EP4028840A1 - Optimisation hiérarchique de systèmes techniques modulaires - Google Patents

Optimisation hiérarchique de systèmes techniques modulaires

Info

Publication number
EP4028840A1
EP4028840A1 EP20797379.3A EP20797379A EP4028840A1 EP 4028840 A1 EP4028840 A1 EP 4028840A1 EP 20797379 A EP20797379 A EP 20797379A EP 4028840 A1 EP4028840 A1 EP 4028840A1
Authority
EP
European Patent Office
Prior art keywords
technical
module
technical module
control system
performance indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20797379.3A
Other languages
German (de)
English (en)
Inventor
Daniel Labisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP4028840A1 publication Critical patent/EP4028840A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41845Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by system universality, reconfigurability, modularity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32301Simulate production, process stages, determine optimum scheduling rules
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32324Quality data determines optimum machine sequence selection, queuing rules
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35029Design of modular control system

Definitions

  • the invention relates to a computer-implemented method for operating a modular technical system with the features of claim 1.
  • the invention also relates to a technical module with the features of claim 2 and a computer-implemented representation of a technical module with the features of claim 3.
  • Modular process engineering systems comprise several technical modules that are linked and interact with one another both in terms of process engineering and automation technology.
  • the modules can come from different manufacturers and can also be automated in different ways.
  • modules are self-contained units that can perform certain tasks. To do this, they provide services that are described, for example, using MTP (Modular Type Package).
  • MTP Modular Type Package
  • a service represents a task or a service that can be carried out by a module.
  • a service generally requires a configuration using parameters that are necessary for the fulfillment of the task. For example, a "heating" service could require the target temperature parameter.
  • the service is configured, parameterized and started by the automation of the overall system (process control level, PFE or the control system).
  • KPIs key performance indicator
  • production targets are, for example, the product quality, the quantity or production rate and the costs of production.
  • the product quality can consist of several sizes.
  • KPIs key performance indicator
  • For a monolithic ( non-modular) system that is designed for a long operating phase, it is generally worthwhile to optimize the automation and the operating mode once.
  • the flexibility that results from a modular system means that every change also changes the optimization problem and a one-off optimization is no longer sustainable. Frequent optimizations are, however, associated with effort and thus costs and may no longer be worthwhile.
  • the advantage of flexibility through modularity thus becomes a disadvantage for optimization.
  • the invention is based on the object of specifying a computer implemented method for operating a modular technical system which reduces the complexity of the optimization of a modular technical system.
  • the previously formulated object is achieved by a computer-implemented method for operating a modular technical system with the features of claim 1.
  • the modular technical system comprises at least one technical module and a cross-module control system.
  • the fiction, contemporary method comprises the following steps: a) transferring boundary conditions and goals of an operation of the technical system from the control system to the at least one technical module or to a computer-implemented representation of the technical module; b) Determination of an optimal operating point of the at least one technical module as a function of the previously received boundary conditions and goals by the technical module itself or by the computer-implemented representation of the technical module; c) determining at least one performance indicator of the technical module belonging to the optimal operating point and transmitting the at least one performance indicator from the technical module or the computer-implemented representation of the technical module to the control system; d) Orchestration of the at least one technical module by the control system, including the at least one Performance indicator to operate the modular technical system.
  • the modular technical system can be a system from the process industry, such as a chemical, pharmaceutical, petrochemical or a system from the food and beverage industry. This also includes all systems from the production industry, plants in which, for example, cars or goods of all kinds are produced. Modular technical systems that are suitable for implementing the method according to the invention can also come from the field of energy generation. Wind turbines, solar systems or power plants for generating energy are also included in the term technical system.
  • These systems each have a control system or at least one computer-aided module for controlling and regulating the ongoing process or production.
  • the modular technical system has a large number of technical modules that can be combined with one another.
  • a control system is understood to be a computer-aided technical system that includes functionalities for displaying, operating and managing a technical system such as a manufacturing or production plant.
  • the control system includes sensors for determining measured values as well as various actuators.
  • the control system includes so-called process-related components that are used to control the actuators or sensors.
  • the control system has, among other things, means for visualizing the process plant and for engineering.
  • the term control system also includes further processing units for more complex regulations and systems for data storage and processing.
  • a technical module is understood to be a self-contained technical unit that is divided into a higher-level Control level can be integrated.
  • Such a technical module can be, for example, an amalgamation of several measuring points or a larger part of an industrial plant.
  • the technical module does not have to come from the field of industrial plants, but can also be, for example, an engine module of an automobile, a ship or the like.
  • a computer-implemented representation of a technical module is, for example, an “application” or “app” for short, which is executed on a computer (spatially) separated from the technical module or in a cloud environment.
  • the computer-implemented representation is a kind of digital twin of the technical module. It contains all the information necessary to characterize the behavior of the technical module. If, according to the invention, boundary conditions and goals are transmitted from the control system to the computer-implemented (digital) representation and the performance indicators are received from there, it makes no difference for the control system whether it is with the actual (physical) technical module or with whose computer-implemented (digital) representation interacts.
  • boundary conditions and objectives of the operation of the technical system are transferred from the control system to the large number of technical modules or to their computer-implemented representations.
  • Boundary conditions can be, for example, temperature limit values, material properties, physical limit conditions or a current electricity price.
  • Objectives of the company can be, for example, production quantities and types of production.
  • the optimal operating point depends on the boundary conditions conveyed to the technical module or the computer-implemented representation that are not in the technical module can be influenced. In the technical (overall) system, however, these variables are known or can be measured. These are made available by the control system to the technical module or the computer-implemented representation as information. Based on the boundary conditions and the objectives of operating the technical system, each technical module can be operated optimally. For example, there may be different quality requirements depending on the situation. The quantity and the available production time can also vary. The production costs also vary accordingly.
  • the optimization at module level can be done in different ways. For simple tasks in the technical modules, algebraic equations, characteristics, maps or heuristics are sufficient. More complex tasks may require the use of simulation models for optimization.
  • the results of the optimization i.e. the optimal operating mode for the respective technical module, taking into account the specified boundary conditions and goals, are determined by the technical module or the computer-implemented representation and returned to the control system as a superimposed orchestration instance in the form of a performance indicator.
  • the result of the optimization can be a single performance counter, but it does not have to be a single performance counter. Rather, a plurality of performance indicators can also be determined within the scope of the method according to the invention. For example, the indicators “cost”, “duration” or “quality” can be involved. These in turn can depend on one or more parameters.
  • the technical modules are then orchestrated above the technical modules, on the level of the control system of the technical system. This can include a superimposed optimization.
  • the information received from the technical modules or their computer-implemented representation is used to achieve optimal operation for the technical system.
  • a particularly important advantage of the method according to the invention is that the complexity of the respective technical modules only plays a subordinate or negligible role for the optimization.
  • the method described makes it possible to no longer see the flexibility made possible by the modularization as a disadvantage for the optimization, but rather cleverly uses the new possibilities that arise in the process.
  • the technical module When configuring or optimizing each technical module, only the (manageable) behavior of this technical module has to be considered.
  • unknown variables boundary conditions, objectives of the operation
  • the optimization is simulation-based, algebraic or heuristic.
  • the previously formulated object is achieved, as it were, by a technical module with the features of claim 2.
  • This is designed and intended to: a) receive boundary conditions and objectives of an operation of a technical installation from a control system of the technical installation; and b) to determine an optimal operating point depending on the previously received boundary conditions and goals itself; and c) to determine at least one performance indicator of the technical module associated with the optimal operating point and to transmit the at least one performance indicator to the control system for further processing.
  • the previously formulated object is achieved by a computer-implemented representation of a technical module with the features of claim 3. This is designed and intended to: a) receive boundary conditions and objectives of operating a technical system from a control system of the technical system; and b) to determine an optimal operating point depending on the previously received boundary conditions and goals itself; and c) to determine at least one performance indicator of the technical module associated with the optimal operating point and to transmit the at least one performance indicator to the control system for further processing.
  • the figure shows schematically a control system 1 of a technical system designed as a process system as well as a first technical module 2, a second technical module 3 and a third technical module 4.
  • the first technical module 2, the second technical module 3 and the third technical module 4 are in direct contact with the control system 1.
  • the first technical module 2 comprises a reaction container into which citric acid, sodium citrate and sodium sulfate can be added to an aqueous solution in order to change the pH value, density and conductivity.
  • the first technical module 2 offers the following service within the framework of a modular automation of the process plant: Setting the pH value: Setting the specified pH value Parameters: pH value, stirrer speed, quantity
  • the second technical module 3 comprises a fermenter which can be heated and cooled via a jacket. Fermentation processes usually take place in it.
  • the second technical module 3 offers the following service:
  • the previously produced liquid is filled in the third technical module 4.
  • the third technical module 4 offers the following service:
  • the three technical modules 2, 3, 4 are connected to one another via an infrastructure not shown in the figure in such a way that any exchange of liquids between the technical modules 2, 3, 4 can take place.
  • One objective of the operation of the process plant is the production and filling of three batches: CI: 301 unfermented product with pH 2; Completion in 1.5 hours
  • the quantities and pH values are fixed and can be provided to the technical modules 2, 3, 4 as information from the control system 1 in advance.
  • each technical module 2, 34 is optimized per se and the dependence of a performance indicator on the stirrer speed or setpoint temperature is determined.
  • T denotes a duration
  • K denotes production costs
  • Q denotes a production quality.
  • the optimized orchestration of the services can now be superimposed.
  • the production goals must be adhered to.
  • the optimization problem described here contains binary optimization parameters (in which order the services are started) and continuous ones (the degrees of freedom described). Production redundancies are not available here.
  • any MINLP (mixed-integer nonlinear programming) method can be used, for example. In this case the dependencies and the quality criterion are linear, so that the solution is mathematically simple.
  • the following parameterizations of the services result in the sequence shown:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un procédé mis en œuvre par ordinateur pour faire fonctionner un système technique modulaire, le système technique modulaire comprenant au moins un module technique (2, 3, 4) et un système de gestion de recouvrement de module (1), le procédé comprenant : a) la transmission de contraintes et de cibles d'une opération du système technique du système de gestion (1) à l'au moins un module technique (2, 3, 4) ou à une représentation mise en œuvre par ordinateur correspondante du module technique (2, 3, 4) ; b) la détermination, au moyen dudit au moins un module technique (2, 3, 4) lui-même ou au moyen de la représentation mise en œuvre par ordinateur correspondante du module technique (2, 3, 4), d'un point de fonctionnement optimal du ou des modules techniques (2, 3, 4) sur la base des contraintes et des cibles précédemment reçues ; c) la détermination d'au moins un indicateur de performance, relatif au point de fonctionnement optimal, du module technique correspondant (2, 3, 4) et la transmission du ou des indicateurs de performance du ou des modules techniques (2, 3, 4) ou de la représentation mise en œuvre par ordinateur correspondante au système de gestion (1) ; d) l'orchestration du ou des modules techniques (2, 3, 4) au moyen du système de gestion en incorporant le ou les indicateurs de performance, afin de faire fonctionner le système technique modulaire.
EP20797379.3A 2019-10-14 2020-10-07 Optimisation hiérarchique de systèmes techniques modulaires Pending EP4028840A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19203010.4A EP3809215A1 (fr) 2019-10-14 2019-10-14 Optimisation hiérarchique d'une installation technique modulaire
PCT/EP2020/078160 WO2021073986A1 (fr) 2019-10-14 2020-10-07 Optimisation hiérarchique de systèmes techniques modulaires

Publications (1)

Publication Number Publication Date
EP4028840A1 true EP4028840A1 (fr) 2022-07-20

Family

ID=68318785

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19203010.4A Withdrawn EP3809215A1 (fr) 2019-10-14 2019-10-14 Optimisation hiérarchique d'une installation technique modulaire
EP20797379.3A Pending EP4028840A1 (fr) 2019-10-14 2020-10-07 Optimisation hiérarchique de systèmes techniques modulaires

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19203010.4A Withdrawn EP3809215A1 (fr) 2019-10-14 2019-10-14 Optimisation hiérarchique d'une installation technique modulaire

Country Status (4)

Country Link
US (1) US20240111274A1 (fr)
EP (2) EP3809215A1 (fr)
CN (1) CN114556246A (fr)
WO (1) WO2021073986A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666297A (en) * 1994-05-13 1997-09-09 Aspen Technology, Inc. Plant simulation and optimization software apparatus and method using dual execution models
US8036759B2 (en) * 2008-04-30 2011-10-11 Exxonmobil Chemical Patents Inc. Online modular parameterization and successive linear programming for improving manufacturing plant operations
DE102014212747A1 (de) * 2014-07-01 2016-01-07 Siemens Aktiengesellschaft Interaktives Assistenzsystem und Verfahren zur rechnergestützten Steuerungsoptimierung für ein technisches System
CN106611074A (zh) * 2015-10-27 2017-05-03 上海圣奥塔汽车技术有限公司 车辆结构设计仿真分析系统
CN109783337B (zh) * 2018-12-19 2022-08-30 北京达佳互联信息技术有限公司 模型服务方法、系统、装置和计算机可读存储介质

Also Published As

Publication number Publication date
CN114556246A (zh) 2022-05-27
US20240111274A1 (en) 2024-04-04
WO2021073986A1 (fr) 2021-04-22
EP3809215A1 (fr) 2021-04-21

Similar Documents

Publication Publication Date Title
DE102017000955B4 (de) Produktionssteuersystem und integriertes Produktionssteuersystem
DE602005002839T2 (de) Ablaufplanung von industriellen produktionsprozessen
EP2567297B1 (fr) Procédé et système de production de paramètres de surveillance dans un environnement industriel se basant sur une architecture orientée services (aos)
DE102017011350A1 (de) Maschinenlernvorrichtung, lebensdauerprognosevorrichtung, numerische steuereinrichtung, produktionssystem und maschinenlernverfahren zum prognostizieren einer lebensdauer eines nand-flash-speichers
EP2446406B1 (fr) Procédé et dispositif permettant l'analyse de l'utilisation d'énergie lors du fonctionnement d'un système de production
WO2018145947A9 (fr) Planification globale de plans de production et/ou de maintenance
DE102015206510A1 (de) Koordination eines Leistungsaustauschs zwischen einem Verbraucher und einem Versorgungsnetz unter Verwendung von Energiebedarfs-/Energieerzeugungsprognosen
EP3353609B1 (fr) Module pour une installation technique, système et procédé pour mettre en ouvre un processus technique
EP3429050B1 (fr) Procédé de réglage de la puissance active d'un parc éolien et parc éolien correspondant
DE102012206083A1 (de) Verfahren und Vorrichtung zur Optimierung eines Produktionsprozesses
WO2013143585A1 (fr) Procédé et dispositif d'aide à la constitution d'une séquence de commande à bon rendement énergétique
EP2574997B1 (fr) Procédé de réglage d'un état de fonctionnement
WO2020043522A1 (fr) Procédé de commande d'un échange d'énergie entre des sous-systèmes énergétiques dans des conditions harmonisées ; centrale de commande ; système énergétique ; programme informatique et support d'enregistrement
EP4028840A1 (fr) Optimisation hiérarchique de systèmes techniques modulaires
EP1627263B1 (fr) Procede et programme informatique comportant des moyens de code de programme et programme informatique pour determiner un comportement futur d'un systeme dynamique
EP3352326B1 (fr) Système de génération d'informations en temps réel et de prévision de réglage de la puissance en fonction de la congestion du réseau dans un réseau électrique
EP3000004B1 (fr) Dispositif et procédé pour faire fonctionner un système technique et procédé de fabrication d'un système technique
EP3521947A1 (fr) Procédé de gestion de l'énergie
DE112021005488T5 (de) Numerische steuervorrichtung
DE19841165A1 (de) Verfahren zur Bestimmung eines Prozeßdatenvalidierungsmodells
DE102018201219A1 (de) Verfahren zur Kommunikation wissensbasierter Daten für deren Verwendung in einem Produktionsprozess oder einem Serviceprozess für eine technische Anlage
WO2003056480A2 (fr) Procede et systeme permettant une planification dynamique et fondee sur modeles et une optimisation de processus de production, ainsi que l'elaboration de plans de deroulement
EP3506026A1 (fr) Procédé de prédiction assistée par ordinateur d'au moins une grandeur opérationnelle globale d'un système technique
DE112020007149B4 (de) Zuordnungsunterstützungsprogramm, Zuordnungsunterstützungsvorrichtung, Zuordnungslernprogramm, Zuordnungslernvorrichtung und computerlesbares Speichermedium
EP4357997A1 (fr) Procédé de détermination d'un ordre de fabrication de commandes de fabrication d'une installation de fabrication, système d'installation de fabrication, programme informatique et support de données lisible électroniquement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)