Matériau B comparatif 2, Comparative B material
Le matériau B, après synthèse, est caractérisé à l'aide d'un diffractogramme, comme cela est indiqué sur la figure 4 (courbe Bl). The material B, after synthesis, is characterized using a diffractogram, as indicated in FIG. 4 (curve B1).
Le matériau B a également été caractérisé à l'aide d'un diffractogramme, après avoir subi un lavage à l'eau selon le même protocole que celui décrit pour le matériau À, comme cela est indiqué sur la figure 4 (courbe B2). Material B was also characterized using a diffractogram, after having undergone washing with water according to the same protocol as that described for material λ, as indicated in FIG. 4 (curve B2).
Il est également observé que ce matériau B est très sensible à l' humidité, beaucoup plus sensible que le matériau A. En effet, les deux diffraetogrammes ne se superposent absolument pas. On peut en effet constater de nombreuses différences entre les deux diffraetogrammes, dénotant ainsi des changements structuraux. It is also observed that this material B is very sensitive to humidity, much more sensitive than material A. In fact, the two diffraetograms absolutely do not overlap. We can indeed see many differences between the two diffraetograms, indicating structural changes.
3. Matériau C selon l'invention 3. Material C according to the invention
Le matériau C, après synthèse, est caractérisé à l'aide d'un diffractogramme, comme cela est indiqué sur la figure 5 (courbe C2). The material C, after synthesis, is characterized using a diffractogram, as indicated in FIG. 5 (curve C2).
Le matériau C a également été caractérisé à l'aide d'un diffractogramme, après avoir subi un lavage à l'eau selon le même protocole que celui décrit pour le matériau A, comme cela est indiqué sur la figure 5 (courbe C3). Material C was also characterized using a diffractogram, after having undergone washing with water according to the same protocol as that described for material A, as indicated in FIG. 5 (curve C3).
Il est clairement observé que ce matériau n'est pas sensible à l'humidité. En effet, les deux diffraetogrammes se superposent. It is clearly observed that this material is not sensitive to humidity. Indeed, the two diffraetograms are superimposed.
Ainsi, le matériau selon l'invention présente une stabilité améliorée à l'humidité, par rapport aux matériaux de l'art antérieur. Thus, the material according to the invention exhibits improved stability to humidity, compared with the materials of the prior art.
Exemple 3 Example 3
I. Préparation d'une demi-cellule éleetrochimique Li-ion I. Preparation of an electrochemical Li-ion half-cell
Le matériau C selon l'invention et l'électrode positive ont été fabriqués selon les procédés décrits ci-avant dans l'exemple 1 . The material C according to the invention and the positive electrode were manufactured according to the methods described above in Example 1.
L'assemblage de la demi-cellule est réalisé en boîte à gants à l'aide d'un dispositif constitué d'un raccord Swagelok® de 12 mm de diamètre. La demi-cellule comprend un séparateur, une électrode négative et un électrolyte. The half-cell is assembled in a glove box using a device consisting of a 12 mm diameter Swagelok® connector. The half-cell includes a separator, a negative electrode and an electrolyte.
Electrode positive Positive electrode
Une masse de 6 mg de l'électrode positive, sous la forme d'une poudre, est ensuite étalée sur un piston en aluminium placé dans la demi-cellule. A mass of 6 mg of the positive electrode, in the form of a powder, is then spread on an aluminum piston placed in the half-cell.
Séparateur Separator
Deux couches de séparateur en microfibres de verre CAT No. 1823-070® sont uti lisées afin d'éviter tout court-circuit entre l'électrode positive et l'électrode négative durant les cycles de charge et de décharge. Ces séparateurs sont découpés selon un diamètre de 12 mm et une épaisseur de 675 micromètres. Two layers of CAT No. 1823-070® glass microfiber separator are used to prevent any short circuit between the positive electrode and the negative electrode during charge and discharge cycles. These separators are cut to a diameter of 12 mm and a thickness of 675 micrometers.
Electrode négative Negative electrode
Des pastilles de 10 mm de diamètre sont découpées dans une feuille de lithium métal. La pastille obtenue est alors collée par pression sur un collecteur de courant en acier inoxydable. Ce collecteur est ensuite déposé sur la membrane séparatrice dans la demi- cellule. Pellets 10 mm in diameter are cut from a sheet of lithium metal. The pellet obtained is then glued by pressure on a stainless steel current collector. This collector is then deposited on the separator membrane in the half-cell.
Electrolyte Electrolyte
L'électrolyte utilisé comprend une solution composée d'IM de LiPF6 dissous dans un mélange 50/50 en volume du carbonate d'éthylène et du carbonate de diméthyle. il. Test électrochimique The electrolyte used comprises a solution composed of IM of LiPF 6 dissolved in a 50/50 mixture by volume of ethylene carbonate and dimethyl carbonate. he. Electrochemical test
Un procédé de cyclage comprenant l'application d'une pluralité de cycles de charge et de décharge à des tensions allant de 2 à 4,8 V, a été effectué, à un régime de cyclage de C/10. La tension de la demi-celIule a été mesurée en fonction de la capacité, comme le montre la figure 6 (courbe C4). A cycling process comprising applying a plurality of charge and discharge cycles at voltages ranging from 2 to 4.8 V, was performed, at a cycling rate of C / 10. The half-cell voltage was measured as a function of capacitance, as shown in Figure 6 (curve C4).
Ainsi, il est observé que la capacité de la demi-cellule est stable avec la répétition des cycles de charge et de décharge. Thus, it is observed that the capacity of the half-cell is stable with the repetition of the charging and discharging cycles.
La capacité de la demi-cellule ne se détériore pas avec la répétition des cycles de charge et de décharge. The capacity of the half-cell does not deteriorate with repeated charge and discharge cycles.
Par conséquent, le matériau C selon l'invention peut être un matériau actif pour batterie Li-ion, avec un bon comportement électrochimique. Consequently, the material C according to the invention can be an active material for a Li-ion battery, with good electrochemical behavior.

Claims

REVENDICATIONS
1. Matériau actif actif d'électrode positive de formule (I) suivante : NaxLiy Mn1-yO2 (I), dans laquelle : 1. Active positive electrode active material of the following formula (I): Na x Li y Mn 1-y O 2 (I), in which:
- x est un est un nombre allant de 0,8 à 1 ; - x is a number ranging from 0.8 to 1;
- y est un nombre strictement strictement supérieur à 0 et inférieur ou égal à 1/3. - y is a number strictly greater than 0 and less than or equal to 1/3.
2. Matériau, selon la revendication 1, caractérisé en ce que y varie de 0,1 à 1/3, de préférence de 0,2 à 1/3, plus préférentiellement y est égal à 1/3. 2. Material according to claim 1, characterized in that y varies from 0.1 to 1/3, preferably from 0.2 to 1/3, more preferably y is equal to 1/3.
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que x varie de 0,9 à 1, plus préférentiellement x est égal à 1. 3. Material according to claim 1 or 2, characterized in that x varies from 0.9 to 1, more preferably x is equal to 1.
4. Procédé de fabrication du matériau actif tel que défini à l'une quelconque des revendications précédentes, comprenant les étapes suivantes : 4. A method of manufacturing the active material as defined in any one of the preceding claims, comprising the following steps:
(a) Mélanger au moins un sel de métal de transition ou de métaux de transition avec au moins un précurseur de lithium et au moins un précurseur de sodium ; (a) Mixing at least one transition metal or transition metal salt with at least one lithium precursor and at least one sodium precursor;
(b) Chauffer le mélange obtenu à l'issue de l'étape (a) jusqu'à une température allant de 500 à 900°C ; (b) Heating the mixture obtained at the end of step (a) to a temperature ranging from 500 to 900 ° C;
(c) Récupérer ledit matériau. (c) Recover said material.
5. Electrode positive comprenant au moins un matériau actif tel que défini à l'une quelconque des revendications 1 à 3. 5. Positive electrode comprising at least one active material as defined in any one of claims 1 to 3.
6. Electrode positive selon la revendication 5, caractérisé en ce qu'elle comprend en outre au moins un composé conducteur. 6. Positive electrode according to claim 5, characterized in that it further comprises at least one conductive compound.
7. Electrode positive selon la revendication 6, caractérisée en ce que le composé conducteur est choisi parmi les particules métalliques, le carbone, et leurs mélanges, de préférence le carbone. 7. Positive electrode according to claim 6, characterized in that the conductive compound is chosen from metal particles, carbon, and mixtures thereof, preferably carbon.
8. Electrode positive selon la revendication précédente, caractérisée en ce que le carbone se présente sous la forme de graphite, de noir de carbone, de fibres de carbone, de nanofils de carbone, de nanotubes de carbone, de nanosphères de carbone, de préférence de noir de carbone. 8. Positive electrode according to the preceding claim, characterized in that the carbon is in the form of graphite, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, carbon nanospheres, preferably of carbon black.
9. Cellule de batterie sodium-ion comprenant une électrode positive telle que définie à l'une quelconque des revendications 5 à 8, une électrode négative, un séparateur et un électrolyte. 9. A sodium-ion battery cell comprising a positive electrode as defined in any one of claims 5 to 8, a negative electrode, a separator and an electrolyte.
10. Baterie sodium-ion comprenant au moins une cellule telle que définie à la revendication précédente. 10. Sodium-ion battery comprising at least one cell as defined in the preceding claim.
11. Cellule de batterie lithium-ion comprenant une électrode positive telle que définie à l'une quelconque des revendications 5 à 8, une électrode négative, un séparateur et un électrolyte. 11. Lithium-ion battery cell comprising a positive electrode as defined in any one of claims 5 to 8, a negative electrode, a separator and an electrolyte.
12. Batterie lithium-ion comprenant au moins une cellule telle que définie à la revendication précédente. 12. Lithium-ion battery comprising at least one cell as defined in the preceding claim.
EP20841971.3A 2019-12-06 2020-12-04 Positive electrode active material Pending EP4069642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913905A FR3104150B1 (en) 2019-12-06 2019-12-06 Positive electrode active material
PCT/FR2020/052278 WO2021111087A1 (en) 2019-12-06 2020-12-04 Positive electrode active material

Publications (1)

Publication Number Publication Date
EP4069642A1 true EP4069642A1 (en) 2022-10-12

Family

ID=70613877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20841971.3A Pending EP4069642A1 (en) 2019-12-06 2020-12-04 Positive electrode active material

Country Status (6)

Country Link
EP (1) EP4069642A1 (en)
JP (1) JP2023505236A (en)
KR (1) KR20220113449A (en)
CN (1) CN114929626A (en)
FR (1) FR3104150B1 (en)
WO (1) WO2021111087A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504953B (en) * 2023-06-28 2023-11-17 宁德时代新能源科技股份有限公司 Positive electrode active material, preparation method, positive electrode plate, battery and electric equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557438B2 (en) * 2010-08-25 2013-10-15 Uchicago Argonne, Llc Electrode materials for rechargeable battery
GB2503898A (en) 2012-07-10 2014-01-15 Faradion Ltd Nickel doped compound for use as an electrode material in energy storage devices
WO2014132174A1 (en) * 2013-02-27 2014-09-04 Umicore Doped sodium manganese oxide cathode material for sodium ion batteries
WO2015035138A1 (en) * 2013-09-09 2015-03-12 The Regents Of The University Of California Lithium and sodium containing cathodes/electrochemical cells

Also Published As

Publication number Publication date
JP2023505236A (en) 2023-02-08
KR20220113449A (en) 2022-08-12
WO2021111087A1 (en) 2021-06-10
CN114929626A (en) 2022-08-19
FR3104150B1 (en) 2022-06-17
FR3104150A1 (en) 2021-06-11

Similar Documents

Publication Publication Date Title
EP2729978B1 (en) Lithium/sulphur accumulator
JP6098852B2 (en) Negative electrode for secondary battery and lithium secondary battery including the same
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
EP3451420B1 (en) Nonaqueous electrolyte secondary battery negative electrode, binder for nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
WO2016184896A1 (en) Positive electrode for a lithium electrochemical generator
EP2583333B1 (en) Lithium electrochemical accumulator having a specific bipolar architecture
FR2963482A1 (en) ELECTRODE FOR LITHIUM ACCUMULATOR
EP2583347B1 (en) Lithium electrochemical accumulator having a bipolar architecture and operating with a lithium-sulphur compound electrode pair
CN103534850A (en) Electrodes for lithium batteries
EP4069642A1 (en) Positive electrode active material
JP2021106148A (en) Slurry for an aqueous positive electrode, positive electrode composition, lithium ion secondary battery containing positive electrode composition, and manufacturing method thereof
FR2901640A1 (en) LITHIUM INSERTION COMPOUND FOR USE AS A CATHODIC ACTIVE MATERIAL IN A RECHARGEABLE LITHIUM ELECTROCHEMICAL GENERATOR
EP3898522B1 (en) Negative electrode active material based on iron and lithium hydroxysulfide
EP3714498A1 (en) Use of a salt mixture as an additive in a lithium-gel battery
KR102452938B1 (en) Electrolyte for lithium metal battery and lithium metal battery comprising the same
CN114784230A (en) Method for improving lithium separation of anode plate and soft-package square battery
EP3714499B1 (en) Use of lithium nitrate as single lithium salt in a gelified lithium battery
EP3863974A1 (en) Positive electrode active material for sodium-ion battery
CN112652761A (en) Ternary lithium ion battery capable of discharging to 0V and preparation method thereof
EP3647443A1 (en) Specific negative electrode made of lithium and lithium electrochemical generator including such a negative electrode
KR102662842B1 (en) THF-based electrolyte and lithium metal batteries containing thereof
EP2721683B1 (en) Liquid electrolyte for lithium accumulator, comprising a ternary mixture of non-aqueous organic solvents
EP4254543A1 (en) Specific negative electrode based on lithium and lithium electrochemical generator comprising such a negative electrode
JP2023077060A (en) Anode-less battery and manufacturing method of anode-less battery
WO2023118771A1 (en) Method for delithiating at least one lithium and transition-metal nitride

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SORBONNE UNIVERSITE

Owner name: COLLEGE DE FRANCE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)

Owner name: AMPERE SAS