EP4052299A1 - Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element - Google Patents

Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element

Info

Publication number
EP4052299A1
EP4052299A1 EP20816085.3A EP20816085A EP4052299A1 EP 4052299 A1 EP4052299 A1 EP 4052299A1 EP 20816085 A EP20816085 A EP 20816085A EP 4052299 A1 EP4052299 A1 EP 4052299A1
Authority
EP
European Patent Office
Prior art keywords
photovoltaic
layer
photovoltaic cell
layer system
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20816085.3A
Other languages
German (de)
French (fr)
Inventor
Martin Hermenau
Jan Birnstock
Mickael Lapeyrade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heliatek GmbH
Original Assignee
Heliatek GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliatek GmbH filed Critical Heliatek GmbH
Publication of EP4052299A1 publication Critical patent/EP4052299A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a photovoltaic element with at least one photovoltaic cell, a photovoltaic system with at least two such photovoltaic elements, and a method for producing such a photovoltaic element.
  • Photovoltaic elements in particular photovoltaic elements that are integrated in a building structure, are temporarily shaded.
  • a photovoltaic element consists of at least one photovoltaic cell with at least one photoactive layer, which can be connected in series or in parallel.
  • Photovoltaic elements or photovoltaic cells thereof, which are connected in series, are not always all shaded to the same extent, but are still partially exposed to radiation from sunlight.
  • shaded photovoltaic cells that are connected in series with others generate a voltage that is opposite to that of non-shaded photovoltaic cells, which restrict or block the flow of current from the other photovoltaic cells through this photovoltaic cell.
  • bypass diodes in order to continue to ensure the current flow of the photovoltaic cells connected in series and to avoid damage to the partially shaded photovoltaic cell.
  • the power loss is reduced by connecting a bypass diode in parallel to the photovoltaic cell. If a photovoltaic element, in particular a photovoltaic cell of the photovoltaic element, is at least partially shaded, this photovoltaic cell generates no or a lower voltage, and the current generated by the photovoltaic cells connected in series cannot be passed through and damages the at least partially shaded photovoltaic cell Cell.
  • the bypass diode can be used in one In such a case, take over the conduction of the generated current from photovoltaic cells connected in front of them to photovoltaic cells connected afterwards through the bypass diode, thereby preventing damage to the shaded photovoltaic cell.
  • a photovoltaic element can thus continue to function in the case of an at least partially shaded photovoltaic cell.
  • such a solution is very expensive and requires a high level of complexity, which also leads to high additional costs.
  • US20150349164A1 discloses a solar cell with an integrated bypass diode, the bypass diode and the solar cell comprising different areas next to one another on the substrate and being separated by a gap.
  • EP 1920 468 B1 discloses organic photovoltaic cells with a bypass diode.
  • WO2014 / 051889A1 discloses a solar cell with a multiplicity of photovoltaic cells, the photovoltaic cells having a specific arrangement of gaps so that the areas of the cells obtained thereby only allow a maximum opposite voltage and a number of bypass diodes can be reduced.
  • the disadvantage of the prior art is that the integration of a complete bypass diode in photovoltaic cells has proven to be complex during manufacture. A larger area is required for the bypass diodes, which can no longer produce electricity, which leads to a greater loss of power in the photovoltaic elements.
  • the known methods are in particular not suitable for a roll-to-roll process for the production of photovoltaic elements.
  • the invention is therefore based on the object of providing a photovoltaic element with better efficiency with at least partial shading of individual photovoltaic cells or cell areas and an increase in the service life of shaded photovoltaic cells, the disadvantages mentioned not occurring, and in particular with at least partial shading a photovoltaic cell, the photovoltaic element is not damaged. In particular, there should be as little active loss of space as possible and there should only be a minimal impact on performance.
  • the object is achieved in particular by providing a photovoltaic element with at least one photovoltaic cell, having a base electrode, a cover electrode, and a layer system with at least one photoactive layer, the layer system being arranged between the base electrode and the cover electrode.
  • the at least one photovoltaic cell is at least partially segmented into segments, the segmentation being designed in such a way that at least the top electrode and the layer system of a segment of the top electrode and the layer system of a further segment, or the top electrode, the layer system and at least partially the base electrode of one Segments of the top electrode, the layer system and at least partially the base electrode of a further segment are each separated from one another by at least one cavity without touching one another, the at least one cavity being at least largely vertical relative to the layer system of the at least one photovoltaic cell, and wherein the Segments of the at least one photovoltaic cell are connected in an electrically conductive manner parallel to one another, so that an electrical current flow through the at least one photovoltaic cell is distributed to the individual segments.
  • the base electrode, the layer system and the cover electrode are laser-structured.
  • the base electrode forms a cathode and the cover electrode forms an anode.
  • the base electrode is arranged on a substrate, in particular a film.
  • a cavity is understood to mean, in particular, space between at least two segments that separates the segments from one another at least in sections, so that there is at least no electrically conductive connection between the at least two segments via such a section and / or the segments are in this
  • a cavity forms a certain distance between two segments horizontally to the layer system.
  • the cavity is in particular an intermediate space.
  • the invention discloses a technical solution for avoiding damage to photovoltaic elements, in particular organic photovoltaic elements, by so-called hot spots.
  • the implementation of this solution allows a photovoltaic element composed of several photovoltaic cells to continue to function without impairment, even if one or more photovoltaic cells are shaded.
  • Segmentation is understood to mean, in particular, an at least partial separation of the top electrode and the layer system, or the top electrode, the layer system and at least partially the base electrode of the photovoltaic cell, so that in the event of at least partial shading and / or a defect in the at least one photovoltaic cell, a electric current in each individual segment obtained is so large that the photovoltaic cell is not damaged.
  • the segments can be segmented as a function of a cross-sectional area of the segments, in particular a width and a length of the segments be, with a current density in individual segments is lower compared to a photovoltaic cell without segmentation.
  • the current flow falls in the individual segments in such a way, in particular the current density is so low that an at least partially shaded photovoltaic cell, in particular a fully shaded photovoltaic cell, is able to flow the current of the non-shaded neighboring photovoltaic cells to pass through without damage.
  • Shading is understood to mean, in particular, an at least partial reduction in the light irradiation on a photovoltaic element, in particular an at least substantially light-impermeable object casting its sun shadow on components of a photovoltaic element.
  • a shaded or at least partially shaded cell a voltage that is reversed in comparison to a non-shaded cell is present when light is irradiated, since no or a lower current flow is generated in the at least partially shaded cell itself.
  • an at least partially shaded cell connected in series with other non-shaded cells can be damaged.
  • a defect is understood to mean, in particular, a flaw in a layer system of a photovoltaic cell or in the electrically conductive connection of the layer system to at least one electrode.
  • a photovoltaic element is understood to mean, in particular, a solar cell, the photovoltaic element having at least one photovoltaic cell.
  • the photovoltaic cells can be arranged and / or connected in different ways in the photovoltaic element.
  • the photovoltaic element is preferably made up of several photovoltaic cells that are connected in series.
  • a possible structure of the layer system of a photovoltaic cell is in W02004083958A2, W02011013219A1, W02011138021A2, W02011161108A1 described.
  • layer systems are preferably used in which the photoactive layers comprise absorber materials which can be evaporated and which are or are applied by evaporation (PVD, physical vapor deposition).
  • PVD physical vapor deposition
  • materials belonging to the group of "small molecules” are used, which are described, inter alia, in W02006092134A1, W02010133208A1, W02014206860A1, WO2014128278A1, WO2017114937A1, and WO2017114938A1. or from mixed layers, as planar heterojunction, and preferably as bulk heterojunction, layer systems which can be applied completely by evaporation are preferred.
  • the layer system can be designed as a single, tandem or multi-cell, the designation is determined by the number of sub-cells, each sub-cell containing at least one photoactive layer, which are preferably separated by transport layers and optional recombination layers, and which themselves consist of several layers can.
  • the p- or n-layer systems also referred to only as p- or n-layer, can consist of several layers, at least one of the layers of the p- or n-layer system being p-doped or n-doped, preferably as p- or n-doped wide-gap layer.
  • the i-layer system is undoped or less doped than the p- or n-layers in the subcell, that is to say less doped, and is designed as a photoactive layer.
  • Each of these n-, p-, i-layers can consist of further layers, the n- or p-layer consisting of at least one doped n- or p-layer, which contributes to an increase in the charge carriers through its doping.
  • the layer stack of the photovoltaic cell consists of a sensible combination of p-, n- and i-layer systems, i.e. that each sub-cell comprises an i-layer system and at least one p- or n-layer system.
  • a horizontal extension of the layer system is understood to mean, in particular, a direction that runs essentially parallel to a substrate and / or a layer of the layer system.
  • the photovoltaic element has a cell with at least one photoactive layer, in particular a CIS, CIGS, GaAs, or Si cell, a perovskite cell or an organic photovoltaic element (OPV), a so-called organic solar cell .
  • An organic photovoltaic element is understood to mean, in particular, a photovoltaic element with at least one organic photoactive layer, in particular a polymeric organic photovoltaic element or an organic photovoltaic element based on small molecules.
  • the photovoltaic element is particularly preferably a flexible organic photovoltaic element based on small molecules.
  • the photoactive layer of the layer system comprises small molecules which can be evaporated in a vacuum.
  • at least the photoactive layer of the layer system is vapor-deposited in a vacuum.
  • Small molecules are understood to mean, in particular, non-polymeric organic molecules with monodisperse molar masses between 100 and 2000 g / mol, which are present in the solid phase under normal pressure (air pressure of the surrounding atmosphere) and at room temperature.
  • the small molecules are photoactive, photoactive being understood to mean that the molecules change their state of charge and / or their state of polarization when light is introduced.
  • the cover electrode comprises silver or a silver alloy, aluminum or an aluminum alloy, gold or a gold alloy, or a combination of these materials, preferably comprising Ag: Mg or Ag: Ca as a silver alloy.
  • the photovoltaic element according to the invention has advantages compared to the prior art. Advantageously, protection of the photovoltaic element against hot spots is made possible; in particular, a current generated in non-shaded cells can be distributed to the individual segments of an at least partially shaded cell, thereby preventing damage to the at least partially shaded cell. The photovoltaic element can thus continue to generate electrical current with the other non-shaded cells.
  • the at least one photovoltaic cell is advantageously not damaged in the event of at least partial shading and / or in the event of a defect in the photovoltaic cell.
  • the efficiency is advantageously increased when individual photovoltaic cells of the photovoltaic element are shaded, and the service life of the photovoltaic element is increased.
  • An electrical current flow is advantageously distributed from the preceding photovoltaic cell to the individual segments of the at least partially shaded photovoltaic cell.
  • the segmentation can advantageously be integrated particularly easily into current manufacturing processes; in particular, only a small amount of effort is required when programming the laser structuring.
  • the production can advantageously be integrated into a roll-to-roll process.
  • the segmentation can be built into the layer system directly during production without the use of additional external components, in particular diodes.
  • the segmentation of photovoltaic cells is advantageously more cost-effective compared to other solutions, in particular compared to bypass diodes.
  • the electric current flowing through the individual segments is advantageously lower.
  • the photovoltaic element has at least one first photovoltaic cell and one second photovoltaic cell, the at least first photovoltaic cell and second photovoltaic cell in series are connected, and wherein the top electrode of the first photovoltaic cell is electrically conductively connected to the bottom electrode of the second photovoltaic cell, the bottom electrodes of the photovoltaic cells are preferably separated from each other in the horizontal direction, based on the layer system, and the top electrodes of the photovoltaic cells are separated from one another in the horizontal direction, based on the layer system.
  • a cross-sectional area of the segments of the at least one photovoltaic cell is the same, preferably the same size of the cross-sectional area of the segments depending on a current flow through the at least one photovoltaic cell is trained.
  • a cross-sectional area is understood to mean, in particular, an area of a segment in the horizontal extent of the layer system, in particular along a layer of the layer system.
  • a width of a segment is 1 cm to 2 m, preferably 5 cm to 1 m, and / or the distance between the individual segments horizontally to the layer system is in a range of 10 nm to 200 nm, preferably from 40 nm to 80 nm.
  • the distance between the individual segments is in particular formed by the at least one cavity.
  • a length of the segments in particular the length of the at least one photovoltaic cell, is 1 mm to 1 m, preferably 5 mm to 5 cm, the segments preferably being at least largely parallel to one another.
  • the individual segments are each formed over an entire direction of the photovoltaic cell, with one shape of the segments preferably being formed differently.
  • the segments are at least largely parallel, preferably strip-shaped, the segments of a subsequent photovoltaic cell preferably being parallel relative to one another compared to the preceding photovoltaic cell.
  • the photovoltaic cells of the photovoltaic element are connected in an electrically conductive manner by means of at least one busbar, a so-called busbar.
  • Photovoltaic cells are divided into single, tandem or multiple cells depending on the number of photoactive layer systems that are created by transport and further layers in the layer structure between the two base and cover contacts. Tandem and multiple cells consist of at least two sub-cells which are arranged one above the other between the electrodes, each sub-cell comprising at least one photoactive layer system.
  • the layer system has at least two photoactive layers, the photovoltaic cell being a tandem cell, preferably having at least three photoactive layers, the photovoltaic cell being a triple cell, and / or the layer system in addition has at least one charge carrier transport layer, the at least one charge carrier transport layer being arranged between the base electrode or the cover electrode and a photoactive layer, preferably having at least one first charge carrier transport layer and a second charge carrier transport layer, the first charge carrier transport layer being arranged between the base electrode and the at least one photoactive layer, and where the second charge carrier transport layer is arranged between the at least one photoactive layer and the cover electrode.
  • the photovoltaic element is an organic photovoltaic element, preferably a flexible organic photovoltaic element, with at least one photoactive layer of the organic photovoltaic element preferably having small molecules as absorber material.
  • a flexible photovoltaic element is understood to mean, in particular, a photovoltaic element that can be bent and / or stretched in a specific area.
  • the photovoltaic element does not have a bypass diode.
  • the object of the present invention is also achieved by providing a photovoltaic system with at least two photovoltaic elements, in particular according to one of the exemplary embodiments described above.
  • the advantages for the photovoltaic system are in particular that have already been described in connection with the photovoltaic element with at least one photovoltaic cell.
  • the at least two photovoltaic elements are connected in series.
  • the photovoltaic elements preferably consist of photovoltaic cells connected in series with one another.
  • the series connection of the photovoltaic cells is preferably carried out by electrically conductive connection of the cover electrode of one photovoltaic cell to the base electrode of the following photovoltaic cell.
  • the object of the present invention is also achieved by a method for producing a photovoltaic element, in particular a flexible photovoltaic element, with at least two photovoltaic cells, each having a base electrode, a cover electrode, and a layer system arranged between the base electrode and the cover electrode, wherein the shift system having at least one photoactive layer is provided, in particular according to one of the exemplary embodiments described above.
  • the method comprises the following steps: a) providing a substrate with a base electrode layer, b) laser structuring the base electrode layer so that the base electrode layer is divided into individual base electrodes, c) applying a layer system with at least one photoactive layer on the structured base electrodes, and forming at least an opening associated with each individual base electrode in the layer system by means of laser ablation, the base electrodes being at least partially exposed at the at least one opening, d) application of a cover electrode layer in the at least one opening and / or on the layer system with the at least one opening, the at least one opening is filled, e) laser structuring of the top electrode layer and the layer system so that individual top electrodes and individual layer systems are formed, the top electrode of a first photovoltaic cell with the base electrode trode of a second photovoltaic cell is electrically conductively connected, and f) segmenting at least the cover electrode and the layer system, or the cover electrode, the layer system and at least partially the base electrode of the at least one photovoltaic cell by means of laser
  • step e) and step f) are carried out simultaneously.
  • the laser structuring in step b) and step e) and / or for segmentation in step f) parameters of the at least one laser beam, preferably an energy density, a pulse duration, a Pulse shape, a pulse rate and / or a wavelength, adapted as a function of the material and the layer thickness of the base electrode, the layer system and / or the top electrode.
  • the base contact and the layer system, the individual layers of the layer system, and / or the layer system and the cover electrode are connected in an electrically conductive manner by suitable structuring, in particular laser structuring.
  • the layers are applied by means of a printing process, preferably an inkjet process, a screen printing process, and / or a flexoprint process, and / or by means of evaporation of the materials to be applied.
  • a printing process preferably an inkjet process, a screen printing process, and / or a flexoprint process, and / or by means of evaporation of the materials to be applied.
  • the wavelength range of the laser in the laser ablation in step c), the laser structuring in step b) and in step e) and / or in the segmentation in step f) is 300 nm to 1200 nm, preferably 400 nm to 1000 nm, or preferably 450 nm to 800 nm.
  • an energy density of the at least one laser beam during the laser ablation in step c) and / or the segmentation in step f) is adapted during the ablation as a function of an ablation depth of the layer system.
  • the layer system is connected in an electrically conductive manner to the base electrode and / or the cover electrode by means of laser structuring.
  • the top electrode layer is subdivided in the horizontal direction with respect to the layer system of the at least one photovoltaic cell, so that top electrodes are obtained, and the base electrode layer in the horizontal direction with respect to the Layer system of the at least one photovoltaic cell is subdivided so that base electrodes are obtained.
  • the method is used in a roll-to-roll method.
  • the structuring takes place during the application of individual layers of the layer system. In an alternatively preferred embodiment of the invention, the structuring takes place after the application of the individual layers of the layer system.
  • FIG. 1 shows a schematic representation of a structure of a layer system with electrodes of a photovoltaic cell
  • FIG. 2 shows a schematic illustration of a photovoltaic element to illustrate the problem with at least partially shaded photovoltaic cells in a side view
  • FIG. 3 shows a schematic representation of an exemplary embodiment of a photovoltaic element with segmentation in a side view and a top view.
  • FIG. 1 shows a schematic representation of a structure of a layer system 5 with electrodes 3, 4 of a photovoltaic cell 2.
  • Photovoltaic elements 1, in particular organic photovoltaic elements 1, consist of a sequence of thin layers, the layer system 5, with at least one photoactive layer 6, which are preferably evaporated in a vacuum or processed from a solution.
  • the electrical connection can be made through metal layers, transparent conductive oxides and / or transparent conductive polymers take place.
  • the vacuum deposition of the organic layers is particularly advantageous in the production of multilayer solar cells, in particular tandem or triple cells.
  • a layer system 5 of such a photovoltaic cell 2 is shown in one embodiment in FIG. 1.
  • the photovoltaic cell 2 has glass as the substrate 13, with a transparent base electrode 3 made of ITO (M) 14, a layer system 5 made of a layer of fullerene C6015, a photoactive layer 16 with at least one absorber material and fullerene C60, and a p- doped hole transport layer 17 made of DiNPB and NDP9, and a cover electrode 4 made of gold 18.
  • a transparent base electrode 3 made of ITO (M) 14
  • a layer system 5 made of a layer of fullerene C6015
  • a photoactive layer 16 with at least one absorber material and fullerene C60 and a p- doped hole transport layer 17 made of DiNPB and NDP9
  • a cover electrode 4 made of gold 18.
  • FIG. 2 shows a schematic illustration of a photovoltaic element 1 to illustrate the problem with at least partially shaded photovoltaic cells 2 in a side view.
  • a problem of photovoltaic cells 2 connected in series with at least partial shading 12 of the photovoltaic cells 2 is that the shaded photovoltaic cells 2 represent reverse-biased diodes with respect to the unshaded or less shaded photovoltaic cells 2 connected in series. In doing so, they hinder the outflow of the photogenerated electricity, which has a negative effect on efficiency. There is also the risk that a concentrated current flow through defects can occur in the shaded photovoltaic cells 2, which can lead to local overheating and ultimately to irreversible degradation of the photovoltaic cell 2 and thus to a loss of efficiency of the photovoltaic element 1.
  • FIG. 2 An example of a degradation of a photovoltaic cell 2 caused by at least partial shading 12 is shown in FIG. 2.
  • the at least partial shade 12 leads this leads to undesired punctual damage to the photovoltaic cell 2.
  • FIG. 3 shows a schematic illustration of an exemplary embodiment of a photovoltaic element 1 with segmentation in a side view and a top view. Identical and functionally identical elements are provided with the same reference symbols, so that in this respect reference is made to the preceding description.
  • the photovoltaic element 1 has at least one photovoltaic cell 2 with a base electrode 3, a cover electrode 4, and a layer system 5 with at least one photoactive layer 6, the layer system 5 being arranged between the base electrode 3 and the cover electrode 4.
  • the at least one photovoltaic cell 2 is at least partially segmented into segments 7, the segmentation being designed in such a way that at least the cover electrode 4 and the layer system 5 of a segment 7 are separated from the cover electrode 4 and the layer system 5 of a further segment 7, or the cover electrode 4 , the layer system 5 and at least partially the base electrode 3 of a segment 7 are separated from the top electrode 4, the layer system 5 and at least partially the base electrode 3 of a further segment 7 in each case by at least one cavity 8 without touching one another, the at least one cavity 8 is formed at least largely vertically relative to the layer system 5 of the at least one photovoltaic cell 2, and wherein the segments 7 of the at least one photovoltaic cell 2 are electrically conductively connected in parallel to one another, so that an electrical
  • the at least one photovoltaic cell 2 is not damaged in the event of at least partial shade 12 and / or in the event of a defect in the photovoltaic cell 2, in particular due to hot sport. Furthermore, the efficiency is increased when individual photovoltaic cells 2 of the photovoltaic element 1 are shaded, and the service life of the photovoltaic element 1 is increased as a result.
  • none or at least occurs largely no loss of area of the photovoltaic cell 2 and / or at least largely no loss of the power of the photovoltaic cell 2.
  • the segmentation can be integrated particularly easily into current manufacturing processes; in particular, only a small amount of effort is required when programming the laser structuring.
  • the photovoltaic element 1 has at least a first photovoltaic cell 2 and a second photovoltaic cell 2, the at least first photovoltaic cell 2 and the second photovoltaic cell 2 being connected in series, and the top electrode 4 of the first photovoltaic cell 2 is electrically conductively connected to the base electrode 3 of the second photovoltaic cell 2, wherein the base electrodes 3 of the photovoltaic cells 2 are preferably separated from one another in the horizontal direction, based on the layer system 5, and the cover electrodes 4 of the photovoltaic cells 2 from one another in the horizontal direction Direction, based on the layer system 5, are separated from one another.
  • the cover electrode 4 of a preceding photovoltaic cell 2 is preferably connected in an electrically conductive manner to the base electrode 3 of a subsequent photovoltaic cell 2.
  • a cross-sectional area 9 of the segments 7 of the at least one photovoltaic cell 2, based on the horizontal extent of the layer system 5, is equal to one another, with a size of the cross-sectional area 9 of the segments 7 depending on a current flow through the at least one photovoltaic cell 2 is formed.
  • a width 10 of a segment is 71 cm to 2 m, preferably 5 cm to 1 m, and / or a distance between the individual segments 7 horizontally to the layer system 5 is in a range from 10 nm to 200 nm, preferably from 40 nm to 80 nm.
  • a length 11 of the segments 7, in particular the length 11 of the at least one photovoltaic cell 2 is 1 mm to 1 m, preferably 5 mm to 5 cm, the segments 7 preferably being at least largely parallel to one another.
  • the individual segments 7 are each formed over an entire direction of the photovoltaic cell 2, wherein a shape of the segments 7 is preferably formed differently.
  • the segments 7 are at least largely parallel, preferably strip-shaped, with the segments 7 of a subsequent photovoltaic cell 2 being parallel relative to one another compared to the preceding photovoltaic cell 2.
  • the photovoltaic cells 2 of the photovoltaic element 1 are connected in an electrically conductive manner by means of at least one busbar.
  • the layer system 5 has at least two photoactive layers 6, the photovoltaic cell 2 being a tandem cell, preferably at least three photoactive layers 6, the photovoltaic cell 2 preferably being a triple cell, and / or the layer system 5 additionally has at least one charge carrier transport layer, the at least one charge carrier transport layer being arranged between the base electrode 3 or the cover electrode 4 and a photoactive layer 6, preferably at least one first charge carrier transport layer and a second charge carrier transport layer, the first
  • the photovoltaic element 1 is an organic photovoltaic element 1, preferably a flexible organic photovoltaic element 1, at least one photoactive layer 6 of the organic photovoltaic element 1 preferably having small molecules as absorber material.
  • the photovoltaic element 1 does not have a bypass diode.
  • a photovoltaic system is formed by connecting at least two photovoltaic elements 1 in series with one another.
  • the method for producing a photovoltaic element 1, in particular a flexible photovoltaic element 1, with at least two photovoltaic cells 2, each having a base electrode 3, a cover electrode 4, and a layer system 5 arranged between the base electrode 3 and the cover electrode 4, the layer system 5 has at least one photoactive layer 6, comprises the following steps: a) providing a substrate 13 with a base electrode layer, b) laser structuring of the base electrode layer so that the base electrode layer is divided into individual base electrodes 3, c) application of a layer system 5 with at least one photoactive Layer 6 on the structured base electrodes 3, and forming at least one opening associated with each individual base electrode 3 in the layer system 5 by means of laser ablation, the base electrodes 3 being at least partially exposed at the at least one opening, d) application n a cover electrode layer in the at least one opening and / or on the layer system 5 with the at least one opening, the at least one opening being filled, e) laser structuring of the cover electrode layer and the layer system 5 so that individual cover electrodes 4 and individual
  • the laser structuring of the top electrode layer and the layer system 5 in step e) and the segmenting in step f) can be carried out simultaneously.
  • the top electrode layer is subdivided in the horizontal direction with respect to the layer system 5 of the at least one photovoltaic cell 2, so that top electrodes 4 are obtained, and the base electrode layer is divided in the horizontal direction with respect to the layer system 5 of the at least one photovoltaic cell 2, so that base electrodes 3 are obtained.
  • the layer system 5 is applied at least partially by evaporation in a vacuum.
  • the method is used in a roll-to-roll method.
  • the following parameters are used in the laser ablation in step b): a laser speed of 4 pJ - 385 mm / s, and an energy of each laser pulse of 25 kHz (25 pulses per second).
  • the provided substrate 13 is coated and structured (PI) with a base electrode layer of the photovoltaic cell 2 after the provision, the base electrode layer being separated into base electrodes 3 of the individual segments 7.
  • the layer system 5 is then applied to the base electrodes 3.
  • the layer system 5 can be used as a single, Tandem or multiple cells can be applied, preferably by evaporation of small molecules.
  • the application of individual layers to a region of the base electrode 3 to form the layer system 5 can be carried out at least partially by a printing process, preferably by an injection, screen printing, gravure printing or flexo printing process, or by evaporation of the materials to be applied.
  • the layer system 5, in particular individual layers of the layer system 5, is preferably applied by means of evaporation in a vacuum.
  • the layer system 5 of the photovoltaic cells 2 (P2) is then structured.
  • the top electrode layer is applied to the layer system 5, and the final structuring (P3) separates the top electrode layer into individual top electrodes 4.
  • the structuring of the individual layers of the photovoltaic cell 2 can be done, for example, by means of laser ablation, electron or ion beam ablation, or shadow masks.
  • the following parameters are used for the structuring PI / P2 / P3 by means of a laser:
  • PI 1030 nm wavelength and 50 pm line width
  • P2 515 nm wavelength and 50 pm line width
  • P3 1030 nm wavelength and 100 pm line width.
  • PI / P2 / P3 are connected in series, whereas the individual segments are connected in parallel.
  • FIG. 3 An exemplary embodiment of a laser structuring of the photovoltaic cells 2 is shown in FIG. 3.
  • the structuring PI / P2 / P3 is shown.
  • the current flow is indicated by arrows.
  • the photogenerated current flows in particular via the cover electrode 4 of the shaded photovoltaic cell 2, divided among the individual segments 7 of the photovoltaic cell 2 and can flow into the base electrode 3 to an improved extent there via the additional P2 structuring.

Abstract

The invention relates to a photovoltaic element (1) comprising at least one photovoltaic cell (2), having a base electrode (3), a top electrode (4), and a layer system (5) with at least one photoactive layer (6), said layer system (5) being arranged between the base electrode (3) and the top electrode (4). The at least one photovoltaic cell (2) is at least partly segmented into segments (7) wherein the segmentation is designed such that at least the top electrode (4) and the layer system (5) of one segment (7) are separated from the the top electrode (4) and the layer system (5) of another segment (7) by at least one cavity (8) so as to prevent contact between one another, or the top electrode (4), the layer system (5), and at least part of the base electrode (3) of one segment (7) are separated from the top electrode (4), the layer system (5), and at least part of the base electrode (3) of another segment (7) by at least one cavity (8) so as to prevent contact between one another; the at least one cavity (8) is formed at least predominantly vertically relative to the layer system (5) of the at least one photovoltaic cell (2); and the segments (7) of the at least one photovoltaic cell (2) are connected together in parallel in an electrically conductive manner such that an electric current flowing through the at least one photovoltaic cell (2) is distributed to the individual segments (7).

Description

Photovoltaisches Element mit verbesserter Effizienz bei Verschattung und Verfahren zur Herstellung eines solchen photovoltaisehen Elements Photovoltaic element with improved efficiency in the case of shading and method for producing such a photovoltaic element
Die Erfindung betrifft ein photovoltaisches Element mit mindestens einer photovoltaischen Zelle, eine Photovoltaikanlage mit mindestens zwei solchen photovoltaischen Elementen, sowie ein Verfahren zum Herstellen eines solchen photovoltaischen Elements. The invention relates to a photovoltaic element with at least one photovoltaic cell, a photovoltaic system with at least two such photovoltaic elements, and a method for producing such a photovoltaic element.
Photovoltaische Elemente, insbesondere photovoltaische Elemente, die in einer Gebäudestruktur integriert sind, werden zeitweise verschattet. Ein photovoltaisches Element besteht aus mindestens einer photovoltaischen Zelle mit mindestens einer photoaktiven Schicht, die in Reihe oder parallel verschaltet sein können. Photovoltaic elements, in particular photovoltaic elements that are integrated in a building structure, are temporarily shaded. A photovoltaic element consists of at least one photovoltaic cell with at least one photoactive layer, which can be connected in series or in parallel.
Photovoltaische Elemente oder photovoltaische Zellen davon, die in Reihe geschaltet sind, werden nicht immer alle gleichmäßig stark verschattet, sondern sind weiterhin teilweise einer Einstrahlung von Sonnenlicht ausgesetzt. Dabei erzeugen verschattete photovoltaische Zellen, die in Reihe mit anderen geschaltet sind, eine im Vergleich zu nicht-verschatteten photovoltaischen Zellen entgegengesetzte Spannung, die den Stromfluss von den anderen photovoltaischen Zellen durch diese photovoltaische Zelle hindurch einschränken oder sperren. Photovoltaic elements or photovoltaic cells thereof, which are connected in series, are not always all shaded to the same extent, but are still partially exposed to radiation from sunlight. In this case, shaded photovoltaic cells that are connected in series with others generate a voltage that is opposite to that of non-shaded photovoltaic cells, which restrict or block the flow of current from the other photovoltaic cells through this photovoltaic cell.
Aus dem Stand der Technik bekannte Verfahren zum Umgehen der Problematik der teilweisen Verschattung setzen Bypass-Dioden ein, um den Stromfluss der in Reihe geschalteten photovoltaischen Zellen weiterhin zu gewährleisten, und eine Beschädigung der teilweise verschatteten photovoltaischen Zelle zu vermeiden. Im Falle einer verschatteten oder defekten photovoltaischen Zelle wird die Verlustleistung dadurch reduziert, dass parallel zur photovoltaischen Zelle eine Bypass-Diode geschaltet wird. Wird ein photovoltaisches Element, insbesondere eine photovoltaische Zelle des photovoltaischen Elements, zumindest teilweise verschattet, so erzeugt diese photovoltaische Zelle keine oder eine geringere Spannung, und der erzeugte Strom der davor in Reihe geschalteten photovoltaischen Zellen kann nicht durchgeleitet werden und beschädigt die zumindest teilweise verschattete photovoltaische Zelle. Die Bypass-Diode kann in einem solchen Fall die Leitung des erzeugten Stroms von davor geschalteter photovoltaischer Zellen zu danach geschalteten photovoltaischen Zellen durch die Bypass-Diode hindurch übernehmen, wodurch eine Beschädigung der verschatteten photovoltaischen Zelle verhindert wird. Ein photovoltaisches Element kann somit bei einer zumindest teilweise verschatteten photovoltaischen Zelle weiter funktionieren. Eine derartige Lösung ist jedoch sehr aufwendig und erfordert eine hohe Komplexität, die auch zu hohen zusätzlichen Kosten führt. Methods known from the prior art for circumventing the problem of partial shading use bypass diodes in order to continue to ensure the current flow of the photovoltaic cells connected in series and to avoid damage to the partially shaded photovoltaic cell. In the case of a shaded or defective photovoltaic cell, the power loss is reduced by connecting a bypass diode in parallel to the photovoltaic cell. If a photovoltaic element, in particular a photovoltaic cell of the photovoltaic element, is at least partially shaded, this photovoltaic cell generates no or a lower voltage, and the current generated by the photovoltaic cells connected in series cannot be passed through and damages the at least partially shaded photovoltaic cell Cell. The bypass diode can be used in one In such a case, take over the conduction of the generated current from photovoltaic cells connected in front of them to photovoltaic cells connected afterwards through the bypass diode, thereby preventing damage to the shaded photovoltaic cell. A photovoltaic element can thus continue to function in the case of an at least partially shaded photovoltaic cell. However, such a solution is very expensive and requires a high level of complexity, which also leads to high additional costs.
US20150349164A1 offenbart eine Solarzelle mit einer integrierten Bypass-Diode, wobei die Bypass-Diode und die Solarzelle unterschiedliche Bereiche nebeneinander auf dem Substrat umfassen und durch einen Zwischenraum getrennt sind. US20150349164A1 discloses a solar cell with an integrated bypass diode, the bypass diode and the solar cell comprising different areas next to one another on the substrate and being separated by a gap.
EP 1920 468 Bl offenbart organische photovoltaische Zellen mit einer Bypass-Diode. EP 1920 468 B1 discloses organic photovoltaic cells with a bypass diode.
WO2014/051889A1 offenbart eine Solarzelle mit einer Vielzahl an photovoltaischen Zellen, wobei die photovoltaischen Zellen eine bestimmte Anordnung an Zwischenräumen aufweisen, so dass die dadurch erhaltenen Flächen der Zellen nur eine maximale entgegengesetzte Spannung zulassen, und eine Anzahl an Bypass-Dioden reduziert werden kann. WO2014 / 051889A1 discloses a solar cell with a multiplicity of photovoltaic cells, the photovoltaic cells having a specific arrangement of gaps so that the areas of the cells obtained thereby only allow a maximum opposite voltage and a number of bypass diodes can be reduced.
Nachteilig aus dem Stand der Technik ist jedoch, dass sich die Integration einer vollständigen Bypass-Diode in photovoltaische Zellen bei der Herstellung als aufwändig erwiesen hat. Für die Bypass-Dioden ist eine größere Fläche erforderlich, die keinen Strom mehr produzieren kann, was zu einem größeren Leistungsverlust der photovoltaischen Elemente führt. Des Weiteren sind die bekannten Verfahren insbesondere nicht für ein Rolle-zu-Rolle Verfahren zur Herstellung von photovoltaischen Elementen geeignet. Der Erfindung liegt daher die Aufgabe zugrunde, ein photovoltaisches Element mit einer besseren Effizienz bei zumindest teilweiser Verschattung einzelner photovoltaischer Zellen oder Zellbereiche und einer Erhöhung der Lebensdauer verschatteter photovoltaischer Zellen bereitzustellen, wobei die genannten Nachteile nicht auftreten, und wobei insbesondere bei einer zumindest teilweisen Verschattung einer photovoltaischen Zelle das photovoltaische Element nicht beschädigt wird. Es soll insbesondere möglichst wenig aktiver Flächenverlust entstehen und ein nur minimaler Einfluss auf die Leistung entstehen. The disadvantage of the prior art, however, is that the integration of a complete bypass diode in photovoltaic cells has proven to be complex during manufacture. A larger area is required for the bypass diodes, which can no longer produce electricity, which leads to a greater loss of power in the photovoltaic elements. Furthermore, the known methods are in particular not suitable for a roll-to-roll process for the production of photovoltaic elements. The invention is therefore based on the object of providing a photovoltaic element with better efficiency with at least partial shading of individual photovoltaic cells or cell areas and an increase in the service life of shaded photovoltaic cells, the disadvantages mentioned not occurring, and in particular with at least partial shading a photovoltaic cell, the photovoltaic element is not damaged. In particular, there should be as little active loss of space as possible and there should only be a minimal impact on performance.
Die Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. The object is achieved by the subjects of the independent claims. Advantageous refinements result from the subclaims.
Die Aufgabe wird insbesondere gelöst, indem ein photovoltaisches Element mit mindestens einer photovoltaischen Zelle, aufweisend eine Grundelektrode, eine Deckelektrode, und ein Schichtsystem, mit mindestens einer photoaktiven Schicht, wobei das Schichtsystem zwischen der Grundelektrode und der Deckelektrode angeordnet ist, bereitgestellt wird. Die mindestens eine photovoltaische Zelle ist zumindest teilweise in Segmente segmentiert, wobei die Segmentierung derart ausgebildet ist, dass zumindest die Deckelektrode und das Schichtsystem eines Segments von der Deckelektrode und dem Schichtsystem eines weiteren Segments, oder die Deckelektrode, das Schichtsystem und zumindest teilweise die Grundelektrode eines Segments von der Deckelektrode, dem Schichtsystem und zumindest teilweise der Grundelektrode eines weiteren Segments jeweils durch mindestens einen Hohlraum sich nicht berührend voneinander getrennt sind, wobei der mindestens eine Hohlraum zumindest weitgehend vertikal relativ zu dem Schichtsystem der mindestens einen photovoltaischen Zelle ausgebildet ist, und wobei die Segmente der mindestens einen photovoltaischen Zelle parallel zueinander elektrische leitend verschaltet sind, so dass ein elektrischer Stromfluss durch die mindestens eine photovoltaische Zelle auf die einzelnen Segmente verteilt ist. In einer bevorzugten Ausführungsform sind die Grundelektrode, das Schichtsystem und die Deckelektrode laserstrukturiert. In einer bevorzugten Ausführungsform bildet die Grundelektrode eine Kathode und die Deckelektrode eine Anode. The object is achieved in particular by providing a photovoltaic element with at least one photovoltaic cell, having a base electrode, a cover electrode, and a layer system with at least one photoactive layer, the layer system being arranged between the base electrode and the cover electrode. The at least one photovoltaic cell is at least partially segmented into segments, the segmentation being designed in such a way that at least the top electrode and the layer system of a segment of the top electrode and the layer system of a further segment, or the top electrode, the layer system and at least partially the base electrode of one Segments of the top electrode, the layer system and at least partially the base electrode of a further segment are each separated from one another by at least one cavity without touching one another, the at least one cavity being at least largely vertical relative to the layer system of the at least one photovoltaic cell, and wherein the Segments of the at least one photovoltaic cell are connected in an electrically conductive manner parallel to one another, so that an electrical current flow through the at least one photovoltaic cell is distributed to the individual segments. In a preferred embodiment, the base electrode, the layer system and the cover electrode are laser-structured. In a preferred embodiment, the base electrode forms a cathode and the cover electrode forms an anode.
In einer Bevorzugten Ausführungsform der Erfindung ist die Grundelektrode auf einem Substrat angeordnet, insbesondere einer Folie. In a preferred embodiment of the invention, the base electrode is arranged on a substrate, in particular a film.
Unter einem Hohlraum wird insbesondere Raum zwischen mindestens zwei Segmenten verstanden, der die Segmente zumindest Abschnittsweise voneinander trennt, so dass über einen solchen Abschnitt zumindest keine elektrisch leitende Verbindung zwischen den mindestens zwei Segmenten vorliegt und/oder die Segmente sich in diesemA cavity is understood to mean, in particular, space between at least two segments that separates the segments from one another at least in sections, so that there is at least no electrically conductive connection between the at least two segments via such a section and / or the segments are in this
Abschnittsbereich nicht berühren. Ein Hohlraum bildet einen bestimmten Abstand zwischen zwei Segmenten untereinander horizontal zum Schichtsystem. Der Hohlraum ist insbesondere ein Zwischenraum. Do not touch the section area. A cavity forms a certain distance between two segments horizontally to the layer system. The cavity is in particular an intermediate space.
Die Erfindung offenbart insbesondere eine technische Lösung, eine Beschädigung von photovoltaischen Elementen, insbesondere organischen photovoltaischen Elementen, durch sogenannte Hot-Spots zu vermeiden. Die Implementierung dieser Lösung erlaubt, dass ein photovoltaisches Element aus mehreren photovoltaischen Zellen weiter ohne Beeinträchtigung funktioniert, auch wenn eine oder mehrere photovoltaische Zellen verschattet sind. In particular, the invention discloses a technical solution for avoiding damage to photovoltaic elements, in particular organic photovoltaic elements, by so-called hot spots. The implementation of this solution allows a photovoltaic element composed of several photovoltaic cells to continue to function without impairment, even if one or more photovoltaic cells are shaded.
Unter einer Segmentierung wird insbesondere ein zumindest teilweises Trennen der Deckelektrode und des Schichtsystems, oder der Deckelektrode, des Schichtsystems und zumindest teilweise der Grundelektrode der photovoltaischen Zelle verstanden, so dass bei einer zumindest teilweisen Verschattung und/oder eines Defekts der mindestens einen photovoltaischen Zelle, ein elektrischer Strom in jedem einzelnen erhaltenen Segment derart groß ist, dass die photovoltaische Zelle nicht beschädigt wird. Die Segmente können je nach gewünschter Begrenzung der Stromdichte in den jeweiligen Segmenten in Abhängigkeit einer Querschnittsfläche der Segmente, insbesondere einer Breite und eine Länge der Segmente, segmentiert sein, wobei eine Stromdichte in einzelnen Segmenten geringer ist im Vergleich zu einer photovoltaischen Zelle ohne Segmentierung. In einer bevorzugten Ausführungsform der Erfindung fällt in den einzelnen Segmenten der Stromfluss derart ab, ist insbesondere die Stromdichte derart gering, dass eine zumindest teilweise verschattete photovoltaische Zelle, insbesondere eine vollverschattete photovoltaische Zelle, in der Lage bleibt den Stromfluss der nicht- verschatteten benachbarten photovoltaischen Zellen ohne Beschädigung durchzuleiten. Segmentation is understood to mean, in particular, an at least partial separation of the top electrode and the layer system, or the top electrode, the layer system and at least partially the base electrode of the photovoltaic cell, so that in the event of at least partial shading and / or a defect in the at least one photovoltaic cell, a electric current in each individual segment obtained is so large that the photovoltaic cell is not damaged. Depending on the desired limitation of the current density in the respective segments, the segments can be segmented as a function of a cross-sectional area of the segments, in particular a width and a length of the segments be, with a current density in individual segments is lower compared to a photovoltaic cell without segmentation. In a preferred embodiment of the invention, the current flow falls in the individual segments in such a way, in particular the current density is so low that an at least partially shaded photovoltaic cell, in particular a fully shaded photovoltaic cell, is able to flow the current of the non-shaded neighboring photovoltaic cells to pass through without damage.
Unter einer Verschattung wird insbesondere eine zumindest teilweise Verringerung der Lichteinstrahlung auf ein photovoltaisches Element verstanden, wobei insbesondere ein zumindest im Wesentlichen lichtundurchlässiges Objekt seinen Sonnenschatten auf Bestandteile eines photovoltaischen Elements wirft. In einer verschatteten oder zumindest teilweise verschatteten Zelle liegt eine im Vergleich zu einer nicht-verschatteten Zelle bei einer Lichteinstrahlung umgekehrte Spannung an, da in der zumindest teilweise verschatteten Zelle selbst kein oder ein geringerer Stromfluss generiert wird. Dadurch kann eine mit anderen nicht-verschatteten Zellen in Reihe geschaltete zumindest teilweise verschattete Zelle beschädigt werden. Shading is understood to mean, in particular, an at least partial reduction in the light irradiation on a photovoltaic element, in particular an at least substantially light-impermeable object casting its sun shadow on components of a photovoltaic element. In a shaded or at least partially shaded cell, a voltage that is reversed in comparison to a non-shaded cell is present when light is irradiated, since no or a lower current flow is generated in the at least partially shaded cell itself. As a result, an at least partially shaded cell connected in series with other non-shaded cells can be damaged.
Unter einem Defekt wird insbesondere eine Fehlstelle in einem Schichtsystem einer photovoltaischen Zelle oder in der elektrisch leitenden Verbindung des Schichtsystems mit mindestens einer Elektrode verstanden. A defect is understood to mean, in particular, a flaw in a layer system of a photovoltaic cell or in the electrically conductive connection of the layer system to at least one electrode.
Unter einem photovoltaischen Element wird insbesondere eine Solarzelle verstanden, wobei das photovoltaische Element mindestens eine photovoltaische Zelle aufweist. Die photovoltaischen Zellen können auf unterschiedliche Weise in dem photovoltaischen Element angeordnet und/oder verschaltet sein. Das photovoltaische Element ist bevorzugt aus mehreren photovoltaischen Zellen aufgebaut, die in Reihe verschaltet sind. A photovoltaic element is understood to mean, in particular, a solar cell, the photovoltaic element having at least one photovoltaic cell. The photovoltaic cells can be arranged and / or connected in different ways in the photovoltaic element. The photovoltaic element is preferably made up of several photovoltaic cells that are connected in series.
Ein möglicher Aufbau des Schichtsystems einer photovoltaischen Zelle ist in W02004083958A2, W02011013219A1, W02011138021A2, W02011161108A1 beschrieben. In den hier genannten Anmeldungen werden vorzugsweise Schichtsysteme verwendet, bei denen die photoaktiven Schichten Absorbermaterialien umfassen, die verdampfbar sind und durch Verdampfung (PVD, engl, physical vapor deposition) aufgebracht werden bzw. aufgebracht sind. Dafür werden Materialien die zur Gruppe der „kleinen Moleküle" gehören, verwendet, die unter anderem in W02006092134A1, W02010133208A1, W02014206860A1, WO2014128278A1, WO2017114937A1, und WO2017114938A1 beschrieben sind. Die photoaktiven Schichten bilden Akzeptor-Donor-Systeme, und können aus mehreren Einzelschichten, oder aus Mischschichten, als planar-heterojunction, und bevorzugt als bulk-heterojunction. Bevorzugt sind Schichtsysteme, die komplett durch Verdampfung aufgetragen werden können. A possible structure of the layer system of a photovoltaic cell is in W02004083958A2, W02011013219A1, W02011138021A2, W02011161108A1 described. In the applications cited here, layer systems are preferably used in which the photoactive layers comprise absorber materials which can be evaporated and which are or are applied by evaporation (PVD, physical vapor deposition). For this purpose, materials belonging to the group of "small molecules" are used, which are described, inter alia, in W02006092134A1, W02010133208A1, W02014206860A1, WO2014128278A1, WO2017114937A1, and WO2017114938A1. or from mixed layers, as planar heterojunction, and preferably as bulk heterojunction, layer systems which can be applied completely by evaporation are preferred.
Das Schichtsystem kann als Single-, Tandem- oder Multizelle ausgeführt sein, die Bezeichnung bestimmt sich durch die Anzahl der Subzellen, wobei jede Subzelle mindestens eine photoaktive Schicht enthält, die bevorzugt durch Transportschichten, und optionalen Rekombinationsschichten, getrennt sind und selbst aus mehreren Schichten bestehen können. Die p- oder n-Schichtsysteme, auch nur p- oder n-Schicht bezeichnet, können aus mehreren Schichten bestehen, wobei mindestens eine der Schichten des p- oder n- Schichtsystems p- dotiert oder n-dotiert ist, vorzugsweise als p- oder n-dotierte wide- gap-Schicht. Das i-Schichtsystem, auch als i-Schicht bezeichnet, ist eine undotierte oder gegenüber den p- bzw. n-Schichten in der Subzelle geringer, also schwächer dotiert, und als photoaktive Schicht ausgeführt. Jede dieser n-, p-, i-Schichten kann aus weiteren Schichten bestehen, wobei die n- bzw. p-Schicht aus mindestens einer dotierten n- bzw. p-Schicht besteht, die durch ihre Dotierung zu einer Erhöhung der Ladungsträger beiträgt. Das bedeutet, dass der Schichtstapel der photovoltaischen Zelle aus einer sinnvollen Kombination von p-, n-, und i-Schichtsystemen besteht, d.h. dass jede Subzelle ein i-Schichtsystem und mindestens ein p- oder n- Schichtsystem umfasst. The layer system can be designed as a single, tandem or multi-cell, the designation is determined by the number of sub-cells, each sub-cell containing at least one photoactive layer, which are preferably separated by transport layers and optional recombination layers, and which themselves consist of several layers can. The p- or n-layer systems, also referred to only as p- or n-layer, can consist of several layers, at least one of the layers of the p- or n-layer system being p-doped or n-doped, preferably as p- or n-doped wide-gap layer. The i-layer system, also referred to as i-layer, is undoped or less doped than the p- or n-layers in the subcell, that is to say less doped, and is designed as a photoactive layer. Each of these n-, p-, i-layers can consist of further layers, the n- or p-layer consisting of at least one doped n- or p-layer, which contributes to an increase in the charge carriers through its doping. This means that the layer stack of the photovoltaic cell consists of a sensible combination of p-, n- and i-layer systems, i.e. that each sub-cell comprises an i-layer system and at least one p- or n-layer system.
Unter einer horizontalen Ausdehnung des Schichtsystems wird insbesondere eine im Wesentlichen parallel zu einem Substrat und/oder einer Schicht des Schichtsystems verlaufende Richtung verstanden. In einer bevorzugten Ausführungsform weist das photovoltaische Element eine Zelle mit mindestens einer photoaktiven Schicht auf, insbesondere eine CIS-, CIGS-, GaAs-, oder Si-Zelle, eine Perovskit-Zelle oder ein organisches photovoltaisches Element (OPV), eine sogenannte organische Solarzelle. Unter einem organische photovoltaische Element wird insbesondere ein photovoltaisches Element mit mindestens einer organischen photoaktiven Schicht verstanden, insbesondere ein polymeres organisches photovoltaisches Element oder ein organisches photovoltaisches Element auf Basis kleiner Moleküle. Während Polymere sich dadurch auszeichnen, dass diese nicht verdampfbar und daher nur aus Lösungen aufgebracht werden können, sind kleine Moleküle meist verdampfbar und können entweder wie Polymere als Lösung aufgebracht werden, aber auch mittels Verdampfungstechnik, insbesondere durch Verdampfen aus dem Vakuum. Insbesondere bevorzugt ist das photovoltaische Element ein flexibles organisches photovoltaisches Element auf Basis kleiner Moleküle. A horizontal extension of the layer system is understood to mean, in particular, a direction that runs essentially parallel to a substrate and / or a layer of the layer system. In a preferred embodiment, the photovoltaic element has a cell with at least one photoactive layer, in particular a CIS, CIGS, GaAs, or Si cell, a perovskite cell or an organic photovoltaic element (OPV), a so-called organic solar cell . An organic photovoltaic element is understood to mean, in particular, a photovoltaic element with at least one organic photoactive layer, in particular a polymeric organic photovoltaic element or an organic photovoltaic element based on small molecules. While polymers are characterized by the fact that they cannot be evaporated and can therefore only be applied from solutions, small molecules are usually evaporable and can either be applied as a solution like polymers, but also by means of evaporation technology, in particular by evaporation from a vacuum. The photovoltaic element is particularly preferably a flexible organic photovoltaic element based on small molecules.
In einer bevorzugten Ausführungsform der Erfindung umfasst die photoaktive Schicht des Schichtsystems kleine Moleküle, welche im Vakuum verdampfbar sind. In einer bevorzugten Ausführungsform der Erfindung ist zumindest die photoaktive Schicht des Schichtsystems im Vakuum aufgedampft. In a preferred embodiment of the invention, the photoactive layer of the layer system comprises small molecules which can be evaporated in a vacuum. In a preferred embodiment of the invention, at least the photoactive layer of the layer system is vapor-deposited in a vacuum.
Unter kleinen Molekülen werden insbesondere nicht-polymere organische Moleküle mit monodispersen molaren Massen zwischen 100 und 2000 g/mol verstanden, die unter Normaldruck (Luftdruck der uns umgebenden Atmosphäre) und bei Raumtemperatur in fester Phase vorliegen. Insbesondere sind die kleinen Moleküle photoaktiv, wobei unter photoaktiv verstanden wird, dass die Moleküle unter Lichteintrag ihren Ladungszustand und/oder ihren Polarisierungszustand ändern. Small molecules are understood to mean, in particular, non-polymeric organic molecules with monodisperse molar masses between 100 and 2000 g / mol, which are present in the solid phase under normal pressure (air pressure of the surrounding atmosphere) and at room temperature. In particular, the small molecules are photoactive, photoactive being understood to mean that the molecules change their state of charge and / or their state of polarization when light is introduced.
In einer bevorzugten Ausführungsform der Erfindung umfasst die Deckelektrode Silber oder eine Silberlegierung, Aluminium oder eine Aluminiumlegierung, Gold oder eine Goldlegierung, oder eine Kombination dieser Materialien, bevorzugt umfassend als Silberlegierung Ag:Mg oder Ag:Ca. Das erfindungsgemäße photovoltaisches Element weist Vorteile im Vergleich zum Stand der Technik auf. Vorteilhafterweise wird ein Schutz des photovoltaischen Elements gegen Hot-Spots ermöglicht, insbesondere kann ein in nicht verschatteten Zellen generierter Strom auf die einzelnen Segmente einer zumindest teilweise verschatteten Zelle aufgeteilt werden, wodurch eine Beschädigung der zumindest teilweise verschatteten Zelle verhindert wird. Das photovoltaische Element kann somit weiterhin mit den übrigen nicht-verschatteten Zellen elektrischen Strom generieren. Vorteilhafterweise wird die mindestens eine photovoltaische Zelle bei zumindest teilweiser Verschattung und/oder bei einem Defekt der photovoltaischen Zelle nicht beschädigt. Vorteilhafterweise wird die Effizienz bei Verschattung einzelner photovoltaischer Zellen des photovoltaischen Elements erhöht, und die Lebensdauer des photovoltaischen Elements erhöht. Vorteilhafterweise entsteht kein oder zumindest weitgehend kein Flächenverlust der photovoltaischen Zelle und/oder entsteht kein Verlust oder zumindest weitgehend kein Verlust der Leistung der photovoltaischen Zelle. Vorteilhafterweise verteilt sich ein elektrischer Stromfluss von der vorhergehenden photovoltaischen Zelle auf die einzelnen Segmente der zumindest teilweise verschatteten photovoltaischen Zelle. Vorteilhafterweise ist die Segmentierung besonders leicht in aktuelle Herstellverfahren integrierbar, insbesondere ist nur ein geringfügiger Aufwand bei der Programmierung der Laserstrukturierung nötig. Vorteilhafterweise ist die Herstellung in einen Rolle-zu-Rolle-Prozess integrierbar. Die Segmentierung lässt sich direkt bei der Herstellung in das Schichtsystem einbauen ohne Anwendung zusätzlicher externer Bauelemente, insbesondere Dioden. Vorteilhafterweise ist die Segmentierung photovoltaischer Zellen kostengünstiger im Vergleich zu anderen Lösungen, insbesondere im Vergleich zu Bypass-Dioden. Vorteilhafterweise wird ist der durch die einzelnen Segmente fließende elektrische Strom geringer. In a preferred embodiment of the invention, the cover electrode comprises silver or a silver alloy, aluminum or an aluminum alloy, gold or a gold alloy, or a combination of these materials, preferably comprising Ag: Mg or Ag: Ca as a silver alloy. The photovoltaic element according to the invention has advantages compared to the prior art. Advantageously, protection of the photovoltaic element against hot spots is made possible; in particular, a current generated in non-shaded cells can be distributed to the individual segments of an at least partially shaded cell, thereby preventing damage to the at least partially shaded cell. The photovoltaic element can thus continue to generate electrical current with the other non-shaded cells. The at least one photovoltaic cell is advantageously not damaged in the event of at least partial shading and / or in the event of a defect in the photovoltaic cell. The efficiency is advantageously increased when individual photovoltaic cells of the photovoltaic element are shaded, and the service life of the photovoltaic element is increased. Advantageously, there is no or at least largely no loss of area of the photovoltaic cell and / or there is no loss or at least largely no loss of the power of the photovoltaic cell. An electrical current flow is advantageously distributed from the preceding photovoltaic cell to the individual segments of the at least partially shaded photovoltaic cell. The segmentation can advantageously be integrated particularly easily into current manufacturing processes; in particular, only a small amount of effort is required when programming the laser structuring. The production can advantageously be integrated into a roll-to-roll process. The segmentation can be built into the layer system directly during production without the use of additional external components, in particular diodes. The segmentation of photovoltaic cells is advantageously more cost-effective compared to other solutions, in particular compared to bypass diodes. The electric current flowing through the individual segments is advantageously lower.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass das photovoltaische Element mindestens eine erste photovoltaische Zelle und eine zweite photovoltaische Zelle aufweist, wobei die mindestens erste photovoltaische Zelle und zweite photovoltaische Zelle in Reihe geschaltet sind, und wobei die Deckelektrode der ersten photovoltaischen Zelle mit der Grundelektrode der zweiten photovoltaischen Zelle elektrisch leitend verbunden ist, wobei bevorzugt die Grundelektroden der photovoltaischen Zellen untereinander in horizontaler Richtung, bezogen auf das Schichtsystem, voneinander getrennt sind, und die Deckelektroden der photovoltaischen Zellen untereinander in horizontaler Richtung, bezogen auf das Schichtsystem, voneinander getrennt sind. According to a development of the invention it is provided that the photovoltaic element has at least one first photovoltaic cell and one second photovoltaic cell, the at least first photovoltaic cell and second photovoltaic cell in series are connected, and wherein the top electrode of the first photovoltaic cell is electrically conductively connected to the bottom electrode of the second photovoltaic cell, the bottom electrodes of the photovoltaic cells are preferably separated from each other in the horizontal direction, based on the layer system, and the top electrodes of the photovoltaic cells are separated from one another in the horizontal direction, based on the layer system.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass eine Querschnittsfläche der Segmente der mindestens einen photovoltaischen Zelle, bezogen auf die horizontale Ausdehnung des Schichtsystems, untereinander gleich ist, wobei bevorzugt eine Größe der Querschnittsfläche der Segmente in Abhängigkeit eines Stromflusses durch die mindestens eine photovoltaische Zelle gleich ausgebildet ist. Bei einem geringeren Stromfluss durch ein einzelnes Segment wird die Stromdichte geringer, wobei bei einem größeren Stromfluss durch ein einzelnes Segment die Stromdichte größer wird. According to a further development of the invention, it is provided that a cross-sectional area of the segments of the at least one photovoltaic cell, based on the horizontal extent of the layer system, is the same, preferably the same size of the cross-sectional area of the segments depending on a current flow through the at least one photovoltaic cell is trained. With a lower current flow through a single segment, the current density becomes lower, whereas with a larger current flow through a single segment, the current density becomes higher.
Unter einer Querschnittsfläche wird insbesondere eine Fläche eines Segments in horizontaler Ausdehnung des Schichtsystems verstanden, insbesondere entlang einer Schicht des Schichtsystems. A cross-sectional area is understood to mean, in particular, an area of a segment in the horizontal extent of the layer system, in particular along a layer of the layer system.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass eine Breite eines Segments 1 cm bis 2 m beträgt, bevorzugt 5 cm bis 1 m, und/oder ein Abstand der einzelnen Segmente untereinander horizontal zum Schichtsystem in einem Bereich von 10 nm bis 200 nm liegt, bevorzugt von 40 nm bis 80 nm. Der Abstand zwischen den einzelnen Segmenten wird insbesondere durch den mindestens einen Hohlraum gebildet. According to a further development of the invention it is provided that a width of a segment is 1 cm to 2 m, preferably 5 cm to 1 m, and / or the distance between the individual segments horizontally to the layer system is in a range of 10 nm to 200 nm, preferably from 40 nm to 80 nm. The distance between the individual segments is in particular formed by the at least one cavity.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass eine Länge der Segmente, insbesondere die Länge der mindestens einen photovoltaischen Zelle, 1 mm bis 1 m beträgt, bevorzugt 5 mm bis 5 cm, wobei die Segmente bevorzugt zumindest weitgehend parallel zueinander ausgebildet sind. Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die einzelnen Segmente jeweils über eine gesamte Richtung der photovoltaischen Zelle ausgebildet sind, wobei bevorzugt eine Form der Segmente unterschiedlich ausgebildet ist. According to a further development of the invention, it is provided that a length of the segments, in particular the length of the at least one photovoltaic cell, is 1 mm to 1 m, preferably 5 mm to 5 cm, the segments preferably being at least largely parallel to one another. According to a further development of the invention, it is provided that the individual segments are each formed over an entire direction of the photovoltaic cell, with one shape of the segments preferably being formed differently.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die Segmente zumindest weitgehend parallel, bevorzugt streifenförmig, ausgebildet sind, wobei bevorzugt die Segmente einer nachfolgenden photovoltaischen Zelle im Vergleich zur vorhergehenden photovoltaischen Zelle parallel relativ gegeneinander versetzt sind. According to a further development of the invention, it is provided that the segments are at least largely parallel, preferably strip-shaped, the segments of a subsequent photovoltaic cell preferably being parallel relative to one another compared to the preceding photovoltaic cell.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die photovoltaischen Zellen des photovoltaischen Elements mittels mindestens einer Sammelschiene, einem sogenannten Busbar, elektrisch leitend verbunden sind. According to a further development of the invention, it is provided that the photovoltaic cells of the photovoltaic element are connected in an electrically conductive manner by means of at least one busbar, a so-called busbar.
Photovoltaische Zellen werden in Abhängigkeit der Anzahl der photoaktiven Schichtsysteme, die durch Transport- und weitere Schichten im Schichtaufbau zwischen den beiden Grund- und Deckkontakten, in Single-, Tandem- oder Mehrfachzellen unterschieden. Tandem- und Mehrfachzellen bestehen aus mindestens zwei Subzellen, die übereinander zwischen den Elektroden angeordnet sind, wobei jede Subzelle mindestens ein photoaktives Schichtsystem umfasst. Photovoltaic cells are divided into single, tandem or multiple cells depending on the number of photoactive layer systems that are created by transport and further layers in the layer structure between the two base and cover contacts. Tandem and multiple cells consist of at least two sub-cells which are arranged one above the other between the electrodes, each sub-cell comprising at least one photoactive layer system.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass das Schichtsystem mindestens zwei photoaktive Schichten aufweist, wobei die photovoltaische Zelle eine Tandem-Zelle ist, bevorzugt mindestens drei photoaktive Schichten aufweist, wobei die photovoltaische Zelle eine Triple-Zelle ist, und/oder das Schichtsystem zusätzlich mindestens eine Ladungsträgertransportschicht aufweist, wobei die mindestens eine Ladungsträgertransportschicht zwischen der Grundelektrode oder der Deckelektrode und einer photoaktiven Schicht angeordnet ist, bevorzugt mindestens eine erste Ladungsträgertransportschicht und eine zweite Ladungsträgertransportschicht aufweist, wobei die erste Ladungsträgertransportschicht zwischen der Grundelektrode und der mindestens einen photoaktiven Schicht angeordnet ist, und wobei die zweite Ladungsträgertransportschicht zwischen der mindestens einen photoaktiven Schicht und der Deckelektrode angeordnet ist. According to a further development of the invention it is provided that the layer system has at least two photoactive layers, the photovoltaic cell being a tandem cell, preferably having at least three photoactive layers, the photovoltaic cell being a triple cell, and / or the layer system in addition has at least one charge carrier transport layer, the at least one charge carrier transport layer being arranged between the base electrode or the cover electrode and a photoactive layer, preferably having at least one first charge carrier transport layer and a second charge carrier transport layer, the first charge carrier transport layer being arranged between the base electrode and the at least one photoactive layer, and where the second charge carrier transport layer is arranged between the at least one photoactive layer and the cover electrode.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass das photovoltaische Element ein organisches photovoltaisches Element ist, bevorzugt ein flexibles organisches photovoltaisches Element, wobei bevorzugt mindestens eine photoaktive Schicht des organischen photovoltaischen Elements kleine Moleküle als Absorbermaterial aufweist. According to a further development of the invention it is provided that the photovoltaic element is an organic photovoltaic element, preferably a flexible organic photovoltaic element, with at least one photoactive layer of the organic photovoltaic element preferably having small molecules as absorber material.
Unter einem flexiblen photovoltaischen wird insbesondere ein photovoltaisches Element verstanden, dass in einem bestimmten Bereich biegbar und/oder dehnbar ist. A flexible photovoltaic element is understood to mean, in particular, a photovoltaic element that can be bent and / or stretched in a specific area.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass das photovoltaische Element keine Bypass-Diode aufweist. According to a development of the invention it is provided that the photovoltaic element does not have a bypass diode.
Die Aufgabe der vorliegenden Erfindung wird auch gelöst, indem eine Photovoltaikanlage, mit mindestens zwei photovoltaischen Elementen bereitgestellt wird, insbesondere nach einem der zuvor beschriebenen Ausführungsbeispiele. Dabei ergeben sich für die Photovoltaikanlage insbesondere die Vorteile, die bereits in Zusammenhang mit dem photovoltaischen Element mit mindestens einer photovoltaischen Zelle beschrieben wurden. Die mindestens zwei photovoltaischen Elemente sind dabei in Reihe geschaltet. Die photovoltaischen Elemente bestehen bevorzugt aus in Reihe zueinander verschalteter photovoltaischer Zellen. Die Reihenschaltung der photovoltaischen Zellen erfolgt bevorzugt durch elektrisch leitendes Verbinden der Deckelektrode einer photovoltaischen Zelle mit der Grundelektrode der folgenden photovoltaischen Zelle. The object of the present invention is also achieved by providing a photovoltaic system with at least two photovoltaic elements, in particular according to one of the exemplary embodiments described above. The advantages for the photovoltaic system are in particular that have already been described in connection with the photovoltaic element with at least one photovoltaic cell. The at least two photovoltaic elements are connected in series. The photovoltaic elements preferably consist of photovoltaic cells connected in series with one another. The series connection of the photovoltaic cells is preferably carried out by electrically conductive connection of the cover electrode of one photovoltaic cell to the base electrode of the following photovoltaic cell.
Die Aufgabe der vorliegenden Erfindung wird auch gelöst, indem ein Verfahren zum Herstellen eines photovoltaischen Elements, insbesondere eines flexiblen photovoltaischen Elements, mit mindestens zwei photovoltaischen Zellen, jeweils aufweisend eine Grundelektrode, eine Deckelektrode, und einem zwischen der Grundelektrode und der Deckelektrode angeordneten Schichtsystem, wobei das Schichtsystem mindestens eine photoaktive Schicht aufweist, bereitgestellt wird, insbesondere nach einem der zuvor beschriebenen Ausführungsbeispiele. Dabei ergeben sich für das Verfahren insbesondere die Vorteile, die bereits in Zusammenhang mit dem photovoltaischen Element mit mindestens einer photovoltaischen Zelle und in Zusammenhang mit der Photovoltaikanlage beschrieben wurden. Das Verfahren umfasst die folgenden Schritte: a) Bereitstellen eines Substrats mit einer Grundelektrodenschicht, b) Laserstrukturierung der Grundelektrodenschicht, so dass die Grundelektrodenschicht in einzelne Grundelektroden unterteilt wird, c) Aufbringen eines Schichtsystems mit mindestens einer photoaktiven Schicht auf die strukturierten Grundelektroden, und Bilden mindestens einer zu jeder einzelnen Grundelektrode zugehörigen Öffnung in dem Schichtsystem mittels Laserablation, wobei die Grundelektroden an der mindestens einen Öffnung zumindest teilweise freigelegt werden, d) Aufbringen einer Deckelektrodenschicht in die mindestens eine Öffnung und/oder auf das Schichtsystem mit der mindestens einen Öffnung, wobei die mindestens eine Öffnung aufgefüllt wird, e) Laserstrukturierung der Deckelektrodenschicht und des Schichtsystems, so dass einzelne Deckelektroden und einzelne Schichtsysteme gebildet werden, wobei die Deckelektrode einer ersten photovoltaischen Zelle mit der Grundelektrode einer zweiten photovoltaischen Zelle elektrisch leitend verbunden wird, und f) Segmentieren zumindest der Deckelektrode und des Schichtsystems, oder der Deckelektrode, des Schichtsystems und zumindest teilweise der Grundelektrode der mindestens einen photovoltaischen Zelle mittels Laserablation, wobei Segmente der mindestens einen photovoltaischen Zelle gebildet werden. The object of the present invention is also achieved by a method for producing a photovoltaic element, in particular a flexible photovoltaic element, with at least two photovoltaic cells, each having a base electrode, a cover electrode, and a layer system arranged between the base electrode and the cover electrode, wherein the shift system having at least one photoactive layer is provided, in particular according to one of the exemplary embodiments described above. This results in the method in particular the advantages that have already been described in connection with the photovoltaic element with at least one photovoltaic cell and in connection with the photovoltaic system. The method comprises the following steps: a) providing a substrate with a base electrode layer, b) laser structuring the base electrode layer so that the base electrode layer is divided into individual base electrodes, c) applying a layer system with at least one photoactive layer on the structured base electrodes, and forming at least an opening associated with each individual base electrode in the layer system by means of laser ablation, the base electrodes being at least partially exposed at the at least one opening, d) application of a cover electrode layer in the at least one opening and / or on the layer system with the at least one opening, the at least one opening is filled, e) laser structuring of the top electrode layer and the layer system so that individual top electrodes and individual layer systems are formed, the top electrode of a first photovoltaic cell with the base electrode trode of a second photovoltaic cell is electrically conductively connected, and f) segmenting at least the cover electrode and the layer system, or the cover electrode, the layer system and at least partially the base electrode of the at least one photovoltaic cell by means of laser ablation, segments of the at least one photovoltaic cell being formed.
In einer bevorzugten Ausführungsform der Erfindung werden Schritt e) und Schritt f) gleichzeitig durchgeführt. In a preferred embodiment of the invention, step e) and step f) are carried out simultaneously.
In einer bevorzugten Ausführungsform der Erfindung werden zur Bildung Öffnung mittels Laserablation in Schritt c), der Laserstrukturierung in Schritt b) und Schritt e) und/oder zur Segmentierung in Schritt f) Parameter des mindestens einen Laserstrahls, bevorzugt eine Energiedichte, eine Pulsdauer, eine Pulsform, eine Pulsfrequenz und/oder eine Wellenlänge, in Abhängigkeit des Materials und der Schichtdicke der Grundelektrode, des Schichtsystems und/oder der Deckelektrode angepasst. In a preferred embodiment of the invention, for the formation of the opening by means of laser ablation in step c), the laser structuring in step b) and step e) and / or for segmentation in step f), parameters of the at least one laser beam, preferably an energy density, a pulse duration, a Pulse shape, a pulse rate and / or a wavelength, adapted as a function of the material and the layer thickness of the base electrode, the layer system and / or the top electrode.
In einer bevorzugten Ausführungsform der Erfindung wird der Grundkontakt und das Schichtsystem, die einzelnen Schichten des Schichtsystems, und/oder das Schichtsystem und die Deckelektrode durch eine geeignete Strukturierung, insbesondere eine Laserstrukturierung elektrisch leitend verbunden. In a preferred embodiment of the invention, the base contact and the layer system, the individual layers of the layer system, and / or the layer system and the cover electrode are connected in an electrically conductive manner by suitable structuring, in particular laser structuring.
In einer bevorzugten Ausführungsform der Erfindung werden die Schichten mittels eines Druckverfahrens, bevorzugt einem Inkjet- Verfahren, einem Siebdruckverfahren, und/oder einem Flexoprint- Verfahren, und/oder mittels Verdampfung der aufzubringenden Materialen aufgetragen. In a preferred embodiment of the invention, the layers are applied by means of a printing process, preferably an inkjet process, a screen printing process, and / or a flexoprint process, and / or by means of evaporation of the materials to be applied.
In einer bevorzugten Ausführungsform der Erfindung beträgt der Wellenlängenbereich des Lasers bei der Laserablation in Schritt c), der Laserstrukturierung in Schritt b) und in Schritt e) und/oder bei der Segmentierung in Schritt f) 300 nm bis 1200 nm, bevorzugt 400 nm bis 1000 nm, oder bevorzugt 450 nm bis 800 nm. In a preferred embodiment of the invention, the wavelength range of the laser in the laser ablation in step c), the laser structuring in step b) and in step e) and / or in the segmentation in step f) is 300 nm to 1200 nm, preferably 400 nm to 1000 nm, or preferably 450 nm to 800 nm.
In einer bevorzugten Ausführungsform der Erfindung wird eine Energiedichte des mindestens einen Laserstrahls bei der Laserablation in Schritt c) und/oder der Segmentierung in Schritt f) während der Ablation in Abhängigkeit einer Abtragstiefe des Schichtsystems angepasst. In a preferred embodiment of the invention, an energy density of the at least one laser beam during the laser ablation in step c) and / or the segmentation in step f) is adapted during the ablation as a function of an ablation depth of the layer system.
In einer bevorzugten Ausführungsform der Erfindung wird das Schichtsystem mittels Laserstrukturierung mit der Grundelektrode und/oder der Deckelektrode elektrisch leitend verbunden. In a preferred embodiment of the invention, the layer system is connected in an electrically conductive manner to the base electrode and / or the cover electrode by means of laser structuring.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die Deckelektrodenschicht in horizontaler Richtung bezogen auf das Schichtsystem der mindestens einen photovoltaischen Zelle unterteilt wird, so dass Deckelektroden erhalten werden, und die Grundelektrodenschicht in horizontaler Richtung bezogen auf das Schichtsystem der mindestens einen photovoltaischen Zelle unterteilt wird, so dass Grundelektroden erhalten werden. According to a development of the invention, it is provided that the top electrode layer is subdivided in the horizontal direction with respect to the layer system of the at least one photovoltaic cell, so that top electrodes are obtained, and the base electrode layer in the horizontal direction with respect to the Layer system of the at least one photovoltaic cell is subdivided so that base electrodes are obtained.
Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass das Verfahren in einem Rolle-zu-Rolle Verfahren eingesetzt wird. According to a further development of the invention it is provided that the method is used in a roll-to-roll method.
In einer bevorzugten Ausführungsform der Erfindung erfolgt die Strukturierung während des Aufbringens einzelner Schichten des Schichtsystems. In einer alternativ bevorzugten Ausführungsform der Erfindung erfolgt die Strukturierung nach dem Aufbringen der einzelnen Schichten des Schichtsystems. In a preferred embodiment of the invention, the structuring takes place during the application of individual layers of the layer system. In an alternatively preferred embodiment of the invention, the structuring takes place after the application of the individual layers of the layer system.
Die Erfindung wird im Folgenden anhand der Zeichnungen näher erläutert. Dabei zeigen: The invention is explained in more detail below with reference to the drawings. Show:
Fig. 1 eine schematische Darstellung eines Aufbaus eines Schichtsystems mit Elektroden einer photovoltaischen Zelle; 1 shows a schematic representation of a structure of a layer system with electrodes of a photovoltaic cell;
Fig. 2 eine schematische Darstellung eines photovoltaischen Elements zur Verdeutlichung des Problems bei zumindest teilweise verschatteten photovoltaischen Zellen in einer Seitenansicht; und 2 shows a schematic illustration of a photovoltaic element to illustrate the problem with at least partially shaded photovoltaic cells in a side view; and
Fig. 3 eine schematische Darstellung eines Ausführungsbeispiels eines photovoltaischen Elements mit Segmentierung in einer Seitenansicht und einer Draufsicht. 3 shows a schematic representation of an exemplary embodiment of a photovoltaic element with segmentation in a side view and a top view.
Ausführungsbeispiele Embodiments
Fig. 1 zeigt eine schematische Darstellung eines Aufbaus eines Schichtsystems 5 mit Elektroden 3,4 einer photovoltaischen Zelle 2. 1 shows a schematic representation of a structure of a layer system 5 with electrodes 3, 4 of a photovoltaic cell 2.
Photovoltaische Elemente 1, insbesondere organische photovoltaische Elemente 1, bestehen aus einer Folge dünner Schichten, dem Schichtsystem 5, mit mindestens einer photoaktiven Schicht 6, welche bevorzugt im Vakuum aufgedampft oder aus einer Lösung prozessiert werden. Die elektrische Anbindung kann durch Metallschichten, transparente leitfähige Oxide und/oder transparente leitfähige Polymere erfolgen. Das Vakuum-Aufdampfen der organischen Schichten ist insbesondere vorteilhaft bei der Herstellung von mehrschichtigen Solarzellen, insbesondere Tandem- oder Triple-Zellen. Ein Schichtsystem 5 einer solchen photovoltaischen Zelle 2 ist in einem Ausführungsbeispiel in Fig. 1 dargestellt. Photovoltaic elements 1, in particular organic photovoltaic elements 1, consist of a sequence of thin layers, the layer system 5, with at least one photoactive layer 6, which are preferably evaporated in a vacuum or processed from a solution. The electrical connection can be made through metal layers, transparent conductive oxides and / or transparent conductive polymers take place. The vacuum deposition of the organic layers is particularly advantageous in the production of multilayer solar cells, in particular tandem or triple cells. A layer system 5 of such a photovoltaic cell 2 is shown in one embodiment in FIG. 1.
In diesem Ausführungsbeispiel weist die photovoltaische Zelle 2 Glas als Substrat 13, mit einer transparenten Grundelektrode 3 aus ITO (M) 14, ein Schichtsystem 5 aus einer Schicht Fulleren C6015, einer photoaktiven Schicht 16 mit mindestens einem Absorbermaterial und Fulleren C60, und eine p-dotierten Löchertransportschicht 17 aus Di- NPB und NDP9, und eine Deckelektrode 4 aus Gold 18 auf. In this exemplary embodiment, the photovoltaic cell 2 has glass as the substrate 13, with a transparent base electrode 3 made of ITO (M) 14, a layer system 5 made of a layer of fullerene C6015, a photoactive layer 16 with at least one absorber material and fullerene C60, and a p- doped hole transport layer 17 made of DiNPB and NDP9, and a cover electrode 4 made of gold 18.
Fig. 2 zeigt eine schematische Darstellung eines photovoltaischen Elements 1 zur Verdeutlichung des Problems bei zumindest teilweise verschatteten photovoltaischen Zellen 2 in einer Seitenansicht. 2 shows a schematic illustration of a photovoltaic element 1 to illustrate the problem with at least partially shaded photovoltaic cells 2 in a side view.
Gleiche und funktionsgleiche Elemente sind mit den gleichen Bezugszeichen versehen, so dass insofern auf die vorangegangene Beschreibung verwiesen wird. Identical and functionally identical elements are provided with the same reference symbols, so that in this respect reference is made to the preceding description.
Ein Problem in Reihe geschalteter photovoltaischer Zellen 2 bei zumindest teilweiser Verschattung 12 der photovoltaischen Zellen 2 ist, dass die verschatteten photovoltaischen Zellen 2 in Sperrrichtung geschaltete Dioden bezüglich der dazu in Reihe verschalteten, unverschatteten oder schwächer verschatteten photovoltaischen Zellen 2 darstellen. Damit behindern sie den Abfluss des photogenerierten Stroms, was sich negativ auf die Effizienz auswirkt. Außerdem besteht die Gefahr, dass in den verschatteten photovoltaischen Zellen 2 ein konzentrierter Stromfluss durch Defektstellen auftreten kann, welcher zur lokalen Überhitzung und schließlich zu irreversibler Degradation der photovoltaischen Zelle 2 und damit zu einem Effizienzverlust photovoltaischen Elements 1 führen kann. A problem of photovoltaic cells 2 connected in series with at least partial shading 12 of the photovoltaic cells 2 is that the shaded photovoltaic cells 2 represent reverse-biased diodes with respect to the unshaded or less shaded photovoltaic cells 2 connected in series. In doing so, they hinder the outflow of the photogenerated electricity, which has a negative effect on efficiency. There is also the risk that a concentrated current flow through defects can occur in the shaded photovoltaic cells 2, which can lead to local overheating and ultimately to irreversible degradation of the photovoltaic cell 2 and thus to a loss of efficiency of the photovoltaic element 1.
Ein Beispiel einer durch zumindest teilweisen Verschattung 12 hervorgerufenen Degradierung einer photovoltaischen Zelle 2 ist in Fig. 2 dargestellt. Die zumindest teilweise Verschattung 12 führt dabei zu einer unerwünschten punktuellen Beschädigung der photovoltaischen Zelle 2. An example of a degradation of a photovoltaic cell 2 caused by at least partial shading 12 is shown in FIG. 2. The at least partial shade 12 leads this leads to undesired punctual damage to the photovoltaic cell 2.
Fig. 3 zeigt eine schematische Darstellung eines Ausführungsbeispiels eines photovoltaischen Elements 1 mit Segmentierung in einer Seitenansicht und einer Draufsicht. Gleiche und funktionsgleiche Elemente sind mit den gleichen Bezugszeichen versehen, so dass insofern auf die vorangegangene Beschreibung verwiesen wird. FIG. 3 shows a schematic illustration of an exemplary embodiment of a photovoltaic element 1 with segmentation in a side view and a top view. Identical and functionally identical elements are provided with the same reference symbols, so that in this respect reference is made to the preceding description.
Das photovoltaisches Element 1 weist mindestens eine photovoltaische Zelle 2 auf, mit einer Grundelektrode 3, einer Deckelektrode 4, und einem Schichtsystem 5 mit mindestens einer photoaktiven Schicht 6, wobei das Schichtsystem 5 zwischen der Grundelektrode 3 und der Deckelektrode 4 angeordnet ist. Die mindestens eine photovoltaische Zelle 2 ist zumindest teilweise in Segmente 7 segmentiert, wobei die Segmentierung derart ausgebildet ist, dass zumindest die Deckelektrode 4 und das Schichtsystem 5 eines Segments 7 von der Deckelektrode 4 und dem Schichtsystem 5 eines weiteren Segments 7, oder die Deckelektrode 4, das Schichtsystem 5 und zumindest teilweise die Grundelektrode 3 eines Segments 7 von der Deckelektrode 4, dem Schichtsystem 5 und zumindest teilweise der Grundelektrode 3 eines weiteren Segments 7 jeweils durch mindestens einen Hohlraum 8 sich nicht berührend voneinander getrennt sind, wobei der mindestens eine Hohlraum 8 zumindest weitgehend vertikal relativ zu dem Schichtsystem 5 der mindestens einen photovoltaischen Zelle 2 ausgebildet ist, und wobei die Segmente 7 der mindestens einen photovoltaischen Zelle 2 parallel zueinander elektrische leitend verschaltet sind, so dass ein elektrischer Stromfluss durch die mindestens eine photovoltaische Zelle 2 auf die einzelnen Segmente 7 verteilt ist. The photovoltaic element 1 has at least one photovoltaic cell 2 with a base electrode 3, a cover electrode 4, and a layer system 5 with at least one photoactive layer 6, the layer system 5 being arranged between the base electrode 3 and the cover electrode 4. The at least one photovoltaic cell 2 is at least partially segmented into segments 7, the segmentation being designed in such a way that at least the cover electrode 4 and the layer system 5 of a segment 7 are separated from the cover electrode 4 and the layer system 5 of a further segment 7, or the cover electrode 4 , the layer system 5 and at least partially the base electrode 3 of a segment 7 are separated from the top electrode 4, the layer system 5 and at least partially the base electrode 3 of a further segment 7 in each case by at least one cavity 8 without touching one another, the at least one cavity 8 is formed at least largely vertically relative to the layer system 5 of the at least one photovoltaic cell 2, and wherein the segments 7 of the at least one photovoltaic cell 2 are electrically conductively connected in parallel to one another, so that an electrical current flow through the at least one photovoltaic cell 2 to the individual n segments 7 is distributed.
Dadurch wird die mindestens eine photovoltaische Zelle 2 bei zumindest teilweiser Verschattung 12 und/oder bei einem Defekt der photovoltaischen Zelle 2, insbesondere durch einen Hot-Sport, nicht beschädigt. Des Weiteren wird die Effizienz bei Verschattung 12 einzelner photovoltaischer Zellen 2 des photovoltaischen Elements 1 erhöht, und damit einhergehend die Lebensdauer des photovoltaischen Elements 1 erhöht. Vorteilhafterweise entsteht kein oder zumindest weitgehend kein Flächenverlust der photovoltaischen Zelle 2 und/oder entsteht zumindest weitgehend kein Verlust der Leistung der photovoltaischen Zelle 2. Die Segmentierung ist besonders leicht in aktuelle Herstellverfahren integrierbar, insbesondere ist nur ein geringfügiger Aufwand bei der Programmierung der Laserstrukturierung nötig. As a result, the at least one photovoltaic cell 2 is not damaged in the event of at least partial shade 12 and / or in the event of a defect in the photovoltaic cell 2, in particular due to hot sport. Furthermore, the efficiency is increased when individual photovoltaic cells 2 of the photovoltaic element 1 are shaded, and the service life of the photovoltaic element 1 is increased as a result. Advantageously, none or at least occurs largely no loss of area of the photovoltaic cell 2 and / or at least largely no loss of the power of the photovoltaic cell 2. The segmentation can be integrated particularly easily into current manufacturing processes; in particular, only a small amount of effort is required when programming the laser structuring.
In einer Ausgestaltung der Erfindung weist das photovoltaische Element 1 mindestens eine erste photovoltaische Zelle 2 und eine zweite photovoltaische Zelle 2 auf, wobei die mindestens erste photovoltaische Zelle 2 und zweite photovoltaische Zelle 2 in Reihe geschaltet sind, und wobei die Deckelektrode 4 der ersten photovoltaischen Zelle 2 mit der Grundelektrode 3 der zweiten photovoltaischen Zelle 2 elektrisch leitend verbunden ist, wobei bevorzugt die Grundelektroden 3 der photovoltaischen Zellen 2 untereinander in horizontaler Richtung, bezogen auf das Schichtsystem 5, voneinander getrennt sind, und die Deckelektroden 4 der photovoltaischen Zellen 2 untereinander in horizontaler Richtung, bezogen auf das Schichtsystem 5, voneinander getrennt sind. Vorzugsweise ist jeweils die Deckelektrode 4 einer vorhergehenden photovoltaischen Zelle 2 mit der Grundelektrode 3 einer folgenden photovoltaischen Zelle 2 elektrisch leitend verbunden. In one embodiment of the invention, the photovoltaic element 1 has at least a first photovoltaic cell 2 and a second photovoltaic cell 2, the at least first photovoltaic cell 2 and the second photovoltaic cell 2 being connected in series, and the top electrode 4 of the first photovoltaic cell 2 is electrically conductively connected to the base electrode 3 of the second photovoltaic cell 2, wherein the base electrodes 3 of the photovoltaic cells 2 are preferably separated from one another in the horizontal direction, based on the layer system 5, and the cover electrodes 4 of the photovoltaic cells 2 from one another in the horizontal direction Direction, based on the layer system 5, are separated from one another. The cover electrode 4 of a preceding photovoltaic cell 2 is preferably connected in an electrically conductive manner to the base electrode 3 of a subsequent photovoltaic cell 2.
In einer weiteren Ausgestaltung der Erfindung ist eine Querschnittsfläche 9 der Segmente 7 der mindestens einen photovoltaischen Zelle 2, bezogen auf die horizontale Ausdehnung des Schichtsystems 5, untereinander gleich, wobei bevorzugt eine Größe der Querschnittsfläche 9 der Segmente 7 in Abhängigkeit eines Stromflusses durch die mindestens eine photovoltaische Zelle 2 ausgebildet ist. In a further embodiment of the invention, a cross-sectional area 9 of the segments 7 of the at least one photovoltaic cell 2, based on the horizontal extent of the layer system 5, is equal to one another, with a size of the cross-sectional area 9 of the segments 7 depending on a current flow through the at least one photovoltaic cell 2 is formed.
In einer weiteren Ausgestaltung der Erfindung beträgt eine Breite 10 eines Segments 71 cm bis 2 m, bevorzugt 5 cm bis 1 m, und/oder ein Abstand der einzelnen Segmente 7 untereinander horizontal zum Schichtsystem 5 liegt in einem Bereich von 10 nm bis 200 nm, bevorzugt von 40 nm bis 80 nm. In einer weiteren Ausgestaltung der Erfindung beträgt eine Länge 11 der Segmente 7, insbesondere die Länge 11 der mindestens einen photovoltaischen Zelle 2, 1 mm bis 1 m, bevorzugt 5 mm bis 5 cm, wobei die Segmente 7 bevorzugt zumindest weitgehend parallel zueinander ausgebildet sind. In a further embodiment of the invention, a width 10 of a segment is 71 cm to 2 m, preferably 5 cm to 1 m, and / or a distance between the individual segments 7 horizontally to the layer system 5 is in a range from 10 nm to 200 nm, preferably from 40 nm to 80 nm. In a further embodiment of the invention, a length 11 of the segments 7, in particular the length 11 of the at least one photovoltaic cell 2, is 1 mm to 1 m, preferably 5 mm to 5 cm, the segments 7 preferably being at least largely parallel to one another.
In einer weiteren Ausgestaltung der Erfindung sind die einzelnen Segmente 7 jeweils über eine gesamte Richtung der photovoltaischen Zelle 2 ausgebildet, wobei bevorzugt eine Form der Segmente 7 unterschiedlich ausgebildet ist. In a further embodiment of the invention, the individual segments 7 are each formed over an entire direction of the photovoltaic cell 2, wherein a shape of the segments 7 is preferably formed differently.
In einer weiteren Ausgestaltung der Erfindung sind die Segmente 7 zumindest weitgehend parallel, bevorzugt streifenförmig, ausgebildet, wobei bevorzugt die Segmente 7 einer nachfolgenden photovoltaischen Zelle 2 im Vergleich zur vorhergehenden photovoltaischen Zelle 2 parallel relativ gegeneinander versetzt sind. In a further embodiment of the invention, the segments 7 are at least largely parallel, preferably strip-shaped, with the segments 7 of a subsequent photovoltaic cell 2 being parallel relative to one another compared to the preceding photovoltaic cell 2.
In einer weiteren Ausgestaltung der Erfindung sind die photovoltaischen Zellen 2 des photovoltaischen Elements 1 mittels mindestens einer Sammelschiene elektrisch leitend verbunden. In a further embodiment of the invention, the photovoltaic cells 2 of the photovoltaic element 1 are connected in an electrically conductive manner by means of at least one busbar.
In einer weiteren Ausgestaltung der Erfindung weist das Schichtsystem 5 mindestens zwei photoaktive Schichten 6 auf, wobei die photovoltaische Zelle 2 eine Tandem-Zelle ist, bevorzugt mindestens drei photoaktive Schichten 6, wobei die photovoltaische Zelle 2 bevorzugt eine Triple-Zelle ist, und/oder weist das Schichtsystem 5 zusätzlich mindestens eine Ladungsträgertransportschicht auf, wobei die mindestens eine Ladungsträgertransportschicht zwischen der Grundelektrode 3 oder der Deckelektrode 4 und einer photoaktiven Schicht 6 angeordnet ist, bevorzugt mindestens eine erste Ladungsträgertransportschicht und eine zweite Ladungsträgertransportschicht, wobei die ersteIn a further embodiment of the invention, the layer system 5 has at least two photoactive layers 6, the photovoltaic cell 2 being a tandem cell, preferably at least three photoactive layers 6, the photovoltaic cell 2 preferably being a triple cell, and / or the layer system 5 additionally has at least one charge carrier transport layer, the at least one charge carrier transport layer being arranged between the base electrode 3 or the cover electrode 4 and a photoactive layer 6, preferably at least one first charge carrier transport layer and a second charge carrier transport layer, the first
Ladungsträgertransportschicht zwischen der Grundelektrode 3 und der mindestens einen photoaktiven Schicht 6 angeordnet ist, und wobei die zweite Ladungsträgertransportschicht zwischen der mindestens einen photoaktiven Schicht 6 und der Deckelektrode 4 angeordnet ist. In einer weiteren Ausgestaltung der Erfindung ist das photovoltaische Element 1 ein organisches photovoltaisches Element 1, bevorzugt ein flexibles organisches photovoltaisches Element 1, wobei bevorzugt mindestens eine photoaktive Schicht 6 des organischen photovoltaischen Elements 1 kleine Moleküle als Absorbermaterial aufweist. Charge carrier transport layer is arranged between the base electrode 3 and the at least one photoactive layer 6, and wherein the second charge carrier transport layer is arranged between the at least one photoactive layer 6 and the cover electrode 4. In a further embodiment of the invention, the photovoltaic element 1 is an organic photovoltaic element 1, preferably a flexible organic photovoltaic element 1, at least one photoactive layer 6 of the organic photovoltaic element 1 preferably having small molecules as absorber material.
In einer weiteren Ausgestaltung der Erfindung weist das photovoltaische Element 1 keine Bypass-Diode auf. In a further embodiment of the invention, the photovoltaic element 1 does not have a bypass diode.
Durch eine Reihenschaltung mindestens zwei photovoltaischer Elemente 1 zueinander wird eine Photovoltaikanlage gebildet. A photovoltaic system is formed by connecting at least two photovoltaic elements 1 in series with one another.
Das Verfahren zum Herstellen eines photovoltaischen Elements 1, insbesondere eines flexiblen photovoltaischen Elements 1, mit mindestens zwei photovoltaischen Zellen 2, jeweils aufweisend eine Grundelektrode 3, eine Deckelektrode 4, und einem zwischen der Grundelektrode 3 und der Deckelektrode 4 angeordneten Schichtsystem 5, wobei das Schichtsystem 5 mindestens eine photoaktive Schicht 6 aufweist, umfasst die folgenden Schritte: a) Bereitstellen eines Substrats 13 mit einer Grundelektrodenschicht, b) Laserstrukturierung der Grundelektrodenschicht, so dass die Grundelektrodenschicht in einzelne Grundelektroden 3 unterteilt wird, c) Aufbringen eines Schichtsystems 5 mit mindestens einer photoaktiven Schicht 6 auf die strukturierten Grundelektroden 3, und Bilden mindestens einer zu jeder einzelnen Grundelektrode 3 zugehörigen Öffnung in dem Schichtsystem 5 mittels Laserablation, wobei die Grundelektroden 3 an der mindestens einen Öffnung zumindest teilweise freigelegt werden, d) Aufbringen einer Deckelektrodenschicht in die mindestens eine Öffnung und/oder auf das Schichtsystem 5 mit der mindestens einen Öffnung, wobei die mindestens eine Öffnung aufgefüllt wird, e) Laserstrukturierung der Deckelektrodenschicht und des Schichtsystems 5, so dass einzelne Deckelektroden 4 und einzelne Schichtsysteme 5 gebildet werden, wobei die Deckelektrode 4 einer ersten photovoltaischen Zelle 2 mit der Grundelektrode 3 einer zweiten photovoltaischen Zelle 2 elektrisch leitend verbunden wird, und f) Segmentieren zumindest der Deckelektrode 4 und des Schichtsystems 5, oder der Deckelektrode 4, des Schichtsystems 5 und zumindest teilweise der Grundelektrode 3 der mindestens einen photovoltaischen Zelle 2 mittels Laserablation, wobei Segmente 7 der mindestens einen photovoltaischen Zelle 2 gebildet werden. Das Schichtsystem wird bevorzugt mittels einer Laserstrukturierung mit der Grundelektrode 3 und/oder der Deckelektrode 4 elektrisch leitend verbunden. The method for producing a photovoltaic element 1, in particular a flexible photovoltaic element 1, with at least two photovoltaic cells 2, each having a base electrode 3, a cover electrode 4, and a layer system 5 arranged between the base electrode 3 and the cover electrode 4, the layer system 5 has at least one photoactive layer 6, comprises the following steps: a) providing a substrate 13 with a base electrode layer, b) laser structuring of the base electrode layer so that the base electrode layer is divided into individual base electrodes 3, c) application of a layer system 5 with at least one photoactive Layer 6 on the structured base electrodes 3, and forming at least one opening associated with each individual base electrode 3 in the layer system 5 by means of laser ablation, the base electrodes 3 being at least partially exposed at the at least one opening, d) application n a cover electrode layer in the at least one opening and / or on the layer system 5 with the at least one opening, the at least one opening being filled, e) laser structuring of the cover electrode layer and the layer system 5 so that individual cover electrodes 4 and individual layer systems 5 are formed , wherein the top electrode 4 of a first photovoltaic cell 2 is electrically conductively connected to the base electrode 3 of a second photovoltaic cell 2, and f) segmenting at least the cover electrode 4 and the layer system 5, or the cover electrode 4, the layer system 5 and at least partially the base electrode 3 of the at least one photovoltaic cell 2 by means of laser ablation, segments 7 of the at least one photovoltaic cell 2 being formed. The layer system is preferably connected in an electrically conductive manner to the base electrode 3 and / or the cover electrode 4 by means of laser structuring.
Die Laserstrukturierung der Deckelektrodenschicht und des Schichtsystems 5 in Schritt e) und das Segmentieren in Schritt f) kann gleichzeitig durchgeführt werden. The laser structuring of the top electrode layer and the layer system 5 in step e) and the segmenting in step f) can be carried out simultaneously.
In einer Ausgestaltung der Erfindung wird die Deckelektrodenschicht in horizontaler Richtung bezogen auf das Schichtsystem 5 der mindestens einen photovoltaischen Zelle 2 unterteilt, so dass Deckelektroden 4 erhalten werden, und die Grundelektrodenschicht in horizontaler Richtung bezogen auf das Schichtsystem 5 der mindestens einen photovoltaischen Zelle 2 unterteilt, so dass Grundelektroden 3 erhalten werden. In one embodiment of the invention, the top electrode layer is subdivided in the horizontal direction with respect to the layer system 5 of the at least one photovoltaic cell 2, so that top electrodes 4 are obtained, and the base electrode layer is divided in the horizontal direction with respect to the layer system 5 of the at least one photovoltaic cell 2, so that base electrodes 3 are obtained.
In einer weiteren Ausgestaltung der Erfindung wird das Schichtsystem 5 zumindest teilweise durch Verdampfung im Vakuum aufgetragen. In a further embodiment of the invention, the layer system 5 is applied at least partially by evaporation in a vacuum.
In einer weiteren Ausgestaltung der Erfindung wird das Verfahren in einem Rolle-zu-Rolle Verfahren eingesetzt. In a further embodiment of the invention, the method is used in a roll-to-roll method.
In einem Ausführungsbeispiel werden bei der Laserablation in Schritt b) folgende Parameter verwendet: eine Lasergeschwindigkeit von 4pJ - 385 mm/s, und eine Energie jedes Laserpulses von 25 kHz (25 Pulse pro Sekunde). In one embodiment, the following parameters are used in the laser ablation in step b): a laser speed of 4 pJ - 385 mm / s, and an energy of each laser pulse of 25 kHz (25 pulses per second).
Das bereitgestellte Substrat 13 wird in einer Ausführungsform (Fig. 3) nach der Bereitstellung mit einer Grundelektrodenschicht der photovoltaischen Zelle 2 beschichtet und strukturiert (PI), wobei die Grundelektrodenschicht in Grundelektroden 3 der einzelnen Segmente 7 getrennt wird. Anschließend wird das Schichtsystem 5 auf die Grundelektroden 3 aufgebracht. Das Schichtsystem 5 kann als Single-, Tandem- oder Mehrfachzelle aufgebracht werden, bevorzugt durch Verdampfen von kleinen Molekülen. Das Aufbringen einzelner Schichten auf einen Bereich der Grundelektrode 3 zum Bilden des Schichtsystems 5 kann zumindest teilweise durch einen Druckprozess, bevorzugt durch einen Injket-, Siebdruck-, Gravuredruck- oder Flexoprintprozess, oder durch Verdampfung der aufzubringenden Materialien, erfolgen. Das Schichtsystem 5, insbesondere einzelne Schichten des Schichtsystems 5, wird bevorzugt mittels Verdampfen im Vakuum aufgebracht. Anschließend erfolgt die Strukturierung des Schichtsystems 5 der photovoltaischen Zellen 2 (P2). Auf das Schichtsystem 5 wird die Deckelektrodenschicht aufgebracht, und die abschließende Strukturierung (P3) trennt die Deckelektrodenschicht in einzelne Deckelektroden 4. Die Strukturierung der einzelnen Schichten der photovoltaischen Zelle 2 kann beispielsweise mittels Laserablation, Elektronen- oder Ionenstrahlablation, oder Schattenmasken erfolgen. In one embodiment (FIG. 3), the provided substrate 13 is coated and structured (PI) with a base electrode layer of the photovoltaic cell 2 after the provision, the base electrode layer being separated into base electrodes 3 of the individual segments 7. The layer system 5 is then applied to the base electrodes 3. The layer system 5 can be used as a single, Tandem or multiple cells can be applied, preferably by evaporation of small molecules. The application of individual layers to a region of the base electrode 3 to form the layer system 5 can be carried out at least partially by a printing process, preferably by an injection, screen printing, gravure printing or flexo printing process, or by evaporation of the materials to be applied. The layer system 5, in particular individual layers of the layer system 5, is preferably applied by means of evaporation in a vacuum. The layer system 5 of the photovoltaic cells 2 (P2) is then structured. The top electrode layer is applied to the layer system 5, and the final structuring (P3) separates the top electrode layer into individual top electrodes 4. The structuring of the individual layers of the photovoltaic cell 2 can be done, for example, by means of laser ablation, electron or ion beam ablation, or shadow masks.
In einem Ausführungsbeispiel werden für die Strukturierungen PI / P2 / P3 mittels eines Lasers folgende Parameter verwendet: In one embodiment, the following parameters are used for the structuring PI / P2 / P3 by means of a laser:
PI: 1030 nm Wellenlänge und 50 pm Linienbreite; P2: 515 nm Wellenlänge und 50 pm Linienbreite, und P3: 1030 nm Wellenlänge und 100 pm Linienbreite. PI / P2 / P3 sind dabei in Reihe verschaltet, wohingegen die einzelnen Segmente parallel verschaltet sind. PI: 1030 nm wavelength and 50 pm line width; P2: 515 nm wavelength and 50 pm line width, and P3: 1030 nm wavelength and 100 pm line width. PI / P2 / P3 are connected in series, whereas the individual segments are connected in parallel.
Ein Ausführungsbeispiel einer Laserstrukturierung der photovoltaischen Zellen 2 ist in Fig. 3 gezeigt. Es sind die Strukturierungen PI / P2 / P3 dargestellt. Der Stromfluss ist durch Pfeile gekennzeichnet. Der photogenerierte Strom fließt in diesem Ausführungsbeispiel insbesondere über die Deckelektrode 4 der verschatteten photovoltaischen Zelle 2 aufgeteilt auf die einzelnen Segmente 7 der photovoltaischen Zelle 2 und kann dort über die zusätzliche P2 Strukturierung in verbessertem Maße in die Grundelektrode 3 hineinfließen. An exemplary embodiment of a laser structuring of the photovoltaic cells 2 is shown in FIG. 3. The structuring PI / P2 / P3 is shown. The current flow is indicated by arrows. In this exemplary embodiment, the photogenerated current flows in particular via the cover electrode 4 of the shaded photovoltaic cell 2, divided among the individual segments 7 of the photovoltaic cell 2 and can flow into the base electrode 3 to an improved extent there via the additional P2 structuring.

Claims

Patentansprüche Claims
1. Photovoltaisches Element (1) mit mindestens einer photovoltaischen Zelle (2), aufweisend eine Grundelektrode (3), eine Deckelektrode (4), und ein Schichtsystem (5), mit mindestens einer photoaktiven Schicht (6), wobei das Schichtsystem (5) zwischen der Grundelektrode (3) und der Deckelektrode (4) angeordnet ist, dadurch gekennzeichnet, dass die mindestens eine photovoltaische Zelle (2) zumindest teilweise in Segmente (7) segmentiert ist, wobei die Segmentierung derart ausgebildet ist, dass zumindest die Deckelektrode (4) und das Schichtsystem (5) eines Segments (7) von der Deckelektrode (4) und dem Schichtsystem (5) eines weiteren Segments (7), oder die Deckelektrode1. Photovoltaic element (1) with at least one photovoltaic cell (2), having a base electrode (3), a cover electrode (4), and a layer system (5), with at least one photoactive layer (6), the layer system (5 ) is arranged between the base electrode (3) and the cover electrode (4), characterized in that the at least one photovoltaic cell (2) is at least partially segmented into segments (7), the segmentation being designed such that at least the cover electrode ( 4) and the layer system (5) of a segment (7) of the top electrode (4) and the layer system (5) of a further segment (7), or the top electrode
(4), das Schichtsystem (5) und zumindest teilweise die Grundelektrode (3) eines Segments (7) von der Deckelektrode (4), dem Schichtsystem(4), the layer system (5) and at least partially the base electrode (3) of a segment (7) of the top electrode (4), the layer system
(5) und zumindest teilweise der Grundelektrode (3) eines weiteren Segments (7) jeweils durch mindestens einen Hohlraum (8) sich nicht berührend voneinander getrennt sind, wobei der mindestens eine Hohlraum (8) zumindest weitgehend vertikal relativ zu dem Schichtsystem (5) der mindestens einen photovoltaischen Zelle (2) ausgebildet ist, und wobei die Segmente (7) der mindestens einen photovoltaischen Zelle (2) parallel zueinander elektrische leitend verschaltet sind, so dass ein elektrischer Stromfluss durch die mindestens eine photovoltaische Zelle (2) auf die einzelnen Segmente (7) verteilt ist. (5) and at least partially the base electrode (3) of a further segment (7) are each separated from each other by at least one cavity (8) without touching one another, the at least one cavity (8) being at least largely vertical relative to the layer system (5) the at least one photovoltaic cell (2) is formed, and wherein the segments (7) of the at least one photovoltaic cell (2) are electrically conductively connected in parallel to one another, so that an electrical current flow through the at least one photovoltaic cell (2) to the individual Segments (7) is distributed.
2. Photovoltaisches Element (1) nach Anspruch 1, dadurch gekennzeichnet, dass das photovoltaische Element (1) mindestens eine erste photovoltaische Zelle (2) und eine zweite photovoltaische Zelle (2) aufweist, wobei die mindestens erste photovoltaische Zelle (2) und zweite photovoltaische Zelle (2) in Reihe geschaltet sind, und wobei die Deckelektrode (4) der ersten photovoltaischen Zelle (2) mit der Grundelektrode (3) der zweiten photovoltaischen Zelle (2) elektrisch leitend verbunden ist, wobei bevorzugt die Grundelektroden (3) der photovoltaischen Zellen (2) untereinander in horizontaler Richtung, bezogen auf das Schichtsystem (5), voneinander getrennt sind, und die Deckelektroden (4) der photovoltaischen Zellen (2) untereinander in horizontaler Richtung, bezogen auf das Schichtsystem (5), voneinander getrennt sind. 2. Photovoltaic element (1) according to claim 1, characterized in that the photovoltaic element (1) has at least a first photovoltaic cell (2) and a second photovoltaic cell (2), the at least first photovoltaic cell (2) and the second photovoltaic cell (2) are connected in series, and wherein the top electrode (4) of the first photovoltaic cell (2) is electrically conductively connected to the base electrode (3) of the second photovoltaic cell (2), preferably the base electrodes (3) of the photovoltaic cells (2) with each other in the horizontal direction, with respect to the layer system (5), are separated from one another, and the cover electrodes (4) of the photovoltaic cells (2) are separated from one another in the horizontal direction with respect to the layer system (5).
3. Photovoltaisches Element (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Querschnittsfläche (9) der Segmente (7) der mindestens einen photovoltaischen Zelle (2), bezogen auf die horizontale Ausdehnung des Schichtsystems (5), untereinander gleich ist, wobei bevorzugt eine Größe der Querschnittsfläche (9) der Segmente (7) in Abhängigkeit eines Stromflusses durch die mindestens eine photovoltaische Zelle (2) gleich ausgebildet ist. 3. Photovoltaic element (1) according to claim 1 or 2, characterized in that a cross-sectional area (9) of the segments (7) of the at least one photovoltaic cell (2), based on the horizontal extent of the layer system (5), is equal to one another , wherein a size of the cross-sectional area (9) of the segments (7) is designed to be the same as a function of a current flow through the at least one photovoltaic cell (2).
4. Photovoltaisches Element (1) nach einem der vorhergehenden4. Photovoltaic element (1) according to one of the preceding
Ansprüche, dadurch gekennzeichnet, dass eine Breite (10) eines Segments (7) 1 cm bis 2 m beträgt, bevorzugt 5 cm bis 1 m, und/oder ein Abstand der einzelnen Segmente (7) untereinander horizontal zum Schichtsystem (5) in einem Bereich von 10 nm bis 200 nm liegt, bevorzugt von 40 nm bis 80 nm. Claims, characterized in that a width (10) of a segment (7) is 1 cm to 2 m, preferably 5 cm to 1 m, and / or a distance between the individual segments (7) horizontally to the layer system (5) in one Range from 10 nm to 200 nm, preferably from 40 nm to 80 nm.
5. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Länge (11) der Segmente (7), insbesondere die Länge (11) der mindestens einen photovoltaischen Zelle (2), 1 mm bis 1 m beträgt, bevorzugt 5 mm bis 5 cm, wobei die Segmente (7) bevorzugt zumindest weitgehend parallel zueinander ausgebildet sind. 5. Photovoltaic element (1) according to one of the preceding claims, characterized in that a length (11) of the segments (7), in particular the length (11) of the at least one photovoltaic cell (2), is 1 mm to 1 m, preferably 5 mm to 5 cm, the segments (7) preferably being at least largely parallel to one another.
6. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Segmente (7) jeweils über eine gesamte Richtung der photovoltaischen Zelle (2) ausgebildet sind, wobei bevorzugt eine Form der Segmente (7) unterschiedlich ausgebildet ist. 6. Photovoltaic element (1) according to one of the preceding claims, characterized in that the individual segments (7) are each formed over an entire direction of the photovoltaic cell (2), preferably a shape of the segments (7) is formed differently.
7. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Segmente (7) zumindest weitgehend parallel, bevorzugt streifenförmig, ausgebildet sind, wobei bevorzugt die Segmente (7) einer nachfolgenden photovoltaischen Zelle (2) im Vergleich zur vorhergehenden photovoltaischen Zelle (2) parallel relativ gegeneinander versetzt sind. 7. Photovoltaic element (1) according to one of the preceding claims, characterized in that the segments (7) are at least largely parallel, preferably strip-shaped, are formed, preferably the segments (7) of a subsequent photovoltaic cell (2) in comparison to the previous photovoltaic cell (2) are parallel and relatively offset from one another.
8. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die photovoltaischen Zellen (2) des photovoltaischen Elements (1) mittels mindestens einer Sammelschiene elektrisch leitend verbunden sind. 8. Photovoltaic element (1) according to one of the preceding claims, characterized in that the photovoltaic cells (2) of the photovoltaic element (1) are connected in an electrically conductive manner by means of at least one busbar.
9. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Schichtsystem (5) mindestens zwei photoaktive Schichten (6) aufweist, wobei die photovoltaische Zelle (2) eine Tandem-Zelle ist, bevorzugt mindestens drei photoaktive Schichten (6) aufweist, wobei die photovoltaische Zelle (2) bevorzugt eine Triple-Zelle ist, und/oder das Schichtsystem (5) zusätzlich mindestens eine Ladungsträgertransportschicht aufweist, wobei die mindestens eine Ladungsträgertransportschicht zwischen der Grundelektrode (3) oder der Deckelektrode (4) und einer photoaktiven Schicht (6) angeordnet ist, bevorzugt mindestens eine erste Ladungsträgertransportschicht und eine zweite Ladungsträgertransportschicht aufweist, wobei die erste Ladungsträgertransportschicht zwischen der Grundelektrode (3) und der mindestens einen photoaktiven Schicht (6) angeordnet ist, und wobei die zweite Ladungsträgertransportschicht zwischen der mindestens einen photoaktiven Schicht (6) und der Deckelektrode (4) angeordnet ist. 9. Photovoltaic element (1) according to one of the preceding claims, characterized in that the layer system (5) has at least two photoactive layers (6), the photovoltaic cell (2) being a tandem cell, preferably at least three photoactive layers ( 6), wherein the photovoltaic cell (2) is preferably a triple cell, and / or the layer system (5) additionally has at least one charge carrier transport layer, the at least one charge carrier transport layer between the base electrode (3) or the top electrode (4) and a photoactive layer (6), preferably having at least one first charge carrier transport layer and a second charge carrier transport layer, wherein the first charge carrier transport layer is arranged between the base electrode (3) and the at least one photoactive layer (6), and wherein the second charge carrier transport layer is arranged between the at least a photoactive layer (6) and d of the cover electrode (4) is arranged.
10. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das photovoltaische Element (1) ein organisches photovoltaisches Element (1) ist, bevorzugt ein flexibles organisches photovoltaisches Element (1), wobei bevorzugt mindestens eine photoaktive Schicht (6) des organischen photovoltaischen Elements (1) kleine Moleküle als Absorbermaterial aufweist. 10. Photovoltaic element (1) according to one of the preceding claims, characterized in that the photovoltaic element (1) is an organic photovoltaic element (1), preferably a flexible organic photovoltaic element (1), wherein preferably at least one photoactive layer (6 ) the organic photovoltaic element (1) has small molecules as absorber material.
11. Photovoltaisches Element (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das photovoltaische Element (1) keine Bypass-Diode aufweist. 11. Photovoltaic element (1) according to one of the preceding claims, characterized in that the photovoltaic element (1) has no bypass diode.
12. Photovoltaikanlage, mit mindestens zwei photovoltaischen Elementen (1) nach einem der Ansprüche 1 bis 11, wobei die mindestens zwei photovoltaischen Elemente (1) in Reihe geschaltet sind. 12. Photovoltaic system, with at least two photovoltaic elements (1) according to one of claims 1 to 11, wherein the at least two photovoltaic elements (1) are connected in series.
13. Verfahren zum Herstellen eines photovoltaischen Elements (1), insbesondere eines flexiblen photovoltaischen Elements (1), mit mindestens zwei photovoltaischen Zellen (2) nach einem der Ansprüche 1 bis 11, jeweils aufweisend eine Grundelektrode (3), eine Deckelektrode (4), und einem zwischen der Grundelektrode (3) und der Deckelektrode13. A method for producing a photovoltaic element (1), in particular a flexible photovoltaic element (1), with at least two photovoltaic cells (2) according to one of claims 1 to 11, each having a base electrode (3), a cover electrode (4) , and one between the base electrode (3) and the cover electrode
(4) angeordneten Schichtsystem (5), wobei das Schichtsystem (5) mindestens eine photoaktive Schicht (6) aufweist, umfassend die folgenden Schritte: a) Bereitstellen eines Substrats mit einer Grundelektrodenschicht, b) Laserstrukturierung der Grundelektrodenschicht, so dass die Grundelektrodenschicht in einzelne Grundelektroden (3) unterteilt wird, c) Aufbringen eines Schichtsystems (5) mit mindestens einer photoaktiven Schicht (6) auf die strukturierten Grundelektroden (3), und Bilden mindestens einer zu jeder einzelnen Grundelektrode (3) zugehörigen Öffnung in dem Schichtsystem (5) mittels Laserablation, wobei die Grundelektroden (3) an der mindestens einen Öffnung zumindest teilweise freigelegt werden, d) Aufbringen einer Deckelektrodenschicht in die mindestens eine Öffnung und/oder auf das Schichtsystem (5) mit der mindestens einen Öffnung, wobei die mindestens eine Öffnung aufgefüllt wird, e) Laserstrukturierung der Deckelektrodenschicht und des Schichtsystems (5), so dass einzelne Deckelektroden (4) und einzelne Schichtsysteme (5) gebildet werden, wobei die Deckelektrode (4) einer ersten photovoltaischen Zelle (2) mit der Grundelektrode (3) einer zweiten photovoltaischen Zelle (2) elektrisch leitend verbunden wird, und f) Segmentieren zumindest der Deckelektrode (4) und des Schichtsystems(4) arranged layer system (5), wherein the layer system (5) has at least one photoactive layer (6), comprising the following steps: a) providing a substrate with a base electrode layer, b) laser structuring of the base electrode layer so that the base electrode layer in individual Base electrodes (3) is subdivided, c) applying a layer system (5) with at least one photoactive layer (6) to the structured base electrodes (3), and forming at least one opening in the layer system (5) associated with each individual base electrode (3) by means of laser ablation, the base electrodes (3) being at least partially exposed at the at least one opening, d) application of a cover electrode layer in the at least one opening and / or on the layer system (5) with the at least one opening, the at least one opening being filled e) laser structuring of the top electrode layer and the layer system (5) so that individual Cover electrodes (4) and individual layer systems (5) are formed, the cover electrode (4) of a first photovoltaic cell (2) being electrically conductively connected to the base electrode (3) of a second photovoltaic cell (2), and f) segmenting at least the Cover electrode (4) and the layer system
(5), oder der Deckelektrode (4), des Schichtsystems (5) und zumindest teilweise der Grundelektrode (3) der mindestens einen photovoltaischen Zelle (2) mittels Laserablation, wobei Segmente (7) der mindestens einen photovoltaischen Zelle (2) gebildet werden. (5), or the top electrode (4), the layer system (5) and at least partially the base electrode (3) of the at least one photovoltaic cell (2) by means of laser ablation, segments (7) of the at least one photovoltaic cell (2) being formed .
14. Verfahren zum Herstellen eines photovoltaischen Elements (1) nach Anspruch 13, wobei die Deckelektrodenschicht in horizontaler Richtung bezogen auf das Schichtsystem (5) der mindestens einen photovoltaischen Zelle (2) unterteilt wird, so dass Deckelektroden (4) erhalten werden, und die Grundelektrodenschicht in horizontaler Richtung bezogen auf das Schichtsystem (5) der mindestens einen photovoltaischen Zelle (2) unterteilt wird, so dass Grundelektroden (3) erhalten werden. 14. The method for producing a photovoltaic element (1) according to claim 13, wherein the cover electrode layer is divided in the horizontal direction with respect to the layer system (5) of the at least one photovoltaic cell (2) so that cover electrodes (4) are obtained, and the Base electrode layer is subdivided in the horizontal direction with respect to the layer system (5) of the at least one photovoltaic cell (2), so that base electrodes (3) are obtained.
15. Verfahren zum Herstellen eines photovoltaischen Elements (1) nach Anspruch 13 oder 14, wobei das Verfahren in einem Rolle-zu-Rolle Verfahren eingesetzt wird. 15. The method for producing a photovoltaic element (1) according to claim 13 or 14, wherein the method is used in a roll-to-roll process.
EP20816085.3A 2019-10-30 2020-10-30 Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element Pending EP4052299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019129355.3A DE102019129355A1 (en) 2019-10-30 2019-10-30 Photovoltaic element with improved efficiency in the case of shading and method for producing such a photovoltaic element
PCT/DE2020/100925 WO2021083462A1 (en) 2019-10-30 2020-10-30 Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element

Publications (1)

Publication Number Publication Date
EP4052299A1 true EP4052299A1 (en) 2022-09-07

Family

ID=73642542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20816085.3A Pending EP4052299A1 (en) 2019-10-30 2020-10-30 Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element

Country Status (7)

Country Link
US (1) US20230005992A1 (en)
EP (1) EP4052299A1 (en)
JP (1) JP2023501213A (en)
KR (1) KR20220088776A (en)
CN (1) CN114788006A (en)
DE (1) DE102019129355A1 (en)
WO (1) WO2021083462A1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004221377B2 (en) 2003-03-19 2009-07-16 Heliatek Gmbh Photoactive component comprising organic layers
DE102005010978A1 (en) 2005-03-04 2006-09-07 Technische Universität Dresden Photoactive component with organic layers
EP1920468B1 (en) 2005-09-01 2014-02-26 Merck Patent GmbH Photovoltaic cells integrated with bypass diode
CN102460763B (en) 2009-05-19 2015-11-25 海利泰科公司 Semiconductor subassembly
US20100132759A1 (en) * 2009-06-12 2010-06-03 Renhe Jia Cell isolation on photovoltaic modules for hot spot reduction
WO2011013219A1 (en) 2009-07-29 2011-02-03 株式会社 東芝 Manufacturing method of patterned-media master disk, and manufacturing method of magnetic recording media
US20110180122A1 (en) * 2010-01-26 2011-07-28 Applied Materials, Inc. Floating grid module design for thin film silicon solar cells
DE102010018548A1 (en) * 2010-04-28 2011-11-03 Signet Solar Gmbh Thin-film solar cell module for use on e.g. roof, has coupling structures provided among cell segments, and separation structures for separating cell segments of cell and assigning separated segments to another solar cell
EP2385556B1 (en) 2010-05-04 2021-01-20 Heliatek GmbH Photoactive device with organic layers
ES2572818T3 (en) 2010-06-21 2016-06-02 Heliatek Gmbh Organic solar cell with several transport layer systems
US9088169B2 (en) * 2012-05-09 2015-07-21 World Panel, Inc. Power-conditioned solar charger for directly coupling to portable electronic devices
WO2014051889A1 (en) 2012-09-28 2014-04-03 Dow Global Technologies Llc Photo-voltaic device having improved shading degradation resistance
JP6329181B2 (en) 2013-02-21 2018-05-23 ヘリアテク ゲゼルシャフト ミット ベシュレンクテル ハフツングHeliatek Gmbh Optoelectronic parts
DE102013106639A1 (en) 2013-06-25 2015-01-08 Heliatek Gmbh Organic, semiconducting component
US9425337B2 (en) 2014-05-29 2016-08-23 Sunpower Corporation In-cell bypass diode
EP3188270B1 (en) 2015-12-30 2018-12-26 Heliatek GmbH Organic semi-conducting material and its use in organic components
EP3187496A1 (en) 2015-12-30 2017-07-05 Heliatek GmbH Compound for photoactive organic electronic devices and photoactive organic electronic component containing the compound
DE102016118177A1 (en) * 2016-09-26 2018-03-29 Heliatek Gmbh Organic component for the conversion of light into electrical energy with improved efficiency and lifetime for partial shading
US20190237592A1 (en) * 2018-01-31 2019-08-01 Solaria Corporation Photovoltaic system and components

Also Published As

Publication number Publication date
CN114788006A (en) 2022-07-22
US20230005992A1 (en) 2023-01-05
WO2021083462A1 (en) 2021-05-06
JP2023501213A (en) 2023-01-18
KR20220088776A (en) 2022-06-28
DE102019129355A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
EP2438620B1 (en) Solar cell comprising neighboring electrically insulating passivation regions having high surface charges of opposing polarities and production method
DE3121350C2 (en) Method of manufacturing a solar battery
DE102008033632B4 (en) Solar cell and solar cell module
DE112012006953T5 (en) Spacer formation in a solar cell using oxygen ion implantation
DE3438477A1 (en) SOLAR CELL AND METHOD FOR THEIR PRODUCTION
WO2010029180A1 (en) Rear contact solar cell with an integrated bypass diode, and method for producing same
DE112015002551T5 (en) Alignment-free solar cell metallization
DE102008027780A1 (en) Solar cell and process for its production
EP2058870A2 (en) Contacts and module switching from thin layer solar cells to polymer carriers
DE102011115581B4 (en) Process for the production of a solar cell
DE102016116192B3 (en) Photovoltaic module with integrated series-connected stacked solar cells and process for its production
EP2347448A2 (en) Method for producing a wafer-based, rear-contacted hetero solar cells and hetero solar cell produced by the method
EP3493274A1 (en) Thin film solar module with improved shunt resistor
EP4203078A1 (en) Back-emitter solar cell structure having a heterojunction
DE112017004982B4 (en) Solar cells with differentiated p-type and n-type region architectures
EP1442486B1 (en) Solar cell with organic material in the photovoltaic layer and method for the production thereof
EP4052299A1 (en) Photovoltaic element with improved efficiency in the event of shade, and method for producing such a photovoltaic element
DE102019129349A1 (en) Photovoltaic element with improved efficiency in the case of shading, and method for producing such a photovoltaic element
WO2010142684A2 (en) Solar cell having a contact structure with low recombination losses, and method for the production of such solar cells
WO2011092239A1 (en) Solar cell array and thin-film solar module and production method therefor
DE102010015970B4 (en) A set of photovoltaic cells, photovoltaic cell module, arrangement for applying predetermined information to a set of photovoltaic cells, method for determining information from a set of photovoltaic cells, arrangement for determining information from a set of photovoltaic cells
DE102015114135A1 (en) Photovoltaic device and method for producing a photovoltaic device
EP3900051A1 (en) Circuit configuration for power generation comprising series-connected solar cells having bypass diodes
DE102010020175A1 (en) Semiconductor component with defect-rich layer for optimum contacting of emitters and method for its production
DE102009040670A1 (en) Method for producing single side contactable solar cell from semiconductor substrate with n-doping, involves producing n-doped base high doping area at base contacting area in semiconductor substrate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)