EP4053350B1 - Lastabtragende halbzeugstruktur - Google Patents

Lastabtragende halbzeugstruktur Download PDF

Info

Publication number
EP4053350B1
EP4053350B1 EP21160799.9A EP21160799A EP4053350B1 EP 4053350 B1 EP4053350 B1 EP 4053350B1 EP 21160799 A EP21160799 A EP 21160799A EP 4053350 B1 EP4053350 B1 EP 4053350B1
Authority
EP
European Patent Office
Prior art keywords
finished product
semi
layer
product structure
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21160799.9A
Other languages
English (en)
French (fr)
Other versions
EP4053350A1 (de
EP4053350A8 (de
Inventor
Bernd Dr. Schiller
Karl Radimersky
Lothar Prof. Kroll
Wolfgang Prof. Nendel
Marcus Klingelhöfer
Sebastian Iwan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hauraton GmbH and Co KG
Original Assignee
Hauraton GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauraton GmbH and Co KG filed Critical Hauraton GmbH and Co KG
Priority to EP21160799.9A priority Critical patent/EP4053350B1/de
Publication of EP4053350A1 publication Critical patent/EP4053350A1/de
Publication of EP4053350A8 publication Critical patent/EP4053350A8/de
Application granted granted Critical
Publication of EP4053350B1 publication Critical patent/EP4053350B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • E03F5/06Gully gratings

Definitions

  • the present invention relates to a load-bearing semi-finished product structure, namely a cover grate or a shaft cover for drainage channels, drain or inlet boxes or shafts, comprising lateral support areas with longitudinal beams, as well as a plurality of transverse ribs running between the longitudinal beams, the transverse ribs having a dimensionally stable core which is between a is cohesively absorbed by a top layer and an underside layer.
  • Such a semi-finished product structure is already available WO 2017/220487 A1 previously known.
  • a manhole cover is described there, which connects a top plate with the interposition of a ribbed plastic body to a bottom reinforcing element, although not cohesively.
  • the load to be absorbed by the shaft cover is introduced into the reinforcing element and from there into the wall of the drainage body.
  • Drainage channels are used in both industrial and public or private sectors. Their job is to absorb surface water from paved surfaces and drain it away in a targeted manner. In the majority of applications, the drainage channels must be designed to be traversable because the areas to be drained, such as streets, parking lots, Farm and industrial areas should be available in their entirety.
  • covers or cover gratings are used, which on the one hand completely cover the gutter body embedded in the ground, but on the other hand are water-permeable so that the incoming surface water can flow away.
  • the covers are usually firmly connected to the gutter body. This is done either with a force-fitting screw connection or with a quick-release system, in which the cover inserted into a gutter frame is held back in a form-fitting manner.
  • EN DIN 1433 classifies drainage systems into different load classes, starting from class A for traffic areas intended exclusively for pedestrians and cyclists to class F for areas that can be used with particularly high wheel loads, such as aircraft operations areas.
  • the drainage systems especially their covers, must be able to absorb very high static and dynamic loads.
  • Covers therefore have supporting structures in the form of ribs or honeycombs in a lower area, through which the loads can be absorbed.
  • the structures are designed in such a way that significant loads can be transferred due to their geometry, i.e. structure and component thickness, as well as the material used.
  • Plastic covers also offer numerous advantages. First of all, they are rustproof and antimagnetic, the latter being particularly advantageous when used in the area of train platforms due to the magnetic fields that exist there. They also have a high degree of attenuation, which reduces noise that occurs during operation. Noise pollution caused by rattling noises is reduced or does not occur at all.
  • plastic cover gratings also ensures they are easy to handle during installation and quick and inexpensive to transport. Removing the covers to enable the gutter bodies to be cleaned is easy and requires little effort. Plastic covers can also be manufactured with precise dimensions, which enables a high level of functional integration and high-quality designs.
  • Fiber-reinforced plastics or fiber-reinforced plastics are a subgroup of composite materials. They draw This is due to the fact that the fibers reinforce the plastics and raise them to a higher mechanical level. What is crucial is the interaction between the fiber and the plastic matrix. Although fibers alone can absorb high tensile forces, they cannot represent components subject to bending or pressure. Unreinforced plastics can be components, but are sometimes brittle in the case of thermoset reactive resins or too flexible in the case of thermoplastics. Only by combining fibers and plastic and firmly bonding the plastic matrix to the fibers can heavy-duty components be produced.
  • the DE 102015101672 A1 deals with fiber-reinforced composite material and a manufacturing process for it. Two fiber-reinforced components are described which, due to the process, achieve better adhesion strength.
  • the DE 10105812 A1 describes a process for producing a flat semi-finished product. This is a fiber-reinforced component.
  • the EP 2679377 B1 describes a computer-implemented method for determining the fiber orientations in a liquid with polymer chains for the injection molding process using simulation. The process treats short and long fibers.
  • WO 2017009152 A1 a wood veneer-coated plastic molding is described.
  • the top layer here is made of wood; the material thickness is between 0.05 and 6.0 mm. These are thin-walled structures intended for the automotive sector.
  • the DE 10105813 A1 describes a process for producing a thermoplastically deformable, fiber-reinforced, thin semi-finished product, while in the DE 10114553 A1 a method for producing a thick, thermoplastically deformable, fiber-reinforced semi-finished product is described.
  • the EP 1714772 A1 describes a thermoplastically processable composite material made of at least one fiber fleece layer made of thermoplastic fibers and optionally reinforcing fibers, as well as a fabric or scrim layer made of reinforcing fibers, the layers being needled together.
  • thermoplastically deformable, fiber-reinforced semi-finished product consisting of two fiber-reinforced components.
  • EP 1770115 A1 Another fiber-reinforced, flat semi-finished product is described.
  • the EP 1890868 B1 describes a rigid composite panel made of two fiber-reinforced components.
  • the EP 2374611 A1 relates to a concrete formwork panel made of lightweight plastic with a core layer made of polypropylene that contains air voids and at least one cover layer made of compact polypropylene.
  • the present invention is based on the object of creating a load-bearing semi-finished product structure, namely a cover grate or a manhole cover for drainage channels, drain or inlet boxes or shafts, which is made of plastic and is both light and antimagnetic, but still sufficiently resilient for Traffic areas and at the same time can be produced cost-effectively.
  • a load-bearing semi-finished structure known from the prior art, namely a cover grid or a Manhole cover for drainage channels, drain or inlet boxes or shafts, comprising lateral support areas with longitudinal beams, as well as a plurality of transverse ribs running between the longitudinal beams, the transverse ribs having a dimensionally stable core.
  • the invention provides for the creation of a cover grid in which the top covering fabric and the bottom covering fabric are each formed from a fiber-reinforced composite material with long fibers aligned in the same direction or, particularly preferably, continuous fibers.
  • the covering scrims can be designed in one or more layers.
  • the pressing compounds are preferably provided as textile fabrics, as scrims or mats, but also in all other forms of provision such as shapeless masses or other containers. This involves a gradual reduction in the mechanical properties, especially the strength and possibly the weight of the material used, from the edge towards the neutral bending zone in the core of the component.
  • High-strength materials are located in the edge areas made of continuous fibers on both the compression and tension sides of the component.
  • the core of the component contains short or long fiber reinforced and/or unfilled materials. The result is a cover grate that is particularly resilient on the pressure side and the tension side due to the composite materials with long or endless fibers inserted there, while the core of the construction can be made of inexpensive and lightweight material.
  • the single or multi-layer cover fabrics can extend along an upper side and along an underside of the transverse ribs into the support areas. In addition, it can also make sense to provide the textile fabrics on side surfaces in order to obtain a continuous surface.
  • the dimensionally stable core can preferably be formed from a matrix material with fillers.
  • thermoplastic matrix systems preferably polyethylene or polyolefins, can be used for this purpose, which either have fillers or are used unfilled. If fillers are used, they can particularly advantageously be thermoplastic foams or hollow glass spheres, which influence the mechanical properties and component weight of the matrix systems.
  • the dimensionally stable core can also be formed from unreinforced thermoplastics, preferably with processing additives.
  • Talc calcium carbonate or aluminum hydrate, which are used as fillers and reinforcing agents in thermoplastics, can be used as processing additives. While talc and calcium carbonate improve the thermoformability of thermoplastics, aluminum hydrate, or aluminum hydroxide, is used because of its flame-retardant properties. Instead of aluminum hydrate, magnesium hydroxide can also be used, especially at processing temperatures above 200 ° C.
  • At least one further intermediate layer can be arranged between the core and the upper, already single or multi-layer cover fabric and / or between the core and the lower single or multi-layer cover fabric, which is connected to the surrounding layers of the single or multi-layer Cover fabric is cohesively connected.
  • the at least one intermediate layer can be formed from a fiber-reinforced matrix with undirected short or long fibers.
  • the fibers used can be fibers made of glass, basalt or carbon, in particular natural fibers or synthetic fibers, or a mixture of several of the aforementioned fibers, each in one or more layers act. Carbon and aramid fibers can also be used for this.
  • the matrix is preferably a thermoplastic. In particular, polyolefins, polyamide, polybutylene terephthalates and polycarbonates are used as matrix materials.
  • the top covering fabric can be covered with a protective layer for mechanical, medial and / or thermal protection of the top covering fabric, whereby this protective layer can advantageously be a filled or unfilled, thermoplastic, preferably polyolefins or polyamide .
  • the protective layer can have special features such as reflectors embedded in the surface, embossed patterns, anti-slip elements and/or markings.
  • FIG. 1 shows a schematic representation of a general cover grate 1, which is placed on two supports and on which a pressure 10 is exerted.
  • a pressure can act when driving over the cover grate 1, for example, by the weight of a vehicle acting on the cover grate 1.
  • the cover grate 1 will bend downwards under the pressure 10. This creates a compressive stress 13 on an upper pressure side 11, so the material of the cover grate 1 is compressed in the area of the surface, since the bending of the cover grate causes compression.
  • the tension side 12 On the opposite underside of the cover grate 1, however, there is now the tension side 12, where the material bulges. Due to the curvature of the material on the tension side 12, it is exposed to a tensile stress 14 there.
  • the exact center plane of which represents the so-called neutral zone 15.
  • the neutral zone 15 is stress-free, the compressive stress 13 increases from the neutral zone 15 in the direction of the pressure side 11, the tensile stress 14 in the direction of the tension side 12.
  • the different layers of the cover grate 1 are therefore exposed to different loads depending on the layer depth.
  • FIG. 2 shows the structure of the cover grate 1 according to the invention, in which according to the in Figure 1 Based on the findings presented, a layer structure is provided as follows.
  • a layer structure is provided in the middle of the layer model, i.e. in a material core of a transverse rib 4 of the cover grate 1, there is a core 5 which does not have to withstand any particular pressure or tensile load.
  • materials are used that give the core stability.
  • These are thermoplastic matrix systems made of polyolefins or polyamide. These can optionally contain fillers such as thermoplastic foams or hollow glass spheres, or from unreinforced ones
  • Thermoplastics can be made with processing additives such as talc, calcium carbonate or aluminum hydrate.
  • a layering of several of these possible matrix systems to form a layer core is also possible according to the invention.
  • a top-side, single- or multi-layer cover fabric 6 is provided, which can absorb the compressive stress 13.
  • Long or continuous fiber-reinforced, thermoplastic matrix systems made of polyolefins or polyamide with reinforcing fibers made of glass, basalt, carbon, synthetic or natural fibers, and mixtures thereof are suitable for this. Accordingly, the procedure is carried out with a single or multi-layer cover fabric 7 provided on the underside of the tension side 12, which absorbs the tension 14.
  • the long or particularly preferably endless fibers which due to their longitudinal structure are able to absorb the forces acting in the longitudinal direction to a particular extent, are prepared in unidirectional layers, for example as fiber mats soaked with matrix material, and are placed in a press mold, which is further layered with the material of the core 5 is applied.
  • the fiber mats can also be placed around the outer walls of the resulting cover grid 1, so that the in Figure 3 Rib cross section shown with a circumferential cover fabric 6, 7 is created.
  • the top covering fabric 6, as well as the bottom covering fabric 7, extend in one or more layers into a support area 2, but can also run around the longitudinal beams 3 that laterally close off the transverse ribs 4 in order to form a complete outer skin.
  • this is preferably not provided for and the top-side, single- or multi-layer cover fabric 6, as well as the bottom-side, single- or multi-layer cover fabric 7 both end as shown in Figure 4 shown, even before reaching the longitudinal edge.
  • additional mediating intermediate layers 8 can be provided, which fill the areas of medium tensile or compressive load.
  • These consist of thermoplastic matrix systems such as polyolefins or polyamide, which are fiber-reinforced like the single or multi-layer cover fabrics 6 and 7, but not necessarily with long or continuous fibers.
  • short fibers are sufficient, if necessary long fibers or mixtures thereof. While the continuous fibers are fibers with a length of 50 mm up to actually continuous fibers, the long fibers have a length of one to 50 mm, while the short fibers have a length of 0.1 to 1 mm.
  • the described layering creates a density gradient in the cover grid 1, since the density of the material used decreases from the outside to the inside, while conversely the thickness of the layers increases in the same direction, so that the core 5 forms the strongest layer, while the covering fabric 6 and 7, although they can be made up of one or more layers, represent the finest layers.
  • a load-bearing semi-finished product structure namely a cover grate or a shaft cover for drainage channels, drain or inlet boxes or shafts, which is made of plastic and is both light and antimagnetic, yet sufficiently resilient for traffic areas and at the same time can be produced inexpensively.

Description

  • Die vorliegende Erfindung betrifft eine lastabtragende Halbzeugstruktur, nämlich einen Abdeckrost oder eine Schachtabdeckung für Entwässerungsrinnen, Ablauf- oder Einlaufkästen oder Schächte, umfassend seitliche Auflagerbereiche mit Längsträgern, sowie eine Mehrzahl zwischen den Längsträgern verlaufender Querrippen, wobei die Querrippen einen formstabilen Kern aufweisen, welcher zwischen einem oberseitigen Deckgelege und einem unterseitigen Deckgelege stoffschlüssig aufgenommen ist.
  • Eine derartige Halbzeugstruktur ist bereits aus der WO 2017/220487 A1 vorbekannt. Dort ist eine Schachtabdeckung beschrieben, welche eine oberseitige Platte unter Zwischenlage eines gerippten Kunststoffkörpers mit einem unterseitigen Verstärkungselement, wenngleich nicht stoffschlüssig, verbindet. Die durch die Schachtabdeckung aufzunehmende Last wird hierbei in das Verstärkungselement, und von dort in die Wandung des Entwässerungskörpers eingeleitet.
  • Entwässerungsrinnen werden sowohl im industriellen als auch im öffentlichen oder privaten Bereich eingesetzt. Ihre Aufgabe besteht darin, Oberflächenwasser von befestigten Flächen aufzunehmen und gezielt abzuleiten. Bei einem Großteil der Anwendungen müssen die Entwässerungsrinnen überfahrbar ausgeführt werden, denn die zu entwässernden Flächen, wie etwa Straßen, Parkplätze, Hof- und Industrieflächen sollen in ihrer gesamten Fläche zur Verfügung stehen.
  • Für diese Aufgabe werden geeignete Abdeckungen oder Abdeckroste verwendet, die den im Boden eingebetteten Rinnenkörper einerseits vollständig überdecken, da jedoch andererseits wasserdurchlässig sind, damit das zulaufende Oberflächenwasser abfließen kann. Um ein ungewolltes Ausheben der Abdeckungen beim Überfahren zu verhindern, werden die Abdeckungen in der Regel fest mit dem Rinnenkörper verbunden. Dies geschieht entweder kraftschlüssig durch Verschraubung oder über ein Schnellverschlusssystem, bei welchem die in eine Rinnenzarge eingelegte Abdeckung formschlüssig zurückgehalten wird.
  • Die EN DIN 1433 klassifiziert Entwässerungssysteme in unterschiedliche Belastungsklassen, beginnend von der Klasse A für ausschließlich für Fußgänger und Radfahrer vorgesehene Verkehrsflächen bis hin zur Klasse F für Flächen, die mit besonders hohen Radlasten befahren werden können, wie etwa Flugbetriebsflächen. Je nach Anwendung müssen die Entwässerungssysteme, insbesondere deren Abdeckungen, sehr hohe statische und dynamische Belastungen aufnehmen können. Daher weisen Abdeckungen in einem unteren Bereich tragende Strukturen in Form von Rippen oder Waben auf, über welche die Belastungen aufgenommen werden können. Die Strukturen sind so ausgelegt, dass aufgrund ihrer Geometrie, also Struktur und Bauteildicke, sowie aufgrund des eingesetzten Werkstoffes erhebliche Belastungen übertragbar sind.
  • Klassische Werkstoffe für Abdeckroste sind der Sphäroguss, sowie feuerverzinkter Stahl oder Edelstahl. Die DE 102014104744 A1 beschreibt die Geometrie der Tragstruktur einer Rinnenabdeckung aus Sphäroguss. Dabei nimmt die Dicke der Träger in den Bereichen zu, wo die Zugspannung am höchsten ist. In Bereichen mit niedriger Zugspannung nimmt die Dicke der Träger ab. Die Lastaufnahme erfolgt hier über materialtechnisch homogene Tragstrukturen.
  • Für einfachere Anwendungen bis Klasse C gemäß EN DIN 1433 bzw. DIN 19580 werden Abdeckungen auch aus Kunststoffen im Spritzgussverfahren hergestellt. Für höhere Anforderungen im Hinblick auf die Belastbarkeit, wie sie etwa im Straßenbereich vorkommen, sind derzeit keine Kunststoffabdeckungen bekannt.
  • Dies hängt mit den gegenüber Stahl bzw. Stahlguss schlechteren mechanischen Werkstoffeigenschaften der Kunststoffe zusammen. Um in höhere Belastungsklassen zu gelangen, muss gegenüber Stahl bzw. Stahlguss deutlich mehr Material eingesetzt und daher mit massiveren Konstruktionen gearbeitet werden. Darüber hinaus sind die für die technische Lösung notwendigen technischen Kunststoffe, etwa Polyamid (PA) oder Polyphthalamid (PPA), die zudem mit Kurz- oder Langglasfasern gefüllt sind, deutlich teurer als beispielsweise Stahlguss.
  • Dabei bieten Abdeckungen aus Kunststoff durchaus auch zahlreiche Vorteile. Zunächst sind sie rostfrei und antimagnetisch, wobei letzteres insbesondere bei einem Einsatz im Bereich von Bahnsteigen aufgrund der dort bestehenden magnetischen Felder vorteilhaft ist. Auch weisen sie einen hohen Dämpfungsgrad auf, was im Betrieb auftretende Störgeräusche reduziert. Lärmbelästigung durch Klappergeräusche wird vermindert oder findet gar nicht statt.
  • Das geringe Gewicht von Abdeckrosten aus Kunststoff sorgt darüber hinaus für eine einfache Handhabung beim Einbau und einen schnellen und günstigen Transport. Das Herausnehmen der Abdeckungen, um ein Reinigen der Rinnenkörper zu ermöglichen, ist einfach und ohne großen Kraftaufwand möglich. Kunststoffabdeckungen können zudem maßgenau hergestellt werden, was eine hohe Funktionsintegration und hochwertige Designs ermöglicht.
  • Um Kunststoffe für hohe Belastungsfälle nutzbar zu machen, werden diese mit anderen Komponenten kombiniert. Faserverbundkunststoffe oder auch faserverstärkte Kunststoffe sind eine Untergruppe der Verbundwerkstoffe. Sie zeichnen sich dadurch aus, dass die Fasern die Kunststoffe verstärken und auf ein höheres mechanisches Niveau anheben. Entscheidend ist dabei das Zusammenspiel zwischen Faser und Kunststoffmatrix. Fasern allein können zwar hohe Zugkräfte aufnehmen, aber keine auf Biegung oder Druck beanspruchte Bauteile darstellen. Unverstärkte Kunststoffe können zwar Bauteile sein, sind aber etwa im Fall duroplastischer Reaktionsharze teilweise spröde oder im Fall von Thermoplasten zu flexibel. Erst durch Kombination von Fasern und Kunststoff und die feste Anbindung der Kunststoff-Matrix an die Fasern können hochbelastbare Bauteile produziert werden.
  • Die DE 102015101672 A1 beschäftigt sich mit faserverstärktem Kompositmaterial und einem Herstellungsverfahren dafür. Es werden zwei faserverstärkte Komponenten beschrieben, die verfahrensbedingt eine bessere Haftungsfestigkeit erlangen. Die DE 10105812 A1 beschreibt ein Verfahren zur Herstellung eines flächigen Halbzeugs. Hierbei handelt es sich um eine faserverstärkte Komponente. Die EP 2679377 B1 beschreibt ein computerimplementiertes Verfahren zur Bestimmung der Faserorientierungen in einer Flüssigkeit mit Polymerketten für das Spritzgussverfahren mit Hilfe von Simulation. Das Verfahren behandelt Kurz- und Langfasern.
  • Weiter kennt der Stand der Technik zahlreiche Beschreibungen von Verbundwerkstoffen. So ist auf die EP 1901912 B1 , die EP 0956193 A1 und die EP 1868796 B1 zu verweisen, bei denen thermoplastisch verformbare Verbundkörper aus Halbzeugen beschrieben sind. In der EP 2791409 B1 und der WO 2010139077 A1 geht es um einen flächigen Verbundwerkstoff aus zwei Komponenten.
  • In der WO 2017009152 A1 wird ein holzfurnier-beschichteter Kunststoffformkörper beschrieben. Die Deckschicht besteht hier aus Holz; die Materialstärke liegt zwischen 0,05 und 6,0 mm. Es handelt sich um dünnwandige Strukturen, die für den Automobilbereich vorgesehen sind. Die DE 10105813 A1 beschreibt ein Verfahren zur Herstellung eines thermoplastisch verformbaren, faserverstärkten, dünnen Halbzeugs, während in der DE 10114553 A1 ein Verfahren zur Herstellung eines dicken, thermoplastisch verformbaren, faserverstärkten Halbzeugs beschrieben ist.
  • Die EP 1714772 A1 beschreibt einen thermoplastisch verarbeitbaren Verbundwerkstoff aus mindestens einer Faservliesschicht aus Thermoplastfasern und gegebenenfalls Verstärkungsfasern, sowie einer Gewebe- oder Gelegeschicht aus Verstärkungsfasern, wobei die Schichten zusammengenadelt sind.
  • Auch die in der EP 1719611 A1 geht es um ein Verfahren zur Herstellung eines thermoplastisch verformbaren, faserverstärkten Halbzeugs, bestehend aus zwei faserverstärkten Komponenten. In der EP 1770115 A1 wird ein weiteres faserverstärktes, flächiges Halbzeug beschrieben.
  • Die EP 1890868 B1 beschreibt eine biegesteife Verbundplatte aus zwei faserverstärkten Komponenten. Die EP 2374611 A1 betrifft eine Betonschaltafel aus Leichtkunststoff mit einer Kernschicht aus Polypropylen, das Luftporen enthält und mindestens einer Deckschicht aus kompaktem Polypropylen.
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine lastabtragende Halbzeugstruktur, nämlich einen Abdeckrost oder eine Schachtabdeckung für Entwässerungsrinnen, Ablauf- oder Einlaufkästen oder Schächte zu schaffen, welche aus Kunststoff besteht und sowohl leicht als auch antimagnetisch, dennoch aber ausreichend belastbar für Verkehrsflächen und gleichzeitig kostengünstig herstellbar ist.
  • Dies gelingt durch eine Halbzeugstruktur gemäß den Merkmalen des unabhängigen Anspruchs 1. Sinnvolle Ausgestaltungen einer solchen Halbzeugstruktur können den sich anschließenden abhängigen Ansprüchen entnommen werden.
  • Erfindungsgemäß ist es vorgesehen, eine aus dem Stand der Technik bekannte lastabtragende Halbzeugstruktur, nämlich einen Abdeckrost oder eine Schachtabdeckung für Entwässerungsrinnen, Ablauf- oder Einlaufkästen oder Schächte, umfassend seitliche Auflagerbereiche mit Längsträgern, sowie eine Mehrzahl zwischen den Längsträgern verlaufender Querrippen, wobei die Querrippen einen formstabilen Kern ausweisen, weiterzuentwickeln.
  • Beste mechanische Eigenschaften werden in einem Verbundwerkstoff erreicht, wenn dessen Fasern endlos und gleichsinnig ausgerichtet, also unidirektional und isotrop, eingebracht werden. Abminderungen gibt es, wenn die Fasern endlich und ungerichtet, also anisotrop, vorliegen. Letzteres ist in der Regel beim Spritzgießen der Fall. Beim Pressverfahren kann demgegenüber ein isotroper Zustand hergestellt werden. Die Erfindung sieht aus diesem Grund vor, einen Abdeckrost zu schaffen, bei dem die oberseitige Deckgelege und die unterseitige Deckgelege jeweils aus einem faserverstärkten Verbundwerkstoff mit gleichsinnig ausgerichteten Langfasern oder, besonders bevorzugt, Endlosfasern gebildet sind. Hierbei können die Deckgelege je nach Anwendung jeweils einschichtig oder mehrschichtig ausgeführt sein.
  • Gerade bei strukturtragenden Komponenten im Bauwesen unterliegen die Materialien sehr hohen statischen und dynamischen Lasten und werden aus diesem Grund hinsichtlich der Festigkeiten und Steifigkeiten in besonderer Weise gefordert. Folglich ist eine Verwendung von lang- oder endlosfaserverstärkten Halbzeugstrukturen zumeist unabdingbar. Dabei können diese hohen Beanspruchungen bei einer reinen Faser-Kunststoffverbund-Bauweise zu sehr dickwandigen Bauteilen mit Wandstärken im Bereich von 20-50 mm oder mehr führen, was für die Rinnenabdeckung nicht mit anderen Materialien vergleichbar und zum Teil auch nicht ressourceneffizient ist. Insbesondere bei einer Biegebeanspruchung eines dickwandigen Bauteils liegen die größten Druck- bzw. Zugspannungen und somit die höchsten Materialbeanspruchungen an den Außenflächen vor. Keine Spannungen treten hingegen in der so genannten neutralen Zone auf, welche die Ebene des geometrischen Schwerpunktes der Querschnittsfläche darstellt.
  • Ein solcher mechanischer Spannungszustand ist der Ansatzpunkt für die Erfindung. Durch die Kombination von Materialien unterschiedlicher textiler Strukturen, Faserverstärkungsarten und variierender Faservolumengehalte ergibt sich ein mehrschichtiger funktional-gradierter Multimaterialverband.
  • Endlosfaserverstärkte, unidirektionale Deckgelege ermöglichen zusammen mit biege- und beulsteifen, gradierten Kernmaterialien eine leichtere Bauweise bei gleichzeitiger Aufnahme hoher Lasten. Damit kann bei dickwandigen Strukturen ein effektiver Materialeinsatz erfolgen.
  • Die Pressmassen werden vorzugsweise als textile Flächengebilde, als Gelege oder Matten, aber auch in allen sonstigen Bereitstellungsformen wie formlosen Massen oder anderen Gebinden bereitgestellt. Dabei erfolgt eine sukzessive Reduzierung der mechanischen Eigenschaften, vor allem der Festigkeit und gegebenenfalls des Gewichtes des eingesetzten Materials vom Rand hin zur neutralen Biegezone im Kern des Bauteils. Hochfeste Materialien befinden sich in den Randbereichen aus Endlosfasern sowohl auf der Druck-, als auch auf der Zugseite des Bauteils. Im Kern des Bauteils befinden sich kurz- oder langfaserverstärkte und/oder ungefüllte Materialien. Im Ergebnis entsteht ein Abdeckrost, welcher an der Druckseite und der Zugseite aufgrund der dort eingelegten Verbundwerkstoffe mit Lang- oder Endlosfasern besonders belastbar ist, während der Kern der Konstruktion aus kostengünstigem und leichtem Material gebildet sein kann.
  • In bevorzugter Ausgestaltung können sich die ein- oder mehrschichtigen Deckgelege entlang einer Oberseite und entlang einer Unterseite der Querrippen bis in die Auflagerbereiche hinein erstrecken. Hierbei kann es ergänzend auch sinnvoll sein, die textilen Flächengebilde auch an seitlichen Flächen vorzusehen, um eine durchgehende Oberfläche zu erhalten.
  • Weiter kann bevorzugtermaßen der formstabile Kern aus einem Matrixmaterial mit Füllstoffen gebildet sein. Konkret können dafür thermoplastische Matrixsysteme, vorzugsweise Polyethylen oder Polyolefine, eingesetzt werden die entweder Füllstoffe aufweisen oder ungefüllt verwendet werden. Soweit Füllstoffe Verwendung finden, kann es sich hierbei mit besonderem Vorteil um thermoplastische Schäume oder um Hohlglaskugeln handeln, welche die mechanischen Eigenschaften und das Bauteilgewicht der Matrixsysteme beeinflussen.
  • Alternativ kann der formstabile Kern auch aus unverstärkten Thermoplasten, bevorzugtermaßen mit Verarbeitungsadditiven, gebildet sein.
  • Als Verarbeitungsadditive können Talkum, Calciumcarbonat oder Aluminiumhydrat Verwendung finden, welche bei Thermoplasten als Füllstoffe und Verstärkungsmittel eingesetzt werden. Während Talkum und Calciumcarbonat die Thermoformbarkeit der Thermoplaste verbessern, findet Aluminiumhydrat, oder auch Aluminiumhydroxid, wegen seiner flammhemmenden Eigenschaften Anwendung. Anstelle von Aluminiumhydrat kann insbesondere bei Verarbeitungstemperaturen über 200°C auch Magnesiumhydroxid verwendet werden.
  • In bevorzugter Ausgestaltung kann zwischen dem Kern und dem oberen, bereits in sich ein- oder mehrschichtigen Deckgelege und/oder zwischen dem Kern und dem unteren ein- oder mehrschichtigen Deckgelege wenigstens eine weitere Zwischenschicht angeordnet sein, welche mit den umliegenden Schichten der ein- oder mehrschichtigen Deckgelege stoffschlüssig verbunden ist. In konkreter Ausgestaltung kann die wenigstens eine Zwischenschicht aus einer faserverstärkten Matrix mit ungerichteten Kurz- oder Langfasern gebildet sein.
  • Bei den verwendeten Fasern, sei es in der Zwischenschicht oder in den Deckgelegen, kann es sich um Fasern aus Glas, Basalt oder Kohlenstoff, insbesondere um Naturfasern oder synthetische Fasern, oder um eine Mischung aus mehreren der vorgenannten Fasern, in jeweils einer oder mehreren Schichten handeln. Auch kommen Kohlenstoff- und Aramidfasern hierfür in Frage. Bei der Matrix handelt es sich vorzugsweise um einen thermoplastischen Kunststoff. Insbesondere kommen Polyolefine, Polyamid, Polybutylen-Terepthalate und Polycarbonate als Matrixmaterialien zum Einsatz.
  • Ergänzend kann mit einigem Vorteil das oberseitige Deckgelege mit einer Schutzschicht für einen mechanischen, medialen und/oder thermischen Schutz des oberseitigen Deckgeleges überzogen sein, wobei es sich bei dieser Schutzschicht vorteilhafterweise um einen gefüllten oder ungefüllten, thermoplastischen Kunststoff, vorzugsweise Polyolefine oder Polyamid, handeln kann. Dies schützt zum Einen die in das obere Deckgelege eingearbeiteten Fasern, andererseits ermöglicht es, die Oberfläche des Abdeckrostes freier zu gestalten.
  • Insoweit kann die Schutzschicht besondere Merkmale wie in die Oberfläche eingebettete Reflektoren, eingeprägte Muster, rutschhemmende Elemente und/oder Markierungen aufweisen.
  • Die vorstehend beschriebene Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert.
  • Es zeigen
  • Figur 1
    eine schematische Darstellung eines unter einem Druck stehenden Abdeckrostes,
    Figur 2
    eine schematische Darstellung des Schichtaufbaus eines erfindungsgemäßen Abdeckrostes,
    Figur 3
    ein Ausschnitt einer Schnittdarstellung quer durch eine Querrippe eines erfindungsgemäßen Abdeckrostes, sowie
    Figur 4
    ein Ausschnitt einer Schnittdarstellung längs durch eine Querrippe eines erfindungsgemäßen Abdeckrostes.
  • Figur 1 zeigt in schematischer Darstellung einen allgemeinen Abdeckrost 1, welcher auf zwei Auflagern platziert ist und auf den ein Druck 10 ausgeübt wird. Ein solcher Druck kann etwa beim Überfahren des Abdeckrostes 1 wirken, indem eine Gewichtskraft eines Fahrzeugs auf den Abdeckrost 1 wirkt. Zunächst wird der Abdeckrost 1 sich unter dem Druck 10 nach unten biegen. Hierbei entsteht an einer oberen Druckseite 11 eine Druckspannung 13, das Material des Abdeckrostes 1 wird also im Bereich der Oberfläche zusammengedrückt, da die Biegung des Abdeckrostes für eine Stauchung sorgt. Auf der gegenüberliegenden Unterseite des Abdeckrostes 1 hingegen befindet sich nun die Zugseite 12, wo sich das Material ausbaucht. Aufgrund der Wölbung des Materials auf der Zugseite 12 ist es dort einer Zugspannung 14 ausgesetzt. Mittig zwischen beiden Seiten befindet sich ein Kernbereich des Abdeckrostes 1, deren exakte Mittelebene die so genannte neutrale Zone 15 darstellt. Die neutrale Zone 15 ist spannungsfrei, die Druckspannung 13 wächst ausgehend von der neutralen Zone 15 in Richtung der Druckseite 11 an, die Zugspannung 14 in Richtung der Zugseite 12. Die verschiedenen Schichten des Abdeckrostes 1 sind also abhängig von der Schichttiefe unterschiedlichen Belastungen ausgesetzt.
  • Figur 2 zeigt den Aufbau des erfindungsgemäßen Abdeckrostes 1, bei dem entsprechend den in Figur 1 wiedergegebenen Erkenntnissen ein Schichtaufbau wie folgt vorgesehen wird. In der Mitte des Schichtmodells, also in einem Materialkern einer Querrippe 4 des Abdeckrostes 1, befindet sich ein Kern 5, welcher keiner besonderen Druck- oder Zugbelastung standhalten muss. In diesem niedrig belasteten Bereich werden Materialien verwendet, welche dem Kern Stabilität geben. Es handelt sich hierbei um thermoplastische Matrixsysteme aus Polyolefinen oder Polyamid. Wahlweise können diese Füllstoffe wie thermoplastische Schäume oder Hohlglaskugeln enthalten, oder aus unverstärkten Thermoplasten mit Verarbeitungsadditiven wie Talkum, Calciumcarbonat oder Aluminiumhydrat hergestellt sein. Auch eine Schichtung mehrerer dieser möglichen Matrixsysteme zu einem Schichtkern ist erfindungsgemäß möglich.
  • An der Druckseite 11 ist hingegen ein oberseitiges, ein- oder mehrschichtiges Deckgelege 6 vorgesehen, welche die Druckspannung 13 aufnehmen kann. Hierfür eignen sich lang- oder endlosfaserverstärkte, thermoplastische Matrixsysteme aus Polyolefinen oder Polyamid mit Verstärkungsfasern aus Glas, Basalt, Kohlenstoff, synthetische oder Naturfasern, sowie deren Mischungen. Entsprechend wird mit einem an der Zugseite 12 vorgesehenen unterseitigen, ein- oder mehrschichtigen Deckgelege 7 verfahren, welche die Zugspannung 14 aufnimmt. Die Lang- oder besonders bevorzugt Endlosfasern, welche aufgrund ihrer Längsstruktur in der Lage sind, die in Längsrichtung wirkenden Kräfte in besonderem Maße zu absorbieren, sind in Unidirektionalgelegen, etwa als mit Matrixmaterial getränkte Fasermatten, vorbereitet und werden in eine Pressform eingelegt, die weiter schichtweise mit dem Material des Kerns 5 beaufschlagt wird. Hierbei können die Fasermatten durchaus auch rings um die Außenwandungen des entstehenden Abdeckrostes 1 gelegt werden, so dass der in Figur 3 gezeigte Rippenquerschnitt mit einem umlaufenden Deckgelege 6, 7 entsteht. Das oberseitige Deckgelege 6, wie auch das unterseitige Deckgelege 7 reichen in einer oder mehreren Schichten bis in einen Auflagerbereich 2 hinein, können aber auch um die seitlich die Querrippen 4 abschließenden Längsträger 3 herum verlaufen, um eine vollständige Außenhaut zu bilden. Bevorzugtermaßen wird dies jedoch nicht vorgesehen und das oberseitige, ein- oder mehrschichtige Deckgelege 6, wie auch das unterseitige, ein- oder mehrschichtige Deckgelege 7 enden beide, wie in Figur 4 gezeigt, noch vor dem Erreichen der Längskante.
  • Zwischen den ein- oder mehrschichtigen Deckgelegen 6 und 7 und dem Kern 5 der Querrippen 4 können zusätzliche vermittelnde Zwischenschichten 8 vorgesehen sein, welche die Bereiche mittlerer Zug- oder Druckbelastung ausfüllen. Diese bestehen insoweit aus thermoplastischen Matrixsystemen wie Polyolefine oder Polyamid, welche zwar faserverstärkt sind wie die ein- oder mehrschichtigen Deckgelege 6 und 7, jedoch nicht notwendigerweise mit Lang- oder Endlosfasern. Ausreichend sind in diesem Bereich Kurzfasern, bedarfsweise allenfalls Langfasern oder Mischungen hieraus. Während es sich bei den Endlosfasern um Fasern der Länge 50 mm bis hin zu tatsächlich durchgehenden Fasern handelt, haben die Langfasern eine Länge von einem bis 50 mm, die Kurzfasern hingegen 0,1 bis 1 mm.
  • Es entsteht durch die beschriebene Schichtung in dem Abdeckrost 1 ein Dichtegradient, da die Dichte des verwendeten Materials von außen nach innen abnimmt, während umgekehrt die Dicke der Schichten in gleicher Richtung zunimmt, so dass der Kern 5 die stärkste Schicht bildet, während die Deckgelege 6 und 7, trotzdem sie aus einer oder mehreren Schichten aufgebaut sein können, die feinsten Schichten darstellen.
  • Vorstehend beschrieben ist somit eine lastabtragende Halbzeugstruktur, nämlich ein Abdeckrost oder eine Schachtabdeckung für Entwässerungsrinnen, Ablauf- oder Einlaufkästen oder Schächte, welche aus Kunststoff besteht und sowohl leicht als auch antimagnetisch, dennoch aber ausreichend belastbar für Verkehrsflächen und gleichzeitig kostengünstig herstellbar ist.
  • BEZUGSZEICHENLISTE
  • 1
    Abdeckrost
    2
    Auflagerbereich
    3
    Längsträger
    4
    Querrippe
    5
    Kern
    6
    oberseitiges, ein- oder mehrschichtiges Deckgelege
    7
    unterseitiges, ein- oder mehrschichtiges Deckgelege
    8
    Zwischenschicht
    9
    Schutzschicht
    10
    Druck
    11
    Druckseite
    12
    Zugseite
    13
    Druckspannung
    14
    Zugspannung
    15
    neutrale Zone

Claims (14)

  1. Lastabtragende Halbzeugstruktur, nämlich Abdeckrost oder Schachtabdeckung für Entwässerungsrinnen, Ablauf- oder Einlaufkästen oder Schächte, umfassend seitliche Auflagerbereiche (2) mit Längsträgern (3), sowie eine Mehrzahl zwischen den Längsträgern (3) verlaufender Querrippen (4), wobei die Querrippen (4) einen formstabilen Kern (5) aufweisen,
    dadurch gekennzeichnet, dass
    der formstabile Kern (5) zwischen einem oberseitigen Deckgelege (6) und einem unterseitigen Deckgelege (7) stoffschlüssig aufgenommen ist, wobei das oberseitige Deckgelege (6) und das unterseitige Deckgelege (7) jeweils aus einem faserverstärkten Verbundwerkstoff mit einer oder mehreren Schichten aus gleichsinnig ausgerichteten Lang- oder Endlosfasern gebildet sind und gemeinsam mit dem formstabilen Kern (5) einen mehrschichtigen, funktionalgradierten Multimaterialverband bilden.
  2. Halbzeugstruktur gemäß Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Kern (5) und dem oberseitigen, ein- oder mehrschichtigen Deckgelege (6) und/oder zwischen dem Kern (5) und dem unterseitigen, ein- oder mehrschichtigen Deckgelege (7) wenigstens eine Zwischenschicht (8) angeordnet ist, welche mit den umliegenden Schichten (5, 6, 7) stoffschlüssig verbunden ist.
  3. Halbzeugstruktur gemäß Anspruch 2, dadurch gekennzeichnet, dass die wenigstens eine Zwischenschicht (8) aus einer faserverstärkten Matrix mit ungerichteten Kurz- oder Langfasern gebildet ist.
  4. Halbzeugstruktur gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Fasern um Fasern aus Glas, Basalt oder Kohlenstoff, insbesondere um Naturfasern oder synthetische Fasern, oder um eine Mischung aus mehreren der vorgenannten Fasern, handelt.
  5. Halbzeugstruktur gemäß Anspruch 3, dadurch gekennzeichnet, dass es sich bei der Matrix um einen thermoplastischen Kunststoff handelt.
  6. Halbzeugstruktur gemäß Anspruch 2, dadurch gekennzeichnet, dass sich das ein- oder mehrschichtige Deckgelege (6, 7) entlang einer Oberseite und entlang einer Unterseite der Querrippen (4) bis in die Auflagerbereiche (2) hinein erstrecken.
  7. Halbzeugstruktur gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der formstabile Kern (5) aus einem Matrixmaterial mit Füllstoffen gebildet ist.
  8. Halbzeugstruktur gemäß Anspruch 7, dadurch gekennzeichnet, dass es sich bei den Füllstoffen um thermoplastische Schäume oder um Hohlglaskugeln handelt.
  9. Halbzeugstruktur gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der formstabile Kern (5) aus unverstärkten Thermoplasten gebildet ist.
  10. Halbzeugstruktur gemäß Anspruch 5 und/oder 9, dadurch gekennzeichnet, dass es sich bei den Thermoplasten um Polyolefine oder Polyamid handelt.
  11. Halbzeugstruktur gemäß Anspruch 9 und/oder 10, dadurch gekennzeichnet, dass den Thermoplasten als Verarbeitungsadditive Talkum, Calciumcarbonat oder Aluminiumhydrat beigemischt ist.
  12. Halbzeugstruktur gemäß Anspruch 2, dadurch gekennzeichnet, dass das oberseitige, ein- oder mehrschichtige Deckgelege (6) mit einer Schutzschicht (9) für einen mechanischen, medialen und/oder thermischen Schutz des oberseitigen, ein- oder mehrschichtigen Deckgeleges (6) oder dessen Schutz vor ultravioletter Strahlung überzogen ist.
  13. Halbzeugstruktur gemäß Anspruch 12, dadurch gekennzeichnet, dass die Schutzschicht (9) aus einem gefüllten oder ungefüllten, thermoplastischen Kunststoff gebildet ist.
  14. Halbzeugstruktur gemäß Anspruch 12 und/oder 13, dadurch gekennzeichnet, dass die Schutzschicht (9) eingebettete Reflektoren, eingeprägte Muster, rutschhemmende Elemente und/oder Markierungen aufweist.
EP21160799.9A 2021-03-04 2021-03-04 Lastabtragende halbzeugstruktur Active EP4053350B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21160799.9A EP4053350B1 (de) 2021-03-04 2021-03-04 Lastabtragende halbzeugstruktur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21160799.9A EP4053350B1 (de) 2021-03-04 2021-03-04 Lastabtragende halbzeugstruktur

Publications (3)

Publication Number Publication Date
EP4053350A1 EP4053350A1 (de) 2022-09-07
EP4053350A8 EP4053350A8 (de) 2023-01-25
EP4053350B1 true EP4053350B1 (de) 2024-01-03

Family

ID=74859200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21160799.9A Active EP4053350B1 (de) 2021-03-04 2021-03-04 Lastabtragende halbzeugstruktur

Country Status (1)

Country Link
EP (1) EP4053350B1 (de)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030386A1 (de) 1997-01-13 1998-07-16 Symalit Ag Thermoplastisch verformbarer verbundkörper
DE10105812A1 (de) 2001-02-08 2002-08-14 Quadrant Plastic Composites Ag Verfahren zur Herstellung eines flächigen Halbzeugs
DE10105813A1 (de) 2001-02-08 2002-08-14 Quadrant Plastic Composites Ag Verfahren zur Herstellung eines thermoplastisch verformbaren, faserverstärkten Halbzeugs
DE10114553A1 (de) 2001-03-24 2002-09-26 Quadrant Plastic Composites Ag Verfahren zur Herstellung eines dicken, thermoplastisch verformbaren, faserverstärkten Halbzeugs
EP1719611A1 (de) 2005-05-04 2006-11-08 Quadrant Plastic Composites AG Verfahren zur Herstellung eines thermoplastisch verformbaren faserverstärkten Halbzeugs
KR101348269B1 (ko) 2005-04-05 2014-01-08 쿼드란트 플라스틱 컴포지츠 아게 열가소적으로 변형가능한 섬유 강화 반제품의 생산방법
EP1714772A1 (de) 2005-04-20 2006-10-25 Quadrant Plastic Composites AG Thermoplastisch verarbeitbarer Verbundwerkstoff
KR101410646B1 (ko) 2005-06-13 2014-06-24 쿼드란트 플라스틱 컴포지츠 아게 복합체시트
EP1770115A1 (de) 2005-09-30 2007-04-04 Quadrant Plastic Composites AG Faserverstärktes flächiges Halbzeug
CH701218A1 (de) 2009-06-04 2010-12-15 Quadrant Plastic Composites Ag Verfahren zur Herstellung eines Verbundwerkstoffs.
CH702934A1 (de) 2010-04-09 2011-10-14 Quadrant Plastic Composites Ag Betonschaltafel.
US8571828B2 (en) 2011-06-24 2013-10-29 Coretech Systems Co., Ltd. Method and computer readable media for determining orientation of fibers in a fluid
EP2636783A1 (de) 2012-03-09 2013-09-11 Quadrant Plastic Composites AG Flächiger Verbundwerkstoff
JP5910649B2 (ja) 2014-02-21 2016-04-27 トヨタ自動車株式会社 繊維強化複合材およびその製造方法
DE102014104744A1 (de) 2014-04-03 2015-10-08 ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft Tragstruktur einer Abdeckung
EP3115162A1 (de) 2015-07-10 2017-01-11 Bond Laminates GmbH Holzfurnier beschichteter kunststoffformkörper
WO2017220487A1 (de) 2016-06-20 2017-12-28 Basf Se Schachtabdeckung für schächte, kanalzugänge oder entwässerungsrinnen

Also Published As

Publication number Publication date
EP4053350A1 (de) 2022-09-07
EP4053350A8 (de) 2023-01-25

Similar Documents

Publication Publication Date Title
DE102010003497B4 (de) Verfahren zur Herstellung eines Aufprallschutzelementes
DE102011009892A1 (de) Kraftfahrzeugbauteil und Verfahren zur Herstellung des Kraftfahrzeugbauteils
AT411257B (de) Dichtelemente für kompressorventile
EP2688743A1 (de) Verbundwerkstoff und strukturbauteil für ein kraftfahrzeug
EP2361823B1 (de) Balkenförmiges, langgestrecktes Trägerelement und Verfahren für seine Herstellung
DE102014222933B4 (de) Faserverbundwerkstoffbauteil sowie Verfahren zur Herstellung eines Faserverbundwerkstoffbauteils
WO1997049877A1 (de) Bauelement
DE102007053569A1 (de) Vorrichtung zum Schutz des Motorraumes eines Kraftfahrzeugs
WO2020207636A1 (de) Biegefederelement aus einem faserkunststoffverbundmaterial
EP2147762B1 (de) Fußbodenpaneel aus einer Holzwerkstoffplatte und Verfahren zur Herstellung
WO2004050409A1 (de) Instrumententafel sowie verfahren zu deren herstellung
DE60319218T2 (de) Verbessertes sandwich-plate-system (sps)
DE10246994B3 (de) Stirnwandmodul
EP4053350B1 (de) Lastabtragende halbzeugstruktur
EP3318689B1 (de) Bewehrungsgitterelement, baukörper mit einem solchen bewehrungsgitterelement sowie verfahren zur herstellung eines bewehrungsgitterelements
EP2431533B1 (de) Schachtdeckel
EP1211054A1 (de) Verfahren zum Herstellen einer Faserverbundstruktur
EP4055297B1 (de) Biegefederelement aus einem faserkunststoffverbundmaterial
DE102014017809B4 (de) Verfahren zur Herstellung eines Strukturbauteils
DE102009035695B4 (de) Verfahren zur Herstellung eines glasfaserverstärkten Bauteils aus Polyurethan mit einem Metalleinleger und nach dem Verfahren hergestelltes Bauteil
DE10219495B4 (de) Fahrzeug-Karosserieteil und Verfahren zur Herstellung eines solchen Teils
EP1997716A1 (de) Faserverbundwerkstoffprofil und Kraftfahrzeugscheibenrahmen
EP3552813B1 (de) Faserverbundbauteil mit zwischenlagen und verfahren zu seiner herstellung
DE3445283A1 (de) Monolithisches plattenelement
DE102021107095A1 (de) Karosseriebauteil, Fahrzeug, Halbzeug und Verfahren zum Herstellen eines Karosseriebauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IWAN, SEBASTIAN

Inventor name: KLINGELHOEFER, MARCUS

Inventor name: NENDEL, WOLFGANG, PROF.

Inventor name: KROLL, LOTHAR, PROF.

Inventor name: RADIMERSKY, KARL

Inventor name: SCHILLER, BERND, DR.

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E03F 5/06 20060101AFI20231009BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20231024

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002317

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN