EP3863974A1 - Positive electrode active material for sodium-ion battery - Google Patents

Positive electrode active material for sodium-ion battery

Info

Publication number
EP3863974A1
EP3863974A1 EP19813925.5A EP19813925A EP3863974A1 EP 3863974 A1 EP3863974 A1 EP 3863974A1 EP 19813925 A EP19813925 A EP 19813925A EP 3863974 A1 EP3863974 A1 EP 3863974A1
Authority
EP
European Patent Office
Prior art keywords
sodium
positive electrode
varies
cell
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19813925.5A
Other languages
German (de)
French (fr)
Inventor
Mohamed Chakir
Sathiya Mariyappan
Jean-Marie Tarascon
Qing Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ampere Sas
Centre National de la Recherche Scientifique CNRS
Sorbonne Universite
College de France
Original Assignee
Centre National de la Recherche Scientifique CNRS
Renault SAS
Sorbonne Universite
College de France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Renault SAS, Sorbonne Universite, College de France filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3863974A1 publication Critical patent/EP3863974A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the general field of rechargeable sodium-ion (Na-ion) batteries.
  • the invention relates more specifically to active materials of positive electrode for Na-ion batteries, and to positive electrodes comprising them.
  • the invention also relates to a method for cycling Na-ion batteries.
  • Na-ion batteries represent one of the most promising alternative solutions to lithium-ion batteries, sodium being more interesting than lithium economically, in particular because of its abundance and its low cost.
  • Na-ion battery cell assemblies can only be considered as prototypes, since only tests have been carried out.
  • the first category contains polyanionic compounds.
  • the compound Na3V2 (P0 4 ) 2F3 has been identified as being suitable for use within Na-ion batteries. Indeed, it is characterized in particular by ease of synthesis, stability when used in wet conditions, or even high specific energy, as the document WO 2014/009710 describes it.
  • the presence of vanadium within the electrode can be problematic during the use of the Na-ion battery in the medium / long term, given its toxic nature.
  • the specific capacity of the latter is limited due to its relatively high molecular weight.
  • the second category contains lamellar oxides of sodium.
  • Na3V2 (P0 4 ) 2F3 (approximately 4.5 g / cm 3 vs approximately 3 g / cm 3 ).
  • NaNio, 5Mno, 502 has a theoretical capacity of about 240 mAh / g, as described in the document "Study on the reversible electrode reaction of Nai-xNio.sMno.sCh for a rechargeable sodium ion battery", S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, J. Inorg Chem. 5 1, 621 1 -6220 (2012). However, it turns out that the capacity of this material deteriorates during the charge and discharge cycles of the Na-ion battery.
  • the subject of the invention is therefore an active material of a positive electrode for a sodium-ion battery of formula (I) below:
  • x varies from 0.9 to 1;
  • - y varies from 0.05 to 0.1;
  • - z varies from 0.1 to 0.3.
  • Another object of the invention is a process for preparing the active material according to the invention.
  • the invention also has for its object and a positive electrode comprising the active material according to the invention.
  • Another object of the invention is a Na-ion battery cell, comprising the electrode according to the invention.
  • the invention also relates to a Na-ion battery comprising at least one cell according to the invention.
  • the invention also relates to a particular cycling method for Na-ion batteries comprising an active material with a particular positive electrode.
  • FIG 1 is a graph representing the capacity of a Naion battery cell, as a function of the number of charge and discharge cycles;
  • FIG 2 is a graph representing the voltage of a Naion battery cell, as a function of capacity
  • FIG 3 is a graph representing the capacity of a Naion battery cell, as a function of the number of charge and discharge cycles;
  • FIG 4 is a graph representing the voltage of a Naion battery cell, as a function of capacity
  • FIG 5 is a graph representing the voltage of a Naion battery cell, as a function of capacity
  • FIG 6 is a graph representing the voltage of a Naion battery cell, as a function of capacity
  • FIG 7 is a graph representing the voltage of a Naion battery cell, as a function of capacity
  • FIG 8 is a graph representing the voltage of a half-cell of Na-ion battery, according to the capacity.
  • Fe active material of positive electrode for Na-ion battery according to the invention corresponds to formula (I) as mentioned above.
  • y varies from 0.06 to 0.1, preferably y is equal to 0.1.
  • z varies from 0.2 to 0.3.
  • x varies from 0.95 to 1, preferably x is equal to 1.
  • the subject of the invention is also a process for preparing the active material according to the invention comprising the following steps:
  • step (b) heating the mixture obtained at the end of step (a) to a temperature ranging from 800 to 1000 ° C;
  • the compound is chosen from oxides.
  • the oxide is chosen from NiO, CuO, M Cb, Mn0 2 , Ti0 2 and their mixtures.
  • the precursor is sodium carbonate.
  • an oxide chosen from NiO, CuO, Mn 2 ⁇ 3 , Mn0 2 , Ti0 2 and their mixtures is mixed with sodium carbonate.
  • the mixture obtained at the end of step (a) is heated to a temperature ranging from 850 to 950 ° C.
  • step (b) takes place over a period ranging from 6 hours to 20 hours, preferably from 9 hours to 15 hours, more preferably from 11 to 13 hours, more preferably from 12 hours.
  • step (b) is followed by a cooling and drying step.
  • the mixture is heated to 900 ° C in an oven for 12 hours, then cooled to 300 ° C, then removed from the oven.
  • Another object of the invention is a positive electrode comprising the active material according to the invention.
  • the positive electrode according to the invention further comprises at least one conductive compound.
  • the conductive compound is chosen from metallic particles, carbon, and their mixtures, preferably carbon.
  • Said metallic particles can be particles of silver, copper or nickel.
  • the carbon can be in the form of graphite, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, carbon nanospheres, preferably carbon black.
  • the positive electrode according to the invention advantageously comprises the carbon black SuperC65® sold by Timcal.
  • the content of active material according to the invention varies from 50 to 90% by weight, preferably from 70 to 90% by weight, relative to the total weight of the positive electrode.
  • the content of conductive compound varies from 10 to 50% by weight, preferably from 10 to 30% by weight, more preferably from 15 to 25% by weight, relative to the total weight of the positive electrode.
  • the present invention also relates to a battery cell
  • Na-ion comprising a positive electrode comprising the active material according to the invention, a negative electrode, a separator and an electrolyte.
  • the battery cell comprises a separator located between the electrodes and playing the role of electrical insulator.
  • separators are generally composed of porous polymers, preferably polyethylene and / or polypropylene. They can also be made of glass microfibers.
  • the separator used is a separator made of glass microfibers CAT No. 1823-070® sold by Whatman.
  • said electrolyte is liquid.
  • This electrolyte can comprise one or more sodium salts and one or more solvents.
  • the sodium salt or salts may be chosen from NaPF6, NaCl0 4 , NaBF 4 , NaTFSI, NaFSI, and NaODFB.
  • the sodium salt or salts are preferably dissolved in one or more solvents chosen from aprotic polar solvents, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and the methyl and ethyl carbonate.
  • aprotic polar solvents for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and the methyl and ethyl carbonate.
  • the electrolyte comprises propylene carbonate in admixture with the sodium salt NaPFô at 1 M.
  • the present invention also relates to a Naion battery comprising at least one cell as described above.
  • the present invention also relates to a method for cycling a sodium-ion battery comprising a negative electrode, a separator, an electrolyte and a positive electrode comprising an active material of formula (II) below:
  • - r varies from 0.05 to 0.1;
  • the upper voltage ranging from 4.2 to 4.7 V, preferably 4.4 to 4.6 V, more preferably equal to 4.5 V
  • the lower voltage ranging from 0.5 to 2.5, preferably from 1.5 to 2.5, more preferably equal to 2 V
  • the cycles being carried out at a cycling regime ranging from C / 20 to C, C denoting the cycling regime of the sodium-ion battery.
  • a solid and stable layer called "Cathode Electrolyte Interphase” (CEI) more protective is generated, by compared to an application of a lower higher voltage, for example less than 4, IV.
  • This IEC located between the cathode and the electrolyte, is an essential element for proper functioning Na-ion battery, because not only does it conduct sodium ions very well but it also has the advantage of stopping the catalytic decomposition of the electrolyte.
  • the active material of formula (II) is of formula (I).
  • the cycling regime is C / 10.
  • the positive electrodes EN-A and EN-B are comparative electrodes.
  • the electrodes EN-C to EN-F are electrodes according to the invention.
  • the EN-A positive electrode is made by mixing 80% by weight of the active material A, which has been directly transferred to a glove box from the oven without exposure to air, and 20% by weight of the carbon black SuperC65® , the mixture then being ground for 30 minutes using a SPEX 8000M mixer.
  • the other positive electrodes EN-B to EN-F are produced by mixing 80% by weight of the active material, respectively B to F, and 20% by weight of the carbon black SuperC65®, the mixtures then being ground in the same way as for the positive electrode EN-A.
  • active materials B to F were transferred directly into a glove box from the oven without exposure to air.
  • the cells were then prepared respectively comprising the positive electrodes EN-A to EN-F.
  • the cells are respectively named CE-A, CE-B, CE-C, CE-D, CE-E and CE-F.
  • the assembly of the electrochemical cells is carried out in a glove box using a device consisting of a button cell of the type 2032.
  • Each of the cells comprises a separator, a negative electrode and an electrolyte.
  • 1823-070® are used to avoid any short circuit between the positive electrode and the negative electrode during the charge and discharge cycles. These separators are cut to a diameter of 16.6 mm and a thickness of 400 qm.
  • An electrode of 1 cm 2 is obtained by drilling hard carbon discs coated on a film with an aluminum current collector.
  • the active material of hard carbon is approximately 5. 20 mg / cm 2 .
  • the electrolyte used comprises a solution composed of 1 M
  • Electrodes EN-B to EN-F A mass of 8.50, 9.35, 9.36, 9.35 and 8.75 mg of each of the electrodes EN-B to EN-F, respectively, in the form of a powder, is then spread over a aluminum sheet placed in cells CE-B to CE-F, respectively.
  • the separators, negative electrodes and electrolytes are identical to those used in the CE-A cell.
  • Galvanostatic cycling is carried out using a BioLogic cycler at a cycling speed of C / 20, C denoting the cell capacity, at voltages ranging from 4.2 to 1.5 V.
  • CE-A was measured as a function of the number of cycles, as shown in Figure 1. The change in capacity is observed on curve A.
  • a capacity of approximately 130 mAh.g 1 is measured after 30 cycles.
  • Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V.
  • curve B l corresponds to the first charge and discharge cycle.
  • Curve B2 corresponds to the second charge and discharge cycle, and so on until curve B5 which corresponds to the fifth charge and discharge cycle.
  • Galvanostatic cycling is carried out using a BioLogic cycler at a cycling speed of C / 20, C denoting the capacity of the cell, at voltages ranging from 4.4 to 1.2 V.
  • the capacity of the CE-C cell was measured as a function of the number of cycles, as shown in FIG. 3. The evolution of the capacity is observed on curve C.
  • the capacity of the CE-C cell according to the invention is higher and more stable over the charge and discharge cycles.
  • the capacity of the cell comprising the active material according to the invention is improved.
  • the voltage of the CE-C cell was measured as a function of the capacity, as shown in Figure 4.
  • Curves C l to C5 are more linear than curves B l to B5.
  • the degradation of the capacity of the CE-C cell is not observed as was the case for the CE-B cell. Indeed, the capacity of the CE-C cell is more stable.
  • Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V.
  • the voltage of the CE-D cell was measured as a function of capacity, as shown in Figure 5.
  • Curves D l to D5 are more linear than curves B l to B5.
  • CE-E cell according to the invention is a cell according to the invention
  • Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V.
  • the voltage of the CE-E cell was measured as a function of capacity, as shown in Figure 6.
  • Curves E l to E5 are more linear than curves B l to B5.
  • the degradation of the capacity of the CE-E cell is not observed as it was the case for the CE-B cell. Indeed, the capacity of the CE-E cell is more stable.
  • Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V.
  • the voltage of the CE-F cell was measured as a function of capacity, as shown in Figure 7.
  • curve F l corresponds to the first charge and discharge cycle, and so on until curve F5 which corresponds to the fifth charge and discharge cycle.
  • Curves F l to F5 are more linear than curves B l to B5.
  • the degradation of the capacity of the CE-F cell is not observed as was the case for the CE-B cell. Indeed, the capacity of the CE-F cell is more stable.
  • the positive electrode is made by mixing 80% by weight of the active material NaNio, 45Cuo, o5Mno, 4 Tio, i02, which was directly transferred into a glove box from the oven without exposure to air, and 20% by weight SuperC65® carbon black, the mixture then being ground for 30 minutes using a SPEX 8000M mixer.
  • a half cell was then prepared comprising the above-mentioned positive electrode.
  • the assembly of the half-cell is carried out in a glove box using a device consisting of a Swagelok® connector 12 mm in diameter.
  • the half cell includes a separator, a negative electrode and an electrolyte.
  • Two layers of CAT No. 1823-070® glass microfiber separator are used to prevent short circuits between the positive and negative electrodes during the charge and discharge cycles. These separators are cut to a diameter of 12 mm and a thickness of 500 qm.
  • 11 mm diameter pellets are cut from a sodium metal sheet. The pellet obtained is then bonded by pressure on a stainless steel current collector. This collector is then deposited on the separating membrane in the cell.
  • the electrolyte used comprises a solution composed of 1 M NaPFô dissolved in propylene carbonate.
  • Electrochemical test A cycling process comprising applying a plurality of charge and discharge cycles at voltages ranging from 2 to 4.5V, was carried out, at a cycling rate of C / 10.
  • the half-cell voltage was measured as a function of capacity, as shown in Figure 8.
  • the curve G designates the plurality of charge and discharge cycles which has been carried out.
  • the capacity of the half-cell is stable with the repetition of the charge and discharge cycles.

Abstract

The invention concerns a positive electrode active material for a sodium-ion battery of the following formula (I): NaxNi0.5-yCuyMn0.5-zTizO2 (I), in which: - x varies from 0.9 to 1; - y varies from 0.05 to 0.1; - z varies from 0.1 to 0.3, it being understood that, if z is equal to 0.1 and x is equal to 1, then y is not equal to 0.05.

Description

DESCRIPTION  DESCRIPTION
Titre : Matériau actif d’électrode positive pour batterie sodium- ion  Title: Active positive electrode material for sodium-ion battery
L’invention concerne le domaine général des batteries rechargeables sodium-ion (Na-ion). The invention relates to the general field of rechargeable sodium-ion (Na-ion) batteries.
L’invention concerne plus précisément les matériaux actifs d’électrode positive pour batteries Na-ion, et les électrodes positives les comprenant.  The invention relates more specifically to active materials of positive electrode for Na-ion batteries, and to positive electrodes comprising them.
L’invention concerne également un procédé de cyclage de batteries Na-ion.  The invention also relates to a method for cycling Na-ion batteries.
Les batteries Na-ion représentent l’une des solutions alternatives les plus prometteuses aux batteries lithium-ion, le sodium étant plus intéressant que le lithium sur le plan économique, notamment en raison de son abondance et de son bas coût.  Na-ion batteries represent one of the most promising alternative solutions to lithium-ion batteries, sodium being more interesting than lithium economically, in particular because of its abundance and its low cost.
Cependant, les assemblages de cellule de batterie Na-ion ne peuvent être considérés, à l’heure actuelle, que comme des prototypes, étant donné que seuls des tests ont été réalisés.  However, at present, Na-ion battery cell assemblies can only be considered as prototypes, since only tests have been carried out.
Des recherches intensives ont été effectuées sur les électrodes positives pour batteries Na-ion. Ces travaux ont conduit à un classement des électrodes positives en deux catégories principales.  Intensive research has been carried out on positive electrodes for Na-ion batteries. This work led to a classification of positive electrodes into two main categories.
La première catégorie contient les composés polyanioniques. Parmi ces composés polyanioniques, le composé Na3V2(P04)2F3 a été identifié comme pouvant convenir dans le cadre d’une utilisation au sein de batteries Na-ion. En effet, il se caractérise notamment par une facilité de synthèse, une stabilité lorsqu’il est utilisé dans des conditions humides, ou encore une énergie spécifique élevée, comme le document WO 2014/009710 le décrit. Cependant, la présence du vanadium au sein de l’électrode peut poser problème au cours de l’utilisation de la batterie Na-ion à moyen/long terme, compte tenu de son caractère toxique. Par ailleurs, bien que les meilleurs résultats soient obtenus avec ce composé polyanionique, la capacité spécifique de ce dernier est limitée due à sa masse moléculaire relativement élevée. The first category contains polyanionic compounds. Among these polyanionic compounds, the compound Na3V2 (P0 4 ) 2F3 has been identified as being suitable for use within Na-ion batteries. Indeed, it is characterized in particular by ease of synthesis, stability when used in wet conditions, or even high specific energy, as the document WO 2014/009710 describes it. However, the presence of vanadium within the electrode can be problematic during the use of the Na-ion battery in the medium / long term, given its toxic nature. Furthermore, although the best results are obtained with this polyanionic compound, the specific capacity of the latter is limited due to its relatively high molecular weight.
La seconde catégorie renferme les oxydes lamellaires de sodium. The second category contains lamellar oxides of sodium.
Ces oxydes particuliers sont de formule générale NabMÜ2, où b est inférieur ou égal à 1 , et M désigne au moins un métal de transition. Ces oxydes lamellaires semblent plus prometteurs que les composés polyanioniques car ils présentent notamment une masse moléculaire plus faible. En outre, la densité gravimétrique d’énergie des oxydes lamellaires de sodium est plus élevée que celle du composéThese particular oxides have the general formula NabMÜ2, where b is less than or equal to 1, and M denotes at least one transition metal. These lamellar oxides seem more promising than polyanionic compounds because they have a lower molecular mass in particular. In addition, the gravimetric energy density of the lamellar oxides of sodium is higher than that of the compound
Na3V2(P04)2F3 (environ 4,5 g/cm3 vs environ 3 g/cm3). Na3V2 (P0 4 ) 2F3 (approximately 4.5 g / cm 3 vs approximately 3 g / cm 3 ).
Ainsi, de nombreux travaux sur les oxydes lamellaires de sodium ont été entrepris.  Many works on lamellar sodium oxides have thus been undertaken.
Un matériau particulier a été notamment identifié car il présentait un certain nombre d’avantages. En effet, le matériau A particular material was identified in particular because it had a number of advantages. Indeed, the material
NaNio,5Mno,502 présente une capacité théorique d’environ 240 mAh/g, comme le décrit le document « Study on the réversible electrode reaction of Nai-xNio.sMno.sCh for a rechargeable sodium ion battery », S . Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, J. Inorg Chem. 5 1 , 621 1 -6220 (2012). Cependant, il s’avère que la capacité de ce matériau se détériore au cours des cycles de charge et de décharge de la batterie Na-ion. NaNio, 5Mno, 502 has a theoretical capacity of about 240 mAh / g, as described in the document "Study on the reversible electrode reaction of Nai-xNio.sMno.sCh for a rechargeable sodium ion battery", S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, J. Inorg Chem. 5 1, 621 1 -6220 (2012). However, it turns out that the capacity of this material deteriorates during the charge and discharge cycles of the Na-ion battery.
Ainsi, il existe un besoin de développer de nouveaux matériaux actifs d’électrode positive pour batterie sodium ion permettant de surmonter le problème de détérioration de la capacité.  Thus, there is a need to develop new active positive electrode materials for a sodium ion battery which overcomes the problem of deteriorating capacity.
Il a été découvert qu’un matériau actif d’électrode positive particulier permettait d’obtenir une capacité améliorée, et qui ne se détériorait pas avec la répétition des cycles de charge et de décharge.  It has been discovered that a particular positive electrode active material achieves improved capacity, and which does not deteriorate with the repetition of charge and discharge cycles.
L’invention a donc pour objet un matériau actif d’électrode positive pour batterie sodium-ion de formule (I) suivante :  The subject of the invention is therefore an active material of a positive electrode for a sodium-ion battery of formula (I) below:
NaxNio,5-yCuyMno,5-zTiz02 (I), Na x Nio, 5-yCu y Mno, 5-zTiz02 (I),
dans laquelle :  in which :
x varie de 0,9 à 1 ;  x varies from 0.9 to 1;
- y varie de 0,05 à 0, 1 ;  - y varies from 0.05 to 0.1;
- z varie de 0, 1 à 0,3.  - z varies from 0.1 to 0.3.
étant entendu que si z est égal à 0, 1 et x est égal à 1 , alors y n’est pas égal à 0,05.  it being understood that if z is equal to 0, 1 and x is equal to 1, then y is not equal to 0.05.
Un autre objet de l’invention est un procédé de préparation du matériau actif selon l’invention. L’invention a également pour obj et une électrode positive comprenant le matériau actif selon l’invention. Another object of the invention is a process for preparing the active material according to the invention. The invention also has for its object and a positive electrode comprising the active material according to the invention.
Un autre objet de l’invention est une cellule de batterie Na-ion, comportant l’électrode selon l’invention.  Another object of the invention is a Na-ion battery cell, comprising the electrode according to the invention.
L’invention concerne également une batterie Na-ion comprenant au moins une cellule selon l’invention.  The invention also relates to a Na-ion battery comprising at least one cell according to the invention.
Enfin, l’invention concerne aussi un procédé de cyclage particulier pour les batteries Na-ion comprenant un matériau actif d’électrode positive particulier.  Finally, the invention also relates to a particular cycling method for Na-ion batteries comprising an active material with a particular positive electrode.
D’autres avantages et caractéristiques de l’invention apparaîtront plus clairement à l’examen de la description détaillée et des dessins annexés sur lesquels :  Other advantages and characteristics of the invention will appear more clearly on examination of the detailed description and the accompanying drawings in which:
[Fig 1 ] est un graphe représentant la capacité d’une cellule de batterie Na- ion, en fonction du nombre de cycles de charge et de décharge ;  [Fig 1] is a graph representing the capacity of a Naion battery cell, as a function of the number of charge and discharge cycles;
[Fig 2] est un graphe représentant la tension d’une cellule de batterie Na- ion, en fonction de la capacité ; [Fig 2] is a graph representing the voltage of a Naion battery cell, as a function of capacity;
[Fig 3] est un graphe représentant la capacité d’une cellule de batterie Na- ion, en fonction du nombre de cycles de charge et de décharge ;  [Fig 3] is a graph representing the capacity of a Naion battery cell, as a function of the number of charge and discharge cycles;
[Fig 4] est un graphe représentant la tension d’une cellule de batterie Na- ion, en fonction de la capacité ;  [Fig 4] is a graph representing the voltage of a Naion battery cell, as a function of capacity;
[Fig 5 ] est un graphe représentant la tension d’une cellule de batterie Na- ion, en fonction de la capacité ;  [Fig 5] is a graph representing the voltage of a Naion battery cell, as a function of capacity;
[Fig 6] est un graphe représentant la tension d’une cellule de batterie Na- ion, en fonction de la capacité ;  [Fig 6] is a graph representing the voltage of a Naion battery cell, as a function of capacity;
[Fig 7] est un graphe représentant la tension d’une cellule de batterie Na- ion, en fonction de la capacité ; [Fig 7] is a graph representing the voltage of a Naion battery cell, as a function of capacity;
[Fig 8] est un graphe représentant la tension d’une demi-cellule de batterie Na-ion, en fonction de la capacité.  [Fig 8] is a graph representing the voltage of a half-cell of Na-ion battery, according to the capacity.
Il est précisé que l’expression « de ... à ... » utilisée dans la présente description de l’invention doit s’entendre comme incluant chacune des bornes mentionnées.  It is specified that the expression "from ... to ..." used in the present description of the invention must be understood to include each of the terminals mentioned.
Fe matériau actif d’électrode positive pour batterie Na-ion selon l’invention répond à la formule (I) telle que mentionnée ci-dessus. De manière préférée, y varie de 0,06 à 0, 1 , de préférence y est égal à 0, 1 . Fe active material of positive electrode for Na-ion battery according to the invention corresponds to formula (I) as mentioned above. Preferably, y varies from 0.06 to 0.1, preferably y is equal to 0.1.
Avantageusement, z varie de 0,2 à 0,3.  Advantageously, z varies from 0.2 to 0.3.
Selon un mode de réalisation particulier de l’invention, x varie de 0,95 à 1 , de préférence x est égal à 1 .  According to a particular embodiment of the invention, x varies from 0.95 to 1, preferably x is equal to 1.
L’invention a également pour objet un procédé de préparation du matériau actif selon l’invention comprenant les étapes suivantes :  The subject of the invention is also a process for preparing the active material according to the invention comprising the following steps:
(a) mélanger au moins un composé choisi parmi des oxydes et/ou des sels de métaux de transition avec au moins un précurseur choisi parmi le carbonate de sodium, le nitrate de sodium, l’acétate de sodium, le sulfate de sodium, la soude et Na20 et leurs mélanges ; (a) mixing at least one compound chosen from oxides and / or transition metal salts with at least one precursor chosen from sodium carbonate, sodium nitrate, sodium acetate, sodium sulfate, soda and Na 2 0 and mixtures thereof;
(b) chauffer le mélange obtenu à l’issue de l’étape (a) jusqu’à une température allant de 800 à l 000°C ;  (b) heating the mixture obtained at the end of step (a) to a temperature ranging from 800 to 1000 ° C;
(c) récupérer ledit matériau.  (c) recovering said material.
De manière préférée, le composé est choisi parmi les oxydes. Preferably, the compound is chosen from oxides.
De préférence, l’oxyde est choisi parmi NiO, CuO, M Cb, Mn02, Ti02 et leurs mélanges. Preferably, the oxide is chosen from NiO, CuO, M Cb, Mn0 2 , Ti0 2 and their mixtures.
Avantageusement, le précurseur est le carbonate de sodium. Ainsi, de préférence, un oxyde choisi parmi NiO, CuO, Mn2 Û3, Mn02, Ti02 et leurs mélanges est mélangé avec le carbonate de sodium. Advantageously, the precursor is sodium carbonate. Thus, preferably, an oxide chosen from NiO, CuO, Mn 2 Û3 , Mn0 2 , Ti0 2 and their mixtures is mixed with sodium carbonate.
Selon un mode de réalisation préféré, le mélange obtenu à l’issue de l’étape (a) est chauffé jusqu’à une température allant de 850 à 950°C.  According to a preferred embodiment, the mixture obtained at the end of step (a) is heated to a temperature ranging from 850 to 950 ° C.
De préférence, l’étape (b) se déroule pendant une période allant de 6 heures à 20 heures, de préférence de 9 heures à 15 heures, plus préférentiellement de 1 1 à 13 heures, de manière particulièrement préférée, de 12 heures.  Preferably, step (b) takes place over a period ranging from 6 hours to 20 hours, preferably from 9 hours to 15 hours, more preferably from 11 to 13 hours, more preferably from 12 hours.
Avantageusement, l’étape (b) est suivie d’une étape de refroidissement et de séchage.  Advantageously, step (b) is followed by a cooling and drying step.
Par exemple, le mélange est chauffé à 900°C dans un four pendant 12 heures, puis refroidi jusqu’à 300°C, puis retiré du four.  For example, the mixture is heated to 900 ° C in an oven for 12 hours, then cooled to 300 ° C, then removed from the oven.
Un autre objet de l’invention est une électrode positive comprenant le matériau actif selon l’invention.  Another object of the invention is a positive electrode comprising the active material according to the invention.
De manière préférée, l’électrode positive selon l’invention comprend en outre au moins un composé conducteur. Selon un mode de réalisation particulier, le composé conducteur est choisi parmi les particules métalliques, le carbone, et leurs mélanges, de préférence le carbone. Preferably, the positive electrode according to the invention further comprises at least one conductive compound. According to a particular embodiment, the conductive compound is chosen from metallic particles, carbon, and their mixtures, preferably carbon.
Lesdites particules métalliques peuvent être des particules d’argent, de cuivre ou de nickel.  Said metallic particles can be particles of silver, copper or nickel.
Le carbone peut se présenter sous la forme de graphite, de noir de carbone, de fibres de carbone, de nanofils de carbone, de nanotubes de carbone, de nanosphères de carbone, de préférence de noir de carbone.  The carbon can be in the form of graphite, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, carbon nanospheres, preferably carbon black.
En particulier, l’électrode positive selon l’invention comprend avantageusement le noir de carbone SuperC65® commercialisé par Timcal.  In particular, the positive electrode according to the invention advantageously comprises the carbon black SuperC65® sold by Timcal.
De manière préférée, la teneur en matériau actif selon l’invention varie de 50 à 90% en poids, de préférence de 70 à 90% en poids, par rapport au poids total de l’électrode positive.  Preferably, the content of active material according to the invention varies from 50 to 90% by weight, preferably from 70 to 90% by weight, relative to the total weight of the positive electrode.
Avantageusement, la teneur en composé conducteur varie de 10 à 50% en poids, de préférence de 10 à 30% en poids, plus préférentiellement de 15 à 25 % en poids, par rapport au poids total de l’électrode positive.  Advantageously, the content of conductive compound varies from 10 to 50% by weight, preferably from 10 to 30% by weight, more preferably from 15 to 25% by weight, relative to the total weight of the positive electrode.
La présente invention concerne également une cellule de batterie The present invention also relates to a battery cell
Na-ion comprenant une électrode positive comprenant le matériau actif selon l’invention, une électrode négative, un séparateur et un électrolyte. Na-ion comprising a positive electrode comprising the active material according to the invention, a negative electrode, a separator and an electrolyte.
De préférence, la cellule de batterie comprend un séparateur localisé entre les électrodes et jouant le rôle d’isolant électrique. Plusieurs matériaux peuvent être utilisés comme séparateurs. Les séparateurs sont généralement composés de polymères poreux, de préférence de polyéthylène et/ou de polypropylène. Ils peuvent également être en microfibres de verre.  Preferably, the battery cell comprises a separator located between the electrodes and playing the role of electrical insulator. Several materials can be used as separators. The separators are generally composed of porous polymers, preferably polyethylene and / or polypropylene. They can also be made of glass microfibers.
Avantageusement, le séparateur utilisé est un séparateur en microfibres de verre CAT No. 1823-070® commercialisé par Whatman.  Advantageously, the separator used is a separator made of glass microfibers CAT No. 1823-070® sold by Whatman.
Préférentiellement, ledit électrolyte est liquide.  Preferably, said electrolyte is liquid.
Cet électrolyte peut comprendre un ou plusieurs sels de sodium et un ou plusieurs solvants. Le ou les sels de sodium peuvent être choisis parmi NaPFô, NaCl04, NaBF4, NaTFSI, NaFSI, et NaODFB . This electrolyte can comprise one or more sodium salts and one or more solvents. The sodium salt or salts may be chosen from NaPF6, NaCl0 4 , NaBF 4 , NaTFSI, NaFSI, and NaODFB.
Le ou les sels de sodium sont, de préférence, dissous dans un ou plusieurs solvants choisis parmi les solvants polaires aprotiques, par exemple, le carbonate d’éthylène, le carbonate de propylène, le carbonate de diméthyle, le carbonate de diéthyle, et le carbonate de méthyle et d’éthyle.  The sodium salt or salts are preferably dissolved in one or more solvents chosen from aprotic polar solvents, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and the methyl and ethyl carbonate.
Avantageusement, l’électrolyte comprend du carbonate de propylène en mélange avec le sel de sodium NaPFô à 1 M.  Advantageously, the electrolyte comprises propylene carbonate in admixture with the sodium salt NaPFô at 1 M.
La présente invention a également pour objet une batterie Na- ion comprenant au moins une cellule telle que décrite ci-dessus.  The present invention also relates to a Naion battery comprising at least one cell as described above.
La présente invention porte également sur un procédé de cyclage d’une batterie sodium-ion comprenant une électrode négative, un séparateur, un électrolyte et une électrode positive comprenant un matériau actif de formule (II) suivante :  The present invention also relates to a method for cycling a sodium-ion battery comprising a negative electrode, a separator, an electrolyte and a positive electrode comprising an active material of formula (II) below:
NaPNio,5-rCurMno, 5-tTit02 (II), Na P Nio, 5-rCurMno, 5-tTit02 (II),
dans laquelle :  in which :
- p varie de 0,9 à 1 ;  - p varies from 0.9 to 1;
- r varie de 0,05 à 0, 1 ;  - r varies from 0.05 to 0.1;
- t varie de 0, 1 à 0,3 ;  - t varies from 0.1 to 0.3;
comprenant l’application d’une pluralité de cycles de charge et de décharge à des tensions allant d’une tension supérieure à une tension inférieure, la tension supérieure allant de 4,2 à 4,7 V, de préférence de 4,4 à 4,6 V, plus préférentiellement égale à 4,5 V, la tension inférieure allant de 0,5 à 2,5 , de préférence de 1 ,5 à 2,5 , plus préférentiellement égale à 2 V,  comprising applying a plurality of charge and discharge cycles to voltages ranging from higher to lower voltage, the upper voltage ranging from 4.2 to 4.7 V, preferably 4.4 to 4.6 V, more preferably equal to 4.5 V, the lower voltage ranging from 0.5 to 2.5, preferably from 1.5 to 2.5, more preferably equal to 2 V,
les cycles s’effectuant à un régime de cyclage allant de C/20 à C, C désignant le régime de cyclage de la batterie sodium-ion.  the cycles being carried out at a cycling regime ranging from C / 20 to C, C denoting the cycling regime of the sodium-ion battery.
Grâce à l’application de la tension supérieure allant de 4,2 à 4,7 dans le procédé de cyclage de la batterie Na-ion, une couche solide et stable appelée « Cathode Electrolyte Interphase » (CEI) plus protectrice est générée, par rapport à une application d’une tension supérieure moins élevée, par exemple inférieure à 4, IV. Cette CEI, située entre la cathode et l’électrolyte, est un élément essentiel au bon fonctionnement de la batterie Na-ion, car non seulement elle conduit très bien les ions sodium mais elle présente aussi l’avantage de stopper la décomposition catalytique de l’électrolyte. Thanks to the application of the higher voltage going from 4.2 to 4.7 in the cycling process of the Na-ion battery, a solid and stable layer called "Cathode Electrolyte Interphase" (CEI) more protective is generated, by compared to an application of a lower higher voltage, for example less than 4, IV. This IEC, located between the cathode and the electrolyte, is an essential element for proper functioning Na-ion battery, because not only does it conduct sodium ions very well but it also has the advantage of stopping the catalytic decomposition of the electrolyte.
Avantageusement, le matériau actif de formule (II) est de formule (I).  Advantageously, the active material of formula (II) is of formula (I).
De manière préférée, le régime de cyclage est de C/10.  Preferably, the cycling regime is C / 10.
La présente invention est illustrée de manière non-limitative par les exemples suivants.  The present invention is illustrated in a nonlimiting manner by the following examples.
EXEMPLES  EXAMPLES
Exemple 1  Example 1
I. Préparation des cellules électrochimiques  I. Preparation of electrochemical cells
1 . Synthèse des matériaux actifs  1. Synthesis of active materials
1.1 Synthèse du matériau actif NaNio sMno s02  1.1 Synthesis of the active material NaNio sMno s02
373 ,45 mg de NiO, 434,7 mg de MnCh et 529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 850°C à raison de 3°C par minute, puis l’ensemble est calciné à 850°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute. Ce matériau actif comparatif est dénommé matériau A.  373, 45 mg of NiO, 434.7 mg of MnCh and 529.95 mg of sodium carbonate are added. The temperature is brought to 850 ° C at a rate of 3 ° C per minute, then the whole is calcined at 850 ° C for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute. This comparative active material is called material A.
1.2 Synthèse du matériau actif NaNio sMno 4Tio i 02  1.2 Synthesis of the active material NaNio sMno 4Tio i 02
373 ,45 mg de NiO, 3 15 ,74 mg de Mn203, 79,87 mg de Ti02 et373, 45 mg of NiO, 15 3, 74 mg of Mn 2 0 3, Ti0 2 79.87 mg and
529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l’ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute Ce matériau actif comparatif est dénommé matériau B . 529.95 mg of sodium carbonate are added. The temperature is brought to 900 ° C at a rate of 3 ° C per minute, then the whole is calcined at 900 ° C for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute. This comparative active material is called material B.
1.3 Synthèse du matériau actif NaNio 44Cuo.o6Mno 4Tio i 02 1.3 Synthesis of the active material NaNio 44Cuo.o6Mno 4Tio i 02
328,64 mg de NiO, 47,73 mg de CuO, 3 15 ,74 mg de Mn203, 79,87 mg de Ti02 et 529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l’ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute. Ce matériau actif selon l’invention est dénommé matériau C . 328.64 mg of NiO, 47.73 mg of CuO, 3 15, 74 mg of Mn 2 0 3 , 79.87 mg of Ti0 2 and 529.95 mg of sodium carbonate are added. The temperature is brought to 900 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 900 ° C. for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute. This active material according to the invention is called material C.
1.4 Synthèse du matériau actif NaNio 4Cuo iMno 4Tio i 02 286,76 mg de NiO, 79,55 mg de CuO, 3 15 ,74 mg de Mn203, 79,87 mg de Ti02 et 529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l’ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute. Ce matériau actif selon l’invention est dénommé matériau D. 1.4 Synthesis of the active material NaNio 4Cuo iMno 4Tio i 02 286.76 mg of NiO, 79.55 mg of CuO, 3 15, 74 mg of Mn 2 0 3 , 79.87 mg of Ti0 2 and 529.95 mg of sodium carbonate are added. The temperature is brought to 900 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 900 ° C. for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute. This active material according to the invention is called material D.
1.5 Synthèse du matériau actif NaNi0.45Cu0.05Mn0.3Ti0.2O2 1.5 Synthesis of the active material NaNi0.45Cu0.05Mn0.3Ti0.2O2
345 , 1 1 mg de NiO, 39,78 mg de CuO, 236,81 mg de Mn203,345, 11 mg of NiO, 39.78 mg of CuO, 236.81 mg of Mn 2 0 3 ,
159,74 mg de Ti02 et 529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l’ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute. Ce matériau actif selon l’invention est dénommé matériau E. 159.74 mg of Ti0 2 and 529.95 mg of sodium carbonate are added. The temperature is brought to 900 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 900 ° C. for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute. This active material according to the invention is called material E.
1.6 Synthèse du matériau actif NaNi0.45Cu0.05Mn0.2Ti0.3O2 345 , 1 1 mg de NiO, 39,78 mg de CuO, 157,87 mg de Mn2 Û3,1.6 Synthesis of the active material NaNi0.45Cu0.05Mn0.2Ti0.3O2 345, 1 1 mg of NiO, 39.78 mg of CuO, 157.87 mg of Mn 2 Û3 ,
239,61 mg de Ti02 et 529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l’ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute. Ce matériau actif selon l’invention est dénommé matériau F. 239.61 mg of Ti0 2 and 529.95 mg of sodium carbonate are added. The temperature is brought to 900 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 900 ° C. for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute. This active material according to the invention is called material F.
2. Préparation des électrodes positives  2. Preparation of positive electrodes
A partir de ces matériaux, six électrodes positives ont été préparées, respectivement nommées EN-A, EN-B, EN-C, EN-D, EN-E et EN-F. Les électrodes positives EN-A et EN-B sont des électrodes comparatives. Les électrodes EN-C à EN-F sont des électrodes selon l’invention.  From these materials, six positive electrodes were prepared, respectively named EN-A, EN-B, EN-C, EN-D, EN-E and EN-F. The positive electrodes EN-A and EN-B are comparative electrodes. The electrodes EN-C to EN-F are electrodes according to the invention.
L’électrode positive EN-A est fabriquée en mélangeant 80% en poids du matériau actif A, qui a été directement transféré en boîte à gant depuis le four sans exposition a l’air, et 20% en poids du noir de carbone SuperC65®, le mélange étant ensuite broyé pendant 30 minutes à l’aide un mixeur SPEX 8000M.  The EN-A positive electrode is made by mixing 80% by weight of the active material A, which has been directly transferred to a glove box from the oven without exposure to air, and 20% by weight of the carbon black SuperC65® , the mixture then being ground for 30 minutes using a SPEX 8000M mixer.
Les autres électrodes positives EN-B à EN-F sont fabriquées en mélangeant 80% en poids du matériau actif, respectivement B à F, et 20% en poids du noir de carbone SuperC65®, les mélanges étant ensuite broyés de la même façon que pour l’électrode positive EN-A. De la même façon que pour le matériau actif A, les matériaux actifs B à F ont été directement transférés en boîte à gants depuis le four sans exposition à l’air. The other positive electrodes EN-B to EN-F are produced by mixing 80% by weight of the active material, respectively B to F, and 20% by weight of the carbon black SuperC65®, the mixtures then being ground in the same way as for the positive electrode EN-A. In the same way as for active material A, active materials B to F were transferred directly into a glove box from the oven without exposure to air.
3. Assemblage des cellules électrochimiques  3. Assembly of electrochemical cells
Six cellules électrochimiques ont ensuite été préparées comprenant respectivement les électrodes positives EN-A à EN-F. Les cellules sont nommées respectivement CE-A, CE-B, CE-C, CE-D, CE-E et CE-F.  Six electrochemical cells were then prepared respectively comprising the positive electrodes EN-A to EN-F. The cells are respectively named CE-A, CE-B, CE-C, CE-D, CE-E and CE-F.
L’assemblage des cellules électrochimiques est réalisé en boîte à gants à l’aide d’un dispositif constitué d’une pille bouton du type 2032. Chacune des cellules comprend un séparateur, une électrode négative et un électrolyte.  The assembly of the electrochemical cells is carried out in a glove box using a device consisting of a button cell of the type 2032. Each of the cells comprises a separator, a negative electrode and an electrolyte.
3.1 Assemblage de la cellule CE-A  3.1 Assembly of the CE-A cell
Electrode positive  Positive electrode
Une masse de 8, 13 mg de l’électrode EN-A, sous la forme d’une poudre, est ensuite étalée sur une feuille en aluminium placée dans la cellule CE-A.  A mass of 8.13 mg of the EN-A electrode, in the form of a powder, is then spread on an aluminum sheet placed in the CE-A cell.
Séparateur  Separator
Deux couches de séparateur en microfibres de verre CAT No. Two layers of CAT No. glass microfiber separator
1823 -070® sont utilisées afin d’éviter tout court-circuit entre l’électrode positive et l’électrode négative durant les cycles de charge et de décharge. Ces séparateurs sont découpés selon un diamètre de 16,6 mm et une épaisseur de 400 qm. 1823-070® are used to avoid any short circuit between the positive electrode and the negative electrode during the charge and discharge cycles. These separators are cut to a diameter of 16.6 mm and a thickness of 400 qm.
Electrode négative  Negative electrode
Une électrode de 1 cm2 est obtenue en perçant des disques de carbone dur enduit sur un film d’un collecteur de courant en aluminium. La matière active de carbone dur est environ 5 ,20 mg/cm2. An electrode of 1 cm 2 is obtained by drilling hard carbon discs coated on a film with an aluminum current collector. The active material of hard carbon is approximately 5. 20 mg / cm 2 .
Electrolyte  Electrolyte
L’électrolyte utilisé comprend une solution composée d’l M de The electrolyte used comprises a solution composed of 1 M
NaPFô dissous dans du carbonate de propylène. NaPFô dissolved in propylene carbonate.
3.2 Assemblage des cellules CE-B à CE-F  3.2 Assembly of cells CE-B to CE-F
Electrodes positives Une masse de 8,50, 9,35 , 9,36, 9,35 et 8,75 mg de chacune des électrodes EN-B à EN-F, respectivement, sous la forme d’une poudre, est ensuite étalée sur une feuille en aluminium placée dans les cellules CE-B à CE-F, respectivement. Positive electrodes A mass of 8.50, 9.35, 9.36, 9.35 and 8.75 mg of each of the electrodes EN-B to EN-F, respectively, in the form of a powder, is then spread over a aluminum sheet placed in cells CE-B to CE-F, respectively.
Les séparateurs, électrodes négatives et électrolytes sont identiques à ceux utilisés dans la cellule CE-A.  The separators, negative electrodes and electrolytes are identical to those used in the CE-A cell.
II. Tests électrochimiques  II. Electrochemical tests
1 . Cellule CE-A comparative  1. Comparative CE-A cell
Un cyclage galvanostatique est réalisé à l’aide d’un cycleur BioLogic à un régime de cyclage de C/20, C désignant la capacité de la cellule, à des tensions allant de 4,2 à 1 ,5 V. La capacité de la cellule Galvanostatic cycling is carried out using a BioLogic cycler at a cycling speed of C / 20, C denoting the cell capacity, at voltages ranging from 4.2 to 1.5 V. The capacity of the cell
CE-A a été mesurée en fonction du nombre de cycles, comme le montre la figure 1 . L’évolution de la capacité est observée sur la courbe A. CE-A was measured as a function of the number of cycles, as shown in Figure 1. The change in capacity is observed on curve A.
Ainsi, une dégradation de la capacité peut être observée avec les cycles de charge et de décharge. Une capacité d’environ 130 mAh.g 1 est mesurée après 30 cycles. Thus, a degradation of the capacity can be observed with the charge and discharge cycles. A capacity of approximately 130 mAh.g 1 is measured after 30 cycles.
2. Cellule CE-B comparative  2. Comparative CE-B cell
Un cyclage galvanostatique est réalisé à l’aide d’un cycleur BioLogic à un régime de cyclage de C/20, C désignant la capacité de la cellule, à des tensions allant de 4,4 à 1 ,2 V. La tension de la cellule CE- Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V. The voltage of the CE cell
B a été mesurée en fonction de la capacité, comme le montre la figureB was measured as a function of capacity, as shown in the figure
2. 2.
Sur cette figure 2, la courbe B l correspond au premier cycle de charge et de décharge. La courbe B2 correspond au deuxième cycle de charge et de décharge, et ainsi de suite jusqu’à la courbe B5 qui correspond au cinquième cycle de charge et de décharge.  In this figure 2, the curve B l corresponds to the first charge and discharge cycle. Curve B2 corresponds to the second charge and discharge cycle, and so on until curve B5 which corresponds to the fifth charge and discharge cycle.
Un épaulement très net est observé dans la zone allant de 3 ,6 à 3 ,8V environ. Plusieurs plateaux peuvent être observés sur ces courbes B l à B5 , correspondant aux processus de transition de phases.  A very clear shoulder is observed in the zone ranging from 3, 6 to 3, 8V approximately. Several plates can be observed on these curves B l to B5, corresponding to the phase transition processes.
Ainsi, une dégradation de la capacité de la cellule CE-B peut être observée.  Thus, a degradation of the capacity of the CE-B cell can be observed.
3. Cellule CE-C selon l’invention  3. CE-C cell according to the invention
Un cyclage galvanostatique est réalisé à l’aide d’un cycleur BioLogic à un régime de cyclage de C/20, C désignant la capacité de la cellule, à des tensions allant de 4,4 à 1 ,2 V. La capacité de la cellule CE-C a été mesurée en fonction du nombre de cycles, comme le montre la figure 3. L’évolution de la capacité est observée sur la courbe C . Galvanostatic cycling is carried out using a BioLogic cycler at a cycling speed of C / 20, C denoting the capacity of the cell, at voltages ranging from 4.4 to 1.2 V. The capacity of the CE-C cell was measured as a function of the number of cycles, as shown in FIG. 3. The evolution of the capacity is observed on curve C.
Ainsi, une capacité d’environ 170 mAh.g 1 est mesurée après 20 cycles. Thus, a capacity of approximately 170 mAh.g 1 is measured after 20 cycles.
Comparativement à la capacité de la cellule CE-A comparative observée sur la figure 1 , la capacité de la cellule CE-C selon l’invention est plus élevée et plus stable au fil des cycles de charge et de décharge.  Compared to the capacity of the comparative CE-A cell observed in FIG. 1, the capacity of the CE-C cell according to the invention is higher and more stable over the charge and discharge cycles.
Ainsi, la capacité de la cellule comprenant le matériau actif selon l’invention est améliorée.  Thus, the capacity of the cell comprising the active material according to the invention is improved.
Par ailleurs, la tension de la cellule CE-C a été mesurée en fonction de la capacité, comme le montre la figure 4.  Furthermore, the voltage of the CE-C cell was measured as a function of the capacity, as shown in Figure 4.
Sur cette figure 4, la courbe C l correspond au premier cycle de charge et de décharge, et ainsi de suite jusqu’à la courbe C5 qui correspond au cinquième cycle de charge et de décharge.  In this FIG. 4, the curve C l corresponds to the first charge and discharge cycle, and so on until curve C5 which corresponds to the fifth charge and discharge cycle.
Les courbes C l à C5 sont davantage linéaires que les courbes B l à B5.  Curves C l to C5 are more linear than curves B l to B5.
Ainsi, la dégradation de la capacité de la cellule CE-C n’est pas observée comme c’était le cas pour la cellule CE-B. En effet, la capacité de la cellule CE-C est plus stable.  Thus, the degradation of the capacity of the CE-C cell is not observed as was the case for the CE-B cell. Indeed, the capacity of the CE-C cell is more stable.
4. Cellule CE-D selon l’invention  4. CE-D cell according to the invention
Un cyclage galvanostatique est réalisé à l’aide d’un cycleur BioLogic à un régime de cyclage de C/20, C désignant la capacité de la cellule, à des tensions allant de 4,4 à 1 ,2 V. La tension de la cellule CE- D a été mesurée en fonction de la capacité, comme le montre la figure 5.  Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V. The voltage of the CE-D cell was measured as a function of capacity, as shown in Figure 5.
Sur cette figure 5 , la courbe D l correspond au premier cycle de charge et de décharge, et ainsi de suite jusqu’à la courbe D5 qui correspond au cinquième cycle de charge et de décharge.  In this FIG. 5, the curve D l corresponds to the first charge and discharge cycle, and so on until curve D5 which corresponds to the fifth charge and discharge cycle.
Les courbes D l à D5 sont davantage linéaires que les courbes B l à B5.  Curves D l to D5 are more linear than curves B l to B5.
Ainsi, la dégradation de la capacité de la cellule CE-D n’est pas observée comme c’était le cas pour la cellule CE-B. En effet, la capacité de la cellule CE-D est plus stable. 5. Cellule CE-E selon l’invention Thus, the degradation of the capacity of the CE-D cell is not observed as was the case for the CE-B cell. Indeed, the capacity of the CE-D cell is more stable. 5. CE-E cell according to the invention
Un cyclage galvanostatique est réalisé à l’aide d’un cycleur BioLogic à un régime de cyclage de C/20, C désignant la capacité de la cellule, à des tensions allant de 4,4 à 1 ,2 V. La tension de la cellule CE- E a été mesurée en fonction de la capacité, comme le montre la figure 6.  Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V. The voltage of the CE-E cell was measured as a function of capacity, as shown in Figure 6.
Sur cette figure 6, la courbe E l correspond au premier cycle de charge et de décharge, et ainsi de suite jusqu’à la courbe E5 qui correspond au cinquième cycle de charge et de décharge.  In this FIG. 6, the curve E l corresponds to the first charge and discharge cycle, and so on until curve E5 which corresponds to the fifth charge and discharge cycle.
Les courbes E l à E5 sont davantage linéaires que les courbes B l à B5.  Curves E l to E5 are more linear than curves B l to B5.
Ainsi, la dégradation de la capacité de la cellule CE-E n’est pas observée comme c’était le cas pour la cellule CE-B. En effet, la capacité de la cellule CE-E est plus stable.  Thus, the degradation of the capacity of the CE-E cell is not observed as it was the case for the CE-B cell. Indeed, the capacity of the CE-E cell is more stable.
6. Cellule CE-F selon l’invention  6. CE-F cell according to the invention
Un cyclage galvanostatique est réalisé à l’aide d’un cycleur BioLogic à un régime de cyclage de C/20, C désignant la capacité de la cellule, à des tensions allant de 4,4 à 1 ,2 V. La tension de la cellule CE- F a été mesurée en fonction de la capacité, comme le montre la figure 7.  Galvanostatic cycling is carried out using a BioLogic cycler at a cycling regime of C / 20, C denoting the cell capacity, at voltages ranging from 4.4 to 1.2 V. The voltage of the CE-F cell was measured as a function of capacity, as shown in Figure 7.
Sur cette figure 7, la courbe F l correspond au premier cycle de charge et de décharge, et ainsi de suite jusqu’à la courbe F5 qui correspond au cinquième cycle de charge et de décharge.  In this FIG. 7, the curve F l corresponds to the first charge and discharge cycle, and so on until curve F5 which corresponds to the fifth charge and discharge cycle.
Les courbes F l à F5 sont davantage linéaires que les courbes B l à B5.  Curves F l to F5 are more linear than curves B l to B5.
Ainsi, la dégradation de la capacité de la cellule CE-F n’est pas observée comme c’était le cas pour la cellule CE-B. En effet, la capacité de la cellule CE-F est plus stable.  Thus, the degradation of the capacity of the CE-F cell is not observed as was the case for the CE-B cell. Indeed, the capacity of the CE-F cell is more stable.
Exemple 2  Example 2
I. Préparation de la demi-cellule électrochimique  I. Preparation of the electrochemical half-cell
1 . Synthèse du matériau actif NaNio,45Cuo,o5Mno,4Tio,i02 1. Synthesis of the active material NaNio, 45Cuo, o5Mno, 4 Tio, i02
345 , 1 1 mg de NiO, 39,78 mg de CuO, 3 15 ,74 mg de Mn203, 79,87 mg de T1O2 et 529,95 mg de carbonate de sodium sont ajoutés. La température est portée à 900°C à raison de 3°C par minute, puis l’ensemble est calciné à 900°C pendant 12 heures dans un four. Le mélange est ensuite refroidi jusqu’à 300°C à raison de l °C par minute. 345, 11 mg of NiO, 39.78 mg of CuO, 3 15, 74 mg of Mn 2 0 3 , 79.87 mg of T1O2 and 529.95 mg of sodium carbonate are added. The temperature is brought to 900 ° C. at a rate of 3 ° C. per minute, then the whole is calcined at 900 ° C for 12 hours in an oven. The mixture is then cooled to 300 ° C at a rate of 1 ° C per minute.
2. Préparation de l’électrode positive  2. Preparation of the positive electrode
L’électrode positive est fabriquée en mélangeant 80% en poids du matériau actif NaNio,45Cuo,o5Mno,4Tio, i02, qui a été directement transféré en boite à gant depuis le four sans exposition a l’air, et 20% en poids du noir de carbone SuperC65®, le mélange étant ensuite broyé pendant 30 minutes à l’aide un mixeur SPEX 8000M. The positive electrode is made by mixing 80% by weight of the active material NaNio, 45Cuo, o5Mno, 4 Tio, i02, which was directly transferred into a glove box from the oven without exposure to air, and 20% by weight SuperC65® carbon black, the mixture then being ground for 30 minutes using a SPEX 8000M mixer.
3. Assemblage de la demi-cellule électrochimique  3. Assembly of the electrochemical half-cell
Une demi-cellule a ensuite été préparée comprenant l’électrode positive mentionnée ci-dessus.  A half cell was then prepared comprising the above-mentioned positive electrode.
L’assemblage de la demi-cellule est réalisé en boîte à gants à l’aide d’un dispositif constitué d’un raccord Swagelok® de 12 mm de diamètre. La demi-cellule comprend un séparateur, une électrode négative et un électrolyte.  The assembly of the half-cell is carried out in a glove box using a device consisting of a Swagelok® connector 12 mm in diameter. The half cell includes a separator, a negative electrode and an electrolyte.
Electrode positive  Positive electrode
Une masse de 10 mg de l’électrode positive, sous la forme d’une poudre, est ensuite étalée sur un piston en aluminium placé dans la demi- cellule.  A mass of 10 mg of the positive electrode, in the form of a powder, is then spread on an aluminum piston placed in the half-cell.
Séparateur  Separator
Deux couches de séparateur en microfibres de verre CAT No. 1823 -070® sont utilisées afin d’éviter tout court-circuit entre l’électrode positive et l’électrode négative durant les cycles de charge et de décharge. Ces séparateurs sont découpés selon un diamètre de 12 mm et une épaisseur de 500 qm.  Two layers of CAT No. 1823-070® glass microfiber separator are used to prevent short circuits between the positive and negative electrodes during the charge and discharge cycles. These separators are cut to a diameter of 12 mm and a thickness of 500 qm.
Electrode négative  Negative electrode
Des pastilles de 1 1 mm de diamètre sont découpées dans une feuille de sodium métal. La pastille obtenue est alors collée par pression sur un collecteur de courant en acier inoxydable. Ce collecteur est ensuite déposé sur la membrane séparatrice dans la cellule.  11 mm diameter pellets are cut from a sodium metal sheet. The pellet obtained is then bonded by pressure on a stainless steel current collector. This collector is then deposited on the separating membrane in the cell.
Electrolyte  Electrolyte
L’électrolyte utilisé comprend une solution composée d’l M de NaPFô dissous dans du carbonate de propylène.  The electrolyte used comprises a solution composed of 1 M NaPFô dissolved in propylene carbonate.
IL Test électrochimique Un procédé de cyclage comprenant l’application d’une pluralité de cycles de charge et de décharge à des tensions allant de 2 à 4,5V, a été effectué, à un régime de cyclage de C/10. IL Electrochemical test A cycling process comprising applying a plurality of charge and discharge cycles at voltages ranging from 2 to 4.5V, was carried out, at a cycling rate of C / 10.
La tension de la demi-cellule a été mesurée en fonction de la capacité, comme le montre la figure 8.  The half-cell voltage was measured as a function of capacity, as shown in Figure 8.
Sur cette figure 8, la courbe G désigne la pluralité des cycles de charge et de décharge qui a été réalisé.  In this FIG. 8, the curve G designates the plurality of charge and discharge cycles which has been carried out.
Ainsi, la capacité de la demi-cellule est stable avec la répétition des cycles de charge et de décharge.  Thus, the capacity of the half-cell is stable with the repetition of the charge and discharge cycles.

Claims

REVENDICATIONS
1 . Matériau actif d’électrode positive pour batterie sodium-ion de formule (I) suivante : 1. Active positive electrode material for sodium-ion battery of formula (I) below:
NaxNio,5-yCuyMno,5-zTiz02 (I), Na x Nio, 5-yCu y Mno, 5-zTiz02 (I),
dans laquelle :  in which :
x varie de 0,9 à 1 ;  x varies from 0.9 to 1;
- y varie de 0,05 à 0, 1 ;  - y varies from 0.05 to 0.1;
z varie de 0, 1 à 0,3 ,  z varies from 0.1 to 0.3,
étant entendu que si z est égal à 0, 1 et x est égal à 1 , alors y n’est pas égal à 0,05.  it being understood that if z is equal to 0, 1 and x is equal to 1, then y is not equal to 0.05.
2. Matériau selon la revendication 1 , caractérisé en ce que y varie de 0,06 à 0, 1 .  2. Material according to claim 1, characterized in that y varies from 0.06 to 0.1.
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que z varie de 0,2 à 0,3.  3. Material according to claim 1 or 2, characterized in that z varies from 0.2 to 0.3.
4. Matériau selon l’une quelconque des revendications précédentes, caractérisé en ce que x varie de 0,95 à 1 , de préférence x est égal à 1 .  4. Material according to any one of the preceding claims, characterized in that x varies from 0.95 to 1, preferably x is equal to 1.
5. Procédé de fabrication du matériau actif tel que défini à l’une quelconque des revendications précédentes, comprenant les étapes suivantes :  5. Method for manufacturing the active material as defined in any one of the preceding claims, comprising the following steps:
(a) Mélanger au moins un composé choisi parmi des oxydes et/ou des sels de métaux de transition avec au moins un précurseur choisi parmi le carbonate de sodium, le nitrate de sodium, l’acétate de sodium, le sulfate de sodium, la soude et Na20 et leurs mélanges ; (a) Mixing at least one compound chosen from oxides and / or transition metal salts with at least one precursor chosen from sodium carbonate, sodium nitrate, sodium acetate, sodium sulphate, soda and Na 2 0 and mixtures thereof;
(b) Chauffer le mélange obtenu à l’issue de l’étape (a) jusqu’à une température allant de 800 à l 000°C ;  (b) Heating the mixture obtained at the end of step (a) to a temperature ranging from 800 to 1,000 ° C;
(c) Récupérer ledit matériau actif.  (c) recovering said active material.
6. Electrode positive comprenant au moins un matériau actif tel que défini à l’une quelconque des revendications 1 à 4.  6. Positive electrode comprising at least one active material as defined in any one of claims 1 to 4.
7. Electrode positive selon la revendication 6, caractérisée en ce qu’elle comprend en outre au moins un composé conducteur. 7. Positive electrode according to claim 6, characterized in that it further comprises at least one conductive compound.
8. Electrode positive selon la revendication 7, caractérisée en ce que le composé conducteur est choisi parmi les particules métalliques, le carbone, et leurs mélanges, de préférence le carbone. 8. Positive electrode according to claim 7, characterized in that the conductive compound is chosen from metallic particles, carbon, and their mixtures, preferably carbon.
9. Electrode positive selon la revendication 8, caractérisée en ce que le carbone se présente sous la forme de graphite, de noir de carbone, de fibres de carbone, de nanofils de carbone, de nanotubes de carbone, de nanosphères de carbone, de préférence de noir de carbone.  9. Positive electrode according to claim 8, characterized in that the carbon is in the form of graphite, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, carbon nanospheres, preferably carbon black.
10. Cellule de batterie sodium-ion comprenant une électrode positive telle que définie à l’une quelconque des revendications 6 à 9, une électrode négative, un séparateur et un électrolyte.  10. Sodium-ion battery cell comprising a positive electrode as defined in any one of claims 6 to 9, a negative electrode, a separator and an electrolyte.
1 1 . Batterie sodium-ion comprenant au moins une cellule telle que définie à la revendication précédente.  1 1. Sodium-ion battery comprising at least one cell as defined in the preceding claim.
12. Procédé de cyclage d’une batterie sodium-ion comprenant une électrode négative, un séparateur, un électrolyte et une électrode positive comprenant un matériau actif de formule (II) suivante :  12. Method for cycling a sodium-ion battery comprising a negative electrode, a separator, an electrolyte and a positive electrode comprising an active material of formula (II) below:
NaPNio,5-rCurMno, 5-tTit02 (II), Na P Nio, 5-rCurMno, 5-tTit02 (II),
dans laquelle :  in which :
- p varie de 0,9 à 1 ;  - p varies from 0.9 to 1;
- r varie de 0,05 à 0, 1 ;  - r varies from 0.05 to 0.1;
- t varie de 0, 1 à 0,3 ,  - t varies from 0.1 to 0.3,
comprenant l’application d’une pluralité de cycles de charge et de décharge à des tensions allant d’une tension supérieure à une tension inférieure, la tension supérieure allant de 4,2 à 4,7 V, de préférence de 4,4 à 4,6 V, plus préférentiellement égale à 4,5 V, la tension inférieure allant de 0,5 à 2,5 , de préférence de 1 ,5 à 2,5 , plus préférentiellement égale à 2 V,  comprising applying a plurality of charge and discharge cycles to voltages ranging from higher to lower voltage, the upper voltage ranging from 4.2 to 4.7 V, preferably 4.4 to 4.6 V, more preferably equal to 4.5 V, the lower voltage ranging from 0.5 to 2.5, preferably from 1.5 to 2.5, more preferably equal to 2 V,
les cycles s’effectuant à un régime de cyclage allant de C/20 à C, C désignant le régime de cyclage de la batterie sodium-ion.  the cycles being carried out at a cycling regime ranging from C / 20 to C, C denoting the cycling regime of the sodium-ion battery.
EP19813925.5A 2018-10-11 2019-10-10 Positive electrode active material for sodium-ion battery Pending EP3863974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859417A FR3087299B1 (en) 2018-10-11 2018-10-11 POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM-ION BATTERY
PCT/FR2019/052414 WO2020074836A1 (en) 2018-10-11 2019-10-10 Positive electrode active material for sodium-ion battery

Publications (1)

Publication Number Publication Date
EP3863974A1 true EP3863974A1 (en) 2021-08-18

Family

ID=65685564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19813925.5A Pending EP3863974A1 (en) 2018-10-11 2019-10-10 Positive electrode active material for sodium-ion battery

Country Status (7)

Country Link
US (1) US20220013772A1 (en)
EP (1) EP3863974A1 (en)
JP (1) JP2022504568A (en)
KR (1) KR20210116433A (en)
CN (1) CN113454031A (en)
FR (1) FR3087299B1 (en)
WO (1) WO2020074836A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503898A (en) 2012-07-10 2014-01-15 Faradion Ltd Nickel doped compound for use as an electrode material in energy storage devices
GB2503896A (en) * 2012-07-10 2014-01-15 Faradion Ltd Nickel doped compound for use as an electrode material in energy storage devices
CH706725A2 (en) 2012-07-12 2014-01-15 Matthias Scheibmayr Projectile and a method of subjecting it.
PL3311434T3 (en) * 2015-06-19 2020-05-18 Centre National De La Recherche Scientifique Method for producing a positive electrode composite material for na ion battery
EP3332437B1 (en) * 2015-07-15 2020-09-02 Toyota Motor Europe Sodium layered oxide as cathode material for sodium ion battery
GB2543831A (en) * 2015-10-30 2017-05-03 Sharp Kk Method of passive voltage control in a sodium-ion battery
CN106673075B (en) * 2017-01-03 2019-05-21 中国科学院化学研究所 A kind of modified O3 type sodium-ion battery layered cathode material and its preparation method and application

Also Published As

Publication number Publication date
US20220013772A1 (en) 2022-01-13
JP2022504568A (en) 2022-01-13
WO2020074836A1 (en) 2020-04-16
CN113454031A (en) 2021-09-28
FR3087299B1 (en) 2020-10-30
KR20210116433A (en) 2021-09-27
FR3087299A1 (en) 2020-04-17

Similar Documents

Publication Publication Date Title
CN100401557C (en) Non-aqueous electrolyte rechargeable battery
KR101548016B1 (en) 2 2positive electrode for lithium-ion secondary battery manufacturing method thereof and lithium-ion secondary battery
US8999579B2 (en) Surface treated anode active material and method of making the same, anode including the same, and lithium battery including the same
JP6098852B2 (en) Negative electrode for secondary battery and lithium secondary battery including the same
EP2583333B1 (en) Lithium electrochemical accumulator having a specific bipolar architecture
JP6966188B2 (en) Electrolytes for secondary batteries and secondary batteries containing them
CN101098000A (en) Battery
EP2583347B1 (en) Lithium electrochemical accumulator having a bipolar architecture and operating with a lithium-sulphur compound electrode pair
EP4187669A1 (en) Secondary battery, battery module, battery pack, and power-consuming apparatus
US20210313562A1 (en) Amorphous Silicon in Solid Electrolytes, Compositions and Anodes
CN103534850A (en) Electrodes for lithium batteries
EP4069642A1 (en) Positive electrode active material
EP1860713A1 (en) Lithium insertion compound as cathodic active material for a lithium rechargeable electrochemical generator
EP3898522B1 (en) Negative electrode active material based on iron and lithium hydroxysulfide
EP3714498A1 (en) Use of a salt mixture as an additive in a lithium-gel battery
WO2020074836A1 (en) Positive electrode active material for sodium-ion battery
WO2002073731A1 (en) Battery
KR20230113276A (en) Solid electrolyte materials and solid-state batteries made therefrom
EP3218306B1 (en) Electrode material of formula limnxco(1-x)bo3, and production method thereof
EP2721683B1 (en) Liquid electrolyte for lithium accumulator, comprising a ternary mixture of non-aqueous organic solvents
EP3714499B1 (en) Use of lithium nitrate as single lithium salt in a gelified lithium battery
JP2023077060A (en) Anode-less battery and manufacturing method of anode-less battery
EP4254543A1 (en) Specific negative electrode based on lithium and lithium electrochemical generator comprising such a negative electrode
WO2023200405A2 (en) Core-shell nanoparticles and methods of fabrication thereof
WO2022128566A1 (en) All-solid-state lithium-sulphur electrochemical element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SORBONNE UNIVERSITE

Owner name: COLLEGE DE FRANCE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)

Owner name: RENAULT S.A.S

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SORBONNE UNIVERSITE

Owner name: COLLEGE DE FRANCE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)

Owner name: RENAULT S.A.S

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SORBONNE UNIVERSITE

Owner name: COLLEGE DE FRANCE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)

Owner name: AMPERE SAS