EP4036341B1 - Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches - Google Patents

Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches Download PDF

Info

Publication number
EP4036341B1
EP4036341B1 EP21154842.5A EP21154842A EP4036341B1 EP 4036341 B1 EP4036341 B1 EP 4036341B1 EP 21154842 A EP21154842 A EP 21154842A EP 4036341 B1 EP4036341 B1 EP 4036341B1
Authority
EP
European Patent Office
Prior art keywords
drying
phase
parameter
drying device
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21154842.5A
Other languages
German (de)
English (en)
Other versions
EP4036341A1 (fr
Inventor
Tilman Kraus
Hans Hubschneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ires Infrarot Energiesysteme GmbH
Original Assignee
Ires Infrarot Energiesysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ires Infrarot Energiesysteme GmbH filed Critical Ires Infrarot Energiesysteme GmbH
Priority to EP21154842.5A priority Critical patent/EP4036341B1/fr
Publication of EP4036341A1 publication Critical patent/EP4036341A1/fr
Application granted granted Critical
Publication of EP4036341B1 publication Critical patent/EP4036341B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/70Drying or keeping dry, e.g. by air vents
    • E04B1/7069Drying or keeping dry, e.g. by air vents by ventilating
    • E04B1/7092Temporary mechanical ventilation of damp layers, e.g. insulation of a floating floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/70Drying or keeping dry, e.g. by air vents
    • E04B1/7069Drying or keeping dry, e.g. by air vents by ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation

Definitions

  • the invention relates to a method and a system for automatically drying a moist soil layer of a multi-layered soil structure.
  • the invention also relates to a computer program product for automatically drying a moist soil layer of a multi-layered soil structure.
  • the measurement cycles of the sensors are carried out manually and at long intervals, for example several days or weeks, whereby the actual recording of the measured parameter is very short, which in turn limits its significance. Furthermore, the measurement of the parameter and its monitoring, in particular remote monitoring, only takes place in the device itself, which means that only moisture values from the sensors installed in the device, ie the Humidity of the air passing through the device is measured, which however reduces the accuracy of the measurement.
  • EN 10 2012 007273 A1 describes a system for drying insulation layers of floors using a vacuum process. It discloses the features of the preambles of claims 1, 16 and 18.
  • EN 10 2013 226492 A1 describes a system for controlling the drying phase of concrete screeds fitted with underfloor heating.
  • One aspect of the invention relates to a method for automatically drying a moist soil layer of a multi-layered soil structure.
  • the method comprises the following steps: introducing at least one sensor into an opening in the soil structure and placing the sensor in the moist soil layer to be dried, and introducing drying air into the soil layer to be dried by means of a drying device.
  • the method further comprises the steps: measuring at least one parameter of the soil layer by means of the introduced sensor, and regulating the Drying device by means of a processor based on the parameter measured by the introduced sensor, wherein the control comprises switching on and/or switching off the drying device.
  • the method further comprises the step of analyzing the measured parameter by means of the processor and determining a drying phase of the soil layer based on the analysis of the parameter, wherein the control of the drying device based on the drying phase determined by the processor.
  • a further aspect of the invention relates to a system for automatically drying a moist soil layer of a multi-layered soil structure.
  • the system has at least one sensor for measuring at least one parameter of the moist soil layer, wherein the sensor can be introduced into an opening in the soil structure and can be placed in the moist soil layer to be dried.
  • the system also has at least one drying device which introduces drying air into the soil layer to be dried, and wherein the drying device is regulated and/or controlled by a processor based on the parameter measured by the introduced sensor.
  • the regulation includes switching the drying device on and/or off, wherein the processor is set up to analyze the measured parameter and to determine a drying phase of the soil layer based on the analysis of the measured parameter.
  • Automatic drying can be understood in particular as a process which is suitable for carrying out a controlled drying of a soil layer of a multi-layered soil structure without manual intervention, whereby the drying is controlled in such a way that it can take place under optimal operating parameters.
  • This makes it possible to collect data very closely and make it editable so that an intelligent process tailored to the drying task can run autonomously.
  • the resulting advantages are in particular a direct Cost savings due to lower personnel costs, as the autonomous process means that the measured values no longer have to be determined manually.
  • a more efficient drying process can be provided through the targeted use of drying devices, ie by switching them on and off depending on the status of the drying process, so that the entire drying process can be made more energy efficient by saving energy while still achieving drying success.
  • Measuring can be understood in particular as a continuous measurement of the parameter over time, so that the value of the parameter is recorded permanently.
  • the moisture in the soil layer can be recorded over the entire drying process.
  • Both the absolute and the relative humidity can be recorded. If only one of the two humidities is mentioned in one of the embodiments, this does not exclude the other, as they can be converted into one another.
  • a minimum interval between parameter measurements of one minute is preferred as a measurement interval.
  • the measurement can also be carried out discontinuously, i.e.
  • the measurement is not carried out at certain intervals over the entire drying process, but rather the measurement is only carried out at certain times that are considered to be particularly meaningful for the drying process/progress. Possible measurement times, which can be carried out discontinuously (but also continuously), are described in more detail in the following embodiments.
  • targeted switching off and/or switching on of a drying device i.e. the drying process itself, ensures that precise information about the current drying state can be obtained. Because the method is set up to analyse the sensor parameters measured by the processor, monitoring of the measured parameters (of the measured parameter) is possible and, in conjunction with the continuous measurement over a certain period of time, recurring patterns in the drying process or in individual drying phases can be recognised. In particular, drying phase-specific patterns and/or effects in the development of the measured values after switching off or after switching on. For example, special processes show directly when the drying devices are switched off how quickly re-moistening or moisture equalization in the soil takes place. Furthermore, special processes show directly when the drying devices are switched on whether there is still residual moisture within the opening in which the sensor is placed or in areas away from the opening.
  • a four-phase drying model is stored in the processor or a storage medium, wherein the four-phase drying model comprises a high moisture phase (standing water) as the first phase, a medium moisture phase (capillary/adhering water) as the second phase, a vapor phase (diffusion phase) as the third phase, and a constant moisture phase (equilibrium moisture) as the fourth phase.
  • the processor determines whether the high moisture phase, the medium moisture phase, the vapor phase, or the constant moisture phase is currently present in the soil layer to be dried.
  • the absolute humidity indicates the water content in the air.
  • the measurement and representation of these phases can be done using the absolute humidity and/or the relative humidity, whereby these can be converted into one another.
  • a detailed description of the different drying phases is provided with Fig.4 according to an exemplary embodiment.
  • Fig.4 During a drying process, not every one of the four drying phases must necessarily be present. Depending on the extent of moisture damage, at least only one, two, or three of the four drying phases are present.
  • the moisture By inserting the sensor into an opening within a soil layer, the moisture can also be measured in standing water.
  • the current status of the drying process can be read off, i.e. which drying phase one is in.
  • the method makes it possible in particular to decide how drying can be best supported, how long the drying is likely to take, whether the drying has finished and whether the drying devices can be switched off accordingly, or whether the drying is running successfully, stagnating or has been interrupted by external circumstances.
  • the individual drying phases are identified using the measured parameter, in particular using the measured parameter values and their progression over time.
  • the progression of a moisture value and/or a temperature value in the soil layer of the soil structure to be dried is of interest.
  • the high moisture phase is a phase in which there is standing water in the soil layer to be dried.
  • the relative humidity is 100% and the sensors can be located in standing water in the moist soil layer.
  • the drying devices can be used to suck out the water during this phase. Furthermore, the drying devices do not need to take any breaks.
  • the air circulating in the soil structure becomes enriched with water from the inlet to the outlet until it is saturated (100%). If the moisture damage is less, i.e. if the soil layer is not very moist, this phase can be omitted.
  • the medium moisture phase only a few water droplets are present. In particular, the relative humidity drops below 100%.
  • rest phases i.e. in phases in which the drying device is switched off, the humidity rises again very quickly. Because of this, only very short switch-off breaks are required to query the drying status. Drying can be achieved by capillary drying in the soil layer to be dried, for example in insulation and a screed layer.
  • the third phase the steam phase, begins when all free water has been removed.
  • the moisture in the soil is mainly in the form of water vapor. Drying can occur via diffusion and convection, in which the water from the inside of the soil layer only comes out as water vapor.
  • the system ie the drying process and the soil, now reacts more slowly. In phases in which the drying device(s) is/are switched off, the moisture increases only slowly. For this reason, the switch-off phases can be extended.
  • the fourth phase is the last phase in which the humidity no longer changes during drying. It can be seen that when the drying device is switched off, the humidity only increases slowly, reaching an equilibrium state. A similarly high equilibrium humidity is always reached. Ideally, the end of the drying process has now been reached. Drying can be stopped or at least reduced to such an extent that the drying device's switch-off phases are now longer than the switch-on phases. On the other hand, it can also mean that no further drying is possible. This would be the case if the cause of the damage had not yet been remedied, so that a high but constant residual humidity always occurs when the drying device is switched off.
  • the processor when determining which of the four phases is currently present, only uses measured parameter values of the sensor from a first period from a time t1 after the drying device is switched off to a time t2 before the drying device is switched on. Additionally or alternatively, the processor only uses measured parameter values of the sensor from a second period from a time t3 after the drying device is switched on to a time t4 before the drying device is switched off. A length of the first period and/or the second period is selected depending on the analyzed parameter.
  • Another possible procedure in the method according to the invention is that during the monitoring of the drying process, only parameter values are evaluated and/or recorded at certain time periods. This achieves a switching of the drying device(s) in accordance with the drying phases of the floor structure and thus reduces unnecessary resource consumption.
  • the processor can only be active at certain time periods and remain in energy-saving mode at non-relevant times. This takes advantage of the fact that effects that serve to determine the drying phase occur at certain times of the drying process. These times can be: directly after the drying device is switched off or directly after the drying device is switched on.
  • the measurement of the parameter using the sensor can be carried out at these times with a higher measurement resolution and at other times with a lower measurement resolution.
  • the parameter can be measured using the sensor at non-relevant times.
  • the length of the time periods preferably results from the measured or analyzed parameter itself. This means that depending on which drying phase is present, the parameter has a corresponding progression characteristic, for example, moisture as a measured parameter value only increases slowly in the resting phase(s) (ie in the drying device's switch-off phases) of the third drying phase, which requires a longer measurement period, ie a longer period from t1 to t2, than in the second drying phase.
  • the processor is set up to record and analyze the parameter values according to the time periods just described. Furthermore, the system is set up to adapt the sensors, for example by means of the processor, and their measuring resolution to the corresponding time periods and to the corresponding drying phases and also to switch the drying device on and off accordingly.
  • the drying device can be switched off at time t1 and switched on at time t3. This means that the switching off time of the drying device corresponds to time t1, from which a first measuring period begins, and the switching on time of the drying device corresponds to time t3, from which a further measuring period begins.
  • controlling the drying device comprises determining at least one point in time for switching on and/or switching off the drying device based on the analyzed parameter.
  • the switching on and/or switching off time of the drying device are adjusted to the measured parameter so that, for example, depending on which drying phase the floor is in, the time periods of a drying process can be adjusted by switching on and off.
  • the switching on/off times of the drying device are thus adjusted based on the measured and/or analyzed parameter.
  • the processor compares the measured parameter values of the sensor with stored parameter values, wherein the stored parameter values are selected from the group consisting of simulation data of the soil layer parameter, previously measured parameters of the soil layer, and/or laboratory values of the soil layer parameter.
  • the processor is set up to compare the measured and/or analyzed parameter values of the sensor with stored parameter values.
  • the stored parameter values can be present in a memory unit of the processor itself or in an additional memory unit of the system, or in an external memory unit.
  • the system is set up accordingly so that the processor can access the stored parameter values at any time, when required.
  • the stored parameter values can be accessed while the parameter value is being measured using the sensor, while the measured parameter value is being analyzed, while the drying device is being controlled, and/or while the drying phase is being determined.
  • the stored parameter values can be stored in a corresponding data set which, in addition to the parameter values, also includes further information relating to the material and drying success.
  • a so-called artificial intelligence can be used to compare the measured parameter values with the stored parameter values in the method and in the system, which carries out a targeted search for certain patterns in the measured value curves.
  • this AI can be used to compare the drying process and the damage case based on the data recorded and generated by simulation.
  • the simulation of the drying process is carried out using a program.
  • the drying processes generated in this way can be stored in data sets, or missing data sets can be generated, which are then recorded for the AI.
  • the AI can compare them with a new drying process that is currently in progress.
  • the drying process and the predicted end of drying can also be checked for plausibility using the stored parameters.
  • analyzing the measured parameter of the sensor comprises determining a gradient of the parameter over time, wherein the gradient of the parameter over time is determined in particular after the drying device is switched off and wherein, in particular for determining the gradient, the measured parameter is an absolute humidity or a relative humidity in the moist soil layer.
  • the gradient of the parameter over time can be determined in particular after the drying device is switched on.
  • the measured parameter can also be a relative humidity in the moist soil layer.
  • the drying process of the soil layer can be determined. In particular, this can be used to determine which drying phase the soil layer of the soil structure to be dried is in. For example, the slope no longer changes towards the end of the drying process, i.e. in the fourth drying phase, so that no further drying progress will be made. This means that in the fourth drying phase there would be a constant slope, while in the other phases, in particular in the first two drying phases, there would be a high slope of the moisture.
  • the slope of the moisture provides information in particular about the speed of re-moistening within the moist soil layer, since the speed and thus the slope of the moisture (the absolute or relative humidity) decreases over time directly after switching off, i.e. at the beginning of the first period between t1 and t2. If a constant speed is established, the soil is dry or no further drying success can be achieved.
  • analyzing the measured parameter of the sensor may include comparing the measured parameter with a limit value.
  • the limit value may be an absolute humidity in the moist soil layer, whereby the limit value is in particular in a range between 5 and 15 g (water)/kg (air), whereby the limit value is more particularly in a range between 7 and 9 g (water)/kg (air).
  • the limit value can also be specified in relative humidity, whereby this limit would be in a range between 30% and 75% depending on the ambient and soil temperature.
  • the comparison of the measured parameter of the sensor can be determined over a time after the drying device is switched off, so that re-moistening in the soil layer can be detected.
  • the comparison of the measured parameter of the sensor can be determined over a time after the drying device is switched off and after it is switched on, so that over-drying of the soil layer can be detected.
  • over-drying can also be determined while the drying device is switched off or over both time periods, i.e. both when it is switched on and when it is switched off.
  • a drying process in particular the fourth drying phase, is finished when rewetting remains below defined limits when the drying device is switched off.
  • the absolute water content of the air in the soil is used to consider the limit value, i.e. the absolute air humidity in the moist soil layer.
  • the relative humidity in the moist soil layer can also be used to consider the limit value.
  • This limit value depends on the ambient conditions, in particular on the current season. According to experience, this limit value can be around 9 g (water)/kg (dry air) in summer and around 7 g (water)/kg (dry air) in winter.
  • the evaluation can depend in particular on a difference between an ambient humidity, which is higher in summer, and a humidity of the soil layer to be dried.
  • the method can also comprise measuring an ambient humidity, in addition to measuring the parameter by means of the sensor inserted into an opening in the soil layer.
  • the method can also provide a further step which determines a difference between the measured ambient humidity value and the measured parameter value and compares this difference with one of the above-mentioned limit values.
  • This analysis can also be used to determine whether drying will be successful at all. If, for example, the measured absolute humidity is repeatedly above the above-mentioned limit value, it can be concluded that there is constant re-moistening from the soil layer that is actually to be dried, since the cause of the damage has not been remedied or has been remedied incompletely. This effect can be observed, for example, in a switch-off phase of the drying device, ie in a period t1 to t2.
  • overdrying can also be determined while the drying device is switched off, in the period t1 to t4, or over both periods, i.e. both switching on and off. Overdrying occurs in particular from the third drying phase onwards. Overdrying can be recognized, for example, if the humidity drops after switching off (instead of rising again) and then rises again when the device is switched on again. In the case of overdrying, the incoming air is very dry, i.e. the air that is introduced by means of the drying device.
  • the system is configured for automatically drying a soil layer, such that analyzing the measured parameter comprises comparing the measured parameter with a limit value.
  • the processor of the system is configured to perform the comparison of the measured parameter with a limit value, as described above by means of the embodiment of the method.
  • analyzing the measured parameter of the sensor may comprise comparing a parameter value after switching on the drying device compared to a parameter value before switching on the drying device.
  • Comparing a parameter value after switching on with a parameter value before switching on the drying device can be used to detect excessive moisture values directly after switching it back on. While the drying device is switched off, the air in the soil layer becomes enriched with residual moisture. If the drying device or devices are switched on again, an increase in the moisture values of the air escaping from the soil structure can be observed first before the moisture values drop again. The degree to which a moisture value is increased can also be used to draw conclusions about the course of the drying process or the current drying phase. As the drying process progresses, an increase in the measured moisture value becomes less and less pronounced and hardly occurs at all towards the end of the drying process. Such an increase in moisture values can usually be observed from the second drying phase onwards.
  • the measured value should preferably be recorded with a good resolution, in particular with a resolution of at least one measuring point per minute.
  • analyzing the measured parameter of the sensor can be the additional analysis of a dew point temperature, wherein the measured parameter value of the sensor is a combination of humidity and temperature value.
  • the sensor can measure two parameter values or two sensors are used in an opening to measure the two parameter values. Tracking the dew point temperature shows to what extent the dew point is undercut at different points in the soil layer. In cold buildings in particular, for example in unheated basements, it can happen that the soil is significantly colder than the environment or the air let in by means of the drying device. If the dew point temperature is then measured in the soil If the temperature falls below this value, water vapor condenses and the drying process cannot be completed successfully. This can be counteracted by monitoring the dew point temperature.
  • the system can be set up in such a way that it analyzes the measured parameter of the sensor, for example by means of the processor, by comparing a parameter value after the drying device is switched on with a parameter value before the drying device is switched on.
  • the system can have a sensor for measuring a dew point temperature, this sensor being the sensor which is introduced through an opening in the soil layer.
  • the sensor for measuring the dew point temperature can be provided in addition to the sensor which measures a parameter of the soil layer.
  • the introduction of the sensor can further comprise: introducing a plurality of sensors into a plurality of openings in the soil structure and placing the plurality of sensors on or in the moist soil layer to be dried. A single corresponding sensor is assigned to each individual opening.
  • the sensor from the plurality of sensors that delivers the highest measured values of the parameter can be selected.
  • a median or an average value from all measured parameters of all sensors can be selected to control the drying device, wherein this is selected in particular from the highest measured parameter values of the plurality of sensors.
  • the method can have the following step: initiating an air flow, ie introducing drying air into the soil layer to be dried by means of a plurality of drying devices, and controlling the plurality of drying devices by means of the processor based on the value of the sensor introduced. (or the sensors).
  • the processor regulates or controls switching on and/or off for all drying devices.
  • the method can comprise measuring several parameters from the plurality of sensors and analyzing the measured parameters by means of the processor and determining a drying phase of the soil layer based on the analysis of the several parameters.
  • a different drying phase can result for each measured parameter, i.e. in particular for each measured parameter that has been assigned to a corresponding opening.
  • the method has a corresponding step for selecting the sensor from the plurality of sensors that provides the most meaningful values in order to regulate the drying device or devices.
  • the most meaningful values can be the highest measured values of the parameter and/or an average value from a selection of the most meaningful sensors, but at least one is selected in order to regulate the drying device or devices.
  • the method can further comprise measuring environmental parameters, in particular an ambient humidity and/or an ambient temperature can be measured.
  • a sensor for measuring these environmental parameters does not necessarily have to be introduced into an opening in the soil layer; it can be arranged on the floor structure or in the building or room in which the soil layer to be dried is located.
  • the system can have a plurality of sensors which can be introduced into a plurality of openings in the floor structure, with a single sensor being assigned to each individual opening. Furthermore, the system can be set up in such a way that, for controlling the drying device, the sensor from the plurality of sensors which provides the most meaningful values can be selected in order to control the drying device or devices.
  • the most meaningful values can be the highest measured values of the parameter and/or an average value from a selection of the most meaningful sensors, but at least one is selected in order to control the drying device or devices.
  • the system can have a plurality of drying devices, with a respective drying device for drying being provided at each individual opening in which at least one sensor is introduced. The number of drying devices does not have to correspond to the number of openings, ie one drying device can also be used, for example, to feed drying air into several openings.
  • the multi-layer floor structure can consist of at least the following layers: a screed layer, an insulation layer, and a raw concrete layer.
  • the floor structure consists of at least two different layers, the lower layer being a raw concrete layer over which a screed layer and/or an insulation layer is arranged.
  • the floor structure can also have one or more additional layers, such as a floor covering.
  • the senor can be introduced into the opening in the multi-layer floor structure in order to extend through the screed layer onto or into the insulation layer, in particular in order to extend through the screed layer and the insulation layer onto the raw concrete layer.
  • the senor is introduced into the multi-layer floor structure in such a way that it is arranged on or in the moist floor layer that is to be dried.
  • This moist floor layer that is to be dried can be the screed layer, the insulation layer or even both layers.
  • the sensor extends to the raw concrete layer, i.e. an opening must also be provided to the raw concrete layer through the other layers above the raw concrete layer.
  • the method and system are preferably used in a so-called screed-insulation layer floor structure.
  • the parameter of the soil layer can be selected from at least one of the following parameters: temperature and humidity.
  • one of the above-mentioned parameters can be determined using the sensor.
  • a sensor can be used which can measure several of the above-mentioned parameters or a combination of the above-mentioned parameters.
  • at least two parameters or a combination of the above-mentioned parameters can be measured using one or more sensors.
  • Other possible Parameters that can be measured using a sensor can include air pressure, a level measurement in condenser dryers and water separators and/or an observation of the quality of the room air.
  • the method may further comprise the step of wirelessly transmitting the measured and/or analyzed parameters to an external processing unit by means of a communication unit regulated and/or controlled by the processor.
  • the processor can be provided to collect all data, process it and regulate the drying devices and/or the sensors, or these steps can also be carried out by the communication unit, which is regulated (or controlled) by the processor.
  • the external processing unit can be a secure network on which the data is to be stored and made available for further processing and analysis. Furthermore, the external processing unit can also be a cloud system on which the data can be stored for customers and for further processing.
  • the communication unit, which is regulated and/or controlled by the processor can be provided to provide remote querying by means of the external processing unit.
  • the communication unit can be configured to store the transmitted parameters and wherein the communication unit can in particular be configured to monitor the measured and/or analyzed parameters and/or to control the drying devices based on the drying phase determined by the processor.
  • the method can further comprise the step of switching at least one socket by means of the processor for controlling the drying device, wherein the drying device is connected to the socket.
  • Switching by means of the socket can comprise switching the drying device on and/or off.
  • switchable sockets By using switchable sockets, a variety of different drying devices can be regulated and controlled, so that there are no restrictions on the choice of the manufacturer of the drying device.
  • the adjustable The switchable sockets can be controlled manually or via a drying program stored on the processor, or they can be controlled directly via the processor. Using the switchable socket(s), for example, when using multiple drying devices, these can be switched off in groups or individually during the various drying phases.
  • the system can have at least one socket, which controls the drying device (and/or the plurality of drying devices) by means of the processor.
  • the socket can be controlled by means of the processor in such a way that the switching on and/or switching off of the drying device is controlled (or controlled) via the socket.
  • a four-phase drying model can be stored in the system, i.e. in the processor or a storage medium, wherein the four-phase drying model comprises a high moisture phase as the first phase, a medium moisture phase as the second phase, a vapor phase as the third phase, and a constant moisture phase as the fourth phase.
  • the processor can be designed to determine, when determining the drying phase, whether the high moisture phase, the medium moisture phase, the vapor phase, or the constant moisture phase is currently present in the soil layer to be dried.
  • the processor can be designed to compare the measured parameter values of the sensor with existing parameter values when determining the drying phase, wherein the existing parameter values are selected from the group consisting of simulation data of the soil layer parameter, previously measured soil layer parameters, and/or laboratory values of the soil layer parameter.
  • the corresponding drying phases and the determination of the drying phases correspond to the drying phases described under the embodiments of the method.
  • a further aspect of the invention relates to a computer program product for automatically drying a moist soil layer of a multi-layered soil structure.
  • the computer program product is designed, when executed by a processor, to cause the processor to measure a parameter of the soil layer by means of a sensor introduced into an opening in the soil structure and placed on or in the moist soil layer to be dried.
  • the Computer program configured to control a drying device for drying the soil layer, wherein the drying device initiates an air flow in the soil layer to be dried.
  • the drying device is controlled by means of the computer program product based on the parameter measured by the introduced sensor, wherein the control comprises switching the drying device on and/or off.
  • the computer program product is configured to cause the processor to analyze the measured parameter and to determine a drying phase of the soil layer based on the analysis of the parameter, wherein the drying device is controlled based on the drying phase determined by the processor.
  • the computer program product can be part of a computer program, but it can also be a complete program in itself.
  • the computer program product can, for example, be used to update an existing computer program to achieve the present invention.
  • the program product can be stored on a computer-readable medium.
  • the computer-readable medium can be understood to mean a storage medium such as a USB stick, a CD, a DVD, a data storage device, a hard disk or any other medium on which a program product as described above can be stored.
  • Fig.1 schematically illustrates a system for automatically drying a wet soil layer of a multi-layered soil structure according to an exemplary embodiment of the invention.
  • a system 100 which uses a turbine to generate a circulating air flow via negative pressure to Drying of the moist soil layer.
  • the system 100 shows a sensor 101 for measuring at least one parameter of the moist soil layer, wherein the sensor 101 is introduced into an opening 113 in the soil structure 104 and is placed on or in the moist soil layer to be dried.
  • the floor structure 104 consists of a total of four layers: a raw concrete layer 105, an insulation layer 106, a screed layer 107 lying above the insulation layer 106, and a floor covering layer 108.
  • the sensor is in Fig.1 into the insulation layer 106 and ideally extends to the end of the insulation layer 106 on the raw concrete layer 105 for complete drying of the moist soil layer (in the Fig.1 the sensor is only shown schematically up to the insulation layer 106).
  • the system 100 comprises a drying device 102, which is controlled by a processor based on the parameter measured by the introduced sensor 101.
  • the processor is in Fig.1 not shown visibly, but is housed within a housing 112 of the system 100.
  • the drying device 102 introduces drying air into the soil layer to be dried, whereby in the present Fig.1 the floor layer to be dried is, for example, the insulation layer 106.
  • the drying device 102 is connected to the opening 113 via a hose 111 in order to be able to introduce the drying air into the opening 113 in a targeted manner or, in the present case, to suck the air out by means of negative pressure.
  • the control of the drying device 102 includes switching the drying device 102 on and/or off.
  • the processor is set up to analyze the measured parameter of the sensor 101, and the processor is further set up to determine a drying phase of the floor layer of the floor structure 104 based on the analysis of the measured parameter.
  • the drying device 102 is controlled by the processor on the basis of the drying phase determined by the processor.
  • the floor structure 104 consists of at least the following layers: a screed layer 107, an insulation layer 106 and a raw concrete layer 105.
  • the sensor 101 is inserted into the opening 113 of the multi-layer floor structure 104 in such a way that it extends through the screed layer 107 extends onto or into the insulation layer 106, depending on which layer of the floor structure 104 is to be dried.
  • the sensor 101 is inserted into the opening 113 in the floor structure 104 such that it extends through the screed layer 107 and through the insulation layer 106 onto the raw concrete layer 105.
  • the opening 113 can be sealed from the environment in order to obtain more precise measured values that are free from environmental influences.
  • the system 100 also has at least one housing 112 in which the processor and/or a communication unit controlled by the processor is arranged.
  • the communication unit controlled (or controlled) by the processor can transmit the measured and/or analyzed parameters wirelessly to an external processing unit (not shown).
  • the communication unit can in particular be configured to monitor the sensor 101, i.e. the measured and/or analyzed parameter, and to control the drying device 102 on the basis of the drying phases determined by the processor.
  • the method according to the invention can be carried out in the Fig.1 described system 100 can be applied so that the method automatically dries a moist soil layer of the floor structure 104.
  • the method comprises introducing at least one sensor 101 into an opening 113 in the floor structure 104 and placing the sensor 101 on or in the moist soil layer 105, 106, 107 to be dried. Then at least one parameter of the soil layer of the floor structure 104 is measured by means of the introduced sensor 101.
  • the method further comprises the step of controlling the drying device 102 by means of a processor based on the parameter measured by the introduced sensor 101.
  • the control includes switching the drying device 102 on and/or off.
  • the method further comprises the step of analyzing the measured parameter by means of the processor and determining one of the drying phases of the bottom layer of the floor structure 104 based on the analysis of the parameter, wherein the control of the drying device 102 takes place on the basis of the drying phases determined by the processor.
  • the system 100 may comprise a socket 103, which in the embodiment in Fig.1 is arranged on the housing 112 of the system 100.
  • This socket 103 is switched in the method according to the invention by means of the processor for controlling the drying device 102.
  • the drying device 102 is connected to the socket 103 and the switching by means of the socket 103 includes switching on and/or off the drying device 102.
  • the Socket 103 can also be located in an external wall, in which case the processor (or the processor via the housing 112) is connected to the socket 103 in the wall and this in turn is connected to the drying device 102.
  • Fig.2 schematically illustrates a system for automatically drying a wet soil layer of a multi-layered soil structure according to an exemplary embodiment of the invention.
  • Fig.2 a method and a system 100 for drying at least one soil layer of a soil structure 104, in which air is introduced into the soil layer of the soil structure 104 to be dried by means of overpressure.
  • the system 100 and the corresponding method, which in Fig.2 has the same components as with Fig.1 described.
  • the difference to Fig.1 consists in the fact that instead of negative pressure, positive pressure is now used.
  • this means that the drying device 102 is connected to the opening 113 by means of a hose 111 and incoming air 109 is introduced into this opening.
  • the outgoing air 110 flows out again in the edge area between the wall and floor structure 104, i.e. in the edge joint 114.
  • a difference to the system and method according to Fig.1 still consists in the position of the sensor 101, which is in the Fig.2 described system 100 and method in an opening (not shown) at or in the edge joint 114.
  • the sensor 101 can also be placed only at, ie on, the edge joint if the opening of the edge joint is not large enough, for example, to insert the sensor 101 into the edge joint.
  • a sensor 101 can also be inserted in the opening 113 of the floor structure 104.
  • the process sequence for drying a moist layer of the floor structure 104 in Fig.2 corresponds to the same procedure as under Fig.1 described.
  • the housing 112 of the system 100 has at least 2 sockets 103, so that in addition to a drying device 102, another drying device can be connected to the system 100.
  • just one socket is sufficient for a drying device 102.
  • the number of sockets 103 and the possible number of drying devices 102 that can be connected is not limited.
  • Fig.3 schematically illustrates a section of a system 100 according to another embodiment of the invention.
  • the system 100 in Fig.3 has the same features and functions as the systems under Fig. 1 and Fig. 2
  • the Drying process a so-called push-pull process is used, whereby air is introduced from one side of the floor structure 104, which is sucked out from the other side of the floor structure 104.
  • Fig.3 only the side where the air is extracted is shown.
  • the drying device(s) are not shown, but are used.
  • the corresponding drying device 102 is connected to the socket 103 by means of a cable, whereby in Fig.3 only the cable to the drying device 102 is shown.
  • a drying device for the pressure side for example, two sockets 103 are used, one for connecting a drying device for the pressure side and one for connecting a drying device for the tension side.
  • the insulation layer 106 is dried and the arrows illustrate the flow direction of the extracted air, which flows from the left side of the floor structure 104 (not shown here) to the opening 113 or the openings 113.
  • the system in Fig.3 further illustrates the use of a plurality of sensors 101, wherein the plurality of sensors 101 are arranged in a plurality of openings 113 (in the present Fig. 2 Sensors 101 and 2 openings 113) are introduced and the majority of sensors 101 are placed on the moist and to be dried soil layer of the soil structure 104.
  • One sensor 101 is assigned to each opening 113.
  • the drying devices 102 when using a plurality of sensors 101, for example, the sensor 101 from the plurality of sensors is selected which, for example, provides the highest measured values of the parameter.
  • the Fig.3 The side shown is the draft side, from which the air is sucked out.
  • the pressure side (not shown), a drying device is arranged, which blows in the air.
  • a sensor can also be provided in an opening in the soil layer to be dried, so that the difference in the measured parameters, in particular the humidity or the temperature, between the incoming and outgoing air can be determined.
  • Fig.4 illustrates drying phases of a soil layer according to an exemplary embodiment of the invention.
  • Fig.4 in particular the temperature curves over time t and the curves of the relative humidity (in %) over time t of the drying process 140 or the four drying phases 141, 142, 143, and 144 are shown.
  • the first phase 141 is the phase with high humidity, in which there is standing water in the soil layer of the soil structure 104 to be dried.
  • the water can be sucked out in this phase 141 by the drying device 102. If the moisture damage is less, ie if the soil layer is less illuminated, this first phase 141 can also be omitted.
  • the temperature in the opening 113 in which the sensor 101 is inserted is very low due to the evaporation energy of the water.
  • the middle humidity phase only individual water drops are present.
  • the relative humidity drops below 100%, which in Fig.4 in phase 2, 142, can be seen in a decreasing humidity curve over time t.
  • This decreasing humidity curve is in most cases an exponential curve.
  • rest phases ie in phases in which the drying device 102 is switched off
  • the relative humidity rises again very quickly.
  • This increase is in Fig.4 in the humidity diagram at point 146.
  • This increase represents the so-called re-moistening.
  • the temperature increases in the second phase 142, whereby the first 141 and the second phase 142 can be distinguished based on the measured parameter values. Due to this, in addition to the humidity as a measured parameter, a corresponding temperature curve in the opening 113 can also be measured using a temperature sensor.
  • the third phase 143 the phase with diffusive and convective drying, begins when all free water has been removed.
  • the system ie the drying process and the floor structure 104, now reacts more slowly.
  • the humidity increases only slowly. For this reason, the switch-off phases can be extended. This means, as in Fig.4 It can be seen that the peaks 146 of the rewetting are smaller, or decrease, in comparison to the rewetting peak 146 in the second phase 142.
  • the temperature in the opening 113 remains approximately constant, whereby only the ambient temperature can have any influence on the temperature in the opening 113.
  • the fourth phase 144 is the last phase in which the humidity no longer changes or hardly changes during the drying process. It can be seen that when the drying device is switched off, the humidity only increases slowly and reaches a state of equilibrium. As in Fig.4 It can be seen that the corresponding return moisture peaks 146 are very low or barely present. A similarly high equilibrium moisture is always achieved, so that in the fourth phase 144 the course of the relative humidity over time t can be almost constant. The equilibrium moisture present in the soil is usually higher than the humidity of the ambient air.
  • the system 100 is set up accordingly to carry out at least the method step of determining the four phases.
  • a four-phase drying model is stored in the processor or a storage medium (which can also be arranged in the housing 112 of the system 100), wherein the four-phase drying model has stored the first phase 141 as a high humidity phase, the second phase 12 as a medium humidity phase, the third phase 143 as a vapor phase and the fourth phase 1444 as a constant humidity phase.
  • the processor determines which of the drying phases 140 is currently present.
  • Fig.5 illustrates a parameter curve measured by a sensor 101 according to an exemplary embodiment of the invention.
  • Fig.5 a measured parameter curve during the drying phases 140 of the soil layer to be dried. This diagram can be used to determine when the fourth phase is reached. Information about this is provided in particular by an exponential fit 151 to the sensor in the drying phases.
  • the exponential fit 151 is in Fig.5 by means of a dashed line.
  • the non-dashed curve is the representation of the measured parameter value 152 without the drying device switch-off phases, the rest phases, which can be seen from the minimal interruptions in the parameter curve 152.
  • the difference in relative humidity between the outflowing air (the soil moisture) and the inflowing air (ambient humidity) is plotted on the y-axis of the diagram and a residence time in minutes is plotted on the x-axis.
  • the fit 151 was carried out for these measured parameter values after a 16th switch-on phase of the drying device 102, resulting in a constant curve, ie a constant fit curve 151. This is particularly evident from a residence time of 200 minutes, from which a a constant course of the fit 151 shown in dashed lines is established. This means that towards the end the slope no longer changes, from which it can be concluded that there is no further drying progress. In the best case, this means that the drying process is finished.
  • Fig.6 illustrates another parameter curve measured by means of a sensor according to an exemplary embodiment of the invention.
  • various measured parameter values are shown, with different points in time X1 to X7 being plotted on the x-axis and the absolute humidity in g (water) per kg (air) being plotted on the y-axis.
  • the points in time X1 to X7 are different days, ie X1 is day 1, X2 is day 2 and X3 is day 3, etc., so that this figure shows a curve of the measured parameter over 7 days.
  • the measured parameter in the soil layer of the soil structure 104 is the parameter value 162.
  • the measured parameter value 163 is another measured parameter value, such as the ambient humidity.
  • Fig.7 illustrates a plurality of measured parameter profiles according to an exemplary embodiment of the invention.
  • a plurality of measured parameter values from a plurality of sensors 101 over a period of time from X1 to X5 are plotted on the x-axis and the relative humidity in percent is plotted on the y-axis.
  • the status of the drying device 102 is again recorded by line 171.
  • the parameter value 173 is a other parameter value, such as the ambient humidity.
  • the line 174 shown is the measured process air, which describes the pre-dried air which is introduced into the floor structure, for example, when using the push-pull method. This in the Fig.7
  • the parameter values shown can be determined, for example, by applying the push-pull method.
  • All other parameter values shown in the figure include measured parameter values (of the relative humidity) from a plurality of sensors 101 (in particular from four different sensors). From the Fig.7 it can be seen that the measured parameter values of the four different sensors differ slightly in their course, but they all show the typical characteristics that can be used to determine the individual drying phases. It can be seen that from X1 during a switch-off phase of the drying device 102 almost all measured parameter values are in the first drying phase, in which the relative humidity is 100%.
  • the figure shows the rehumidity values of the switch-off phases of the drying device 102 for the individual sensors 101.
  • the figure also shows the excessive humidity values during the switch-on phases of the drying device 102.
  • the effect of overdrying can also be recognized from the course of the various parameter values of the sensors 101, whereby this can be recognized from the switch-off phases of the drying device, i.e. when the status is at a high level, at the end of the drying process, such as shortly before time X5, in which the curve of the measured parameters drops again for some parameters and then rises again at time X5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Drying Of Solid Materials (AREA)

Claims (18)

  1. Procédé pour assécher automatiquement une couche de sol humide (105) d'une structure de sol à plusieurs couches (104), le procédé comportant les étapes consistant à :
    introduire au moins un capteur (101),
    initier un écoulement d'air dans la couche de sol à assécher au moyen d'un appareil de séchage (102),
    mesurer au moins un paramètre de la couche de sol au moyen du capteur introduit,
    régler l'appareil de séchage au moyen d'un processeur sur la base du paramètre mesuré par le capteur introduit,
    le procédé comportant en outre l'étape consistant à analyser le paramètre mesuré au moyen du processeur et déterminer une phase de séchage de la couche de sol sur la base de l'analyse du paramètre,
    dans lequel le réglage de l'appareil de séchage est effectué sur la base de la phase de séchage déterminée par le processeur,
    caractérisé en ce que
    le réglage comprend la mise en marche et/ou l'arrêt de l'appareil de séchage, et en ce que le au moins un capteur est introduit dans un orifice (113) situé dans la structure de sol et est placé dans la couche de sol humide et à assécher.
  2. Procédé selon la revendication 1,
    dans lequel un modèle de séchage à quatre phases est stocké dans le processeur ou un support de stockage, dans lequel le modèle de séchage à quatre phases comprend une phase à humidité élevée en tant que première phase (141), une phase à humidité moyenne en tant que deuxième phase (142), une phase vapeur en tant que troisième phase (143) et une phase à humidité constante en tant que quatrième phase (144), et dans lequel le processeur détermine, lors de la détermination de la phase de séchage, si la phase à humidité élevée, la phase à humidité moyenne, la phase vapeur ou la phase à humidité constante est actuellement présente dans la couche de sol à assécher.
  3. Procédé selon la revendication 2,
    dans lequel lors de la détermination de la phase actuellement présente parmi les quatre phases, seules des valeurs de paramètres du capteur mesurées par le processeur à partir d'une première période de temps allant d'un instant t1 après l'arrêt de l'appareil de séchage jusqu'à un instant t2 avant la mise en marche de l'appareil de séchage sont utilisées et/ou seules des valeurs de paramètres du capteur mesurées à partir d'une seconde période de temps allant d'un instant t3 après la mise en marche de l'appareil de séchage jusqu'à un instant t4 avant l'arrêt de l'appareil de séchage sont utilisées,
    dans lequel une longueur de la première période de temps et/ou de la seconde période de temps est choisie en fonction du paramètre analysé.
  4. Procédé selon l'une des revendications précédentes,
    dans lequel le réglage de l'appareil de séchage comprend une détermination d'au moins un instant pour la mise en marche et/ou l'arrêt de l'appareil de séchage, sur la base du paramètre analysé.
  5. Procédé selon l'une des revendications précédentes,
    dans lequel lors de la détermination de la phase de séchage, le processeur compare les valeurs de paramètres mesurées du capteur avec des valeurs de paramètres mémorisées, dans lequel les valeurs de paramètres mémorisées sont choisies dans le groupe constitué de données de simulation du paramètre de la couche de sol, de paramètres précédemment mesurés de la couche de sol et/ou de valeurs de laboratoire du paramètre de la couche de sol.
  6. Procédé selon l'une des revendications précédentes,
    dans lequel l'analyse du paramètre mesuré du capteur comprend une détermination d'une pente du paramètre en fonction du temps, dans lequel la pente du paramètre en fonction du temps est en particulier déterminée après l'arrêt de l'appareil de séchage,
    dans lequel une humidité absolue ou une humidité relative dans la couche de sol humide est en particulier utilisée pour déterminer la pente du paramètre mesuré.
  7. Procédé selon l'une des revendications précédentes,
    dans lequel l'analyse du paramètre mesuré du capteur comprend une comparaison du paramètre mesuré avec une valeur limite,
    dans lequel la valeur limite est une humidité absolue dans la couche de sol humide, dans lequel la valeur limite est en particulier dans une plage comprise entre 5 et 15 g (eau)/kg (air), dans lequel la valeur limite est plus particulièrement dans une plage comprise entre 7 et 9 g (eau)/kg (air), et
    dans lequel la comparaison du paramètre mesuré du capteur est établie pendant un laps de temps après l'arrêt de l'appareil de séchage, de sorte qu'une réhumidification est détectée dans la couche de sol ou dans lequel la comparaison du paramètre mesuré du capteur pendant un laps de temps après l'arrêt et après la mise en marche de l'appareil de séchage est établie, de sorte qu'un assèchement excessif de la couche de sol est détecté.
  8. Procédé selon l'une des revendications précédentes, dans lequel l'analyse du paramètre mesuré du capteur comprend une comparaison d'une valeur de paramètre après l'arrêt de l'appareil de séchage par rapport à une valeur de paramètre avant la mise en marche de l'appareil de séchage.
  9. Procédé selon l'une des revendications précédentes, dans lequel l'introduction du capteur comporte en outre de :
    introduire une pluralité de capteurs dans une pluralité d'orifices dans la structure de sol et placer la pluralité de capteurs dans la couche de sol humide et à assécher,
    dans lequel un capteur est respectivement associé à un orifice,
    dans lequel le capteur de la pluralité de capteurs qui fournit les valeurs mesurées les plus élevées du paramètre est choisi pour régler l'appareil de séchage, ou dans lequel une valeur moyenne parmi les valeurs mesurées les plus élevées du paramètre de la pluralité de capteurs est établie pour régler l'appareil de séchage, ou dans lequel une médiane des valeurs mesurées les plus élevées du paramètre de la pluralité de capteurs est en particulier établie.
  10. Procédé selon l'une des revendications précédentes,
    dans lequel la structure de sol à plusieurs couches est au moins constituée des couches suivantes : une couche de chape (107), une couche d'isolation (106) et une couche de béton brut (105).
  11. Procédé selon la revendication 10,
    dans lequel le capteur est introduit dans l'orifice de la structure de sol à plusieurs couches afin de s'étendre à travers la couche de chape sur ou dans la couche d'isolation, en particulier afin de s'étendre à travers la couche de chape et la couche d'isolation sur la couche de béton brut.
  12. Procédé selon l'une des revendications précédentes,
    dans lequel le paramètre de la couche de sol est choisi parmi au moins un des paramètres suivants: température et humidité.
  13. Procédé selon l'une des revendications précédentes, le procédé comportant en outre l'étape consistant à :
    transmettre de manière sans fil, à une unité de traitement externe, les paramètres mesurés et/ou analysés au moyen d'une unité de communication réglée par le processeur.
  14. Procédé selon la revendication 13,
    dans lequel l'unité de communication est configurée pour mémoriser les paramètres transmis, et
    dans lequel l'unité de communication est en particulier configurée pour surveiller les paramètres mesurés et/ou analysés et/ou pour régler les appareils de séchage sur la base de la phase de séchage déterminée par le processeur.
  15. Procédé selon l'une des revendications précédentes, le procédé comportant en outre l'étape consistant à :
    commuter au moins une prise (103) au moyen du processeur pour régler l'appareil de séchage,
    dans lequel l'appareil de séchage est relié à la prise,
    dans lequel la commutation au moyen de la prise comprend la mise en marche et/ou l'arrêt de l'appareil de séchage.
  16. Système pour assécher automatiquement une couche de sol humide d'une structure de sol à plusieurs couches comportant :
    au moins un capteur pour mesurer au moins un paramètre de la couche de sol humide,
    au moins un appareil de séchage qui initie un écoulement d'air dans la couche de sol à assécher,
    dans lequel l'appareil de séchage est réglé au moyen d'un processeur sur la base du paramètre mesuré par le capteur introduit,
    dans lequel le processeur est configuré pour analyser le paramètre mesuré et pour déterminer une phase de séchage de la couche de sol sur la base de l'analyse du paramètre mesuré, et
    dans lequel l'appareil de séchage est réglé par le processeur sur la base de la phase de séchage déterminée par le processeur,
    caractérisé en ce que
    le capteur (101) peut être introduit dans un orifice (113) de la structure de sol (104) et peut être placé dans la couche de sol humide et à assécher (105), et en ce que le réglage comprend la mise en marche et/ou l'arrêt de l'appareil de séchage (102).
  17. Système selon la revendication 16,
    dans lequel un modèle de séchage à quatre phases est stocké dans le processeur ou un support de stockage, dans lequel le modèle de séchage à quatre phases comprend une phase à humidité élevée en tant que première phase, une phase à humidité moyenne en tant que deuxième phase, une phase vapeur en tant que troisième phase et une phase à humidité constante en tant que quatrième phase,
    et dans lequel le processeur est conçu pour déterminer, lors de la détermination de la phase de séchage, si la phase à humidité élevée, la phase à humidité moyenne, la phase vapeur ou la phase à humidité constante est actuellement présente dans la couche de sol à assécher,
    dans lequel le processeur est conçu pour comparer, lors de la détermination de la phase de séchage, les valeurs de paramètres mesurées du capteur avec des valeurs de paramètres existantes, dans lequel les valeurs de paramètres existantes sont choisies dans le groupe constitué de données de simulation du paramètre de la couche de sol, de paramètres précédemment mesurés de la couche de sol et/ou de valeurs de laboratoire du paramètre de la couche de sol.
  18. Produit de programme informatique pour assécher automatiquement une couche de sol humide d'une structure de sol à plusieurs couches,
    dans lequel le produit de programme informatique, lorsqu'il est exécuté par un processeur, est configuré pour amener le processeur à
    mesurer un paramètre de la couche de sol au moyen d'un capteur,
    régler un appareil de séchage pour assécher la couche de sol, l'appareil de séchage initiant un écoulement d'air dans la couche de sol à assécher,
    régler l'appareil de séchage sur la base du paramètre mesuré par le capteur introduit,
    analyser le paramètre mesuré et déterminer une phase de séchage de la couche de sol sur la base de l'analyse du paramètre,
    l'appareil de séchage étant réglé sur la base de la phase de séchage déterminée par le processeur, caractérisé en ce que
    le capteur (101) est introduit dans un orifice (113) de la structure de sol (104) et est placé dans la couche de sol humide et à assécher (105), et en ce que la régulation comprend une mise en marche et/ou un arrêt de l'appareil de séchage (102).
EP21154842.5A 2021-02-02 2021-02-02 Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches Active EP4036341B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21154842.5A EP4036341B1 (fr) 2021-02-02 2021-02-02 Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21154842.5A EP4036341B1 (fr) 2021-02-02 2021-02-02 Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches

Publications (2)

Publication Number Publication Date
EP4036341A1 EP4036341A1 (fr) 2022-08-03
EP4036341B1 true EP4036341B1 (fr) 2024-06-26

Family

ID=74550443

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21154842.5A Active EP4036341B1 (fr) 2021-02-02 2021-02-02 Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches

Country Status (1)

Country Link
EP (1) EP4036341B1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8640360B2 (en) * 2010-01-08 2014-02-04 Karcher North America, Inc. Integrated water damage restoration system, sensors therefor, and method of using same
DE102012007273B4 (de) * 2012-03-23 2015-03-12 Trotec Gmbh & Co. Kg System und Verfahren zur Trocknung von Dämmschichten von Fußböden im Unterdruckverfahren
DE102013226492A1 (de) * 2013-12-18 2015-06-18 Elk Fertighaus Gmbh System zur Steuerung der Trocknungsphase von mit einer Fußbodenheizung versehenem Betonestrich

Also Published As

Publication number Publication date
EP4036341A1 (fr) 2022-08-03

Similar Documents

Publication Publication Date Title
EP2403991B1 (fr) Commande de la partie sèche étendue d'une machine a papier
DE1729411C3 (de) Verfahren zum Trocknen von gegen trockene Luft empfindlichen Gütern durch ein gasförmiges, erwärmtes Trocknungsmittel in einer Kammer
EP1173720A1 (fr) Procede et dispositif permettant d'optimiser la gestion et la surveillance des processus dans une installation de fabrication de pates alimentaires
EP4036341B1 (fr) Procédé et système de séchage automatique doté d'une couche de sol humide d'une structure de sol à plusieurs couches
DE10106349C2 (de) Verfahren zur Befeuchtung eines Nutzraumes in einem Brutschrank sowie Begasungs-Brutschrank
CH638326A5 (de) Einrichtung zur energiemaessigen optimierung einer temperatur-aenderung in gebaeuden waehrend deren belegungspausen.
EP3098527A1 (fr) Procédé de fonctionnement d'un dispositif d'aération pour une pièce et dispositif d'aération correspondant
EP3545126B1 (fr) Appareil domestique et procédé pour appareil domestique avec reconnaissance automatique de matériau
EP1220412B1 (fr) Procédé et dispositif pour la commande et le contrôle de la consommation d'énergie électrique
DE10108852C1 (de) Raumtemperaturregelung
DE102008061087B4 (de) Verfahren und Vorrichtungsanordnung zur Erfassung und Auswertung von Raumklimadaten
DE102018213341A1 (de) Ermittlung des Feuchteintrags in ein Trocknungsmittel bei Transformatoren
EP3225928B1 (fr) Dispositif et procédé de régulation de la température ambiante d'une pièce et bâtiment ainsi équipé
EP2582873B1 (fr) Appareil de traitement de linge et procédé permettant de faire fonctionner un appareil de traitement de linge
EP3265732B1 (fr) Méthode pour sécher des constructions
DE60303259T2 (de) Adaptives Steuersystem für ein vom Anwender einstellbares Fahrzeugsystem
WO2018185079A1 (fr) Dispositif pour le séchage de bâtiments
WO2022082244A1 (fr) Procédé d'évaluation de l'humidité relative au niveau d'une entrée de cathode d'un empilement de piles à combustible d'un système de pile à combustible
WO2022263458A1 (fr) Surveillance de la production de panneaux de matériau, en particulier de panneaux en matériau dérivé du bois, en particulier à l'aide d'une carte auto-organisatrice
DE102014213463A1 (de) Vorrichtung und verfahren zum erkennen eines zustandes eines brennstoffzellensystems
CH684771A5 (de) Verfahren zum Trocknen von Heu und Belüftungsanlage zur Durchführung dieses Verfahrens.
DE20309456U1 (de) Kastenartige Pilzkultivierungsvorrichtung
EP3483513B1 (fr) Procédé de fonctionnement d'une installation de chauffage et installation de chauffage
DE3412107C2 (de) Verfahren und Schaltunsanordnung zur Optimierung der Reifung und Trocknung von Wurst, Schinken oder ähnlichen Lebensmitteln
DE102019123270A1 (de) Verfahren, System und Computerprogrammprodukt für die Überwachung und/oder Steuerung von Bedingungen in dem Teilabschnitt einer Faserbahn- oder Ausrüstungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221020

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240219

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20240424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021004078

Country of ref document: DE