EP4026153A1 - Dispositif de commutation électrique et véhicule comprenant un tel dispositif - Google Patents

Dispositif de commutation électrique et véhicule comprenant un tel dispositif

Info

Publication number
EP4026153A1
EP4026153A1 EP20761610.3A EP20761610A EP4026153A1 EP 4026153 A1 EP4026153 A1 EP 4026153A1 EP 20761610 A EP20761610 A EP 20761610A EP 4026153 A1 EP4026153 A1 EP 4026153A1
Authority
EP
European Patent Office
Prior art keywords
switching device
face
heat sink
control module
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20761610.3A
Other languages
German (de)
English (en)
Other versions
EP4026153B1 (fr
Inventor
Nicolas Quentin
Christophe AUDEMAR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Holdings SA
Original Assignee
Alstom Holdings SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Holdings SA filed Critical Alstom Holdings SA
Publication of EP4026153A1 publication Critical patent/EP4026153A1/fr
Application granted granted Critical
Publication of EP4026153B1 publication Critical patent/EP4026153B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/52Cooling of switch parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/52Cooling of switch parts
    • H01H2009/526Cooling of switch parts of the high voltage switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements

Definitions

  • TITLE Electrical switching device and vehicle comprising such a device
  • the present invention relates to an electrical switching device, as well as to a vehicle comprising such an electrical switching device.
  • Frequently used electrical switching devices include two electrical contacts movable relative to each other as well as an actuator configured to move one or the other of the two electrical contacts to open or close an electrical circuit comprising these two. contacts.
  • the actuator is generally controlled by a control module which determines the relevance of opening or closing this circuit, for example on a command from a user or even following the occurrence of an electrical fault detected by the control module. control or by a separate module.
  • Control modules and actuators are liable to generate heat during their operation.
  • the operation of the electronic components of which they are composed is affected by the ambient temperature, so that many electrical switching devices are cooled, for example via openings provided in the housing surrounding the electrical switching device, or even by the choice of positioning the device in a location naturally crossed by air currents.
  • the air flows generated when the vehicle is moving can release some of the heat.
  • the switching devices are positioned in air-conditioned compartments, for example compartments accommodating travelers.
  • an electrical switching device in particular for a railway vehicle, comprising a first electrical contact, a second electrical contact movable relative to the first contact, an actuator and a control module. able to control a displacement of the second contact by the actuator between a first position in which the first and second contacts are electrically connected to each other and a second position in which the first and second contacts are electrically disconnected one on the other, the switching device further comprising a thermoelectric module and a heat sink, the thermoelectric module being interposed between the heat sink and the control module and being configured to generate a heat flow, preferably by the Peltier effect , from the control module to the heat sink.
  • the electrical switching device has one or more of the following characteristics taken in isolation or in any technically possible combination:
  • the heat sink forms a housing delimiting an interior volume, the actuator, the control module and the thermoelectric module being received in the interior volume;
  • control module and the thermoelectric module are mounted on an internal wall of the housing;
  • control module comprises a printed circuit board, the thermoelectric module being supported jointly against the printed circuit board and against the heat sink;
  • the printed circuit board has a first face and a second face, the first face carrying a set of electronic components, the second face carrying a set of conductive tracks connecting the electronic components to each other, the thermoelectric module being in contact with the second face;
  • thermoelectric module comprises a thermoelectric element having a hot face and a cold face, the thermoelectric element being configured to generate the heat flux from the cold face towards the hot face, the thermoelectric module further comprising a first thermal wafer and a second thermal pad, the first thermal pad being clamped between the control module and the thermoelectric element, the second thermal pad being clamped between the heat sink and the thermoelectric element;
  • the second thermal plate is made of graphite.
  • a railway vehicle is also proposed comprising an electrical switching device as defined above.
  • the vehicle has one or more of the following characteristics taken in isolation or in any technically possible combination:
  • the electrical switching device is a high voltage circuit breaker; the electrical switching device is fixed to a roof of the rail vehicle, the electrical switching device extending in particular through an opening made in said roof.
  • Figure 1 is a schematic representation of an electrical switching device according to the invention, comprising a control module, a thermoelectric module and a heat sink, and
  • FIG 2 is a schematic representation of the control module, thermoelectric module, and heat sink of Figure 1.
  • FIG. 1 An example of an electrical switching device 10 is shown in Figure 1.
  • the switching device 10 is, in particular, integrated in a vehicle 15 shown partially in FIG. 1.
  • the switching device 10 is fixed to a roof 20 of the vehicle 15.
  • embodiments in which the switching device Switch 10 is arranged inside the vehicle 15, for example in a passenger compartment, or else under a vehicle floor 15 are also possible.
  • the switching device 10 is integrated into a fixed installation such as a building.
  • the vehicle 15 is, for example, a railway vehicle. As a variant, the vehicle 15 is a motor vehicle, or else a ship or an aircraft.
  • the switching device 10 comprises a first electrical contact 25, a second electrical contact 30, an actuator 35, a control module 40, a thermoelectric module 45 and a heat sink 50.
  • the switching device 10 is configured to switch between a first configuration in which the first electrical contact 25 is electrically connected to the second electrical contact 30 and a second configuration in which the first electrical contact 25 is electrically isolated from the second electrical contact 30.
  • the switching device 10 is, for example, fixed to the roof 20. According to one embodiment, the switching device 10 extends through an opening in the roof 20.
  • the switching device 10 is, for example, a high voltage circuit breaker suitable for providing, in the second configuration, insulation between the electrical contacts 25 and 30 when an electrical voltage between the two electrical contacts 25 and 30 is greater than or equal. at 5 kilovolts (kV).
  • the electrical contacts 25 and 30 form a vacuum interrupter interposed between a catenary or a pantograph and an electrical system, in particular a power transformer, of the vehicle 15.
  • the switching device 10 further comprises, a plate 52 and an enclosure 54.
  • the plate 52 is for example a metal plate, in particular of aluminum.
  • the plate 52 at least partially closes the opening in the roof 20 through which the switching device 10 extends.
  • the plate 52 is, for example, supported by the roof 20, in particular fixed to an upper face of the roof 20.
  • the plate 52 defines, in particular in a horizontal plane, a passage 55 through which the actuator 35 extends.
  • the enclosure 54 extends from the plate 52, in particular in a vertical direction of the vehicle 15.
  • the enclosure 54 is suitable for electrically isolating the actuator 35 and the contacts 25, 30 from the outside.
  • the enclosure 54 is, for example, cylindrical, or else parallelepiped.
  • the enclosure 54 is made of an electrically insulating material.
  • the enclosure 54 includes, for example, a vacuum interrupter 60 within which the first and second electrical contacts 25, 30 are accommodated.
  • a vacuum interrupter makes it possible to switch electric currents at high voltages while maintaining a small distance between the contacts 25 and 30, the vacuum then playing the role of an electrical insulator.
  • the switching device 10 is, for example, configured to provide the electrical protection of an electrical circuit comprising the contacts 25 and 30, and in particular to switch from the first configuration to the second configuration in the event of detection of the electrical fault.
  • the electrical fault is, for example, a short circuit, an ignition, an overvoltage or an overcurrent.
  • the switching device 10 is a low voltage circuit breaker, a contactor, or even a switch of any type.
  • Each of the first contact 25 and of the second contact 30 is accommodated in the enclosure 54.
  • the first contact 25 is, for example, a contact fixed relative to the roof 20.
  • the first contact 25 is fixed to the enclosure 54.
  • the second contact 30 is a movable contact between a first position in which the second contact 30 bears against the first contact 25 and a second position in which the second contact 30 is distant from the first contact 25.
  • the switching device 10 is in the first configuration, the switching device 10 being in the second configuration when the second contact 30 is in the second position.
  • the second contact 30 is, for example, movable in translation in a vertical direction of the vehicle 15 between its first and second positions.
  • the actuator 35 is configured to move the second electrical contact 30 between its first and second positions.
  • the actuator 35 comprises, for example, an actuator 65 and a drive member 70.
  • the actuator 65 is connected to the second contact 30 by the drive member 70, which is for example a rod made of an electrically insulating material, such as a laminate based on fiberglass.
  • the actuator 65 is configured to exert on the drive member 70 a first force causing a joint movement of the drive member 70 and the second contact 30, so as to move the second contact 30 between them. first and second positions.
  • the actuator 65 comprises, for example, an electromagnet. However, other types of actuators 65 are conceivable.
  • the actuator 35 further comprises a return member such as a spring, capable of exerting on the drive member 70 a second force tending to move the second contact 30 towards its second position.
  • a return member such as a spring, capable of exerting on the drive member 70 a second force tending to move the second contact 30 towards its second position.
  • the first force tends to move the second contact 30 towards the first position, the second contact 30 then being returned to the second position by the return member when the actuating member 65 does not exert a first force .
  • the actuator 65 is suitable for exerting a first force tending to move the second contact 30 towards the first position, as well as a second force tending to move the second contact 30 towards its second position.
  • the control module 40 is configured to control the switching of the switching device 10 between the first and second configurations.
  • the control module 40 is configured to control a displacement of the second contact 30 from the first position to the second position or vice versa.
  • control module 40 is configured to generate a first switching command and to transmit the first command to the actuator 35.
  • the control module 40 is further configured to generate a second switching command and to transmit. the second command to the actuator 35.
  • the first command is a command to switch from the first configuration to the second configuration.
  • the second command is a command to switch from the second configuration to the first configuration.
  • the control module 40 is, for example, configured to detect the electrical fault and to generate the first command in the event of detection of the electrical fault. As a variant, the control module 40 is configured to generate the first command following receipt of an instruction from an operator, for example an instruction from a driver of the vehicle 15. As a variant, the control module 40 is configured to generate the first command following receipt of an instruction from a train system such as a fault detection system on board the train.
  • the control module 40 is, for example, configured to generate the second command following receipt of an instruction from an operator.
  • control module 40 is configured to transmit to remote equipment, for example a vehicle monitoring module 15, information on a state of the switching device 10.
  • remote equipment for example a vehicle monitoring module 15, information on a state of the switching device 10.
  • control module 40 is configured to transmit a message comprising an indicator having a first value when the switching device 10 is in the first configuration and having a second value different from the first value when the switching device 10 is in the second configuration.
  • control module 40 is configured to measure values of a parameter of the switching device 10 and to transmit the measured values to remote equipment such as a vehicle monitoring module 15.
  • the parameter is, for example, an electrical parameter such as an electrical voltage between the contacts 25 and 30, the current flowing through the actuator, an intensity of an electric current flowing between the two contacts 25 and 30, or else a thermodynamic parameter such as a temperature of the switching device 10 or a level of humidity in the air.
  • the control module 40 comprises, for example, at least one printed circuit board 75, a set of electronic components 80 and a box 85.
  • a single printed circuit board 75 is present in the embodiment visible in FIG. 2, however embodiments in which several printed circuit boards 75 are present are also conceivable.
  • Each printed circuit board 75 is configured to support at least part of the electronic components 80.
  • the printed circuit board 75 has a first face 90 and a second face 95, the electronic components 80 being carried by the first face 90.
  • Each of the first face 90 and of the second face 95 is, for example, planar.
  • the second face 95 is opposite the heat sink 50.
  • Each printed circuit board 75 is made of an electrically insulating material, in particular of a plastic material.
  • the second face 95 carries at least one track made of an electrically conductive material such as gold or copper.
  • the second face 95 carries a set of such tracks.
  • Each track interconnects at least two electronic components 80.
  • each track is electrically connected to electronic components 80 through a via connecting the first face 90 to the second face 95 through the printed circuit board 75.
  • the set of components 80 is configured to form, when they are interconnected by the tracks, a module for generating the first command, a module for generating the second command and, optionally, a module for measuring values of. each parameter and / or a module for sending a message containing at least one measured value and / or at least one indicator of a configuration of the switching device 10.
  • the set of components 80 includes a processor and memory comprising a set of software instructions.
  • the software instructions form in particular the module for generating the first command, the module for generating the second command, the module for measuring the values of each parameter and / or the module for sending d 'a message.
  • the set of components 80 comprises a programmable logic circuit, known by the acronym FPGA (from English “field-programmable spoils array", which means “network of programmable gates in situ”).
  • the FPGA is configured to form the module for generating the first command, the module for generating the second command, the module for measuring the values of each parameter and / or the module for sending a message.
  • the set of components 80 comprises a set of analog components forming the module for generating the first command, the module for generating the second command, the module for measuring the values of each parameter and / or the module. sending a message.
  • the cabinet 85 is configured to isolate each printed circuit board 75 and the set of components 80 from the actuator 35.
  • the cabinet 85 defines at least partially a chamber accommodating each printed circuit board 75 and the set of components 80.
  • the box 85 is, for example, fixed to the heat sink 50. According to the embodiment shown in FIG. 2, the box 85 cooperates with the heat sink 50 to form the chamber.
  • the cabinet 85 defines a recess which is closed by the heat sink 50 to form the chamber. It should be noted that embodiments in which the chamber is entirely delimited by the cabinet 85, in particular in which a wall of the cabinet 85 is interposed between each printed circuit board 75 and the heat sink 85, are also envisaged.
  • thermoelectric module 45 is interposed between the control module 40 and the heat sink 50.
  • thermoelectric module 45 is in contact with the control module 40 and with the heat sink 50.
  • thermoelectric module 45 is interposed between each printed circuit board 75 and the heat sink 50, in particular resting against the printed circuit board 45 and against the heat sink 50.
  • thermoelectric module 45 is in contact with the second face 95 of each printed circuit board 75.
  • thermoelectric module 45 is accommodated in the housing 85.
  • the thermoelectric module 45 is configured to generate heat flow F from the control module 40 to the heat sink 50.
  • the thermoelectric module 45 is configured to transfer heat from the control module 40 to the heat sink 50.
  • the thermoelectric module 45 is configured to cool the control module 40 and to heat the heat sink 50 accordingly.
  • thermoelectric module 45 is configured to generate the heat flow by thermoelectric effect.
  • the thermoelectric module 45 is, in particular, configured to generate the heat flow by the Peltier effect.
  • the Peltier effect consists in particular of the cooling of a junction between the ends of two semiconductor electrodes each having a doping of a type different from the type of doping of the other electrode, cooling which is accompanied by heating. from the other ends of the electrodes, when an electric current passes through the junction.
  • the thermoelectric module 45 comprises, for example, a thermoelectric element 100, a first thermal wafer 105 and a second thermal wafer 110.
  • the thermoelectric element 100 has a hot face 110 and a cold face 115.
  • the thermoelectric element 100 is configured to generate the heat flow F.
  • the thermoelectric element 100 is configured to generate the heat flow F from the cold face 115 to the hot face 110.
  • thermoelectric element 100 is configured to generate the heat flow F by the Peltier effect.
  • thermoelectric element 100 comprises, for example, a casing and a set of electrodes mounted in series in a manner known per se.
  • Each electrode is housed in the envelope.
  • the hot face 110 and the cold face 115 are external faces of the envelope.
  • the hot face 110 and the cold face 115 are, for example, parallel to each other.
  • the cold face 115 is arranged facing the control module 40, in particular facing the second face 95 of each printed circuit board 75.
  • the hot face 110 is a face of a first portion of the envelope, the cold face being a face of a second portion of the envelope.
  • the casing is made of a thermally conductive material such as a metallic material.
  • Each electrode is made of a semiconductor material.
  • Each electrode is, for example, made of a single semiconductor material.
  • At least one electrode has a plurality of portions, each portion being made of a semiconductor material different from the other portions of the considered electrode.
  • Each electrode is doped. Doping is defined as the presence, in a material, of impurities providing free charge carriers. Impurities are, for example, atoms of an element that is not naturally present in the material.
  • the doping is of p type.
  • the doping is n-type.
  • Each electrode has a hot end and a cold end.
  • the electrodes are connected in series with each other.
  • the thermoelectric element 100 comprises a power supply suitable for generating an electric current passing successively through all the electrodes.
  • the control module 40 is suitable for supplying the thermoelectric module 45 with electrical energy.
  • An electrical supply cable extends for example between the modules 40 and 45.
  • the electrodes define a set of junctions. Each junction is formed by the hot ends or by the cold ends of two successive electrodes, these hot ends or cold ends being electrically connected to one another.
  • the current flowing through the set of electrodes flows from the hot end of one electrode among the two electrodes forming the junction to the hot end of the other electrode forming the junction, or from the cold end of one electrode at the cold end of the other electrode.
  • thermoelectric element 100 is configured so that the flow of current generates heating of the hot end of each electrode and cooling of the cold end of each electrode.
  • the electrodes are such that two successive electrodes have different types of doping, each type of doping being chosen from n-type doping and p-type doping.
  • the electrodes are arranged such that the hot end of each electrode is in contact with the first portion of the shell, the cold end in contact with the second portion of the shell.
  • the cold face 115 is cooled by the cold ends of the electrodes and the hot face 110 is heated by the hot ends of the electrodes, thus generating the heat flow F.
  • the first thermal plate 105 is interposed, in particular clamped, between the thermoelectric element 100 and the control module 40.
  • the first thermal plate 105 is in contact with, in particular clamped between, the second face 95 and the cold face 115 .
  • the first thermal plate 105 is configured to ensure good thermal contact between the cold face 115 and the control module 40.
  • the first thermal plate 105 is configured to allow the propagation of the thermal flow F of the control module 40 up to to the cold face 115, in particular to increase an intensity of the heat flow F with respect to a case where the cold face 115 would be in contact with the control module 40.
  • the first thermal wafer 105 is configured to ensure good thermal contact between the cold face 115 and the second face 95.
  • the first thermal wafer 105 is configured to allow the propagation of the heat. heat flow F from the second face 95 up to the cold face 115, in particular to increase an intensity of the heat flow F with respect to a case where the cold face 115 would be in contact with the second face 95.
  • the first thermal plate 105 is, in particular, configured to deform when it is clamped between the control module 40 and the cold face 115, so as to fill in any irregularities which could be present on the cold face 115 and / or on the cold face 115. surface, in particular the second face 95, of the control module 40.
  • the second thermal plate 107 is interposed, in particular tight, between the thermoelectric element 100 and the heat sink 40.
  • the second thermal plate 107 is in contact with, in particular clamped between, the heat sink 50 and the hot face 110.
  • the second thermal wafer 107 is configured to ensure good thermal contact between the hot face 110 and the heat sink 50.
  • the second thermal wafer 107 is configured to allow the propagation of the thermal flux F du from the hot face 110 up to to the heat sink 50, in particular to increase an intensity of the heat flow F with respect to a case where the hot face 110 would be in contact with the heat sink 50.
  • the first thermal plate 105 is, in particular, configured to deform when it is clamped between the heat sink 50 and the hot face 110, so as to fill irregularities which could be present on the hot face 110 and / or on the surface of the heat sink. heat sink 40.
  • the second thermal plate 107 is, for example, made of carbon, in particular of graphite.
  • the second thermal wafer 107 comprises a set of layers of graphene superimposed in a direction perpendicular to the hot face 110.
  • the second thermal wafer 107 has, for example, a thickness of the order of 200 microns, for example between 180 microns and 220 microns, before being clamped between the thermoelectric element 100 and the heat sink 40.
  • the heat sink 50 is made at least partially of a metallic material, for example of aluminum.
  • the heat sink 50 forms, for example, a case delimiting an internal volume Vi.
  • the control module 40, the thermoelectric module 45 and the actuator 35 are at least partially accommodated in the interior volume Vi.
  • the housing is configured to prevent an operator from accessing actuator 35 and / or control module 40 from outside the housing.
  • the internal volume Vi is, for example, delimited by the heat sink 50 and by the plate 52. In particular, the internal volume Vi is delimited by the plate 52 in the vertical direction.
  • the heat sink 50 is, for example, suspended from the roof 20.
  • the heat sink 50 is fixed to the plate 52, which is itself fixed to the roof 20.
  • the heat sink 50 is, in particular, resting against a underside of plate 52.
  • the heat sink 50 is for example interposed between the roof 20 or the plate 52 and a ceiling 120 of the vehicle 15, for example a ceiling of a passenger compartment of the vehicle 15.
  • thermoelectric module 45 and the control module 40 are, for example, mounted on an internal wall of the heat sink 50. In other words, the thermoelectric module 45 and the control module 40 are fixed, in the internal volume Vi, to the heat sink 50.
  • each printed circuit board 75 is fixed, via the first thermal plate 105, to the thermoelectric element 100, the thermoelectric element 100 being fixed to the heat sink 50.
  • thermoelectric module 45 is, for example, fixed to a flat face of the heat sink 50.
  • the heat sink 50 has, for example, a parallelepipedal shape.
  • the heat sink 50 comprises 4 vertical side walls and a horizontal bottom wall.
  • control module 40 and the thermoelectric module 45 are fixed to a side wall of the housing formed by the heat sink 50.
  • the faces 90, 95, 110 and 115 are faces vertical.
  • control module 40 and the thermoelectric module 45 are, for example, supported by the heat sink 50, in particular by a side wall to which they are attached.
  • the heat sink 50 is covered at least partially with a coating having an emissivity strictly greater than the emissivity of the material in which the heat sink 50 is made. The coating then makes it possible to promote the cooling of the heat sink 50 by radiation.
  • the switching device 10 comprises a housing delimiting the internal volume Vi, the heat sink thermal contacting thermoelectric module 45 through a wall of the housing.
  • the heat sink 50 is likely to have any shape whatsoever.
  • the heat sink 50 is a support suitable for fixing the housing, the actuator 35, the control module 40, the thermoelectric module 45 and / or the contacts 25, 30 to a wall of the vehicle 15.
  • the heat sink 50 is a heat sink fixed to the housing of the switching device 10, or else simply a metal plate.
  • thermoelectric module 45 makes it possible to effectively cool the control module 40 and therefore to increase its service life, while having small dimensions.
  • the thermoelectric module 45 therefore does not require a significant adaptation of the arrangement of the switching device. This is particularly true when the heat sink 50 forms the box delimiting the internal volume Vi, since in this case, the thermoelectric module 45 is capable of easily being added to existing switching devices, provided that the boxes of these existing devices are metallic.
  • thermoelectric module 45 When the thermoelectric module 45 is resting against the printed circuit board, the thermal transfer between the control module 40 and the heat sink 50 is particularly effective.
  • the second face 95 which does not include the components 80, is therefore relatively flat, which allows good thermal contact with the thermoelectric module 45.
  • the thermal plates 105 and 107 make it possible, here again, to improve the thermal transfer and therefore cooling of the control module 40.
  • a graphite thermal plate 107 is very effective in transferring heat, in particular between the hot face 110 and the heat sink 50, since the hot face 110 is flat and the heat sink 50 is easily adapted to present a flat face. In this case, graphite is very suitable for forming a good thermal interface between these flat faces.
  • Such a switching device 10 is particularly suitable for being carried in a vehicle, where the relatively small available space makes it difficult to employ other cooling methods with sufficient efficiency.
  • High voltage circuit breakers are particularly frequently used in applications where space is limited, or where electrical isolation issues make it difficult to employ certain cooling methods.
  • the switching device 10 when the switching device 10 is fixed to a roof 20 of the vehicle 15, the solar radiation which strikes the roof 20 or the plate 52 is liable to cause the temperature of the control module 40 to rise to levels too high to be effectively cooled by known methods, in particular by a flow of outside air. This is particularly the case when the vehicle 15 is traveling in a hot country or in summer, since the outside air is then at a temperature too high to effectively cool the control module 40.
  • the control module 40 and the thermoelectric module 45 are fixed to a side wall of the case formed by the heat sink 50, the arrangement of the elements in the interior volume Vi is facilitated.

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

L'invention a pour objet un dispositif de commutation électrique, notamment pour un véhicule ferroviaire, comportant un premier contact électrique, un deuxième contact électrique mobile par rapport au premier contact, un actionneur et un module de contrôle (40) propre à commander un déplacement du deuxième contact par l'actionneur entre une première position dans laquelle les premier et deuxième contacts sont électriquement connectés l'un à l'autre et une deuxième position dans laquelle les premier et deuxième contacts sont électriquement déconnectés l'un de l'autre. Le dispositif de commutation comprend, en outre, un module thermoélectrique (45) et un dissipateur thermique (50), le module thermoélectrique (45) étant interposé entre le dissipateur thermique (50) et le module de contrôle (40) et étant configuré pour générer un flux thermique (F), de préférence par effet Peltier, depuis le module de contrôle (40) jusqu'au dissipateur thermique (50).

Description

TITRE : Dispositif de commutation électrique et véhicule comprenant un tel dispositif
La présente invention concerne un dispositif de commutation électrique, ainsi qu’un véhicule comprenant un tel dispositif de commutation électrique.
Des dispositifs de commutation électrique fréquemment utilisés comportent deux contacts électriques mobiles l’un par rapport à l’autre ainsi qu’un actionneur configuré pour déplacer l’un ou l’autre des deux contacts électriques pour ouvrir ou fermer un circuit électrique comportant ces deux contacts. L’actionneur est en général commandé par un module de contrôle qui détermine la pertinence d’ouvrir ou de fermer ce circuit, par exemple sur une commande d’un utilisateur ou encore suite à la survenue d’un défaut électrique détecté par le module de contrôle ou par un module séparé.
Les modules de contrôle et les actionneurs sont susceptibles, lors de leur fonctionnement, de générer de la chaleur. En outre, le fonctionnement des composants électroniques qui les composent est affecté par la température ambiante, de sorte que de nombreux dispositifs de commutation électrique sont refroidis, par exemple via des ouvertures prévues dans le boîtier entourant le dispositif de commutation électrique, ou encore par le choix d’un positionnement du dispositif dans un emplacement naturellement traversé par des courants d’air. Par exemple, dans des véhicules, les flux d’air générés lors du déplacement du véhicule permettent d’évacuer une partie de la chaleur. Dans certains cas, les dispositifs de commutation sont positionnés dans des compartiments climatisés, par exemple des compartiments accueillant des voyageurs.
Cependant, ces modes de refroidissement connus imposent des contraintes sur le positionnement ou l’isolation, notamment électrique, des dispositifs de commutation. Par exemple, il faut prévoir des conduits dirigeant l’air de refroidissement sur des portions à refroidir du dispositif de commutation. En outre, les modes de refroidissement connus ne suffisent pas toujours, notamment lorsque le flux d’air extérieur généré lors du déplacement du véhicule est à une température élevée, par exemple dans des pays chauds ou en été.
Il existe donc un besoin pour un dispositif de commutation électrique qui soit plus adaptable, notamment en termes de positionnement dans un véhicule, que les dispositifs de commutation de l’état de la technique, tout en présentant de bonnes performances.
A cet effet, il est proposé un dispositif de commutation électrique, notamment pour un véhicule ferroviaire, comportant un premier contact électrique, un deuxième contact électrique mobile par rapport au premier contact, un actionneur et un module de contrôle propre à commander un déplacement du deuxième contact par l’actionneur entre une première position dans laquelle les premier et deuxième contacts sont électriquement connectés l’un à l’autre et une deuxième position dans laquelle les premier et deuxième contacts sont électriquement déconnectés l’un de l’autre, le dispositif de commutation comprenant, en outre, un module thermoélectrique et un dissipateur thermique, le module thermoélectrique étant interposé entre le dissipateur thermique et le module de contrôle et étant configuré pour générer un flux thermique, de préférence par effet Peltier, depuis le module de contrôle jusqu’au dissipateur thermique.
Selon des modes de réalisation particuliers, le dispositif de commutation électrique présente une ou plusieurs des caractéristiques suivantes prise(s) isolément ou selon toutes les combinaisons techniquement possibles :
- le dissipateur thermique forme un boîtier délimitant un volume intérieur, l’actionneur, le module de contrôle et le module thermoélectrique étant reçus dans le volume intérieur ;
- le module de contrôle et le module thermoélectrique sont montés sur une paroi interne du boîtier ;
- le module de contrôle comprend une carte de circuit imprimé, le module thermoélectrique étant en appui conjointement contre la carte de circuit imprimé et contre le dissipateur thermique ;
- la carte de circuit imprimé présente une première face et une deuxième face, la première face portant un ensemble de composants électroniques, la deuxième face portant un ensemble de pistes conductrices reliant les composants électroniques entre eux, le module thermoélectrique étant en contact avec la deuxième face ;
- le module thermoélectrique comprend un élément thermoélectrique présentant une face chaude et une face froide, l’élément thermoélectrique étant configuré pour générer le flux thermique depuis la face froide vers la face chaude, le module thermoélectrique comprenant, en outre, une première plaquette thermique et une deuxième plaquette thermique, la première plaquette thermique étant serrée entre le module de contrôle et l’élément thermoélectrique, la deuxième plaquette thermique étant serrée entre le dissipateur thermique et l’élément thermoélectrique ;
- la deuxième plaquette thermique est réalisée en graphite.
Il est également proposé un véhicule ferroviaire comprenant un dispositif de commutation électrique tel que précédemment défini.
Selon des modes de réalisation particuliers, le véhicule présente une ou plusieurs des caractéristiques suivantes prise(s) isolément ou selon toutes les combinaisons techniquement possibles :
- le dispositif de commutation électrique est un disjoncteur à haute tension ; - le dispositif de commutation électrique est fixé à un toit du véhicule ferroviaire, le dispositif de commutation électrique s’étendant notamment à travers une ouverture ménagée dans ledit toit.
Des caractéristiques et avantages de l’invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :
[Fig 1] la figure 1 est une représentation schématique d’un dispositif de commutation électrique selon l’invention, comportant un module de commande, un module thermoélectrique et un dissipateur thermique, et
[Fig 2] la figure 2 est une représentation schématique du module de commande, du module thermoélectrique et du dissipateur thermique de la figure 1 .
Un exemple de dispositif de commutation électrique 10 est représenté sur la figure 1 .
Le dispositif de commutation 10 est, notamment, intégré dans un véhicule 15 représenté partiellement sur la figure 1. Par exemple, le dispositif de commutation 10 est fixé à un toit 20 du véhicule 15. Toutefois, des modes de réalisation dans lesquels le dispositif de commutation 10 est disposé à l’intérieur du véhicule 15, par exemple dans un compartiment passager, ou encore sous un plancher du véhicule 15 sont également envisageables.
Selon une variante, le dispositif de commutation 10 est intégré dans une installation fixe telle qu’un bâtiment.
Le véhicule 15 est, par exemple, un véhicule ferroviaire. En variante, le véhicule 15 est un véhicule automobile, ou encore un navire ou un aéronef.
Le dispositif de commutation 10 comporte un premier contact électrique 25, un deuxième contact électrique 30, un actionneur 35, un module de contrôle 40, un module thermoélectrique 45 et un dissipateur thermique 50.
Le dispositif de commutation 10 est configuré pour commuter entre une première configuration dans laquelle le premier contact électrique 25 est électriquement connecté au deuxième contact électrique 30 et une deuxième configuration dans laquelle le premier contact électrique 25 est électriquement isolé du deuxième contact électrique 30.
Le dispositif de commutation 10 est, par exemple, fixé au toit 20. Selon un mode de réalisation, le dispositif de commutation 10 s’étend à travers une ouverture du toit 20.
Le dispositif de commutation 10 est, par exemple, un disjoncteur à haute tension propre à assurer, dans la deuxième configuration, une isolation entre les contacts électriques 25 et 30 lorsqu’une tension électrique entre les deux contacts électriques 25 et 30 est supérieure ou égale à 5 kilovolts (kV). En particulier, les contacts électriques 25 et 30 forment un interrupteur à vide interposé entre une caténaire ou un pantographe et un système électrique, notamment un transformateur de puissance, du véhicule 15. Dans ce cas, le dispositif de commutation 10 comprend, en outre, une plaque 52 et une enceinte 54.
La plaque 52 est par exemple une plaque métallique, notamment en aluminium. La plaque 52 obture au moins partiellement l’ouverture du toit 20 à travers laquelle le dispositif de commutation 10 s’étend. La plaque 52 est, par exemple, supportée par le toit 20, notamment fixée à une face supérieure du toit 20.
La plaque 52 délimite, notamment dans un plan horizontal, un passage 55 à travers lequel l’actionneur 35 s’étend.
L’enceinte 54 s’étend à partir de la plaque 52, notamment selon une direction verticale du véhicule 15. L’enceinte 54 est propre à isoler électriquement l’actionneur 35 et les contacts 25, 30 de l’extérieur. L’enceinte 54 est, par exemple, cylindrique, ou encore parallélépipédique.
L’enceinte 54 est réalisée en un matériau électriquement isolant. L’enceinte 54 comporte, par exemple, une ampoule à vide 60 à l’intérieur de laquelle les premier et deuxième contacts électriques 25, 30 sont accueillis. De manière connue en soi, une ampoule à vide permet de commuter des courants électriques sous des tensions élevées tout en conservant une distance faible entre les contacts 25 et 30, le vide jouant alors le rôle d’isolant électrique.
Le dispositif de commutation 10 est, par exemple, configuré pour réaliser la protection électrique d’un circuit électrique comprenant les contacts 25 et 30, et notamment pour basculer de la première configuration à la deuxième configuration en cas de détection du défaut électrique. Le défaut électrique est, par exemple, un court-circuit, un amorçage, une surtension ou un surcourant.
En variante, le dispositif de commutation 10 est un disjoncteur à basse tension, un contacteur, ou encore un interrupteur d’un type quelconque.
Chacun du premier contact 25 et du deuxième contact 30 est accueilli dans l’enceinte 54.
Le premier contact 25 est, par exemple, un contact fixe par rapport au toit 20. Par exemple, le premier contact 25 est fixé à l’enceinte 54.
Le deuxième contact 30 est un contact mobile entre une première position dans laquelle le deuxième contact 30 est en appui contre le premier contact 25 et une deuxième position dans laquelle le deuxième contact 30 est distant du premier contact 25. Lorsque le deuxième contact 30 est dans la première position, le dispositif de commutation 10 est dans la première configuration, le dispositif de commutation 10 étant dans la deuxième configuration lorsque le deuxième contact 30 est dans la deuxième position.
Le deuxième contact 30 est, par exemple, mobile en translation selon une direction verticale du véhicule 15 entre ses première et deuxième positions. L’actionneur 35 est configuré pour déplacer le deuxième contact électrique 30 entre ses première et deuxième positions.
L’actionneur 35 comprend, par exemple, un organe d’actionnement 65 et un organe d’entraînement 70.
L’organe d’actionnement 65 est relié au deuxième contact 30 par l’organe d’entraînement 70, qui est par exemple une tige réalisée en un matériau électriquement isolant, tel qu’un stratifié à base de fibre de verre.
L’organe d’actionnement 65 est configuré pour exercer sur l’organe d’entraînement 70 une première force entraînant un déplacement conjoint de l’organe d’entraînement 70 et du deuxième contact 30, de manière à déplacer le deuxième contact 30 entre les première et deuxième positions.
L’organe d’actionnement 65 comporte, par exemple, un électro-aimant. Cependant, d’autres types d’organes d’actionnement 65 sont envisageables.
Selon un mode de réalisation, l’actionneur 35 comporte, en outre, un organe de rappel tel qu’un ressort, propre à exercer sur l’organe d’entraînement 70 une deuxième force tendant à déplacer le deuxième contact 30 vers sa deuxième position. Dans ce cas, la première force tend à déplacer le deuxième contact 30 vers la première position, le deuxième contact 30 étant alors ramené vers la deuxième position par l’organe de rappel lorsque l’organe d’actionnement 65 n’exerce pas première force.
En variante, l’organe d’actionnement 65 est propre à exercer une première force tendant à déplacer le deuxième contact 30 vers la première position, ainsi qu’une deuxième force tendant à déplacer le deuxième contact 30 vers sa deuxième position.
Le module de contrôle 40 est configuré pour commander la commutation du dispositif de commutation 10 entre les première et deuxième configurations. En particulier, le module de contrôle 40 est configuré pour commander un déplacement du deuxième contact 30 depuis la première position vers la deuxième position ou vice-versa.
Par exemple, le module de contrôle 40 est configuré pour générer une première commande de commutation et pour transmettre la première commande à l’actionneur 35. Le module de contrôle 40 est, en outre, configuré pour générer une deuxième commande de commutation et pour transmettre la deuxième commande à l’actionneur 35. La première commande est une commande de commutation de la première configuration à la deuxième configuration. La deuxième commande est une commande de commutation de la deuxième configuration à la première configuration.
Le module de contrôle 40 est, par exemple, configuré pour détecter le défaut électrique et pour générer la première commande en cas de détection du défaut électrique. En variante, le module de contrôle 40 est configuré pour générer la première commande suite à la réception d’une instruction d’un opérateur, par exemple d’une instruction d’un conducteur du véhicule 15. En variante, le module de contrôle 40 est configuré pour générer la première commande suite à la réception d’une instruction d’un système train tel qu’un système de détection de défaut à bord du train.
Le module de contrôle 40 est, par exemple, configuré pour générer la deuxième commande suite à la réception d’une instruction d’un opérateur.
En variante ou en complément, le module de contrôle 40 est configuré pour transmettre à un équipement distant, par exemple un module de surveillance du véhicule 15, une information sur un état du dispositif de commutation 10. Par exemple, le module de contrôle 40 est configuré pour transmettre un message comprenant un indicateur présentant une première valeur lorsque le dispositif de commutation 10 est dans la première configuration et présentant une deuxième valeur différente de la première valeur lorsque le dispositif de commutation 10 est dans la deuxième configuration.
Selon une autre variante, le module de contrôle 40 est configuré pour mesurer des valeurs d’un paramètre du dispositif de commutation 10 et pour transmettre les valeurs mesurées à un équipement distant tel qu’un module de surveillance du véhicule 15. Le paramètre est, par exemple, un paramètre électrique tel qu’une tension électrique entre les contacts 25 et 30, le courant transitant dans l’actionneur, une intensité d’un courant électrique circulant entre les deux contacts 25 et 30, ou encore un paramètre thermodynamique tel qu’une température du dispositif de commutation 10 ou un taux d’humidité dans l’air.
Le module de contrôle 40 comporte, par exemple, au moins une carte de circuit imprimé 75, un ensemble de composants électroniques 80 et un coffret 85.
Une unique carte de circuit imprimé 75 est présente dans le mode de réalisation visible sur la figure 2, toutefois des modes de réalisation dans lesquels plusieurs cartes de circuit imprimé 75 sont présentes sont également envisageables.
Chaque carte de circuit imprimé 75 est configurée pour supporter au moins une partie des composants électroniques 80. Par exemple, la carte de circuit imprimé 75 présente une première face 90 et une deuxième face 95, les composants électroniques 80 étant portés par la première face 90. Chacune de la première face 90 et de la deuxième face 95 est, par exemple, plane.
La deuxième face 95 est en regard du dissipateur thermique 50.
Chaque carte de circuit imprimé 75 est réalisée en un matériau électriquement isolant, notamment en une matière plastique.
Selon un mode de réalisation, la deuxième face 95 porte au moins une piste réalisée en un matériau électriquement conducteur tel que l’or ou le cuivre. Par exemple, la deuxième face 95 porte un ensemble de telles pistes.
Chaque piste relie entre eux au moins deux composants électroniques 80. Par exemple, chaque piste est électriquement connectée aux composants électroniques 80 à travers un via reliant la première face 90 à la deuxième face 95 à travers la carte de circuit imprimé 75.
Il est à noter que des modes de réalisation dans lesquels au moins une piste est portée par la première face 90 sont également envisageables.
L’ensemble de composants 80 est configuré pour former, lorsqu’ils sont reliés entre eux par les pistes, un module de génération de la première commande, un module de génération de la deuxième commande et, optionnellement, un module de mesure de valeurs de chaque paramètre et/ou un module d’émission d’un message contenant au moins une valeur mesurée et/ou au moins un indicateur d’une configuration du dispositif de commutation 10.
Par exemple, l’ensemble de composants 80 comprend un processeur et une mémoire comprenant un ensemble d’instructions logicielles. Lorsqu’elles sont exécutées sur le processeur, les instructions logicielles forment notamment le module de génération de la première commande, le module de génération de la deuxième commande, le module de mesure de valeurs de chaque paramètre et/ou le module d’émission d’un message.
En variante ou en complément, l’ensemble de composants 80 comporte un circuit logique programmable, connu sous le sigle FPGA (de l’anglais « field-programmable gâte array », qui signifie « réseau de portes programmables in situ »). En particulier, le FPGA est configuré pour former le module de génération de la première commande, le module de génération de la deuxième commande, le module de mesure de valeurs de chaque paramètre et/ou le module d’émission d’un message.
Selon une autre variante, l’ensemble de composants 80 comprend un ensemble de composants analogiques formant le module de génération de la première commande, le module de génération de la deuxième commande, le module de mesure de valeurs de chaque paramètre et/ou le module d’émission d’un message.
Le coffret 85 est configuré pour isoler chaque carte de circuit imprimé 75 et l’ensemble de composants 80 de l’actionneur 35. En particulier, le coffret 85 délimite au moins partiellement une chambre accueillant chaque carte de circuit imprimé 75 et l’ensemble de composants 80.
Le coffret 85 est, par exemple, fixé au dissipateur thermique 50. Selon le mode de réalisation représenté sur la figure 2, le coffret 85 coopère avec le dissipateur thermique 50 pour former la chambre. Par exemple, le coffret 85 délimite un renfoncement qui est fermé par le dissipateur thermique 50 pour former la chambre. Il est à noter que des modes de réalisation dans lesquels la chambre est entièrement délimitée par le coffret 85, notamment dans lesquels une paroi du coffret 85 est interposée entre chaque carte de circuit imprimé 75 et le dissipateur thermique 85, sont également envisagés.
Le module thermoélectrique 45 est interposé entre le module de contrôle 40 et le dissipateur thermique 50. En particulier, le module thermoélectrique 45 est en contact avec le module de contrôle 40 et avec le dissipateur thermique 50.
En particulier, le module thermoélectrique 45 est interposé entre chaque carte de circuit imprimé 75 et le dissipateur thermique 50, notamment en appui contre la carte de circuit imprimé 45 et contre le dissipateur thermique 50. Par exemple, le module thermoélectrique 45 est en contact avec la deuxième face 95 de chaque carte de circuit imprimé 75.
Selon l’exemple représenté sur la figure 2, le module thermoélectrique 45 est accueilli dans le boîtier 85.
Le module thermoélectrique 45 est configuré pour générer un flux thermique F depuis le module de contrôle 40 jusqu’au dissipateur thermique 50. En particulier, le module thermoélectrique 45 est configuré pour transférer de la chaleur du module de contrôle 40 jusqu’au dissipateur thermique 50. En d’autres termes, le module thermoélectrique 45 est configuré pour refroidir le module de contrôle 40 et pour réchauffer en conséquence le dissipateur thermique 50.
Le module thermoélectrique 45 est configuré pour générer le flux thermique par effet thermoélectrique. Le module thermoélectrique 45 est, notamment, configuré pour générer le flux thermique par effet Peltier.
L’effet Peltier consiste notamment en le refroidissement d’une jonction entre les extrémités de deux électrodes semi-conductrices présentant chacune un dopage d’un type différent du type de dopage de l’autre électrode, refroidissement qui s’accompagne d’un réchauffement des autres extrémités des électrodes, lorsqu’un courant électrique traverse la jonction.
Le module thermoélectrique 45 comporte, par exemple, un élément thermoélectrique 100, une première plaquette thermique 105 et une deuxième plaquette thermique 110.
L’élément thermoélectrique 100 présente une face chaude 110 et une face froide 115. L’élément thermoélectrique 100 est configuré pour générer le flux thermique F. En particulier, l’élément thermoélectrique 100 est configuré pour générer le flux thermique F depuis la face froide 115 vers la face chaude 110.
L’élément thermoélectrique 100 est configuré pour générer le flux thermique F par effet Peltier.
L’élément thermoélectrique 100 comporte, par exemple, une enveloppe et un ensemble d’électrodes montées en série de manière connue en soi.
Chaque électrode est accueillie dans l’enveloppe.
La face chaude 110 et la face froide 115 sont des faces externes de l’enveloppe. La face chaude 110 et la face froide 115 sont, par exemple, parallèles l’une à l’autre. La face froide 115 est disposée en regard du module de contrôle 40, notamment en regard de la deuxième face 95 de chaque carte de circuit imprimé 75.
Par exemple, la face chaude 110 est une face d’une première portion de l’enveloppe, la face froide étant une face d’une deuxième portion de l’enveloppe.
L’enveloppe est réalisée en un matériau thermiquement conducteur tel qu’un matériau métallique.
Chaque électrode est réalisée en un matériau semi-conducteur.
Chaque électrode est, par exemple, réalisée en un unique matériau semi- conducteur.
Selon un mode de réalisation, au moins une électrode comporte une pluralité de portions, chaque portion étant réalisée en un matériau semi-conducteur différent des autres portions de l’électrode considérée.
Chaque électrode présente un dopage. Le dopage est défini comme étant la présence, dans un matériau, d’impuretés apportant des porteurs de charge libres. Les impuretés sont, par exemple, des atomes d’un élément qui n’est pas présent naturellement dans le matériau.
Lorsque la présence des impuretés augmente la densité volumique de trous présents dans le matériau par rapport au matériau non dopé, le dopage est de type p.
Lorsque la présence des impuretés augmente la densité volumique d’électrons libres présents dans le matériau par rapport au matériau non dopé, le dopage est de type n.
Chaque électrode présente une extrémité chaude et une extrémité froide.
Les électrodes sont reliées en série les unes aux autres.
L’élément thermoélectrique 100 comporte une alimentation propre à générer un courant électrique traversant successivement toutes les électrodes. Avantageusement, le module de contrôle 40 est propre à alimenter en énergie électrique le module thermoélectrique 45. Un câble d’alimentation électrique s’étend par exemple entre les modules 40 et 45.
Les électrodes définissent un ensemble de jonctions. Chaque jonction est formée par les extrémités chaudes ou par les extrémités froides de deux électrodes successives, ces extrémités chaudes ou extrémités froides étant électriquement connectée l’une à l’autre. Ainsi, le courant traversant l’ensemble d’électrodes circule de l’extrémité chaude d’une électrode parmi les deux électrodes formant la jonction à l’extrémité chaude de l’autre électrode formant la jonction, ou de l’extrémité froide d’une électrode à l’extrémité froide de l’autre électrode.
L’élément thermoélectrique 100 est configuré pour que le passage du courant génère un réchauffement de l’extrémité chaude de chaque électrode et un refroidissement de l’extrémité froide de chaque électrode.
En particulier, les électrodes sont telles que deux électrodes successives présentent des types de dopages différents, chaque type dopage étant choisi parmi le dopage de type n et le dopage de type p.
Les électrodes sont disposées de telle manière que l’extrémité chaude de chaque électrode soit en contact avec la première portion de l’enveloppe, l’extrémité froide étant en contact avec la deuxième portion de l’enveloppe. Ainsi, lorsque le courant électrique traverse chaque électrode, la face froide 115 est refroidie par les extrémités froides des électrodes et la face chaude 110 est réchauffée par les extrémités chaudes des électrodes, générant ainsi le flux thermique F.
La première plaquette thermique 105 est interposée, notamment serrée, entre l’élément thermoélectrique 100 et le module de contrôle 40. Par exemple, la première plaquette thermique 105 est en contact avec, notamment serrée entre, la deuxième face 95 et la face froide 115.
La première plaquette thermique 105 est configurée pour assurer un bon contact thermique entre la face froide 115 et le module de contrôle 40. En particulier, la première plaquette thermique 105 est configurée pour permettre la propagation du flux thermique F du module de contrôle 40 jusqu’à la face froide 115, notamment pour augmenter une intensité du flux thermique F par rapport à un cas où la face froide 115 serait en contact avec le module de contrôle 40.
Dans le mode de réalisation représenté sur la figure 2, la première plaquette thermique 105 est configurée pour assurer un bon contact thermique entre la face froide 115 et la deuxième face 95. En particulier, la première plaquette thermique 105 est configurée pour permettre la propagation du flux thermique F depuis la deuxième face 95 jusqu’à la face froide 115, notamment pour augmenter une intensité du flux thermique F par rapport à un cas où la face froide 115 serait en contact avec la deuxième face 95.
La première plaquette thermique 105 est, notamment, configurée pour se déformer lorsqu’elle est serrée entre le module de contrôle 40 et la face froide 115, de manière à remplir des irrégularités qui pourraient être présentes sur la face froide 115 et/ou sur la surface, notamment la deuxième face 95, du module de contrôle 40.
La deuxième plaquette thermique 107 est interposée, notamment serrée, entre l’élément thermoélectrique 100 et le dissipateur thermique 40. Par exemple, la deuxième plaquette thermique 107 est en contact avec, notamment serrée entre, le dissipateur thermique 50 et la face chaude 110.
La deuxième plaquette thermique 107 est configurée pour assurer un bon contact thermique entre la face chaude 110 et le dissipateur thermique 50. En particulier, la deuxième plaquette thermique 107 est configurée pour permettre la propagation du flux thermique F du de la face chaude 110 jusqu’au dissipateur thermique 50, notamment pour augmenter une intensité du flux thermique F par rapport à un cas où la face chaude 110 serait en contact avec le dissipateur thermique 50.
La première plaquette thermique 105 est, notamment, configurée pour se déformer lorsqu’elle est serrée entre dissipateur thermique 50 et la face chaude 110, de manière à remplir des irrégularités qui pourraient être présentes sur la face chaude 110 et/ou sur la surface du dissipateur thermique 40.
La deuxième plaquette thermique 107 est, par exemple, réalisée en carbone, notamment en graphite. Par exemple, la deuxième plaquette thermique 107 comporte un ensemble de couches de graphène superposées selon une direction perpendiculaire à la face chaude 110. La deuxième plaquette thermique 107 présente, par exemple, une épaisseur de l’ordre de 200 microns, par exemple comprise entre 180 microns et 220 microns, avant d’être serrée entre l’élément thermoélectrique 100 et le dissipateur thermique 40.
Le dissipateur thermique 50 est réalisé au moins partiellement en un matériau métallique, par exemple en en aluminium. Le dissipateur thermique 50 forme, par exemple, un boîtier délimitant un volume intérieur Vi. Le module de contrôle 40, le module thermoélectrique 45 et l’actionneur 35 sont au moins partiellement accueillis dans le volume intérieur Vi. Le boîtier est configuré pour empêcher un opérateur d’accéder à l’actionneur 35 et/ou au module de contrôle 40 depuis l’extérieur du boîtier. Le volume intérieur Vi est, par exemple, délimité par le dissipateur thermique 50 et par la plaque 52. En particulier, le volume intérieur Vi est délimité par la plaque 52 selon la direction verticale.
Le dissipateur thermique 50 est, par exemple, suspendu au toit 20. En particulier, le dissipateur thermique 50 est fixé à la plaque 52, qui est elle-même fixée au toit 20. Le dissipateur thermique 50 est, notamment, en appui contre une face inférieure de la plaque 52.
Le dissipateur thermique 50 est par exemple interposé entre le toit 20 ou la plaque 52 et un plafond 120 du véhicule 15, par exemple un plafond d’un compartiment voyageur du véhicule 15.
Le module thermoélectrique 45 et le module de contrôle 40 sont, par exemple, montés sur une paroi interne du dissipateur thermique 50. En d’autres termes, le module thermoélectrique 45 et le module de contrôle 40 sont fixés, dans le volume intérieur Vi, au dissipateur thermique 50.
Selon un mode de réalisation, chaque carte de circuit imprimé 75 est fixée, via la première plaquette thermique 105, à l’élément thermoélectrique 100, l’élément thermoélectrique 100 étant fixé au dissipateur thermique 50.
Le module thermoélectrique 45 est, par exemple, fixé à une face plane du dissipateur thermique 50.
Le dissipateur thermique 50 présente, par exemple, une forme parallélépipédique. En particulier, le dissipateur thermique 50 comprend 4 parois latérales verticales et une paroi inférieure horizontale.
Selon l’exemple représenté sur la figure 2, le module de contrôle 40 et le module thermoélectrique 45 sont fixés à une paroi latérale du boîtier formé par le dissipateur thermique 50. Par exemple, les faces 90, 95, 110 et 115 sont des faces verticales.
Le module de contrôle 40 et le module thermoélectrique 45 sont, par exemple, supportés par le dissipateur thermique 50, notamment par une paroi latérale à laquelle ils sont fixés.
Selon un mode de réalisation, le dissipateur thermique 50 est recouvert au moins partiellement d’un revêtement présentant une émissivité supérieure strictement à l’émissivité du matériau dans lequel le dissipateur thermique 50 est réalisé. Le revêtement permet alors de favoriser le refroidissement du dissipateur thermique 50 par rayonnement.
Il est à noter que des modes de réalisation dans lesquels le dissipateur thermique 50 ne forme pas un boîtier sont également envisageables. Par exemple, le dispositif de commutation 10 comporte un boîtier délimitant le volume intérieur Vi, le dissipateur thermique venant en contact avec le module thermoélectrique 45 à travers une paroi du boîtier.
Dans ce cas, le dissipateur thermique 50 est susceptible de présenter une forme quelconque. Par exemple, le dissipateur thermique 50 est un support propre à permettre la fixation du boîtier, de l’actionneur 35, du module de contrôle 40, du module thermoélectrique 45 et/ou des contacts 25, 30 à une paroi du véhicule 15.
En variante, le dissipateur thermique 50 est un radiateur fixé au boîtier du dispositif de commutation 10, ou encore simplement une plaque métallique.
Grâce à l’invention, le module thermoélectrique 45 permet de refroidir efficacement le module de contrôle 40 et donc d’augmenter sa durée de vie, tout en présentant de petites dimensions. Le module thermoélectrique 45 ne requiert donc pas une adaptation importante de l’agencement du dispositif de commutation. Cela est particulièrement vrai lorsque le dissipateur thermique 50 forme le boîtier délimitant le volume intérieur Vi, puisque dans ce cas, le module thermoélectrique 45 est susceptible d’être aisément rajouté à des dispositifs de commutation existants, pour peu que les boîtiers de ces dispositifs existants soient métalliques.
Lorsque le module thermoélectrique 45 est en appui contre la carte de circuit imprimé, le transfert thermique entre le module de contrôle 40 et le dissipateur thermique 50 est particulièrement efficace. La deuxième face 95, qui ne comporte pas les composants 80, est donc relativement plane, ce qui permet un bon contact thermique avec le module thermoélectrique 45. Les plaquettes thermiques 105 et 107 permettent, là encore, d’améliorer le transfert thermique et donc le refroidissement du module de contrôle 40.
Une plaquette thermique 107 en graphite est très efficace pour transférer la chaleur, notamment entre la face chaude 110 et le dissipateur thermique 50, puisque la face chaude 110 est plane et que le dissipateur thermique 50 est aisément adapté pour présenter une face plane. Dans ce cas, le graphite est très adapté pour former une bonne interface thermique entre ces faces planes.
Un tel dispositif de commutation 10 est particulièrement adapté pour être embarqué dans un véhicule, où l’espace disponible relativement faible rend difficile d’employer d’autres méthodes de refroidissement avec une efficacité suffisante. Les disjoncteurs à haute tension sont en particulier fréquemment employés dans des applications pour lesquels l’espace disponible est limité, ou pour lesquels les problématiques d’isolement électrique rendent difficile d’employer certaines méthodes de refroidissement.
En particulier, lorsque le dispositif de commutation 10 est fixé à un toit 20 du véhicule 15, le rayonnement solaire qui frappe le toit 20 ou la plaque 52 est susceptible de faire monter la température du module de contrôle 40 à des niveaux trop élevés pour être efficacement refroidis par les méthodes connues, notamment par un flux d’air extérieur. C’est particulièrement le cas lorsque le véhicule 15 circule dans un pays chaud ou en été, puisque l’air extérieur est alors à une température trop élevée pour refroidir efficacement le module de contrôle 40. Lorsque le module de contrôle 40 et le module thermoélectrique 45 sont fixés à une paroi latérale du boîtier formé par le dissipateur thermique 50, l’arrangement des éléments dans le volume intérieur Vi est facilité.

Claims

REVENDICATIONS
1. Dispositif de commutation électrique (10), notamment pour un véhicule ferroviaire (15), comportant un premier contact électrique (25), un deuxième contact électrique (30) mobile par rapport au premier contact (25), un actionneur (35) et un module de contrôle (40) propre à commander un déplacement du deuxième contact (30) par l’actionneur (35) entre une première position dans laquelle les premier et deuxième contacts (25, 30) sont électriquement connectés l’un à l’autre et une deuxième position dans laquelle les premier et deuxième contacts (25, 30) sont électriquement déconnectés l’un de l’autre, le dispositif de commutation (10) étant caractérisé en ce qu’il comprend, en outre, un module thermoélectrique (45) et un dissipateur thermique (50), le module thermoélectrique (45) étant interposé entre le dissipateur thermique (50) et le module de contrôle (40) et étant configuré pour générer un flux thermique (F), de préférence par effet Peltier, depuis le module de contrôle (40) jusqu’au dissipateur thermique (50).
2. Dispositif de commutation électrique selon la revendication 1 , dans lequel le dissipateur thermique (50) forme un boîtier délimitant un volume intérieur (Vi), l’actionneur (35), le module de contrôle (40) et le module thermoélectrique (45) étant reçus dans le volume intérieur (Vi).
3. Dispositif de commutation électrique selon la revendication 2, dans lequel le module de contrôle (40) et le module thermoélectrique (45) sont montés sur une paroi interne du boîtier (50).
4. Dispositif de commutation électrique selon l’une quelconque des revendications précédentes, dans lequel le module de contrôle (40) comprend une carte de circuit imprimé (75), le module thermoélectrique (45) étant en appui conjointement contre la carte de circuit imprimé (75) et contre le dissipateur thermique (50).
5. Dispositif de commutation électrique selon la revendication précédente, dans lequel la carte de circuit imprimé (75) présente une première face (90) et une deuxième face (95), la première face (90) portant un ensemble de composants électroniques (80), la deuxième face (95) portant un ensemble de pistes conductrices reliant les composants électroniques (80) entre eux, le module thermoélectrique (45) étant en contact avec la deuxième face (95).
6. Dispositif de commutation électrique selon l’une quelconque des revendications précédentes, dans lequel le module thermoélectrique (45) comprend un élément thermoélectrique (100) présentant une face chaude (110) et une face froide (115), l’élément thermoélectrique (100) étant configuré pour générer le flux thermique (F) depuis la face froide (115) vers la face chaude (110), le module thermoélectrique (45) comprenant, en outre, une première plaquette thermique (105) et une deuxième plaquette thermique (107), la première plaquette thermique (105) étant serrée entre le module de contrôle (40) et l’élément thermoélectrique (100), la deuxième plaquette thermique (107) étant serrée entre le dissipateur thermique (50) et l’élément thermoélectrique (100).
7. Dispositif de commutation électrique selon la revendication précédente, dans lequel la deuxième plaquette thermique (107) est réalisée en graphite.
8. Véhicule ferroviaire (15) comprenant un dispositif de commutation électrique (10) selon l’une quelconque des revendications précédentes.
9. Véhicule ferroviaire selon la revendication précédente, dans lequel le dispositif de commutation électrique (10) est un disjoncteur à haute tension.
10. Véhicule ferroviaire selon la revendication précédente, dans lequel le dispositif de commutation électrique (10) est fixé à un toit (20) du véhicule ferroviaire (15), le dispositif de commutation électrique (10) s’étendant notamment à travers une ouverture ménagée dans ledit toit (20).
EP20761610.3A 2019-09-03 2020-09-01 Dispositif de commutation électrique et véhicule comprenant un tel dispositif Active EP4026153B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909679A FR3100376B1 (fr) 2019-09-03 2019-09-03 Dispositif de commutation électrique et véhicule comprenant un tel dispositif
PCT/EP2020/074291 WO2021043741A1 (fr) 2019-09-03 2020-09-01 Dispositif de commutation électrique et véhicule comprenant un tel dispositif

Publications (2)

Publication Number Publication Date
EP4026153A1 true EP4026153A1 (fr) 2022-07-13
EP4026153B1 EP4026153B1 (fr) 2023-11-15

Family

ID=68425120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20761610.3A Active EP4026153B1 (fr) 2019-09-03 2020-09-01 Dispositif de commutation électrique et véhicule comprenant un tel dispositif

Country Status (5)

Country Link
EP (1) EP4026153B1 (fr)
CN (1) CN114730672A (fr)
FR (1) FR3100376B1 (fr)
WO (1) WO2021043741A1 (fr)
ZA (1) ZA202202576B (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145664A (ja) * 1997-11-06 1999-05-28 Fuji Electric Co Ltd 配電盤用冷却装置
JP2007317865A (ja) * 2006-05-25 2007-12-06 Aisin Seiki Co Ltd 熱電モジュール
CN201251749Y (zh) * 2008-06-20 2009-06-03 刘雪 新型cpu半导体制冷散热装置
FR2947667A1 (fr) * 2009-07-01 2011-01-07 Schneider Electric Ind Sas Asservissement via un dispositif de compensation magnetique des forces de repulsion et contacteur comprenant un tel dispositif
FR2984072B1 (fr) * 2011-12-13 2015-10-16 Thales Sa Systeme de regulation thermique d'un ensemble de composants electroniques ou de recuperation de l'energie thermique dissipee par un ensemble de composants electroniques
FR3007888B1 (fr) * 2013-06-27 2015-07-17 Schneider Electric Ind Sas Contacteur electrique et procede de commande d'un tel contacteur
CN104797077B (zh) * 2015-04-09 2017-07-11 哈尔滨工程大学 一种井下配水器的电路板散热装置
JP6794732B2 (ja) * 2015-09-28 2020-12-02 三菱マテリアル株式会社 熱電変換モジュール及び熱電変換装置
CN108538678A (zh) * 2018-06-25 2018-09-14 许昌市长江高压计量设备有限公司 一种户外用高压真空断路器

Also Published As

Publication number Publication date
CN114730672A (zh) 2022-07-08
ZA202202576B (en) 2022-10-26
FR3100376A1 (fr) 2021-03-05
FR3100376B1 (fr) 2021-09-10
WO2021043741A1 (fr) 2021-03-11
EP4026153B1 (fr) 2023-11-15

Similar Documents

Publication Publication Date Title
EP2629385B1 (fr) Chaîne de stockage d'énergie pour véhicule, comprenant au moins un module de supercondensateurs, système de stockage d'énergie comprenant une telle chaîne et véhicule ferroviaire comprenant un tel système
EP2375424B1 (fr) Dispositif de protection contre les surtensions à déconnecteurs thermiques dédoublés
EP1138103B1 (fr) APPAREIL ET METHODE DE COMMUTATION POUR UN TRONçON D'UNE LIGNE DE TRANSPORT D'ENERGIE ELECTRIQUE
EP2375426B1 (fr) Varistance comprenant une électrode avec une partie en saillie formant pôle et parafoudre comprenant une telle varistance
EP2375425B1 (fr) Dispositif de protection contre les surtensions transitoires à déconnecteur thermique amélioré
EP2850658B1 (fr) Agencement de module électrique de puissance
EP2081207B2 (fr) Dispositif de commutation haute puissance disposé sur un véhicule à alimentation électrique
JP4901049B2 (ja) 熱電変換ユニット
FR3016266A1 (fr) Dispositif electronique de puissance a refroidissement ameliore
EP1902483B1 (fr) Systeme d interconnexion pour un ensemble de stockage d energie
FR3041816A1 (fr) Generateur solaire flexible muni d'une protection electrique contre des impacts d'objets celestes, engin spatial et satellite comportant au moins un tel generateur solaire
EP4026153B1 (fr) Dispositif de commutation électrique et véhicule comprenant un tel dispositif
WO2019097146A1 (fr) Bloc energetique constitue par un assemblage sans soudure d'une pluralite de cellules de batteries
FR2931291A1 (fr) Interrupteur de protection mixte electromecanique/semi-conducteur
EP3087624A1 (fr) Module de batterie electrochimique offrant une tenue aux environnements humides amelioree et procede de realisation d'au moins un tel module
EP3284316B1 (fr) Dispositif de chauffage et refroidissement par circuit imprimé pour régénérer des composants électroniques soumis à des radiations
EP3087626B1 (fr) Batterie électrochimique ã sécurité de fonctionnement améliorée en environnement humide
EP2224252B1 (fr) Dispositif capacitif de mesure de la tension d'un élément haute tension
FR3058576A1 (fr) Module unitaire pour bloc batterie, et bloc batterie
KR20200001833A (ko) 온습도 제어 기능을 구비한 수배전반 및 분전반
FR2947972A1 (fr) Amplificateur faible bruit pour communication radiofrequence par satellite
EP0275772A1 (fr) Boîtier de dispositif électrique, notamment de parafoudre, incluant une enveloppe isolante moulée
EP2518818A1 (fr) Dispositif de connexion électrique
EP3926306A1 (fr) Dispositif autonome de surveillance d'un moteur électrique d'un véhicule ferroviaire et moteur associé
WO2018220307A1 (fr) Systeme d'hybridation pour courant continu haute tension

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20220302

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230613

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020021166

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1632567

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115