EP4055637A1 - N layer having a controlled carbon content in a perovskite-type photovoltaic device - Google Patents
N layer having a controlled carbon content in a perovskite-type photovoltaic deviceInfo
- Publication number
- EP4055637A1 EP4055637A1 EP20800137.0A EP20800137A EP4055637A1 EP 4055637 A1 EP4055637 A1 EP 4055637A1 EP 20800137 A EP20800137 A EP 20800137A EP 4055637 A1 EP4055637 A1 EP 4055637A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- type
- layer
- conductive layer
- nanoparticles
- perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000002105 nanoparticle Substances 0.000 claims abstract description 46
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 41
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 23
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 42
- 239000006185 dispersion Substances 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 27
- 150000002892 organic cations Chemical class 0.000 claims description 24
- 235000014692 zinc oxide Nutrition 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 21
- 239000011787 zinc oxide Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 claims description 15
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 14
- 230000008021 deposition Effects 0.000 claims description 11
- -1 polyethylene terephthalate Polymers 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 8
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 7
- 229910001887 tin oxide Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000007833 carbon precursor Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 239000011630 iodine Substances 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 150000001450 anions Chemical class 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 150000001457 metallic cations Chemical class 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- 238000000151 deposition Methods 0.000 description 17
- 238000004528 spin coating Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- GNRRPWAPNLLDQN-UHFFFAOYSA-N 6-fluoro-4-[5-(5-hexylthiophen-2-yl)thiophen-2-yl]-2,1,3-benzothiadiazole Chemical compound S1C(CCCCCC)=CC=C1C1=CC=C(C=2C3=NSN=C3C=C(F)C=2)S1 GNRRPWAPNLLDQN-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- LLQPHQFNMLZJMP-UHFFFAOYSA-N Fentrazamide Chemical compound N1=NN(C=2C(=CC=CC=2)Cl)C(=O)N1C(=O)N(CC)C1CCCCC1 LLQPHQFNMLZJMP-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 229910021398 atomic carbon Inorganic materials 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007647 flexography Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000001314 profilometry Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- GKTQKQTXHNUFSP-UHFFFAOYSA-N thieno[3,4-c]pyrrole-4,6-dione Chemical compound S1C=C2C(=O)NC(=O)C2=C1 GKTQKQTXHNUFSP-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical class C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/152—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
- H10K30/57—Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to the field of photovoltaic devices, in particular photovoltaic cells of the perovskite type. It aims more particularly to propose the formulation of a new conductive layer of type N in the multilayer stacks useful for forming these photovoltaic devices, making it possible to achieve improved performance in terms of photovoltaic conversion efficiency.
- Photovoltaic devices and in particular photovoltaic cells, comprise a multilayer stack comprising a photoactive layer, called an “active” layer.
- This active layer is in contact on both sides with an N-type conductive layer and a P-type conductive layer.
- This type of multilayer assembly comprising the superposition of the active layer and the two P-type layers and of type N described above is conventionally called “NIP” or “PIN” according to the order of stacking of the different layers on the substrate.
- the active layer consists of a halogenated perovskite-type material, which may be hybrid organic-inorganic or purely inorganic.
- a perovskite-type photovoltaic cell of NIP structure comprises a multilayer structure typically comprising, in this stacking order, a transparent substrate, a first transparent electrode also called a lower electrode, an N-type conductive layer, an active layer of perovskite type, a P-type conductive layer and a second electrode, also called an upper electrode made of metal, for example silver or gold.
- the N-type conductive layer usually consists of an N-type semiconductor oxide, for example ZnO, AZO (zinc oxide doped with aluminum), SnCh or TiO x (x ⁇ 2).
- This layer can be in the so-called mesoporous or planar form.
- the P-type conductive layer for its part consists, in the majority of cases, of an organic semiconductor material which can be a p-conjugated polymer, such as, for example, poly (3-hexylthiophene) or P3HT.
- the best photovoltaic performances are obtained with devices for which a dense conductive layer based on N-type metal oxide (s) is obtained after a heat treatment at high temperature. , typically at temperatures strictly above 200 ° C.
- Such high temperature heat treatments are for example implemented for the preparation of photovoltaic cells where the N layer is formed from a titanium oxide in mesoporous form. This is also the case for the production of N-type layers by the sol-gel route, in particular based on tin oxide (SnC) generated from an SnCT precursor.
- SnC tin oxide
- an alternative to prepare a conductive layer of type N at low temperature for a photovoltaic cell in NIP structure, without impacting on the photovoltaic efficiency of the cell consists in adding a layer of fullerene, for example in PCBM, between the N-type metal oxide and the overlying active layer of perovskite, to facilitate charge extraction.
- a layer of fullerene for example in PCBM
- the thickness of the deposited fullerene layer must be extremely small, typically of the order of a few nanometers.
- the present invention aims specifically to provide a new method of preparing, at low temperature, a conductive layer based on conductive oxide (s) of type N in a multilayer stack useful for photovoltaic devices of the perovskite type, making it possible to achieve excellent performance, in particular in terms of photovoltaic performance.
- photovoltaic devices in particular photovoltaic cells of the perovskite type, exhibiting excellent performance, from a multilayer stack incorporating an oxide-based layer (s ) N-type metal (s), prepared at low temperature, subject to controlling the atomic concentration of carbon in said N layer.
- the present invention relates, according to a first of its aspects, to a multilayer stack useful for forming a photovoltaic device, said stack comprising at least:
- N-type conductive layer also called an "electron transport layer"
- a P-type conductive layer also called a “hole transport layer”
- photo-active layer an active layer from the photovoltaic point of view, called “photo-active layer” or “active layer”, of perovskite type, interposed between said conductive layers of type N and of type P, in which said conductive layer of type N is at based on individualized nanoparticles of N-type metal oxide (s), and has a carbon content of less than or equal to 20 atomic%.
- a multilayer stack according to the invention may have a PIN or PIN structure, preferably a PIN structure.
- Such a multilayer stack of NIP structure according to the invention can more particularly comprise, in this order of superposition, at least:
- a substrate in particular transparent, flexible or rigid, such as a substrate made of glass or of plastic, for example of PET;
- a first electrode, called the lower electrode in particular formed of a transparent conductive layer, in particular of transparent conductive oxide (s);
- N-type conductive layer as defined above, in the case of a NIP structure, or a P-type conductive layer in the case of a PIN structure;
- the upper electrode a second electrode, called the upper electrode.
- the invention also relates to a process for preparing such a multilayer stack, comprising at least one step of forming said N-type conductive layer, from a dispersion of nanoparticles of metal oxide (s) of type N in a solvent medium, at a temperature less than or equal to 150 ° C, and under operating conditions adjusted to obtain the desired carbon content in said N layer.
- a process for preparing such a multilayer stack comprising at least one step of forming said N-type conductive layer, from a dispersion of nanoparticles of metal oxide (s) of type N in a solvent medium, at a temperature less than or equal to 150 ° C, and under operating conditions adjusted to obtain the desired carbon content in said N layer.
- the control of the carbon content in the N-type layer, formed under conditions of low temperature makes it possible to access devices exhibiting excellent photovoltaic performance, in particular in terms of efficiency of photo voltaic conversion.
- the carbon content in the N-type layer formed according to the invention can be adjusted by implementing a dispersion of nanoparticles of metal oxide (s). ) exhibiting a reduced content of carbon precursor compounds, such as to make it possible to produce the desired carbon content, less than or equal to 20 atomic%, in the N layer formed.
- a dispersion of nanoparticles of metal oxide (s). ) exhibiting a reduced content of carbon precursor compounds, such as to make it possible to produce the desired carbon content, less than or equal to 20 atomic%, in the N layer formed.
- Such dispersions of nanoparticles of metal oxide (s) are, for example, dispersions stabilized via the surface potential of the nanoparticles and having a reduced content of compatibilizing agents.
- the carbon content in the N-type layer formed according to the invention can be adjusted by subjecting, after deposition of said dispersion of nanoparticles of metal oxide (s) and prior to the deposition of the overlying layer, the N-type layer, to a treatment for removing carbon, in particular by treatment by UV irradiation, by UV-ozone, with ozone and / or by plasma, in particular oxidizing.
- a treatment for removing carbon in particular by treatment by UV irradiation, by UV-ozone, with ozone and / or by plasma, in particular oxidizing.
- the low temperature conditions preferably less than or equal to 120 ° C, advantageously less than or equal to 100 ° C, in particular less than or equal to 80 ° C and more particularly less than or equal to 50 ° C, allow the formation of the N layer in stacks of various kinds, in particular at the surface of structures sensitive to high temperatures, for example structures incorporating plastic substrates such as PET.
- the process for preparing an N layer according to the invention at low temperature makes it possible to envisage its formation on the surface of an active layer of perovskite type in the case of a stack in the PIN structure.
- a multilayer stack according to the invention can be intended for perovskite photovoltaic devices, in particular single-junction photovoltaic cells, in a structure known as of the “PIN” or “NIP” type, or else photovoltaic cells of. multi-junction type, in particular tandem type.
- the invention thus relates, according to another of its aspects, to a photovoltaic device, in particular a photovoltaic cell of the perovskite type, comprising a multilayer stack as defined above or obtained by a method as defined above.
- FIG 1 shows, schematically, in a vertical sectional plane, multilayer stacks according to the invention, of NIP structure (21) or PIN structure (22).
- FIG 2 shows the change in the carbon atomic concentration in an N layer based on AZO nanoparticles as a function of the duration of the UV-ozone treatment, under the conditions of Example 2.
- the invention relates, according to a first of its aspects, to a multilayer stack, useful for forming a photovoltaic device, said stack comprising at least:
- active layer a photovoltaic active layer, called “active layer”, of perovskite type, interposed between said conductive layers of N type and of P type, in which said N type conductive layer is based on individualized nanoparticles of metal oxide (s) (s) of type N, and has a carbon content of less than or equal to 20 atomic%.
- N layer An N-type conductive layer according to the invention is more simply referred to in the remainder of the text as "N layer”.
- N-type material designates a material which allows the transport of electrons (e).
- the N layer according to the invention can be more particularly formed of individualized nanoparticles of N-type metal oxide (s).
- the N-type metal oxide nanoparticles can in particular be chosen from nanoparticles of zinc oxide ZnO, titanium oxides TiO x with x between 1 and 2, tin oxide (SnC), doped zinc oxides, e.g. aluminum doped zinc oxide (AZO), indium doped zinc oxide (IZO), gallium doped zinc oxide (GZO), oxides titanium doped, for example titanium oxide doped with nitrogen, phosphorus, iron, tungsten or manganese, and mixtures thereof.
- ZnO zinc oxide
- SnC tin oxide
- doped zinc oxides e.g. aluminum doped zinc oxide (AZO), indium doped zinc oxide (IZO), gallium doped zinc oxide (GZO)
- oxides titanium doped for example titanium oxide doped with nitrogen, phosphorus, iron, tungsten or manganese, and mixtures thereof.
- the N-type conductive layer according to the invention can be formed from nanoparticles of metal oxide (s) chosen from nanoparticles of tin oxide. (S11O2), nanoparticles of doped zinc oxide, in particular zinc oxide doped with aluminum (AZO), and mixtures thereof.
- s metal oxide
- S11O2 nanoparticles of tin oxide.
- AZO zinc oxide doped with aluminum
- the individualized particles of N-type metal oxide (s) of the N-type conductive layer in a multilayer stack according to the invention may have an average particle size of between 2 to 100 nm, in particular between 5 to 50 nm, in particular between 5 and 20 nm and more particularly between 8 and 15 nm.
- Particle size can be assessed by transmission electron microscopy.
- the average particle size refers to the diameter of the particle. If the particles are irregularly shaped, the particle size refers to the equivalent diameter of the particle. By equivalent diameter is meant the diameter of a spherical particle that exhibits the same physical property when determining the particle size as the irregularly shaped particle measured.
- the nanoparticles of N-type metal oxide (s) can in particular be of spherical shape.
- spherical particle is meant particles having the shape or substantially the shape of a sphere.
- spherical particles have a coefficient of sphericity greater than or equal to 0.75, in particular greater than or equal to 0.8, in particular greater than or equal to 0.9 and more particularly greater than or equal to 0.95.
- the coefficient of sphericity of a particle is the ratio of the smallest diameter of the particle to the largest diameter of the particle. For a perfect sphere, this ratio is equal to 1.
- individualized nanoparticles is meant that the particles retain their state of individual particles within the N layer of the multilayer stack according to the invention, in particular that they are not fused.
- less than 10% of the nanoparticles of N-type metal oxide (s) in said N layer are fused, preferably less than 5%, or even less than 1%.
- N layer based on individualized N-type metal oxide (s) nanoparticles is distinguished in particular from sintered layers, in which the particles have fused to each other.
- An N layer according to the invention is thus an unsintered layer.
- the structuring of the N-type layer in a stack according to the invention testifies in particular to the fact that its preparation, as detailed in the remainder of the text, does not involve any step of heat treatment at high temperature, typically at a strictly higher temperature. at 150 ° C, especially above 200 ° C.
- N-type metal oxide (s) particles in other words non-fused, at the N-type layer according to the invention can also be manifested by a surface roughness of said layer of type. N, measured before formation of the overlying layer, greater than that obtained for example for a sintered layer.
- an N layer according to the invention may have an average RMS roughness value greater than or equal to 3 nm, in particular between 5 and 10 nm.
- Surface roughness can be measured by mechanical profilometry.
- An N-type conductive layer according to the invention is also characterized by a low carbon content (atomic carbon concentration), in particular less than or equal to 20 atomic%.
- an N layer according to the invention has a carbon content of less than or equal to 17 atomic%, preferably less than or equal to 15 atomic%, in particular between 0 and 15 atomic%.
- the carbon content of an N layer according to the invention can be determined by X-ray induced photoelectron spectrometry (XPS for "X-Ray photoelectron spectrometry").
- An N-type conductive layer according to the invention may have a thickness of between 10 and 80 nm, in particular between 30 and 50 nm.
- the thickness can be measured with a profilometer, for example of the trade name KLA Tencor or else with an AFM atomic force microscope, for example of the trade name VEECO / INNOVA.
- a profilometer for example of the trade name KLA Tencor or else with an AFM atomic force microscope, for example of the trade name VEECO / INNOVA.
- Other layers of the multilayer stack are possible.
- a multilayer stack according to the invention comprises at least one active photovoltaic layer of perovskite type.
- This active layer is formed from a perovskite material, and more particularly a material of general formula ABX3, with:
- B representing one or more metallic elements, such as lead (Pb), tin (Sn), bismuth (Bi) and antimony (Sb); and
- X representing one or more anions, in particular one or more halogens, and more particularly chosen from chlorine, bromine, iodine and mixtures thereof.
- perovskite materials are described in particular in document WO 2015/080990.
- perovskite materials mention may in particular be made of organic-inorganic hybrid perovskites.
- These hybrid perovskite materials can be more particularly of the abovementioned formula ABX3, in which A comprises one or more organic or non-organic cations.
- the organic cation can be chosen from organo-ammonium cations such as:
- the organic cation (s) of the hybrid perovskite material may optionally be combined with one or more metal cations, for example cesium and / or rubidium.
- organo-ammonium cation for example of methylammonium (MA) type, a formamidinium (FA) cation or a mixture of these two cations, optionally combined with cesium;
- MA methylammonium
- FA formamidinium
- the perovskite material can in particular be CH3NH3PM3, also called PK, with the lead being able to be replaced by tin or germanium and the iodine being able to be replaced by chlorine or bromine.
- the perovskite material may also be a compound of the formula Cs x FAI-x Pb (II Br y y) 3 with x ⁇ 0.17; 0 ⁇ y ⁇ 1 and FA symbolizing the formamidinium cation.
- a “type P” material designates a material allowing the transport of holes (h + ).
- the P-type material can be chosen, for example, from Nafion, WO3, M0O3, V2O5 and NiO, p-conjugated semiconductor polymers, optionally doped, and mixtures thereof.
- p-conjugated semiconductor polymers optionally doped, mention may in particular be made of poly (3,4-ethylenedioxythiophene) (PEDOT), preferably PEDOT: PSS; poly (3-hexylthiophene) or P3HT, poly [N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4,7-di-2-thienyl-2 ', l', 3 '-benzothiadiazole or PCDTBT, poly [2, l, 3-benzothiadiazole-4,7-diyl [4,4-bis (2-ethylhexyl) -4H-cyclopenta [2, lb: 3,4-b'] dithiophene -
- PEDOT poly (3,
- a preferred P-type material is a mixture of PEDOT and PSS, or alternatively PT AA, optionally doped with a lithium salt.
- the P-type material can also be chosen from P-type semiconductor molecules such as:
- triphenylamine nucleus TPA
- a multilayer stack according to the invention may be intended for a photovoltaic device, in particular a perovskite photovoltaic cell, in a PIN or NIP type structure, or else of the tandem type.
- the “PIN” or “PIN” structure reflects the order of superposition of the different layers in the multilayer stack.
- the multilayer stack according to the invention is in a so-called NIP structure.
- Such a stack comprises, in this order of superposition:
- a multilayer stack according to the invention comprises, in this order of superposition, the following layers:
- a stack according to the invention in particular intended for a photovoltaic cell, of the perovskite type, in the NIP or PIN structure, may more particularly include, as shown in FIG. 1, in this order of superposition at least:
- a substrate 11 in particular transparent, flexible or rigid, such as a substrate made of glass or of plastic, in particular of PET;
- a multilayer stack according to the invention is intended for a photovoltaic device, in particular a photovoltaic cell, of the perovskite type in NIP structure.
- a multilayer stack in NIP structure according to the invention 21 more particularly comprises, in this order of superposition, at least:
- a multilayer stack according to the invention may be intended for a photovoltaic cell of the multi-junction type, and in particular of the “tandem” or double-junction type, of which at least one of the active layers is in perovskite material.
- tandem-type cells have two multilayer assemblies stacked on top of each other, and the respective active layers of which generally exhibit different light absorption spectra.
- photons not absorbed by the first active layer may be absorbed by the second.
- the quantity of photons recovered by all the active layers of the cell is thus increased and the electrical efficiency of the latter is improved.
- a tandem type photovoltaic device may include a stack according to the invention, in a PIN or PIN structure, preferably in a PIN structure, as described above.
- It may be, for example, a perovskite silicon tandem cell.
- glass or plastic in particular polyester, preferably polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or polycarbonates. It may in particular be a glass plate.
- the lower electrode 12, in contact with the support, may be formed of a transparent conductive layer, for example of transparent conductive oxide (s) (TCO) such as indium oxide doped with l 'tin (ITO), zinc oxide doped with aluminum (AZO), zinc oxide doped with gallium (GZO), zinc oxide doped with indium (IZO) and mixtures thereof, or still be formed of a multilayer assembly, for example AZO / Ag / AZO.
- TCO transparent conductive oxide
- ITO indium oxide doped with l 'tin
- AZO zinc oxide doped with aluminum
- GZO zinc oxide doped with gallium
- IZO zinc oxide doped with indium
- It can also be formed by an array of nanowires, in particular made of silver.
- the upper electrode 16 can, for example, be formed by a layer of gold, of silver, or of an array of nanowires, preferably of silver. It can also be in aluminum or in transparent conductive oxide.
- the process for preparing a stack according to the invention comprises at least one step of forming an N-type conductive layer according to the invention, at low temperature, in particular at a temperature less than or equal to 150 ° C, preferably less than or equal to 100 ° C and more preferably less than or equal to 80 ° C, from a dispersion of nanoparticles of N-type metal oxide (s) in a solvent medium and in operating conditions adjusted to obtain the desired reduced carbon content in the N layer formed.
- a temperature less than or equal to 150 ° C preferably less than or equal to 100 ° C and more preferably less than or equal to 80 ° C
- Said N-type conductive layer can advantageously be formed under temperature conditions less than or equal to 120 ° C, in particular less than or equal to 100 ° C, in particular less than or equal to 80 ° C, preferably less than or equal to 50 ° C, and more particularly at room temperature
- the N-type layer according to the invention is formed on the surface of the lower electrode or, alternatively, on the surface of an active layer of perovskite type, as described above.
- the method according to the invention can more particularly comprise at least the steps consisting in:
- step (c) successively forming, on the surface of said N-type conductive layer 13 formed at the end of step (b), in this order of superposition: an active layer 14 of perovskite type, a conductive layer 15 of the type P and a second electrode 16, called the upper electrode, in particular as defined above.
- the formation of said N-type layer by the solvent route according to the invention involves the deposition of said dispersion of nanoparticles of metal oxide (s), followed by the elimination of said solvent or solvents.
- the dispersion can be deposited by means of any technique known to those skilled in the art, for example chosen from spin coating or centrifugal coating (“spin coating”), deposition with a scraper, blade coating, ultrasonic spray deposition, G slot-die coating, inkjet printing, gravure printing, flexography and screen printing.
- spin coating spin coating
- the deposition is carried out by spin-coating.
- the solvent medium for said dispersion of nanoparticles of metal oxide (s) can comprise one or more solvents chosen from polar solvents, such as water and / or alcohols, or of ether type (for example alkyl ethers and glycol ethers) or esters (acetate, benzoate or lactones for example). It may for example consist of water and / or an alcohol, such as butanol.
- polar solvents such as water and / or alcohols
- ether type for example alkyl ethers and glycol ethers
- esters acetate, benzoate or lactones for example
- It may for example consist of water and / or an alcohol, such as butanol.
- the nature of the solvent (s) is chosen with regard to the nature of the underlying layer on the surface of which said N-type conductive layer is formed.
- the removal of said solvent (s) is carried out under temperature conditions less than or equal to 150 ° C, in particular less than or equal to 120 ° C, preferably less than or equal to 100 ° C and more preferably less than or equal to 80 ° C.
- the drying of the N layer can for example be carried out at room temperature.
- ambient temperature is meant a temperature of 20 ° C ⁇ 5 ° C.
- the level of carbon in the N-type conductive layer is adjusted by controlling the content of carbon precursor compounds in the dispersion of nanoparticles of metal oxide (s) used.
- the N-type layer according to the invention can be formed by depositing a dispersion of nanoparticles of metal oxide (s) having a content of carbon precursor compounds such that the resulting N layer exhibits the rate of desired residual carbon, less than 20 atomic%.
- the dispersions of nanoparticles of metal oxide (s) having a reduced content of carbon precursor compounds are in particular dispersions having a low content of compatibilizing agents.
- Such dispersions more particularly comprise less than 5% by mass, in particular less than 1% by mass, of compatibilizing agent (s), relative to the total mass of the dispersion.
- Such dispersions are in particular dispersions of nanoparticles stabilized via the surface potential (zeta potential) of the particles, more precisely by the use of counterions.
- colloidal dispersions of nanoparticles of metal oxide (s) may, for example, be commercially available.
- the carbon content in the N layer formed can be adjusted, after depositing the dispersion of nanoparticles of metal oxide (s) and prior to depositing the overlying layer in the multilayer stack, for example prior to the deposition of the active perovskite layer in the case of a stack multilayer in NIP structure, by subjecting the N-type layer to a carbon removal treatment.
- s metal oxide
- the carbon removal treatment is carried out under low temperature conditions, in particular at a temperature less than or equal to 150 ° C, in particular less than or equal to 120 ° C, in particular less than or equal to 100 ° C, preferably less than or equal to 80 ° C, and more particularly less than or equal to 50 ° C.
- the carbon removal treatment is carried out at room temperature.
- Such a carbon removal treatment can more particularly be a treatment by UV irradiation, by UV-ozone, with ozone and / or by plasma, in particular an oxidizing one.
- N-type conductive layer having the desired carbon content of less than 20 atomic%, from any dispersion of nanoparticles of metal oxide (s), regardless of the carbon content of said dispersion.
- Those skilled in the art are able to adjust the operating conditions for carrying out the carbon removal treatment, in particular the duration of exposure of the free surface of said N layer to UV, UV-ozone, to l. ozone or a plasma, in particular an oxidizer, to achieve the desired reduced carbon content according to the invention.
- the treatment under UV radiation can more particularly consist in irradiating the free surface of said N layer formed by UV light of two wavelengths, for example 185 and 256 nm.
- Any UV light source making it possible to irradiate the surface of said N layer can be used for such irradiation.
- One example is a mercury vapor lamp.
- the treatment of said layer by UV irradiation can be carried out for a period ranging from 5 to 60 minutes, in particular from 10 to 30 minutes.
- the UV irradiation is carried out at a temperature less than or equal to 150 ° C, in particular less than or equal to 100 ° C, preferably less than or equal to 80 ° C, and more particularly less than or equal to 50 ° C. More particularly, the UV irradiation is carried out at room temperature.
- the UV irradiation treatment can be carried out in a vacuum or in a gas.
- the UV irradiation treatment can in particular be carried out in an ambient atmosphere, the UV radiation then transforming the oxygen in the air into ozone; we speak in this case of UV-ozone treatment.
- the UV irradiation treatment can also be carried out under an inert gas such as nitrogen.
- the carbon removal treatment can be an ozone treatment (in the absence of UV irradiation).
- Such ozone treatment can be carried out, for example, by bringing the free surface of the N layer into contact with an atmosphere containing ozone generated by UV irradiation, the sample being placed behind a filter protecting it from said radiation.
- the elimination of carbon can be carried out by plasma treatment, in particular with an oxidizing plasma.
- Oxidizing plasma is, for example, a plasma comprising oxygen or a plasma of a mixture of oxygen and argon.
- the treatment is carried out with an oxygen plasma.
- a person skilled in the art is able to use the equipment necessary to generate such a plasma.
- the other layers of the multilayer stack according to the invention can be made by techniques known to those skilled in the art.
- they are carried out wet, by conventional deposition techniques, that is to say by techniques implementing the deposition of an ink in the liquid state.
- the deposition of a solution during the manufacturing process in particular to form a conductive layer of type P and an active layer of perovskite type, can be carried out by means of a technique as described above for the preparation.
- an N-type conductive layer in particular, all the layers formed during the process steps can be carried out using a single technique chosen from those described above.
- the photovoltaic device may also include electrical connection means, in particular contact points, which make it possible to connect the electrodes in order to supply an electrical circuit with current.
- NIP perovskite-type photovoltaic cell
- the support 11 is a 1.1 mm thick glass substrate covered with a layer of ITO conductive oxide forming the lower electrode 12.
- perovskite materials Two types are tested: of the CH3NH3PM3 type (also noted MAPbL) or of the “double cation” perovskite type Cs x FAi- x Pb (I y Bri- y ) 3, FA symbolizing the formamidinium cation.
- the N-type layer 13 is formed as described below.
- the P-type layer 15 is composed of PT AA doped with a lithium salt, 80 nm thick.
- the upper electrode 16 is a layer of gold, 100 nm thick.
- the active surface of the devices is 0.28 cm 2 and their performance was measured at 25 ° C. under standard lighting conditions (1000 W / m 2 , AM 1.5G).
- the photovoltaic performances of the cells are more particularly measured by recording the current-voltage characteristics of the devices on a Keithley ® SMU 2600 device under AM 1.5G illumination at a power of 1000 Wm 2 .
- the cell under test is illuminated through the Glass / ITO face using an Oriel simulator.
- a mono-crystalline silicon cell calibrated at the Fraunhofer ISE (Friborg, Germany) is used as a reference to ensure that the light power delivered by the simulator is indeed equal to 1000 Wm 2 .
- the characteristic parameters of the operation of the devices are determined from the current-voltage curves.
- Example 1 ink containing a controlled carbon content
- N tin oxide (SnCh) layers are tested in a stack as described above.
- the N layers are formed by spin-coating, operated at room temperature, from separate commercial solutions (called “inks”) of SnCL nanoparticles:
- the particle size of SnCh is in the range of 10-15 nm.
- Dispersions 1 and 2 contain a reduced content of compatibilizers, a source of carbon, compared to dispersion 3.
- Dispersions 1 and 2 lead, after application by spin-coating, to layers of SnCh nanoparticles containing approximately 15 atomic% of carbon, while dispersion 3 results in a layer of SnCL containing approximately 40 atomic% of carbon.
- the carbon content is determined by X-ray induced photoelectron spectrometry (XPS for “X-Ray photoelectron spectrometry”).
- the N layers are formed at room temperature, by spin-coating from separate commercial solutions of AZO or SnCh nanoparticles, if necessary followed by an elimination treatment.
- carbon by UV irradiation, by UV-ozone or by ozone, as detailed below.
- Dispersion 4 is a dispersion of particles of ZnO doped Al or AZO, of average size 12 nm, in 2-propanol.
- the UV irradiation treatment of the N layer, after depositing the dispersion by spin coating, is carried out for 30 minutes, at a wavelength of 185 nm and 256 nm, under an inert atmosphere and room temperature.
- the UV-ozone treatment is carried out by exposure to UV radiation generating ozone of the surface of the N layer, after deposition of the dispersion by spin-coating, under ambient atmosphere and temperature, for 30 minutes in equipment for the JetLight brand.
- the ozone treatment is carried out in the same JetLight equipment and under the same conditions, except that the sample is placed behind a filter avoiding exposure to UV radiation but suitable for exposure to ozone generated during 30 minutes.
- FIG. 2 represents the evolution of the carbon content in an N layer based on AZO nanoparticles as a function of the duration of the UV-ozone treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention relates to a multilayer stack used to form a photovoltaic device, the stack comprising at least: - an N-type conducting layer; - a P-type conducting layer; and - an active perovskite-type layer interposed between the N-type and P-type conducting layers, wherein the N-type conducting layer is made from individual nanoparticles of N-type metal oxide(s) and has a carbon content of less than or equal to 20 atomic%. The invention also relates to a method for preparing such a multilayer stack.
Description
Description Description
Titre : COUCHE N A TAUX DE CARBONE CONTROUE DANS UN DISPOSITIF PHOTO VOUTAÏQUE DE TYPE PEROVSKITE Title: N LAYER WITH CARBON CONTROLS IN A PEROVSKITE TYPE VOUTAIC PHOTO DEVICE
La présente invention se rapporte au domaine des dispositifs photovoltaïques, en particulier des cellules photovoltaïques de type pérovskite. Elle vise plus particulièrement à proposer la formulation d’une nouvelle couche conductrice de type N dans les empilements multicouches utiles pour former ces dispositifs photovoltaïques, permettant d’atteindre des performances améliorées en termes de rendement de conversion photo voltaïque. The present invention relates to the field of photovoltaic devices, in particular photovoltaic cells of the perovskite type. It aims more particularly to propose the formulation of a new conductive layer of type N in the multilayer stacks useful for forming these photovoltaic devices, making it possible to achieve improved performance in terms of photovoltaic conversion efficiency.
Technique antérieure Prior art
Les dispositifs photovoltaïques, et en particulier les cellules photovoltaïques, comprennent un empilement multicouche comportant une couche photo-active, dite couche « active ». Cette couche active est au contact de part et d’autre avec une couche conductrice de type N et une couche conductrice de type P. Ce type d’ensemble multicouche, comprenant la superposition de la couche active et des deux couches de type P et de type N décrites ci- dessus est classiquement dénommé « NIP » ou « PIN » suivant l’ordre d’empilement des différentes couches sur le substrat. Dans les cellules photovoltaïques dites de type pérovskite, la couche active est constituée d’un matériau de type pérovskite halogénée, pouvant être hybride organique-inorganique ou purement inorganique. Photovoltaic devices, and in particular photovoltaic cells, comprise a multilayer stack comprising a photoactive layer, called an “active” layer. This active layer is in contact on both sides with an N-type conductive layer and a P-type conductive layer. This type of multilayer assembly, comprising the superposition of the active layer and the two P-type layers and of type N described above is conventionally called “NIP” or “PIN” according to the order of stacking of the different layers on the substrate. In so-called perovskite-type photovoltaic cells, the active layer consists of a halogenated perovskite-type material, which may be hybrid organic-inorganic or purely inorganic.
Par exemple, une cellule photovoltaïque de type pérovskite de structure NIP comporte une structure multicouche comprenant typiquement, dans cet ordre d’empilement, un substrat transparent, une première électrode transparente également appelée électrode inférieure, une couche conductrice de type N, une couche active de type pérovskite, une couche conductrice de type P et une seconde électrode, également appelée électrode supérieure en métal par exemple en argent ou en or. For example, a perovskite-type photovoltaic cell of NIP structure comprises a multilayer structure typically comprising, in this stacking order, a transparent substrate, a first transparent electrode also called a lower electrode, an N-type conductive layer, an active layer of perovskite type, a P-type conductive layer and a second electrode, also called an upper electrode made of metal, for example silver or gold.
Dans ce type de cellule photovoltaïque pérovskite, la couche conductrice de type N est généralement constituée d’un oxyde semi-conducteur de type N, par exemple ZnO, AZO (oxyde de zinc dopé à l’aluminium), SnCh ou TiOx (x<2). Cette couche peut être sous forme dite mésoporeuse ou planaire. La couche conductrice de type P est quant à elle constituée, dans la majorité des cas, d’un matériau organique semi-conducteur qui peut être un polymère p-conjugué, à l’image par exemple du poly(3-hexylthiophène) ou P3HT, ou encore une petite
molécule comme le Spiro-MeOTAD (2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]- 9,9'-spirobifluorene). In this type of perovskite photovoltaic cell, the N-type conductive layer usually consists of an N-type semiconductor oxide, for example ZnO, AZO (zinc oxide doped with aluminum), SnCh or TiO x (x <2). This layer can be in the so-called mesoporous or planar form. The P-type conductive layer for its part consists, in the majority of cases, of an organic semiconductor material which can be a p-conjugated polymer, such as, for example, poly (3-hexylthiophene) or P3HT. , or even a small molecule like Spiro-MeOTAD (2,2 ', 7,7'-Tetrakis [N, N-di (4-methoxyphenyl) amino] - 9,9'-spirobifluorene).
A l’heure actuelle, les meilleures performances photovoltaïques sont obtenues avec des dispositifs pour lesquels une couche conductrice dense à base d’oxyde(s) métallique(s) de type N est obtenue à l’issue d’un traitement thermique à haute température, typiquement à des températures strictement supérieures à 200 °C. De tels traitements thermiques à haute température, en particulier à une température supérieure à 400 °C, sont par exemple mis en œuvre pour la préparation de cellules photovoltaïques où la couche N est formée à partir d’un oxyde de titane sous forme mésoporeuse. C’est également le cas pour la réalisation de couches de type N par voie sol-gel, notamment à base d’oxyde d’étain (SnC ) généré à partir d’un précurseur SnCT. At present, the best photovoltaic performances are obtained with devices for which a dense conductive layer based on N-type metal oxide (s) is obtained after a heat treatment at high temperature. , typically at temperatures strictly above 200 ° C. Such high temperature heat treatments, in particular at a temperature above 400 ° C, are for example implemented for the preparation of photovoltaic cells where the N layer is formed from a titanium oxide in mesoporous form. This is also the case for the production of N-type layers by the sol-gel route, in particular based on tin oxide (SnC) generated from an SnCT precursor.
La mise en œuvre de ces traitements thermiques à haute température n’est malheureusement pas envisageable pour la réalisation de couches N en surface de structures ne résistant pas à ces températures élevées, par exemple pour des substrats plastiques tels que le polyéthylène téréphtalate (PET) mis en œuvre pour des dispositifs photovoltaïques souples, ou encore pour des cellules silicium à hétéroj onction pour des dispositifs photovoltaïques de type « tandem ». The implementation of these heat treatments at high temperature is unfortunately not possible for the production of N layers on the surface of structures that do not withstand these high temperatures, for example for plastic substrates such as polyethylene terephthalate (PET) used. implemented for flexible photovoltaic devices, or even for heteroj unction silicon cells for “tandem” type photovoltaic devices.
Pour pallier cet inconvénient, il a déjà été proposé des méthodes alternatives procédant à la préparation de la couche N à basse température, typiquement à des températures inférieures à 150 °C. Par exemple, une alternative pour préparer une couche conductrice de type N à basse température pour une cellule photovoltaïque en structure NIP, sans impacter sur le rendement photovoltaïque de la cellule, consiste à ajouter une couche de fullerène, par exemple en PCBM, entre l’oxyde métallique de type N et la couche active sus-jacente en pérovskite, afin de faciliter l’extraction des charges. Toutefois, une telle méthode est complexe à mettre en œuvre, notamment au regard du fait que l’épaisseur de la couche de fullerène déposée doit être extrêmement faible, typiquement de Tordre de quelques nanomètres. To overcome this drawback, alternative methods have already been proposed which proceed with the preparation of the N layer at low temperature, typically at temperatures below 150 ° C. For example, an alternative to prepare a conductive layer of type N at low temperature for a photovoltaic cell in NIP structure, without impacting on the photovoltaic efficiency of the cell, consists in adding a layer of fullerene, for example in PCBM, between the N-type metal oxide and the overlying active layer of perovskite, to facilitate charge extraction. However, such a method is complex to implement, in particular in view of the fact that the thickness of the deposited fullerene layer must be extremely small, typically of the order of a few nanometers.
Il a également été proposé, pour préparer une couche conductrice de type N dans des conditions de basse température, de réaliser des dépôts via des techniques sous vide, par exemple par un procédé de dépôt de couches minces atomiques ALD (pour « Atomic Layer Déposition » en terminologie anglo-saxonne) ou encore par évaporation sous faisceau d’électrons. Ces techniques demeurent néanmoins plus complexes à mettre en œuvre.
Par conséquent, il demeure un besoin de pouvoir disposer d’une méthode aisée de préparation d’une couche conductrice de type N, dans des conditions de basse température et permettant d’atteindre des rendements photovoltaïques élevés. It has also been proposed, in order to prepare an N-type conductive layer under low temperature conditions, to carry out deposits via vacuum techniques, for example by a process for depositing thin atomic layers ALD (for “Atomic Layer Deposition”). in English terminology) or by evaporation under an electron beam. These techniques nevertheless remain more complex to implement. Consequently, there remains a need to be able to have an easy method of preparing an N-type conductive layer, under low temperature conditions and making it possible to achieve high photovoltaic yields.
Résumé de l’invention Summary of the invention
La présente invention vise précisément à proposer une nouvelle méthode de préparation, à basse température, d’une couche conductrice à base d’oxyde(s) conducteur(s) de type N dans un empilement multicouche utile pour des dispositifs photovoltaïques de type pérovskite, permettant d’atteindre d’excellentes performances, en termes notamment de rendement photo voltaïque. The present invention aims specifically to provide a new method of preparing, at low temperature, a conductive layer based on conductive oxide (s) of type N in a multilayer stack useful for photovoltaic devices of the perovskite type, making it possible to achieve excellent performance, in particular in terms of photovoltaic performance.
De manière inattendue, les inventeurs ont constaté qu’il est possible de réaliser des dispositifs photovoltaïques, notamment des cellules photovoltaïques de type pérovskite, présentant d’excellentes performances, à partir d’un empilement multicouche intégrant une couche à base d’oxyde(s) métallique(s) de type N, préparée à basse température, sous réserve de contrôler la concentration atomique de carbone dans ladite couche N. Unexpectedly, the inventors have found that it is possible to produce photovoltaic devices, in particular photovoltaic cells of the perovskite type, exhibiting excellent performance, from a multilayer stack incorporating an oxide-based layer (s ) N-type metal (s), prepared at low temperature, subject to controlling the atomic concentration of carbon in said N layer.
Plus précisément, la présente invention concerne, selon un premier de ses aspects, un empilement multicouche utile pour former un dispositif photovoltaïque, ledit empilement comportant au moins : More precisely, the present invention relates, according to a first of its aspects, to a multilayer stack useful for forming a photovoltaic device, said stack comprising at least:
- une couche conductrice de type N, dite encore « couche de transport d’électrons » ; - an N-type conductive layer, also called an "electron transport layer";
- une couche conductrice de type P, dite encore « couche de transport de trous » ; eta P-type conductive layer, also called a “hole transport layer”; and
- une couche active du point de vue photovoltaïque, dite « couche photo-active » ou « couche active », de type pérovskite, intercalée entre lesdites couches conductrices de type N et de type P, dans lequel ladite couche conductrice de type N est à base de nanoparticules individualisées d’oxyde(s) métallique(s) de type N, et présente un taux de carbone inférieur ou égal à 20 % atomique. an active layer from the photovoltaic point of view, called “photo-active layer” or “active layer”, of perovskite type, interposed between said conductive layers of type N and of type P, in which said conductive layer of type N is at based on individualized nanoparticles of N-type metal oxide (s), and has a carbon content of less than or equal to 20 atomic%.
Comme détaillé dans la suite du texte, un empilement multicouche selon l’invention peut être de structure NIP ou PIN, de préférence de structure NIP. Un tel empilement multicouche de structure NIP selon l’invention peut comprendre plus particulièrement, dans cet ordre de superposition, au moins : As detailed in the remainder of the text, a multilayer stack according to the invention may have a PIN or PIN structure, preferably a PIN structure. Such a multilayer stack of NIP structure according to the invention can more particularly comprise, in this order of superposition, at least:
- un substrat, en particulier transparent, souple ou rigide, tel qu’un substrat en verre ou en matière plastique, par exemple en PET ;
- une première électrode, dite électrode inférieure, en particulier formée d’une couche transparente conductrice, notamment en oxyde(s) conducteur(s) transparent(s) ; a substrate, in particular transparent, flexible or rigid, such as a substrate made of glass or of plastic, for example of PET; a first electrode, called the lower electrode, in particular formed of a transparent conductive layer, in particular of transparent conductive oxide (s);
- une couche conductrice de type N telle que définie précédemment, dans le cas d’une structure NIP, ou une couche conductrice de type P dans le cas d’une structure PIN ; - an N-type conductive layer as defined above, in the case of a NIP structure, or a P-type conductive layer in the case of a PIN structure;
- une couche active de type pérovskite ; - an active layer of perovskite type;
- une couche conductrice de type P dans le cas d’une structure NIP, ou une couche conductrice de type N telle que définie précédemment, dans le cas d’une structure PIN ; et- a P-type conductive layer in the case of a NIP structure, or an N-type conductive layer as defined above, in the case of a PIN structure; and
- une deuxième électrode, dite électrode supérieure. - a second electrode, called the upper electrode.
L’invention concerne encore un procédé de préparation d’un tel empilement multicouche, comprenant au moins une étape de formation de ladite couche conductrice de type N, à partir d’une dispersion de nanoparticules d’oxyde(s) métallique(s) de type N dans un milieu solvant, à une température inférieure ou égale à 150°C, et dans des conditions opératoires ajustées pour obtenir le taux de carbone souhaité dans ladite couche N. The invention also relates to a process for preparing such a multilayer stack, comprising at least one step of forming said N-type conductive layer, from a dispersion of nanoparticles of metal oxide (s) of type N in a solvent medium, at a temperature less than or equal to 150 ° C, and under operating conditions adjusted to obtain the desired carbon content in said N layer.
Comme illustré dans les exemples qui suivent, le contrôle du taux de carbone dans la couche de type N, formée dans des conditions de basse température, permet d’accéder à des dispositifs présentant d’excellentes performances photovoltaïques, en particulier en termes de rendement de conversion photo voltaïque. As illustrated in the examples which follow, the control of the carbon content in the N-type layer, formed under conditions of low temperature, makes it possible to access devices exhibiting excellent photovoltaic performance, in particular in terms of efficiency of photo voltaic conversion.
Comme détaillé dans la suite du texte, selon une première alternative de réalisation, le taux de carbone dans la couche de type N formée selon l’invention peut être ajusté en mettant en œuvre une dispersion de nanoparticules d’oxyde(s) métallique(s) présentant une teneur en composés précurseurs de carbone réduite, telle qu’elle permette de conduire au taux de carbone souhaité, inférieur ou égal à 20 % atomique, dans la couche N formée. De telles dispersions de nanoparticules d’oxyde(s) métallique(s) sont par exemple des dispersions stabilisées via le potentiel de surface des nanoparticules et présentant une teneur réduite en agents compatibilisants. As detailed in the remainder of the text, according to a first alternative embodiment, the carbon content in the N-type layer formed according to the invention can be adjusted by implementing a dispersion of nanoparticles of metal oxide (s). ) exhibiting a reduced content of carbon precursor compounds, such as to make it possible to produce the desired carbon content, less than or equal to 20 atomic%, in the N layer formed. Such dispersions of nanoparticles of metal oxide (s) are, for example, dispersions stabilized via the surface potential of the nanoparticles and having a reduced content of compatibilizing agents.
Selon une autre alternative de réalisation, le taux de carbone dans la couche de type N formée selon l’invention peut être ajusté en soumettant, après dépôt de ladite dispersion de nanoparticules d’oxyde(s) métallique(s) et préalablement au dépôt de la couche sus-jacente, la couche de type N à un traitement d’élimination du carbone, en particulier par traitement par irradiation UV, par UV-ozone, à l’ozone et/ou par plasma, en particulier oxydant.
Par ailleurs, de manière avantageuse, les conditions de basse température, de préférence inférieure ou égale à 120°C, avantageusement inférieure ou égale à 100°C, en particulier inférieure ou égale à 80 °C et plus particulièrement inférieure ou égale à 50°C, autorisent la formation de la couche N dans des empilements de nature diverse, en particulier en surface de structures sensibles à des hautes températures, par exemple des structures intégrant des substrats plastiques tels que le PET. According to another alternative embodiment, the carbon content in the N-type layer formed according to the invention can be adjusted by subjecting, after deposition of said dispersion of nanoparticles of metal oxide (s) and prior to the deposition of the overlying layer, the N-type layer, to a treatment for removing carbon, in particular by treatment by UV irradiation, by UV-ozone, with ozone and / or by plasma, in particular oxidizing. Furthermore, advantageously, the low temperature conditions, preferably less than or equal to 120 ° C, advantageously less than or equal to 100 ° C, in particular less than or equal to 80 ° C and more particularly less than or equal to 50 ° C, allow the formation of the N layer in stacks of various kinds, in particular at the surface of structures sensitive to high temperatures, for example structures incorporating plastic substrates such as PET.
En particulier, le procédé de préparation d’une couche N selon l’invention à basse température permet d’envisager sa formation en surface d’une couche active de type pérovskite dans le cas d’un empilement en structure PIN. In particular, the process for preparing an N layer according to the invention at low temperature makes it possible to envisage its formation on the surface of an active layer of perovskite type in the case of a stack in the PIN structure.
Comme détaillé dans la suite du texte, un empilement multicouche selon l’invention peut être destiné à des dispositifs photovoltaïques pérovskites, notamment des cellules photovoltaïques simple jonction, en structure dite de type « PIN » ou « NIP », ou encore des cellules photovoltaïques de type multijonction, en particulier de type tandem. As detailed in the remainder of the text, a multilayer stack according to the invention can be intended for perovskite photovoltaic devices, in particular single-junction photovoltaic cells, in a structure known as of the “PIN” or “NIP” type, or else photovoltaic cells of. multi-junction type, in particular tandem type.
L’invention concerne ainsi, selon un autre de ses aspects, un dispositif photovoltaïque, en particulier une cellule photovoltaïque de type pérovskite, comportant un empilement multicouche tel que défini précédemment ou obtenu par un procédé tel que défini précédemment. The invention thus relates, according to another of its aspects, to a photovoltaic device, in particular a photovoltaic cell of the perovskite type, comprising a multilayer stack as defined above or obtained by a method as defined above.
D’autres caractéristiques, variantes et avantages d’un empilement multicouche selon l’invention, et de sa préparation, ressortiront mieux à la lecture de la description, des exemples et figures qui vont suivre, donnés à titre illustratif et non limitatif de l’invention. Other characteristics, variants and advantages of a multilayer stack according to the invention, and of its preparation, will emerge more clearly on reading the description, the examples and figures which follow, given by way of illustration and without limitation of the invention.
Brève description des dessins Brief description of the drawings
[Fig 1] représente, de manière schématique, dans un plan vertical de coupe, des empilements multicouches selon l’invention, de structure NIP (21) ou de structure PIN (22). [Fig 1] shows, schematically, in a vertical sectional plane, multilayer stacks according to the invention, of NIP structure (21) or PIN structure (22).
[Fig 2] présente l’évolution de la concentration atomique en carbone dans une couche N à base de nanoparticules d’AZO en fonction de la durée du traitement UV-ozone, dans les conditions de l’exemple 2. [Fig 2] shows the change in the carbon atomic concentration in an N layer based on AZO nanoparticles as a function of the duration of the UV-ozone treatment, under the conditions of Example 2.
Il convient de noter que, pour des raisons de clarté, les différents éléments en figure 1 sont représentés en échelle libre, les dimensions réelles des différentes parties n’étant pas respectées.
Dans la suite du texte, les expressions « compris entre ... et ... » et « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire. It should be noted that, for reasons of clarity, the various elements in FIG. 1 are shown in free scale, the actual dimensions of the various parts not being respected. In the remainder of the text, the expressions "between ... and ..." and "ranging from ... to ..." and "varying from ... to ..." are equivalent and are intended to mean that the terminals are included, unless otherwise stated.
Description détaillée detailed description
Empilement multicouche Multilayer stacking
Comme indiqué précédemment, l’invention concerne, selon un premier de ses aspects, un empilement multicouche, utile pour former un dispositif photovoltaïque, ledit empilement comportant au moins : As indicated above, the invention relates, according to a first of its aspects, to a multilayer stack, useful for forming a photovoltaic device, said stack comprising at least:
- une couche conductrice de type N ; - an N-type conductive layer;
- une couche conductrice de type P ; et - a P-type conductive layer; and
- une couche active photovoltaïque, dite « couche active », de type pérovskite, intercalée entre lesdites couches conductrices de type N et de type P, dans lequel ladite couche conductrice de type N est à base de nanoparticules individualisées d’oxyde(s) métallique(s) de type N, et présente un taux de carbone inférieur ou égal à 20 % atomique. - a photovoltaic active layer, called “active layer”, of perovskite type, interposed between said conductive layers of N type and of P type, in which said N type conductive layer is based on individualized nanoparticles of metal oxide (s) (s) of type N, and has a carbon content of less than or equal to 20 atomic%.
Couche conductrice de type N N-type conductive layer
Une couche conductrice de type N selon l’invention est plus simplement désignée dans la suite du texte sous l’appellation « couche N ». An N-type conductive layer according to the invention is more simply referred to in the remainder of the text as "N layer".
Un matériau « de type N » désigne un matériau qui permet le transport des électrons (e ).An "N-type" material designates a material which allows the transport of electrons (e).
La couche N selon l’invention peut être plus particulièrement formée de nanoparticules individualisées d’oxyde(s) métallique(s) de type N. The N layer according to the invention can be more particularly formed of individualized nanoparticles of N-type metal oxide (s).
Les nanoparticules d’oxydes métalliques de type N peuvent être notamment choisies parmi des nanoparticules d’oxyde de zinc ZnO, d’oxydes de titane TiOx avec x compris entre 1 et 2, d’oxyde d’étain (SnC ), d’oxydes de zinc dopés, par exemple d’oxyde de zinc dopé à l’aluminium (AZO), d’oxyde de zinc dopé à l’indium (IZO), d’oxyde de zinc dopé au gallium (GZO), d’oxydes de titane dopés, par exemple d’oxyde de titane dopé à l’azote, au phosphore, au fer, au tungstène ou au manganèse et leurs mélanges. The N-type metal oxide nanoparticles can in particular be chosen from nanoparticles of zinc oxide ZnO, titanium oxides TiO x with x between 1 and 2, tin oxide (SnC), doped zinc oxides, e.g. aluminum doped zinc oxide (AZO), indium doped zinc oxide (IZO), gallium doped zinc oxide (GZO), oxides titanium doped, for example titanium oxide doped with nitrogen, phosphorus, iron, tungsten or manganese, and mixtures thereof.
En particulier, la couche conductrice de type N selon l’invention peut être formée de nanoparticules d’oxyde(s) métallique(s) choisies parmi des nanoparticules d’oxyde d’étain
(S11O2), des nanoparticules d’oxyde de zinc dopé, en particulier d’oxyde de zinc dopé à l’aluminium (AZO) et leurs mélanges. In particular, the N-type conductive layer according to the invention can be formed from nanoparticles of metal oxide (s) chosen from nanoparticles of tin oxide. (S11O2), nanoparticles of doped zinc oxide, in particular zinc oxide doped with aluminum (AZO), and mixtures thereof.
Les particules individualisées d’oxyde(s) métallique(s) de type N de la couche conductrice de type N dans un empilement multicouche selon l’invention peuvent présenter une taille particulaire moyenne comprise entre 2 à 100 nm, en particulier comprise entre 5 à 50 nm, notamment comprise entre 5 et 20 nm et plus particulièrement entre 8 et 15 nm. The individualized particles of N-type metal oxide (s) of the N-type conductive layer in a multilayer stack according to the invention may have an average particle size of between 2 to 100 nm, in particular between 5 to 50 nm, in particular between 5 and 20 nm and more particularly between 8 and 15 nm.
La taille particulaire peut être évaluée par microscopie électronique à transmission. Particle size can be assessed by transmission electron microscopy.
Dans le cas de particules de forme sphérique ou globalement sphérique, la taille particulaire moyenne se rapporte au diamètre de la particule. Si les particules sont de forme irrégulière, la taille particulaire se rapporte au diamètre équivalent de la particule. Par diamètre équivalent, on entend le diamètre d’une particule sphérique qui présente la même propriété physique lors de la détermination de la taille de la particule que la particule de forme irrégulière mesurée. In the case of particles of spherical or generally spherical shape, the average particle size refers to the diameter of the particle. If the particles are irregularly shaped, the particle size refers to the equivalent diameter of the particle. By equivalent diameter is meant the diameter of a spherical particle that exhibits the same physical property when determining the particle size as the irregularly shaped particle measured.
Les nanoparticules d’oxyde(s) métallique(s) de type N peuvent être en particulier de forme sphérique. Par « particule sphérique », on entend désigner des particules ayant la forme ou sensiblement la forme d’une sphère. The nanoparticles of N-type metal oxide (s) can in particular be of spherical shape. By "spherical particle" is meant particles having the shape or substantially the shape of a sphere.
En particulier, des particules sphériques ont un coefficient de sphéricité supérieur ou égal à 0,75, en particulier supérieur ou égal à 0,8, notamment supérieur ou égal à 0,9 et plus particulièrement supérieur ou égal à 0,95. In particular, spherical particles have a coefficient of sphericity greater than or equal to 0.75, in particular greater than or equal to 0.8, in particular greater than or equal to 0.9 and more particularly greater than or equal to 0.95.
Le coefficient de sphéricité d’une particule est le rapport du plus petit diamètre de la particule au plus grand diamètre de celle-ci. Pour une sphère parfaite, ce rapport est égal à 1. The coefficient of sphericity of a particle is the ratio of the smallest diameter of the particle to the largest diameter of the particle. For a perfect sphere, this ratio is equal to 1.
Par nanoparticules « individualisées », on entend signifier que les particules conservent leur état de particules individuelles au sein de la couche N de l’empilement multicouche selon l’invention, en particulier qu’elles ne sont pas fusionnées. By "individualized" nanoparticles is meant that the particles retain their state of individual particles within the N layer of the multilayer stack according to the invention, in particular that they are not fused.
En particulier, moins de 10 % des nanoparticules d’oxyde(s) métallique(s) de type N dans ladite couche N sont fusionnées, de préférence moins de 5 %, voire moins de 1 %. In particular, less than 10% of the nanoparticles of N-type metal oxide (s) in said N layer are fused, preferably less than 5%, or even less than 1%.
Ceci peut être clairement visualisé par exemple par observation de la couche N par microscopie électronique.
Une couche N à base de nanoparticules d’oxyde(s) métallique(s) de type N individualisées se distingue en particulier de couches frittées, dans lesquelles les particules ont fusionné les unes aux autres. Une couche N selon l’invention est ainsi une couche non frittée. This can be clearly visualized for example by observation of the N layer by electron microscopy. An N layer based on individualized N-type metal oxide (s) nanoparticles is distinguished in particular from sintered layers, in which the particles have fused to each other. An N layer according to the invention is thus an unsintered layer.
La structuration de la couche de type N dans un empilement selon l’invention témoigne en particulier du fait que sa préparation, comme détaillé dans la suite du texte, ne fait intervenir aucune étape de traitement thermique à haute température, typiquement à une température strictement supérieure à 150 °C, en particulièrement supérieure à 200°C. The structuring of the N-type layer in a stack according to the invention testifies in particular to the fact that its preparation, as detailed in the remainder of the text, does not involve any step of heat treatment at high temperature, typically at a strictly higher temperature. at 150 ° C, especially above 200 ° C.
La présence de particules d’oxyde(s) métallique(s) de type N individualisées, autrement dit non fusionnées, au niveau de la couche de type N selon l’invention peut encore se manifester par une rugosité de surface de ladite couche de type N, mesurée avant formation de la couche sus-jacente, supérieure à celle obtenue par exemple pour une couche frittée. The presence of individualized N-type metal oxide (s) particles, in other words non-fused, at the N-type layer according to the invention can also be manifested by a surface roughness of said layer of type. N, measured before formation of the overlying layer, greater than that obtained for example for a sintered layer.
En particulier, une couche N selon l’invention peut présenter une valeur moyenne de rugosité RMS supérieure ou égale à 3 nm, en particulier comprise entre 5 et 10 nm. In particular, an N layer according to the invention may have an average RMS roughness value greater than or equal to 3 nm, in particular between 5 and 10 nm.
La rugosité de surface peut être mesurée par profilométrie mécanique. Surface roughness can be measured by mechanical profilometry.
Une couche conductrice de type N selon l’invention est par ailleurs caractérisée par un faible taux de carbone (concentration atomique en carbone), en particulier inférieur ou égal à 20 % atomique. An N-type conductive layer according to the invention is also characterized by a low carbon content (atomic carbon concentration), in particular less than or equal to 20 atomic%.
De préférence, une couche N selon l’invention présente un taux de carbone inférieur ou égal à 17 % atomique, de préférence inférieur ou égal à 15 % atomique, en particulier compris entre 0 et 15 % atomique. Preferably, an N layer according to the invention has a carbon content of less than or equal to 17 atomic%, preferably less than or equal to 15 atomic%, in particular between 0 and 15 atomic%.
Le taux en carbone d’une couche N selon l’invention peut être déterminé par spectrométrie de photoélectrons induits par rayons X (XPS pour « X-Ray photoelectron spectrometry » en langue anglaise). The carbon content of an N layer according to the invention can be determined by X-ray induced photoelectron spectrometry (XPS for "X-Ray photoelectron spectrometry").
Une couche conductrice de type N selon l’invention peut présenter une épaisseur comprise entre 10 et 80 nm, en particulier entre 30 et 50 nm. An N-type conductive layer according to the invention may have a thickness of between 10 and 80 nm, in particular between 30 and 50 nm.
L’épaisseur peut être mesurée avec un profilomètre, par exemple de dénomination commerciale KLA Tencor ou encore avec un microscope à force atomique AFM, par exemple de dénomination commerciale VEECO/INNOVA.
Autres couches de l’empilement multicouche The thickness can be measured with a profilometer, for example of the trade name KLA Tencor or else with an AFM atomic force microscope, for example of the trade name VEECO / INNOVA. Other layers of the multilayer stack
Couche active de type pérovskite Comme indiqué précédemment, un empilement multicouche selon l’invention comprend au moins une couche active photovoltaïque de type pérovskite. Active Layer of Perovskite Type As indicated above, a multilayer stack according to the invention comprises at least one active photovoltaic layer of perovskite type.
Cette couche active est formée d’un matériau pérovskite, et plus particulièrement un matériau de formule générale ABX3, avec : This active layer is formed from a perovskite material, and more particularly a material of general formula ABX3, with:
. A représentant un cation ou une combinaison de cations métalliques ou organiques ; . A representing a cation or a combination of metallic or organic cations;
. B représentant un ou plusieurs éléments métalliques, tels que le plomb (Pb), l’étain (Sn), le bismuth (Bi) et l’antimoine (Sb) ; et . B representing one or more metallic elements, such as lead (Pb), tin (Sn), bismuth (Bi) and antimony (Sb); and
. X représentant un ou plusieurs anions, en particulier un ou plusieurs halogènes, et plus particulièrement choisis parmi le chlore, le brome, l’iode et leurs mélanges. . X representing one or more anions, in particular one or more halogens, and more particularly chosen from chlorine, bromine, iodine and mixtures thereof.
De tels matériaux pérovskites sont notamment décrits dans le document WO 2015/080990. A titre d’exemple de matériaux pérovskites, on peut en particulier citer les pérovskites hybrides organiques-inorganiques. Ces matériaux pérovskites hybrides peuvent être plus particulièrement de formule ABX3 précitée, dans laquelle A comprend un ou plusieurs cations organiques ou non. Such perovskite materials are described in particular in document WO 2015/080990. By way of example of perovskite materials, mention may in particular be made of organic-inorganic hybrid perovskites. These hybrid perovskite materials can be more particularly of the abovementioned formula ABX3, in which A comprises one or more organic or non-organic cations.
Le cation organique peut être choisi parmi les cations organo-ammonium tels que : The organic cation can be chosen from organo-ammonium cations such as:
- les cations alkyl-ammonium de formule générale RIR2R3R4N+, avec Ri, R2, R3 et R4 étant indépendamment l’un de l’autre un atome d’hydrogène ou un radical alkyle en C1-C5, comme par exemple un cation de type méthyl- ammonium (MA) et - alkylammonium cations of general formula RIR2R3R4N + , with Ri , R2 , R3 and R4 being, independently of one another, a hydrogen atom or a C1-C5 alkyl radical, such as for example a cation of the type methyl ammonium (MA) and
- les cations formamidinium (FA) de formule [RiNCHNRi]+, avec Ri pouvant représenter un atome d’hydrogène ou un radical alkyle en C1-C5. - formamidinium cations (FA) of formula [RiNCHNRi] + , with Ri possibly representing a hydrogen atom or a C1-C5 alkyl radical.
Le ou les cations organiques du matériau pérovskite hybride peuvent être éventuellement associés à un ou plusieurs cations métalliques, par exemple du césium et/ou du rubidium.The organic cation (s) of the hybrid perovskite material may optionally be combined with one or more metal cations, for example cesium and / or rubidium.
A titre d’exemples de matériaux pérovskites hybrides, on peut plus particulièrement citer les pérovskites de formule ABX3, avec : As examples of hybrid perovskite materials, mention may more particularly be made of perovskites of formula ABX3, with:
- A représentant un cation organo-ammonium par exemple de type méthylammonium (MA), un cation formamidinium (FA) ou un mélange de ces deux cations, éventuellement associé à du césium ; - A representing an organo-ammonium cation, for example of methylammonium (MA) type, a formamidinium (FA) cation or a mixture of these two cations, optionally combined with cesium;
- B étant choisi parmi le plomb, l’étain, le bismuth, l’antimoine et leurs mélanges ; et- B being chosen from lead, tin, bismuth, antimony and their mixtures; and
- X étant choisi parmi le chlore, le brome, l’iode et leurs mélanges.
Le matériau pérovskite peut être en particulier CH3NH3PM3, dit encore PK avec le plomb pouvant être remplacé par l’étain ou le germanium et l’iode pouvant être remplacé par le chlore ou le brome. - X being chosen from chlorine, bromine, iodine and their mixtures. The perovskite material can in particular be CH3NH3PM3, also called PK, with the lead being able to be replaced by tin or germanium and the iodine being able to be replaced by chlorine or bromine.
Le matériau pérovskite peut également être un composé de formule CsxFAi-xPb(Ii-yBry)3 avec x < 0,17 ; 0 < y < 1 et FA symbolisant le cation formamidinium. The perovskite material may also be a compound of the formula Cs x FAI-x Pb (II Br y y) 3 with x <0.17; 0 <y <1 and FA symbolizing the formamidinium cation.
Couche conductrice de type P P-type conductive layer
Un matériau « de type P » désigne un matériau permettant le transport des trous (h+). A “type P” material designates a material allowing the transport of holes (h + ).
Le matériau de type P peut être par exemple choisi parmi le Nafion, WO3, M0O3, V2O5 et NiO, les polymères semi-conducteurs p-conjugués, éventuellement dopés, et leurs mélanges. A titre illustratif des polymères semi-conducteurs p-conjugués, éventuellement dopés, peuvent notamment être cités le poly(3,4-éthylènedioxythiophène) (PEDOT), de préférence le PEDOT :PSS ; le poly(3-hexylthiophène) ou P3HT, le poly[N-9’-heptadécanyl-2,7- carbazole-alt-5,5-(4,7-di-2-thiényl-2’,l’,3’-benzothiadiazole ou PCDTBT, le poly[2,l,3- benzothiadiazole-4,7-diyl[4,4-bis(2-éthylhexyl)-4H-cyclopenta[2,l-b:3,4-b’]dithiophène-The P-type material can be chosen, for example, from Nafion, WO3, M0O3, V2O5 and NiO, p-conjugated semiconductor polymers, optionally doped, and mixtures thereof. By way of illustration of p-conjugated semiconductor polymers, optionally doped, mention may in particular be made of poly (3,4-ethylenedioxythiophene) (PEDOT), preferably PEDOT: PSS; poly (3-hexylthiophene) or P3HT, poly [N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4,7-di-2-thienyl-2 ', l', 3 '-benzothiadiazole or PCDTBT, poly [2, l, 3-benzothiadiazole-4,7-diyl [4,4-bis (2-ethylhexyl) -4H-cyclopenta [2, lb: 3,4-b'] dithiophene -
2.6-diyl]] ou PCPDTBT, le poly(benzo[l,2-b:4,5-b’]dithiophène-alt-thiéno[3,4-c]pyrrole-2.6-diyl]] or PCPDTBT, poly (benzo [l, 2-b: 4,5-b ’] dithiophene-alt-thieno [3,4-c] pyrrole-
4.6-dione) ou PBDTTPD, poly[[4,8-bis[(2-éthylhexyl)oxy] benzo [l,2-b:4,5- b ’ ]dithiophène-2,6-diyl] [3 -fluoro-2- [(2-éthylhexyl) carbonyl] thiéno [3 ,4-b] thiophènediyl] ] ou PTB7, le poly[bis(4-phényl)(2,4,6-triméthylphényl)amine] ou PT AA. 4.6-dione) or PBDTTPD, poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5- b '] dithiophene-2,6-diyl] [3 -fluoro -2- [(2-ethylhexyl) carbonyl] thieno [3, 4-b] thiophenediyl]] or PTB7, poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine] or PT AA.
Un matériau de type P préféré est un mélange de PEDOT et de PSS, ou encore le PT AA, éventuellement dopé avec un sel de lithium. A preferred P-type material is a mixture of PEDOT and PSS, or alternatively PT AA, optionally doped with a lithium salt.
Le matériau de type P peut encore être choisi parmi les molécules semi-conductrices de type P telles que : The P-type material can also be chosen from P-type semiconductor molecules such as:
- la porphyrine ; - porphyrin;
- les : 7,7’-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b 2]dithiophene-2,6-diyl)bis(6-fluoro- 4-(5’-hexyl-[2,2’-bithiophen]-5-yl)benzo[c][l,2,5]thiadiazole) : p-DTS(FBTTh2)2 ; - les: 7,7 '- (4,4-bis (2-ethylhexyl) -4H-silolo [3,2-b: 4,5-b 2] dithiophene-2,6-diyl) bis (6-fluoro - 4- (5'-hexyl- [2,2'-bithiophen] -5-yl) benzo [c] [1,2,5] thiadiazole): p-DTS (FBTTh2) 2;
- les bore-dipyrométhènes (BODIPY) ; - boron-dipyromethenes (BODIPY);
- les molécules à noyau triphénylamine (TPA). - molecules with a triphenylamine nucleus (TPA).
Comme indiqué précédemment, un empilement multicouche selon l’invention peut être destiné à un dispositif photovoltaïque, notamment une cellule photovoltaïque pérovskite, en structure de type PIN ou NIP, ou encore de type tandem.
La structure « NIP » ou « PIN » traduit l’ordre de superposition des différentes couches dans l’empilement multicouche. As indicated above, a multilayer stack according to the invention may be intended for a photovoltaic device, in particular a perovskite photovoltaic cell, in a PIN or NIP type structure, or else of the tandem type. The “PIN” or “PIN” structure reflects the order of superposition of the different layers in the multilayer stack.
De préférence, l’empilement multicouche selon l’invention est en structure dite NIP. Un tel empilement comprend, dans cet ordre de superposition : Preferably, the multilayer stack according to the invention is in a so-called NIP structure. Such a stack comprises, in this order of superposition:
- une couche conductrice de type N telle que définie ci-dessus, - an N-type conductive layer as defined above,
- une couche active de type pérovskite, et - an active layer of perovskite type, and
- une couche conductrice de type P. - a P-type conductive layer.
Alternativement, dans les cas d’une structure dite PIN, un empilement multicouche selon l’invention comprend, dans cet ordre de superposition, les couches suivantes : Alternatively, in the case of a so-called PIN structure, a multilayer stack according to the invention comprises, in this order of superposition, the following layers:
- une couche conductrice de type P, - a P-type conductive layer,
- une couche active de type pérovskite, et - an active layer of perovskite type, and
- une couche conductrice de type N telle que définie ci-dessus. - an N-type conductive layer as defined above.
Un empilement selon l’invention, en particulier destiné à une cellule photovoltaïque, de type pérovskite, en structure NIP ou PIN, peut comporter plus particulièrement, comme représenté en figure 1, dans cet ordre de superposition au moins : A stack according to the invention, in particular intended for a photovoltaic cell, of the perovskite type, in the NIP or PIN structure, may more particularly include, as shown in FIG. 1, in this order of superposition at least:
- un substrat 11, en particulier transparent, souple ou rigide, tel qu’un substrat en verre ou en matière plastique, notamment en PET ; - a substrate 11, in particular transparent, flexible or rigid, such as a substrate made of glass or of plastic, in particular of PET;
- une première électrode, dite électrode inférieure 12 ; - a first electrode, called the lower electrode 12;
- une couche conductrice de type N 13 dans le cas d’une structure NIP ou de type P 15 dans le cas d’une structure PIN ; - a conductive layer of type N 13 in the case of a NIP structure or of type P 15 in the case of a PIN structure;
- une couche active de type pérovskite 14 ; an active layer of perovskite type 14;
- une couche conductrice de type P 15 dans le cas d’une structure NIP ou de type N 13 dans le cas d’une structure PIN ; et - A conductive layer of type P 15 in the case of a NIP structure or of type N 13 in the case of a PIN structure; and
- une deuxième électrode, dite électrode supérieure 16 ; lesdites couches de type N, de type P, et ladite couche active de type pérovskite étant en particulier telles que décrites précédemment. - a second electrode, called the upper electrode 16; said layers of N type, of type P, and said active layer of perovskite type being in particular as described above.
De préférence, un empilement multicouche selon l’invention est destiné à un dispositif photovoltaïque, en particulier une cellule photovoltaïque, de type pérovskite en structure NIP. Preferably, a multilayer stack according to the invention is intended for a photovoltaic device, in particular a photovoltaic cell, of the perovskite type in NIP structure.
Une telle structure multicouche est représentée de façon schématique en figure 1.
Un empilement multicouche en structure NIP selon l’invention 21 comporte plus particulièrement, dans cet ordre de superposition, au moins : Such a multilayer structure is shown schematically in FIG. 1. A multilayer stack in NIP structure according to the invention 21 more particularly comprises, in this order of superposition, at least:
- un substrat 11, en particulier transparent ; - a substrate 11, in particular transparent;
- une électrode inférieure 12 ; - a lower electrode 12;
- une couche conductrice de type N selon l’invention telle que définie précédemment 13 ;- An N-type conductive layer according to the invention as defined above 13;
- une couche active de type pérovskite 14 ; an active layer of perovskite type 14;
- une couche conductrice de type P 15 ; et a P-type conductive layer 15; and
- une électrode supérieure 16. - an upper electrode 16.
Selon encore une autre variante de réalisation, un empilement multicouche selon l’invention peut être destiné à une cellule photovoltaïque de type multijonction, et en particulier de type « tandem » ou à double jonction, dont l’une au moins des couches actives est en matériau pérovskite. According to yet another variant embodiment, a multilayer stack according to the invention may be intended for a photovoltaic cell of the multi-junction type, and in particular of the “tandem” or double-junction type, of which at least one of the active layers is in perovskite material.
De telles cellules de type tandem comportent deux ensembles multicouches empilés l’un sur l’autre, et dont les couches actives respectives présentent généralement des spectres d’absorption de la lumière différents. Dans ces cellules de type tandem, les photons non absorbés par la première couche active peuvent l’être par la seconde. La quantité de photons récupérée par l’ensemble des couches actives de la cellule est ainsi augmentée et le rendement électrique de cette dernière, amélioré. Such tandem-type cells have two multilayer assemblies stacked on top of each other, and the respective active layers of which generally exhibit different light absorption spectra. In these tandem cells, photons not absorbed by the first active layer may be absorbed by the second. The quantity of photons recovered by all the active layers of the cell is thus increased and the electrical efficiency of the latter is improved.
Un dispositif photovoltaïque de type tandem selon l’invention peut comporter un empilement selon l’invention, en structure NIP ou PIN, de préférence en structure NIP, tel que décrit précédemment. A tandem type photovoltaic device according to the invention may include a stack according to the invention, in a PIN or PIN structure, preferably in a PIN structure, as described above.
Il peut s’agir par exemple d’une cellule tandem silicium pérovskite. It may be, for example, a perovskite silicon tandem cell.
Le substrat 11 mis en œuvre dans un empilement multicouche selon l’invention tel que décrit précédemment, par exemple, pour une cellule photovoltaïque de type pérovskite, fait référence à une structure de base solide, sur une des faces de laquelle est formée l’électrode inférieure. Il peut se présenter sous la forme d’une plaque. Il peut être souple (flexible) ou rigide. The substrate 11 implemented in a multilayer stack according to the invention as described above, for example, for a photovoltaic cell of the perovskite type, refers to a solid base structure, on one of the faces of which the electrode is formed. lower. It can come in the form of a plaque. It can be soft (flexible) or rigid.
Il peut être de diverses natures, par exemple en verre ou en matière plastique, en particulier en polyester, de préférence en polyéthylène téréphtalate (PET), polyéthylène naphtalate (PEN) ou en polycarbonates.
Il peut notamment s’agir d’une plaque en verre. It can be of various kinds, for example glass or plastic, in particular polyester, preferably polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or polycarbonates. It may in particular be a glass plate.
L’électrode inférieure 12, au contact du support, peut être formée d’une couche transparente conductrice, par exemple en oxyde(s) conducteur(s) transparent(s) (TCO) tels que l’oxyde d’indium dopé à l’étain (ITO), l’oxyde de zinc dopé à l’aluminium (AZO), l’oxyde de zinc dopé au gallium (GZO), l’oxyde de zinc dopé à l’indium (IZO) et leurs mélanges, ou encore être formée d’un ensemble multicouche, par exemple AZO/Ag/AZO. The lower electrode 12, in contact with the support, may be formed of a transparent conductive layer, for example of transparent conductive oxide (s) (TCO) such as indium oxide doped with l 'tin (ITO), zinc oxide doped with aluminum (AZO), zinc oxide doped with gallium (GZO), zinc oxide doped with indium (IZO) and mixtures thereof, or still be formed of a multilayer assembly, for example AZO / Ag / AZO.
Elle peut également être formée par un réseau de nanofils, notamment en argent. It can also be formed by an array of nanowires, in particular made of silver.
L’électrode supérieure 16 peut être par exemple formée par une couche en or, en argent, ou par un réseau de nanofils, de préférence en argent. Elle peut également être en aluminium ou en oxyde conducteur transparent. The upper electrode 16 can, for example, be formed by a layer of gold, of silver, or of an array of nanowires, preferably of silver. It can also be in aluminum or in transparent conductive oxide.
PROCEDE DE PREPARATION D’UN EMPILEMENT SELON L’INVENTIONPROCESS FOR PREPARING A STACK ACCORDING TO THE INVENTION
Comme indiqué précédemment, le procédé de préparation d’un empilement selon l’invention comprend au moins une étape de formation d’une couche conductrice de type N selon l’invention, à basse température, en particulier à une température inférieure ou égale à 150°C, de préférence inférieure ou égale à 100°C et plus préférentiellement inférieure ou égale à 80°C, à partir d’une dispersion de nanoparticules d’oxyde(s) métallique(s) de type N dans un milieu solvant et dans des conditions opératoires ajustées pour obtenir le taux de carbone réduit souhaité dans la couche N formée. As indicated above, the process for preparing a stack according to the invention comprises at least one step of forming an N-type conductive layer according to the invention, at low temperature, in particular at a temperature less than or equal to 150 ° C, preferably less than or equal to 100 ° C and more preferably less than or equal to 80 ° C, from a dispersion of nanoparticles of N-type metal oxide (s) in a solvent medium and in operating conditions adjusted to obtain the desired reduced carbon content in the N layer formed.
Ladite couche conductrice de type N peut être avantageusement formée dans des conditions de température inférieure ou égale à 120°C, en particulier inférieure ou égale à 100°C, notamment inférieure ou égale à 80°C, de préférence inférieure ou égale à 50°C, et plus particulièrement à température ambiante Said N-type conductive layer can advantageously be formed under temperature conditions less than or equal to 120 ° C, in particular less than or equal to 100 ° C, in particular less than or equal to 80 ° C, preferably less than or equal to 50 ° C, and more particularly at room temperature
Il est entendu que, selon la structure NIP ou PIN de l’empilement multicouche selon l’invention, la couche de type N selon l’invention est formée en surface de l’électrode inférieure ou, alternativement, en surface d’une couche active de type pérovskite, telles que décrites précédemment.
Dans le cas de la formation d’une couche de type N selon l’invention dans un empilement multicouche de structure de type NIP selon l’invention, le procédé selon l’invention peut comprendre plus particulièrement au moins les étapes consistant à : It is understood that, according to the NIP or PIN structure of the multilayer stack according to the invention, the N-type layer according to the invention is formed on the surface of the lower electrode or, alternatively, on the surface of an active layer of perovskite type, as described above. In the case of the formation of an N-type layer according to the invention in a multilayer stack of NIP-type structure according to the invention, the method according to the invention can more particularly comprise at least the steps consisting in:
(a) disposer d’une première électrode 12, dite électrode inférieure, supportée par un substrat il ; (a) have a first electrode 12, called the lower electrode, supported by a substrate 11;
(b) former, en surface de ladite électrode inférieure 12, une couche 13 conductrice de type N selon l’invention, à une température inférieure ou égale à 150°C, de préférence inférieure ou égale à 100°C et plus préférentiellement inférieure ou égale à 80°C, à partir d’une dispersion de nanoparticules d’oxyde(s) métallique(s) de type N dans un milieu solvant, dans des conditions opératoires ajustées pour obtenir un taux de carbone dans la couche N inférieur ou égal à 20 % atomique ; et (b) forming, on the surface of said lower electrode 12, an N-type conductive layer 13 according to the invention, at a temperature less than or equal to 150 ° C, preferably less than or equal to 100 ° C and more preferably less, or equal to 80 ° C, from a dispersion of nanoparticles of N-type metal oxide (s) in a solvent medium, under operating conditions adjusted to obtain a level of carbon in the N layer that is less than or equal at 20 atomic%; and
(c) former successivement, à la surface de ladite couche 13 conductrice de type N formée à l’issue de l’étape (b), dans cet ordre de superposition : une couche active 14 de type pérovskite, une couche conductrice 15 de type P et une deuxième électrode 16, dite électrode supérieure, en particulier telles que définies précédemment. (c) successively forming, on the surface of said N-type conductive layer 13 formed at the end of step (b), in this order of superposition: an active layer 14 of perovskite type, a conductive layer 15 of the type P and a second electrode 16, called the upper electrode, in particular as defined above.
Plus particulièrement, la formation de ladite couche de type N par voie solvant selon l’invention met en œuvre le dépôt de ladite dispersion de nanoparticules d’oxyde(s) métallique(s), suivi de l’élimination du ou desdits solvants. More particularly, the formation of said N-type layer by the solvent route according to the invention involves the deposition of said dispersion of nanoparticles of metal oxide (s), followed by the elimination of said solvent or solvents.
Le dépôt de la dispersion peut être réalisé au moyen de toute technique connue de l’homme du métier, par exemple choisie parmi le dépôt à la toumette ou enduction centrifuge (« spin- coating » en langue anglaise), le dépôt au racloir, le couchage à lame (« blade-coating » en langue anglaise), le dépôt par spray ultrasonique, G enduction par filière à fente (« slot-die » en langue anglaise), l’impression jet d’encre, l’héliogravure, la flexographie et la sérigraphie. De préférence, le dépôt est réalisé par spin-coating. The dispersion can be deposited by means of any technique known to those skilled in the art, for example chosen from spin coating or centrifugal coating (“spin coating”), deposition with a scraper, blade coating, ultrasonic spray deposition, G slot-die coating, inkjet printing, gravure printing, flexography and screen printing. Preferably, the deposition is carried out by spin-coating.
Le milieu solvant de ladite dispersion de nanoparticules d’oxyde(s) métallique(s) peut comprendre un ou plusieurs solvants choisis parmi des solvants polaires, tels que de l’eau et/ou des alcools, ou encore de type éthers (par exemple les éthers d’alkyles et les éthers de glycol) ou esters (acétate, benzoate ou lactones par exemple). Il peut être par exemple constitué d’eau et/ou d’un alcool, tel que le butanol.
Bien entendu, la nature du ou des solvants est choisie au regard de la nature de la couche sous-jacente à la surface de laquelle est formée ladite couche conductrice de type N. The solvent medium for said dispersion of nanoparticles of metal oxide (s) can comprise one or more solvents chosen from polar solvents, such as water and / or alcohols, or of ether type (for example alkyl ethers and glycol ethers) or esters (acetate, benzoate or lactones for example). It may for example consist of water and / or an alcohol, such as butanol. Of course, the nature of the solvent (s) is chosen with regard to the nature of the underlying layer on the surface of which said N-type conductive layer is formed.
Il est entendu que l’élimination du ou desdits solvants est opérée dans des conditions de température inférieure ou égale à 150 °C, en particulier inférieure ou égale à 120 °C, de préférence inférieure ou égale à 100°C et plus préférentiellement inférieure ou égale à 80°C. Le séchage de la couche N peut être par exemple opéré à température ambiante. Par « température ambiante », on entend une température de 20°C± 5 °C. It is understood that the removal of said solvent (s) is carried out under temperature conditions less than or equal to 150 ° C, in particular less than or equal to 120 ° C, preferably less than or equal to 100 ° C and more preferably less than or equal to 80 ° C. The drying of the N layer can for example be carried out at room temperature. By "ambient temperature" is meant a temperature of 20 ° C ± 5 ° C.
Selon une première variante de réalisation, le taux de carbone dans la couche conductrice de type N est ajusté en contrôlant la teneur en composés précurseurs de carbone de la dispersion de nanoparticules d’oxyde(s) métallique(s) mise en œuvre. According to a first variant embodiment, the level of carbon in the N-type conductive layer is adjusted by controlling the content of carbon precursor compounds in the dispersion of nanoparticles of metal oxide (s) used.
Autrement dit, la couche de type N selon l’invention peut être formée par dépôt d’une dispersion de nanoparticules d’oxyde(s) métallique(s) présentant une teneur en composés précurseurs de carbone telle que la couche N résultante présente le taux de carbone résiduel souhaité, inférieur à 20 % atomique. In other words, the N-type layer according to the invention can be formed by depositing a dispersion of nanoparticles of metal oxide (s) having a content of carbon precursor compounds such that the resulting N layer exhibits the rate of desired residual carbon, less than 20 atomic%.
Les dispersions de nanoparticules d’oxyde(s) métallique(s) présentant une teneur réduite en composés précurseurs de carbone sont notamment des dispersions présentant une faible teneur en agents compatibilisants. De telles dispersions comprennent plus particulièrement moins de 5 % massique, en particulier moins de 1 % massique, en agent(s) compatibilisant(s), par rapport à la masse totale de la dispersion. The dispersions of nanoparticles of metal oxide (s) having a reduced content of carbon precursor compounds are in particular dispersions having a low content of compatibilizing agents. Such dispersions more particularly comprise less than 5% by mass, in particular less than 1% by mass, of compatibilizing agent (s), relative to the total mass of the dispersion.
De telles dispersions sont notamment des dispersions de nanoparticules stabilisées via le potentiel de surface (potentiel zêta) des particules, plus précisément par la mise en œuvre de contre-ions. Such dispersions are in particular dispersions of nanoparticles stabilized via the surface potential (zeta potential) of the particles, more precisely by the use of counterions.
De telles dispersions colloïdales de nanoparticules d’oxyde(s) métallique(s) peuvent être par exemple disponibles dans le commerce. Such colloidal dispersions of nanoparticles of metal oxide (s) may, for example, be commercially available.
Selon une autre variante de réalisation, le taux de carbone dans la couche N formée peut être ajusté, après dépôt de la dispersion de nanoparticules d’oxyde(s) métallique(s) et préalablement au dépôt de la couche sus-jacente dans l’empilement multicouche, par exemple préalablement au dépôt de la couche active pérovskite dans le cas d’un empilement
multicouche en structure NIP, en soumettant la couche de type N à un traitement d’élimination du carbone. According to another variant embodiment, the carbon content in the N layer formed can be adjusted, after depositing the dispersion of nanoparticles of metal oxide (s) and prior to depositing the overlying layer in the multilayer stack, for example prior to the deposition of the active perovskite layer in the case of a stack multilayer in NIP structure, by subjecting the N-type layer to a carbon removal treatment.
Il est entendu que le traitement d’élimination du carbone est opéré dans des conditions de basse température, en particulier à une température inférieure ou égale à 150°C, notamment inférieure ou égale à 120°C, en particulier inférieure ou égale à 100°C, de préférence inférieure ou égale à 80 °C, et plus particulièrement inférieure ou égale à 50°C. Avantageusement, le traitement d’élimination du carbone est opéré à température ambiante. Un tel traitement d’élimination du carbone peut plus particulièrement être un traitement par irradiation UV, par UV-ozone, à l’ozone et/ou par plasma, en particulier oxydant. It is understood that the carbon removal treatment is carried out under low temperature conditions, in particular at a temperature less than or equal to 150 ° C, in particular less than or equal to 120 ° C, in particular less than or equal to 100 ° C, preferably less than or equal to 80 ° C, and more particularly less than or equal to 50 ° C. Advantageously, the carbon removal treatment is carried out at room temperature. Such a carbon removal treatment can more particularly be a treatment by UV irradiation, by UV-ozone, with ozone and / or by plasma, in particular an oxidizing one.
Dans le cadre de la mise en œuvre d’un tel traitement d’élimination du carbone, il est possible d’obtenir ladite couche conductrice de type N, présentant le taux de carbone souhaité inférieur à 20 % atomique, à partir de toute dispersion de nanoparticules d’oxyde(s) métallique(s), quelle que soit la teneur en carbone de ladite dispersion. As part of the implementation of such a carbon removal treatment, it is possible to obtain said N-type conductive layer, having the desired carbon content of less than 20 atomic%, from any dispersion of nanoparticles of metal oxide (s), regardless of the carbon content of said dispersion.
Bien entendu, dans un mode de réalisation particulier d’un empilement multicouche selon l’invention, il est possible de combiner les deux variantes précitées pour atteindre le taux de carbone souhaité dans la couche conductrice de type N formée. Of course, in a particular embodiment of a multilayer stack according to the invention, it is possible to combine the two aforementioned variants to achieve the desired carbon content in the N-type conductive layer formed.
L’homme du métier est à même d’ajuster les conditions opératoires de mise en œuvre du traitement d’élimination du carbone, en particulier la durée d’exposition de la surface libre de ladite couche N aux UV, UV-ozone, à l’ozone ou à un plasma, notamment oxydant, pour atteindre le taux de carbone réduit souhaité selon l’invention. Those skilled in the art are able to adjust the operating conditions for carrying out the carbon removal treatment, in particular the duration of exposure of the free surface of said N layer to UV, UV-ozone, to l. ozone or a plasma, in particular an oxidizer, to achieve the desired reduced carbon content according to the invention.
Le traitement sous rayonnement UV peut plus particulièrement consister à irradier la surface libre de ladite couche N formée par une lumière UV de deux longueurs d’onde, par exemple de 185 et 256 nm. The treatment under UV radiation can more particularly consist in irradiating the free surface of said N layer formed by UV light of two wavelengths, for example 185 and 256 nm.
Toute source de lumière UV permettant d’irradier la surface de ladite couche N peut être utilisée pour une telle irradiation. A titre d’exemple, on peut citer une lampe à vapeur de mercure. Any UV light source making it possible to irradiate the surface of said N layer can be used for such irradiation. One example is a mercury vapor lamp.
Le traitement de ladite couche par irradiation UV peut être opéré pendant une durée allant de 5 à 60 minutes, notamment de 10 à 30 minutes. The treatment of said layer by UV irradiation can be carried out for a period ranging from 5 to 60 minutes, in particular from 10 to 30 minutes.
Comme indiqué précédemment, il est opéré dans des conditions de basse température. De préférence, l’irradiation UV est réalisée à une température inférieure ou égale à 150°C,
notamment inférieure ou égale à 100°C, de préférence inférieure ou égale à 80°C, et plus particulièrement inférieure ou égale à 50°C. Plus particulièrement, l’irradiation UV est réalisée à température ambiante. As indicated above, it is operated under low temperature conditions. Preferably, the UV irradiation is carried out at a temperature less than or equal to 150 ° C, in particular less than or equal to 100 ° C, preferably less than or equal to 80 ° C, and more particularly less than or equal to 50 ° C. More particularly, the UV irradiation is carried out at room temperature.
Le traitement par irradiation UV peut être effectué sous vide ou sous gaz. The UV irradiation treatment can be carried out in a vacuum or in a gas.
Le traitement par irradiation UV peut notamment être opéré sous atmosphère ambiante, le rayonnement UV transformant alors l’oxygène de l’air en ozone ; on parle dans ce cas de traitement UV-ozone. The UV irradiation treatment can in particular be carried out in an ambient atmosphere, the UV radiation then transforming the oxygen in the air into ozone; we speak in this case of UV-ozone treatment.
Le traitement par irradiation UV peut encore être opéré sous gaz inerte tel que de l’azote. The UV irradiation treatment can also be carried out under an inert gas such as nitrogen.
Selon un autre mode de réalisation particulier, le traitement d’élimination du carbone peut être un traitement par ozone (en l’absence d’irradiation UV). According to another particular embodiment, the carbon removal treatment can be an ozone treatment (in the absence of UV irradiation).
Un tel traitement par ozone peut être par exemple opéré en mettant en contact la surface libre de la couche N avec une atmosphère contenant de l’ozone généré par irradiation UV, l’échantillon étant placé derrière un filtre le protégeant dudit rayonnement. Such ozone treatment can be carried out, for example, by bringing the free surface of the N layer into contact with an atmosphere containing ozone generated by UV irradiation, the sample being placed behind a filter protecting it from said radiation.
Selon encore une autre variante de réalisation, l’élimination du carbone peut être réalisé par traitement plasma, notamment avec un plasma oxydant. According to yet another variant embodiment, the elimination of carbon can be carried out by plasma treatment, in particular with an oxidizing plasma.
Le plasma oxydant est par exemple un plasma comprenant de l’oxygène ou un plasma d’un mélange d’oxygène et d’argon. De préférence, le traitement est opéré avec un plasma d’oxygène. L’homme du métier est à même de mettre en œuvre l’équipement nécessaire pour générer un tel plasma. Oxidizing plasma is, for example, a plasma comprising oxygen or a plasma of a mixture of oxygen and argon. Preferably, the treatment is carried out with an oxygen plasma. A person skilled in the art is able to use the equipment necessary to generate such a plasma.
Les autres couches de l’empilement multicouche selon l’invention peuvent être réalisées par des techniques connues de l’homme du métier. Avantageusement, elles sont réalisées par voie humide, par des techniques de dépôt classiques, c’est-à-dire par des techniques mettant en œuvre le dépôt d’une encre à l’état liquide. The other layers of the multilayer stack according to the invention can be made by techniques known to those skilled in the art. Advantageously, they are carried out wet, by conventional deposition techniques, that is to say by techniques implementing the deposition of an ink in the liquid state.
En particulier, le dépôt d’une solution au cours du procédé de fabrication, en particulier pour former une couche conductrice de type P et une couche active de type pérovskite, peut être réalisé au moyen d’une technique telle que décrite précédemment pour la préparation d’une couche conductrice de type N.
Notamment, toutes les couches formées au cours des étapes du procédé peuvent être effectuées à l’aide d’une unique technique choisie parmi celles décrites ci-dessus. In particular, the deposition of a solution during the manufacturing process, in particular to form a conductive layer of type P and an active layer of perovskite type, can be carried out by means of a technique as described above for the preparation. an N-type conductive layer. In particular, all the layers formed during the process steps can be carried out using a single technique chosen from those described above.
Le dispositif photovoltaïque peut comporter en outre des moyens de connexion électrique, notamment des reprises de contact, qui permettent de relier les électrodes pour alimenter en courant un circuit électrique. The photovoltaic device may also include electrical connection means, in particular contact points, which make it possible to connect the electrodes in order to supply an electrical circuit with current.
L’invention va maintenant être décrite au moyen des exemples suivants, donnés bien entendu à titre illustratif et non limitatif de l’invention. The invention will now be described by means of the following examples, given of course by way of illustration and not limiting the invention.
Exemple Example
Dans les exemples qui suivent, différentes couches N sont testées dans un empilement d’une cellule photovoltaïque de type pérovskite, en structure « NIP », comme représenté schématiquement en figure 1. In the following examples, different N layers are tested in a stack of a perovskite-type photovoltaic cell, in "NIP" structure, as shown schematically in Figure 1.
- Le support 11 est un substrat en verre d’une épaisseur de 1,1 mm recouverte d’une couche d’oxyde conducteur d’ITO formant l’électrode inférieure 12. - The support 11 is a 1.1 mm thick glass substrate covered with a layer of ITO conductive oxide forming the lower electrode 12.
- Deux types de matériaux pérovskites sont testés : de type CH3NH3PM3 (encore noté MAPbL) ou de type pérovskite « double cation » CsxFAi-xPb(IyBri-y)3, FA symbolisant le cation formamidinium. - Two types of perovskite materials are tested: of the CH3NH3PM3 type (also noted MAPbL) or of the “double cation” perovskite type Cs x FAi- x Pb (I y Bri- y ) 3, FA symbolizing the formamidinium cation.
- La couche 13 de type N est formée comme décrit ci-dessous. - The N-type layer 13 is formed as described below.
- La couche 15 de type P est composée de PT AA dopé avec un sel de lithium, d’épaisseur 80 nm. - The P-type layer 15 is composed of PT AA doped with a lithium salt, 80 nm thick.
- L’électrode supérieure 16 est une couche d’or, d’épaisseur 100 nm.
- The upper electrode 16 is a layer of gold, 100 nm thick.
La surface active des dispositifs est de 0,28 cm2 et leurs performances ont été mesurées à 25°C dans des conditions standards d’éclairement (1000 W/m2, AM 1,5G). The active surface of the devices is 0.28 cm 2 and their performance was measured at 25 ° C. under standard lighting conditions (1000 W / m 2 , AM 1.5G).
Les performances photovoltaïques des cellules sont plus particulièrement mesurées en enregistrant les caractéristiques courant-tension des dispositifs sur un appareil Keithley® SMU 2600 sous éclairement AM 1,5G à une puissance de 1000 W.m 2. The photovoltaic performances of the cells are more particularly measured by recording the current-voltage characteristics of the devices on a Keithley ® SMU 2600 device under AM 1.5G illumination at a power of 1000 Wm 2 .
La cellule testée est éclairée au travers de la face Verre/ITO à l’aide d’un simulateur Oriel.
Une cellule silicium mono-cristallin calibrée au Fraunhofer ISE (Fribourg, Allemagne) est utilisée comme référence pour s’assurer que la puissance lumineuse délivrée par le simulateur est bien égale à 1000 W.m 2. The cell under test is illuminated through the Glass / ITO face using an Oriel simulator. A mono-crystalline silicon cell calibrated at the Fraunhofer ISE (Friborg, Germany) is used as a reference to ensure that the light power delivered by the simulator is indeed equal to 1000 Wm 2 .
Les paramètres caractéristiques du fonctionnement des dispositifs (Tension de circuit ouvert Voc, densité de courant de court-circuit Jsc, facteur de forme FF et rendement de conversion PCE) sont déterminés à partir des courbes courant-tension. The characteristic parameters of the operation of the devices (open circuit voltage Voc, short-circuit current density Jsc, form factor FF and conversion efficiency PCE) are determined from the current-voltage curves.
Exemple 1
encre contenant une teneur contrôlée en carbone Example 1 ink containing a controlled carbon content
Différentes couches N d’oxyde d’étain (SnCh) sont testées dans un empilement tel que décrit précédemment. Different N tin oxide (SnCh) layers are tested in a stack as described above.
Les couches N, d’une épaisseur d’environ 50 nm, sont formées par spin-coating, opéré à température ambiante, à partir de solutions commerciales distinctes (appelées « encres ») de nanoparticules de SnCL : The N layers, approximately 50 nm thick, are formed by spin-coating, operated at room temperature, from separate commercial solutions (called "inks") of SnCL nanoparticles:
- deux dispersions de particules de SnCh dans l’eau (Disp 1 et Disp 2), stabilisées via la charge de surface des particules, et qui diffèrent l’une de l’autre par la nature des contre- ions ; et - two dispersions of SnCh particles in water (Disp 1 and Disp 2), stabilized via the surface charge of the particles, and which differ from each other in the nature of the counterions; and
- une dispersion (notée Disp 3) de particules de SnCL dans un mélange de butanols. - a dispersion (denoted Disp 3) of SnCL particles in a mixture of butanols.
Pour ces trois dispersions, la taille des particules de SnCh est de l’ordre de 10-15 nm. For these three dispersions, the particle size of SnCh is in the range of 10-15 nm.
Les dispersions 1 et 2 contiennent une teneur réduite en compatibilisants, source de carbone, comparativement à la dispersion 3. Dispersions 1 and 2 contain a reduced content of compatibilizers, a source of carbon, compared to dispersion 3.
Les dispersions 1 et 2 conduisent, après application par spin-coating, à des couches de nanoparticules de SnCh contenant environ 15 % atomique de carbone, tandis que la dispersion 3 conduit à une couche de SnCL contenant environ 40 % atomique de carbone. Le taux en carbone (concentration atomique) est déterminé par spectrométrie de photoélectrons induits par rayons X (XPS pour « X-Ray photoelectron spectrometry » en langue anglaise). Dispersions 1 and 2 lead, after application by spin-coating, to layers of SnCh nanoparticles containing approximately 15 atomic% of carbon, while dispersion 3 results in a layer of SnCL containing approximately 40 atomic% of carbon. The carbon content (atomic concentration) is determined by X-ray induced photoelectron spectrometry (XPS for “X-Ray photoelectron spectrometry”).
Aucun traitement post-dépôt des couches N ainsi formées n’est réalisé. No post-deposition treatment of the N layers thus formed is carried out.
Résultats
Le taux de carbone pour chacune des couches N formées, ainsi que les performances des différentes cellules photovoltaïques formées avec un empilement multicouche intégrant chacune de ces couches N, sont présentés dans le tableau 1 ci-après. Results The carbon content for each of the N layers formed, as well as the performances of the various photovoltaic cells formed with a multilayer stack integrating each of these N layers, are presented in Table 1 below.
[Tableau 1]
[Table 1]
Exemple 2 Example 2
Formation de la couche conductrice de type N avec contrôle du taux de carbone par traitement post-dépôt d’élimination du carbone Formation of the N-type conductive layer with control of the carbon content by post-deposition treatment of carbon removal
Différentes couches N d’oxyde de zinc dopé à l’aluminium (AZO) et d’oxyde d’étain (SnC ) sont testées dans un empilement tel que décrit précédemment, comprenant une couche pérovskite de type MAPbL. Different N layers of zinc oxide doped with aluminum (AZO) and tin oxide (SnC) are tested in a stack as described above, comprising a perovskite layer of MAPbL type.
Les couches N, d’une épaisseur d’environ 50 nm, sont formées à température ambiante, par spin-coating à partir de solutions commerciales distinctes de nanoparticules d’AZO ou de SnCh, le cas échéant suivi d’un traitement d’élimination du carbone, par irradiation UV, par UV-ozone ou à l’ozone, comme détaillé ci-dessous. The N layers, with a thickness of about 50 nm, are formed at room temperature, by spin-coating from separate commercial solutions of AZO or SnCh nanoparticles, if necessary followed by an elimination treatment. carbon, by UV irradiation, by UV-ozone or by ozone, as detailed below.
La dispersion 4 (Disp 4) est une dispersion de particules de ZnO dopé Al ou AZO, de taille moyenne 12 nm, dans du 2-propanol. Dispersion 4 (Disp 4) is a dispersion of particles of ZnO doped Al or AZO, of average size 12 nm, in 2-propanol.
Le traitement par irradiation UV de la couche N, après dépôt de la dispersion par spin- coating, est opéré pendant 30 minutes, à une longueur d’onde de 185 nm et 256 nm, sous atmosphère inerte et température ambiante. The UV irradiation treatment of the N layer, after depositing the dispersion by spin coating, is carried out for 30 minutes, at a wavelength of 185 nm and 256 nm, under an inert atmosphere and room temperature.
Le traitement par UV-ozone est opéré par exposition à un rayonnement UV générant de l’ozone de la surface de la couche N, après dépôt de la dispersion par spin-coating, sous atmosphère et température ambiantes, pendant 30 minutes dans un équipement de la marque JetLight.
Le traitement à l’ozone est opéré dans le même équipement JetLight et dans les mêmes conditions, excepté le fait que l’échantillon est placé derrière un filtre évitant l’exposition au rayonnement UV mais convenant à l’exposition à l’ozone généré pendant 30 minutes.The UV-ozone treatment is carried out by exposure to UV radiation generating ozone of the surface of the N layer, after deposition of the dispersion by spin-coating, under ambient atmosphere and temperature, for 30 minutes in equipment for the JetLight brand. The ozone treatment is carried out in the same JetLight equipment and under the same conditions, except that the sample is placed behind a filter avoiding exposure to UV radiation but suitable for exposure to ozone generated during 30 minutes.
Les différents traitements (irradiation UV, UV-ozone, ozone) permettent de réduire le taux de carbone de la couche déposée. A titre d’exemple, la figure 2 représente l’évolution du taux de carbone dans une couche N à base de nanoparticules d’ AZO en fonction de la durée du traitement UV-ozone. The different treatments (UV irradiation, UV-ozone, ozone) make it possible to reduce the carbon content of the deposited layer. By way of example, FIG. 2 represents the evolution of the carbon content in an N layer based on AZO nanoparticles as a function of the duration of the UV-ozone treatment.
Résultats Le taux de carbone pour chacune des couches N ainsi formées, après le traitement d’élimination du carbone, ainsi que les performances des différentes cellules photovoltaïques formées à partir des empilements multicouches intégrant chacune de ces couches conductrices de type N, sont présentés dans le tableau 2 ci-après. [Tableau 2]
Results The carbon content for each of the N layers thus formed, after the carbon removal treatment, as well as the performance of the various photovoltaic cells formed from the multilayer stacks integrating each of these N-type conductive layers, are presented in the table 2 below. [Table 2]
Claims
1. Empilement multicouche utile pour former un dispositif photovoltaïque, ledit empilement comprenant au moins : 1. Multilayer stack useful for forming a photovoltaic device, said stack comprising at least:
- une couche conductrice de type N (13) ; - an N-type conductive layer (13);
- une couche conductrice de type P (15) ; et - a P-type conductive layer (15); and
- une couche active du point de vue photovoltaïque (14), dite couche active, de type pérovskite, intercalée entre lesdites couches conductrices de type N et de type P, dans lequel ladite couche conductrice de type N est à base de nanoparticules individualisées d’oxyde(s) métallique(s) de type N et présente un taux de carbone inférieur ou égal à 20 % atomique ; lesdites nanoparticules d’oxyde(s) métallique(s) présentant une taille particulaire moyenne comprise entre 5 et 20 nm. an active layer from the photovoltaic point of view (14), called an active layer, of perovskite type, interposed between said conductive layers of N type and of P type, in which said N type conductive layer is based on individualized nanoparticles of N-type metal oxide (s) and has a carbon content of less than or equal to 20 atomic%; said nanoparticles of metal oxide (s) having an average particle size of between 5 and 20 nm.
2. Empilement multicouche selon la revendication précédente, dans lequel lesdites nanoparticules d’oxyde(s) métallique(s) de type N sont choisies parmi des nanoparticules d’oxyde de zinc ZnO, d’oxydes de titane TiOx avec x compris entre 1 et 2, d’oxyde d’étain SnCh, d’oxydes de zinc dopés, par exemple d’oxyde de zinc dopé à l’aluminium AZO, d’oxyde de zinc dopé à l’indium IZO, d’oxyde de zinc dopé au gallium GZO, d’oxydes de titane dopés, par exemple d’oxyde de titane dopé à l’azote, au phosphore, au fer, au tungstène ou au manganèse ; et leurs mélanges ; en particulier parmi des nanoparticules d’oxyde d’étain SnCh, des nanoparticules d’oxyde de zinc dopé, en particulier d’oxyde de zinc dopé à l’aluminium AZO et leurs mélanges. 2. Multilayer stack according to the preceding claim, wherein said nanoparticles of N-type metal oxide (s) are chosen from nanoparticles of zinc oxide ZnO, titanium oxides TiO x with x between 1 and 2, tin oxide SnCh, doped zinc oxides, eg zinc oxide doped with aluminum AZO, zinc oxide doped with indium IZO, doped zinc oxide with gallium GZO, doped titanium oxides, for example titanium oxide doped with nitrogen, phosphorus, iron, tungsten or manganese; and their mixtures; in particular from nanoparticles of tin oxide SnCh, nanoparticles of doped zinc oxide, in particular of zinc oxide doped with AZO aluminum, and mixtures thereof.
3. Empilement multicouche selon l’une quelconque des revendications précédentes, dans lequel lesdites nanoparticules d’oxyde(s) métallique(s) présentent une taille particulaire moyenne comprise entre 8 et 15 nm. 3. A multilayer stack according to any one of the preceding claims, wherein said nanoparticles of metal oxide (s) have an average particle size of between 8 and 15 nm.
4. Empilement multicouche selon l’une quelconque des revendications précédentes, dans lequel ladite couche conductrice de type N présente un taux de carbone inférieur ou égal à 17 % atomique, de préférence inférieur ou égal à 15 % atomique, en particulier compris entre 0 et 15 % atomique. 4. Multilayer stack according to any one of the preceding claims, in which said N-type conductive layer has a carbon content of less than or equal to 17 atomic%, preferably less than or equal to 15 atomic%, in particular between 0 and 15% atomic.
5. Empilement multicouche selon l’une quelconque des revendications précédentes, dans lequel ladite couche active de type pérovskite est formée d’un matériau pérovskite de formule ABX3, avec : 5. A multilayer stack according to any one of the preceding claims, wherein said perovskite-like active layer is formed of a perovskite material of formula ABX3, with:
. A représentant un cation ou une combinaison de cations métalliques ou organiques ;
. A representing a cation or a combination of metallic or organic cations;
. B représentant un ou plusieurs éléments métalliques, tels que le plomb, l’étain, le bismuth et l’antimoine ; et . B representing one or more metallic elements, such as lead, tin, bismuth and antimony; and
. X représentant un ou plusieurs anions, en particulier un ou plusieurs halogènes, et plus particulièrement choisis parmi le chlore, le brome, l’iode et leurs mélanges. . X representing one or more anions, in particular one or more halogens, and more particularly chosen from chlorine, bromine, iodine and mixtures thereof.
6. Empilement multicouche selon l’une quelconque des revendications précédentes, ledit empilement étant de structure NIP ou PIN, en particulier comportant, dans cet ordre de superposition, au moins : 6. Multilayer stack according to any one of the preceding claims, said stack being of NIP or PIN structure, in particular comprising, in this order of superposition, at least:
- un substrat (11), en particulier transparent, souple ou rigide, tel qu’un substrat en verre ou en matière plastique, notamment en polyéthylène téréphtalate ; - a substrate (11), in particular transparent, flexible or rigid, such as a substrate made of glass or of plastic, in particular of polyethylene terephthalate;
- une première électrode (12), dite électrode inférieure, en particulier formée d’une couche transparente conductrice, notamment en oxyde(s) conducteur(s) transparent(s) ; - a first electrode (12), called the lower electrode, in particular formed of a transparent conductive layer, in particular of transparent conductive oxide (s);
- ladite couche conductrice de type N (13) dans le cas d’une structure NIP ou de type P (15) dans le cas d’une structure PIN ; - said N-type conductive layer (13) in the case of a NIP structure or of P-type (15) in the case of a PIN structure;
- ladite couche active de type pérovskite (14) ; - said active layer of perovskite type (14);
- ladite couche conductrice de type P (15) dans le cas d’une structure NIP ou de type N (13) dans le cas d’une structure PIN ; et - said P-type conductive layer (15) in the case of a NIP structure or of N-type (13) in the case of a PIN structure; and
- une deuxième électrode (16), dite électrode supérieure. - a second electrode (16), called the upper electrode.
7. Procédé de préparation d’un empilement multicouche tel que défini selon l’une quelconque des revendications 1 à 6, comprenant au moins une étape de formation de ladite couche conductrice de type N à partir d’une dispersion de nanoparticules d’oxyde(s) métallique(s) de type N dans un milieu solvant, à une température inférieure ou égale à 150°C, et dans des conditions opératoires ajustées pour obtenir le taux de carbone souhaité dans ladite couche N. 7. A method of preparing a multilayer stack as defined according to any one of claims 1 to 6, comprising at least one step of forming said N-type conductive layer from a dispersion of oxide nanoparticles ( s) N-type metal (s) in a solvent medium, at a temperature less than or equal to 150 ° C, and under operating conditions adjusted to obtain the desired carbon content in said N layer.
8. Procédé selon la revendication précédente, dans lequel ladite couche conductrice de type N est formée à une température inférieure ou égale à 120°C, en particulier inférieure ou égale à 100°C, notamment inférieure ou égale à 80°C, de préférence inférieure ou égale à 50°C, et plus particulièrement à température ambiante. 8. Method according to the preceding claim, wherein said N-type conductive layer is formed at a temperature less than or equal to 120 ° C, in particular less than or equal to 100 ° C, in particular less than or equal to 80 ° C, preferably. less than or equal to 50 ° C, and more particularly at room temperature.
9. Procédé selon la revendication 7 ou 8, dans lequel le taux de carbone dans ladite couche conductrice de type N est contrôlé en ajustant la teneur en composés précurseurs de carbone de la dispersion de nanoparticules d’oxyde(s) métallique(s) mise en œuvre, en particulier en mettant en œuvre une dispersion de nanoparticules d’oxyde(s) métallique(s) stabilisées via le potentiel de surface des nanoparticules.
9. The method of claim 7 or 8, wherein the level of carbon in said N-type conductive layer is controlled by adjusting the content of carbon precursor compounds of the dispersion of nanoparticles of metal oxide (s) placed. implementation, in particular by using a dispersion of nanoparticles of metal oxide (s) stabilized via the surface potential of the nanoparticles.
10. Procédé selon l’une quelconque des revendications 7 à 9, dans lequel le taux de carbone dans ladite couche conductrice de type N est contrôlé, en soumettant, après dépôt de ladite dispersion de nanoparticules d’oxyde(s) métallique(s) et préalablement au dépôt de la couche sus-jacente, la couche de type N à un traitement d’élimination du carbone, en particulier par irradiation UV, par UV-ozone, à l’ozone et/ou par plasma, en particulier oxydant ; de préférence par un traitement par irradiation UV, par UV-ozone et/ou à l’ozone. 10. A method according to any one of claims 7 to 9, wherein the level of carbon in said N-type conductive layer is controlled, by subjecting, after deposition of said dispersion of nanoparticles of metal oxide (s) (s) and prior to the deposition of the overlying layer, the N-type layer undergoes a carbon removal treatment, in particular by UV irradiation, by UV-ozone, with ozone and / or by plasma, in particular oxidizing; preferably by treatment with UV irradiation, UV-ozone and / or ozone.
11. Procédé selon l’une quelconque des revendications 7 à 10, pour la préparation d’un empilement multicouche de structure NIP, ledit procédé comprenant au moins les étapes consistant à : (a) disposer d’une première électrode (12), dite électrode inférieure, supportée par un substrat (11) ; 11. A method according to any one of claims 7 to 10, for the preparation of a multilayer stack of NIP structure, said method comprising at least the steps consisting in: (a) having a first electrode (12), said lower electrode, supported by a substrate (11);
(b) former en surface de ladite électrode inférieure (12), ladite couche conductrice de type N (13) ; et (b) forming, on the surface of said lower electrode (12), said N-type conductive layer (13); and
(c) former, successivement, à la surface de ladite couche (13) conductrice de type N formée en étape (b), dans cet ordre de superposition : une couche active (14) de type pérovskite, une couche (15) conductrice de type P et une deuxième électrode (16) dite électrode supérieure. (c) forming, successively, on the surface of said N-type conductive layer (13) formed in step (b), in this order of superposition: an active layer (14) of perovskite type, a conductive layer (15) of type P and a second electrode (16) called the upper electrode.
12. Dispositif photovoltaïque comportant au moins un empilement multicouche tel que défini selon l’une quelconque des revendications 1 à 6 ou obtenu par un procédé tel que défini selon l’une quelconque des revendications 7 à 11. 12. Photovoltaic device comprising at least one multilayer stack as defined in any one of claims 1 to 6 or obtained by a process as defined in any one of claims 7 to 11.
13. Dispositif photovoltaïque selon la revendication précédente, ledit dispositif étant une cellule photovoltaïque pérovskite en structure NIP ou PIN, de préférence en structure NIP, ou une cellule photovoltaïque de type multijonction, en particulier de type tandem.
13. Photovoltaic device according to the preceding claim, said device being a perovskite photovoltaic cell in NIP or PIN structure, preferably in NIP structure, or a multi-junction type photovoltaic cell, in particular of the tandem type.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1912397A FR3102887B1 (en) | 2019-11-05 | 2019-11-05 | N layer with controlled carbon content in a perovskite type photovoltaic device |
PCT/EP2020/080788 WO2021089528A1 (en) | 2019-11-05 | 2020-11-03 | N layer having a controlled carbon content in a perovskite-type photovoltaic device |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4055637A1 true EP4055637A1 (en) | 2022-09-14 |
Family
ID=69375594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20800137.0A Pending EP4055637A1 (en) | 2019-11-05 | 2020-11-03 | N layer having a controlled carbon content in a perovskite-type photovoltaic device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4055637A1 (en) |
FR (1) | FR3102887B1 (en) |
WO (1) | WO2021089528A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9136408B2 (en) | 2013-11-26 | 2015-09-15 | Hunt Energy Enterprises, Llc | Perovskite and other solar cell materials |
KR101773972B1 (en) * | 2016-04-01 | 2017-09-04 | 한국과학기술연구원 | Electron transporting layer for flexible perovskite solar cells and flexible perovskite solar cells including the same |
-
2019
- 2019-11-05 FR FR1912397A patent/FR3102887B1/en active Active
-
2020
- 2020-11-03 WO PCT/EP2020/080788 patent/WO2021089528A1/en unknown
- 2020-11-03 EP EP20800137.0A patent/EP4055637A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2021089528A1 (en) | 2021-05-14 |
FR3102887B1 (en) | 2022-06-24 |
FR3102887A1 (en) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3161883B1 (en) | Multi-thread tandem cells | |
EP2674516A1 (en) | Method of electrochemically manufacturing nanowires from CuSCN | |
WO2015079378A1 (en) | Ink for forming p layers in organic electronic devices | |
FR3013897A1 (en) | ORGANIC ELECTRONIC DEVICES | |
WO2021130461A1 (en) | Photovoltaic module | |
EP2561560B1 (en) | Bulk heterojunction organic photovoltaic cell comprising an electrically active layer having a vertical segregation | |
EP3435436B1 (en) | Multilayer stack useful as p layer for photovoltaic device | |
EP4055637A1 (en) | N layer having a controlled carbon content in a perovskite-type photovoltaic device | |
WO2022096802A1 (en) | Tandem photovoltaic device combining a silicon-based sub-cell and a perovskite-based sub-cell comprising a p- or n-type material/perovskite composite layer | |
EP3402749A1 (en) | Tungstate ion solution and hybrid photovoltaic device | |
EP3650576A1 (en) | Method for forming a transparent electrode | |
EP4241319A1 (en) | Tandem photovoltaic device combining a silicon-based sub-cell and a perovskite-based sub-cell comprising an n-layer with controlled carbon content | |
WO2005124891A1 (en) | Method for preparing a photoactive semiconductor material, material produced in this way, and associated applications | |
EP3836218B1 (en) | Composite perovskite/p-type or n-type material layer in a photovoltaic device | |
EP3333920B1 (en) | Photovoltaic cell provided with a composite n-layer | |
EP3552243B1 (en) | Photodetector with charge carrier collection layer comprising functionalized nanowires | |
FR3082664A1 (en) | FILM FOR PHOTOVOLTAIC CELL, MANUFACTURING METHOD, PHOTOVOLTAIC CELL AND PHOTOVOLTAIC MODULE THEREOF | |
FR3060205A1 (en) | PREPARATION OF A MULTILAYER STACK FOR A TANDEM TYPE PHOTOVOLTAIC DEVICE COMPRISING A SINGLE RECOMBINANT LAYER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |