EP4021466A1 - Fat fragmentation device and method - Google Patents

Fat fragmentation device and method

Info

Publication number
EP4021466A1
EP4021466A1 EP20938505.3A EP20938505A EP4021466A1 EP 4021466 A1 EP4021466 A1 EP 4021466A1 EP 20938505 A EP20938505 A EP 20938505A EP 4021466 A1 EP4021466 A1 EP 4021466A1
Authority
EP
European Patent Office
Prior art keywords
filter
adipose tissue
size
optionally
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20938505.3A
Other languages
German (de)
French (fr)
Other versions
EP4021466A4 (en
Inventor
Marcos SFORZA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duke Ltd
Original Assignee
Duke Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duke Ltd filed Critical Duke Ltd
Publication of EP4021466A1 publication Critical patent/EP4021466A1/en
Publication of EP4021466A4 publication Critical patent/EP4021466A4/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/05Means for pre-treatment of biological substances by centrifugation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2521/00Culture process characterised by the use of hydrostatic pressure, flow or shear forces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2527/00Culture process characterised by the use of mechanical forces, e.g. strain, vibration

Definitions

  • the present invention relates to a fat harvesting and processing device and method.
  • the present invention relates to a device and method for adipose tissue harvesting, microfragmentation, facilitation of stem cell extraction and stem cell mechanical separation and nanofragmentation.
  • Adipose tissue is a source of stem cells for various tissue engineering and cell therapies.
  • the stromal vascular fraction (“SVF”) derived from adipose tissue is harvested and processed, and in medical and cosmetic procedures, such SVF is used alone or with another material to generate a graft material for application to a subject.
  • SVF contains adipose-derived stem cells (ADSCs).
  • ADSCs adipose-derived stem cells
  • ADSCs Various techniques are developed, with limited success, aiming to minimize injury to ADSCs and exposure of ADSCs to various risk factors including environmental stress such as mechanical impact, temperature and pressure shocks, and chemical and biochemical exposures (exposure to viral or bacterial pathogens), which often lead to injury or death of ADSCs, which in turn, would illicit various adverse biochemical reactions (e.g., secretion of adverse cytokines or adverse immune reactions), leading to ultimate failure of such biomedical and cosmetic applications or procedures.
  • environmental stress such as mechanical impact, temperature and pressure shocks, and chemical and biochemical exposures (exposure to viral or bacterial pathogens)
  • adverse biochemical reactions e.g., secretion of adverse cytokines or adverse immune reactions
  • a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, wherein the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater, wherein the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
  • ADSCs adipose derived stem cells
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • a method of producing stromal vascular fraction of adipose tissue comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the stromal vascular fraction
  • the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adi
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • a graft comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and
  • the device is a device for adipose tissue processing
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • the graft further comprises a pharmaceutically acceptable carrier.
  • the graft further comprises a volume of adipose tissue.
  • a method of treating a condition in a subject comprising administering a site of the subject in need thereof a graft of invention, the graft comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • the graft further comprises a pharmaceutically acceptable carrier.
  • the graft further comprises a volume of adipose tissue.
  • the subject is a human being.
  • the site is a skeletal site, such as a joint or intervertebral, or a soft tissue site, such as breast, cheek or buttock or a scar or wound.
  • FIG. 1 shows an embodiment of the invention device.
  • FIG. 1A shows the structural components of a device embodiment;
  • FIG. IB shows the outside overall appearance of a device embodiment;
  • FIG. C shows the dimension of a device embodiment;
  • FIG. ID shows a cross-sectional view of a device embodiment.
  • FIG. 2 shows various views of an upper housing of an embodiment of the invention device.
  • FIG. 3 shows various views of an upper housing of an embodiment of the invention device.
  • FIG. 4 shows a top view and side perspective views of filter 2 of an embodiment of invention device.
  • FIG. 5 shows a top view and side perspective views of filter 1 of a filter stack of an embodiment of invention device.
  • FIG. 6 shows a top view and side perspective views of filter 3 of a filter stack of an embodiment of invention device.
  • FIG. 7 shows various views of a spiral of an embodiment of invention device.
  • FIG. 7A side view
  • FIG. IB top view
  • FIG. 1C top-side view.
  • FIG.8 shows the photo pictures of test results of cells separated by an embodiment of invention device and cells by a commercially available device.
  • the term “enhanced mechanical separation” refers to an enhanced degree of separation of stromal vascular fraction from adipose tissue without the aid of chemical or biochemical agents such as an enzyme.
  • the use of enzyme for cell separation is a technique to separate cells from adipose tissue called for by a need to achieve such, which itself indicates that without the using an agent, it would be much harder to separate cells from adipose tissue.
  • the term “less trauma to cells” refers to a lesser degree of trauma to cells relative to the degree of trauma to cells caused by cell separation from adipose tissue using a technology different than the one disclosed in this application, e.g., separation with enzymatic digestion or strong mechanical agitation.
  • condition refers to a medical or cosmetic condition that can be addressed by ADSCs or SVF or a graft containing any of these.
  • a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, wherein the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater, wherein the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
  • ADSCs adipose derived stem cells
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • a method of producing stromal vascular fraction of adipose tissue comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the stromal vascular fraction
  • the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adi
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • a graft comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and
  • the device is a device for adipose tissue processing
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • the graft further comprises a pharmaceutically acceptable carrier.
  • the graft further comprises a volume of adipose tissue.
  • a method of treating a condition in a subject comprising administering a site of the subject in need thereof a graft of invention, the graft comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the
  • the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about
  • the filter stack comprises at least one filter having multiple holes of alternating sizes.
  • the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
  • the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
  • the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
  • the inlet and outlet comprise a Luer lock thread.
  • the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
  • the device is a disposable device.
  • the graft further comprises a pharmaceutically acceptable carrier.
  • the graft further comprises a volume of adipose tissue.
  • the subject is a human being.
  • the site is a skeletal site, such as a joint or intervertebral, or a soft tissue site, such as breast, cheek or buttock or a scar or wound.
  • Centrifuge fat from 2.5 to 3.5 min at 3000 rpm until one obtains about 20ml of centrifuged fat.
  • the SVF can be used to be directly injected on scars, wounds or joints.
  • the SVF can be mixed with fat for autologous injection.
  • Example 1 Construction of a device and method for adipose tissue harvesting, microfragmentation, facilitation of stem cell extraction and stem cell mechanical separation and nanofragmentation (“SPING”)
  • FIGs. 1-7 show the SPING device made from polycarbonate.
  • FIG. 1 A shows the structural components of the SPING device, having a filter stack having Filter 1, Filter 2, Filter 3, a spiral 4, an upper housing 5, and a lower housing 6;
  • FIG. IB shows the outside overall appearance of the SPING device;
  • FIG. C shows the dimension of the SPING device;
  • FIG. ID shows a cross-sectional view of the SPING device.
  • FIG. 2 shows various views of an upper housing 5 of the SPING device: FIG. 2A, a perspective, side view; FIG. 2B, cross-sectional view; FIG. 2C, bottom view, which faces and joins a lower housing 6 (FIG. 3); and FIG. 2D, overall appearance.
  • 501 in FIGs. 2A, B and D is a Luer Lock thread.
  • FIG. 3 shows various views of an upper housing of the SPING device: FIG. 3A, a perspective, side view; FIG. 3B, cross-sectional view; FIG. 3C, top view, which faces and joins an upper housing 5 (FIG. 2); and FIG. 3D, overall appearance, showing the internal housing space of the lower housing 5.
  • 601 in FIGs. 3 A, B and D is a Luer Lock thread.
  • FIG. 4 shows a top view and side perspective views of Filter 2 of the SPING device: FIG. 4A, top view, showing pores of a diameter in mm 201 ; FIG. 4B, side view, showing pore channels 202.
  • FIG. 5 shows a top view and side perspective views of Filter 1 of a filter stack of the SPING device: FIG. 5 A, top view, showing pores 101 of two different diameters in mm (larger diameter) and 101’ (smaller diameter); FIG. 5B, side view, showing pore channels 102.
  • FIG. 6 shows a top view and side perspective views of Filter 3 of a filter stack of the SPING device: FIG. 6A, top view, showing pores 301 of a diameter in mm; FIG. 6A, top view, showing pores 301 of a diameter in mm; FIG. 6A, top view, showing pores 301 of a diameter in mm; FIG. 6A, top view, showing pores 301 of a diameter in mm; FIG. 6A, top view, showing pores 301 of a diameter in mm; FIG.
  • FIG. 7 shows various views of a spiral of an embodiment of invention device: FIG. 7A, side view; FIG. 7B, top view; FIG. 7C, top-side view; where 401 is the spiral component, 402 is opening for filtrate fluid.
  • SPING devices constructed in Example 1 were used for cell separation and cell viability studies. Cell separation and cell viability studies were also performed on a device by TONNARD Technique (“Tonnard Technique device”). Adipose tissue was harvested from 5 female at the abdomen, which was stored at 4 °C for 24 hrs before use. SPRING prototype plastic: mechanical dissociation 20 passes (MS 20);
  • Tonnard Technique device Luer to Luer, 30 passes.
  • Table 1 shows the SPING device (metal: stainless steel) provides the best cell separation result and SVF yield. Compared to Tonnard devices, SPING devices produced SVF cells almost twice as many, which is significant.
  • Example 2 The results shown in Example 2 are even more convincing and demonstrate that SPING devices generate SVF cells almost twice as efficient as compared with the Tonnard devices.
  • the culture cell viability studies clearly demonstrate that due to reduced impact on cells by SPING device and that the SVF are convincingly far more viable as compared with SVF cells obtained by Tonnard devices, which is very significant in cell regeneration and cell therapy.

Abstract

The present invention provides a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells ("ADSCs"), methods of using the device to generate a stromal vascular fraction ("SVF") and methods of the SVF.

Description

FAT FRAGMENTATION DEVICE AND METHOD
Marcos Sforza
FIELD OF THE INVENTION
[0001] The present invention relates to a fat harvesting and processing device and method. In particular, the present invention relates to a device and method for adipose tissue harvesting, microfragmentation, facilitation of stem cell extraction and stem cell mechanical separation and nanofragmentation.
BACKGROUND OF THE INVENTION
[0002] Adipose tissue is a source of stem cells for various tissue engineering and cell therapies. In particular, the stromal vascular fraction (“SVF”) derived from adipose tissue is harvested and processed, and in medical and cosmetic procedures, such SVF is used alone or with another material to generate a graft material for application to a subject. SVF contains adipose-derived stem cells (ADSCs).
[0003] A key measurement of the quality and ultimately the success of use of SVF in the biomedical and cosmetic procedures or applications is the viability of stem cells in the SVF. Viability of the stem cells largely depends from the degree of injury or impact from the various procedures in adipose tissue harvest and processing, which leads to the production of SVF.
[0004] Various techniques are developed, with limited success, aiming to minimize injury to ADSCs and exposure of ADSCs to various risk factors including environmental stress such as mechanical impact, temperature and pressure shocks, and chemical and biochemical exposures (exposure to viral or bacterial pathogens), which often lead to injury or death of ADSCs, which in turn, would illicit various adverse biochemical reactions (e.g., secretion of adverse cytokines or adverse immune reactions), leading to ultimate failure of such biomedical and cosmetic applications or procedures.
[0005] Therefore, there is a continuing need to develop new devices and methods for adipose tissue harvesting and processing for SVF.
[0006] The embodiments below address the above-identified issues and needs.
SUMMARY OF THE INVENTION
[0007] In one aspect of the present invention, it is provided a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, wherein the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater, wherein the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0008] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0009] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0010] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
[0011] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0012] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0013] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread. [0014] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0015] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
[0016] In another aspect of the present invention, it is provided a method of producing stromal vascular fraction of adipose tissue, comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the stromal vascular fraction, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0017] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0018] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0019] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
[0020] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0021] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0022] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread. [0023] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0024] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
[0025] In a further aspect of the present invention, it is provided a graft, comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0026] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0027] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0028] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
[0029] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0030] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0031] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread. [0032] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0033] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
[0034] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a pharmaceutically acceptable carrier.
[0035] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a volume of adipose tissue.
[0036] In a further aspect of the present invention, it is provided a method of treating a condition in a subject, comprising administering a site of the subject in need thereof a graft of invention, the graft comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0037] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0038] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0039] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about
1.35 mm to about 0.45 mm. [0040] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0041] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0042] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread.
[0043] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0044] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
[0045] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a pharmaceutically acceptable carrier.
[0046] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a volume of adipose tissue.
[0047] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the subject is a human being. [0048] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the site is a skeletal site, such as a joint or intervertebral, or a soft tissue site, such as breast, cheek or buttock or a scar or wound. BRIEF DESCRIPTION OF THE DRAWINGS
[0049] FIG. 1 shows an embodiment of the invention device. FIG. 1A shows the structural components of a device embodiment; FIG. IB shows the outside overall appearance of a device embodiment; FIG. C shows the dimension of a device embodiment; and FIG. ID shows a cross-sectional view of a device embodiment.
[0050] FIG. 2 shows various views of an upper housing of an embodiment of the invention device.
[0051] FIG. 3 shows various views of an upper housing of an embodiment of the invention device.
[0052] FIG. 4 shows a top view and side perspective views of filter 2 of an embodiment of invention device.
[0053] FIG. 5 shows a top view and side perspective views of filter 1 of a filter stack of an embodiment of invention device.
[0054] FIG. 6 shows a top view and side perspective views of filter 3 of a filter stack of an embodiment of invention device.
[0055] FIG. 7 shows various views of a spiral of an embodiment of invention device. FIG. 7A, side view; FIG. IB, top view; FIG. 1C, top-side view.
[0056] FIG.8 shows the photo pictures of test results of cells separated by an embodiment of invention device and cells by a commercially available device. DETAILED DESCRIPTION OF THE INVENTION
Definitions
[0057] As used herein, the term “enhanced mechanical separation” refers to an enhanced degree of separation of stromal vascular fraction from adipose tissue without the aid of chemical or biochemical agents such as an enzyme. The use of enzyme for cell separation is a technique to separate cells from adipose tissue called for by a need to achieve such, which itself indicates that without the using an agent, it would be much harder to separate cells from adipose tissue. In this context, the term “less trauma to cells” refers to a lesser degree of trauma to cells relative to the degree of trauma to cells caused by cell separation from adipose tissue using a technology different than the one disclosed in this application, e.g., separation with enzymatic digestion or strong mechanical agitation.
[0058] As used herein, the term “condition” refers to a medical or cosmetic condition that can be addressed by ADSCs or SVF or a graft containing any of these.
Device
[0059] In one aspect of the present invention, it is provided a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, wherein the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater, wherein the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0060] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0061] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0062] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
[0063] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding. [0064] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0065] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread.
[0066] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0067] In some embodiments of the invention device, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
Method of Adipose Tissue Fragmentation and Separation
[0068] In another aspect of the present invention, it is provided a method of producing stromal vascular fraction of adipose tissue, comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the stromal vascular fraction, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0069] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0070] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0071] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about
1.35 mm to about 0.45 mm. [0072] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0073] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0074] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread.
[0075] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0076] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
Graft
[0077] In a further aspect of the present invention, it is provided a graft, comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0078] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
[0079] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0080] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about
1.35 mm to about 0.45 mm.
[0081] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0082] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0083] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread.
[0084] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0085] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
[0086] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a pharmaceutically acceptable carrier.
[0087] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a volume of adipose tissue. Method of Use of Graft
[0088] In a further aspect of the present invention, it is provided a method of treating a condition in a subject, comprising administering a site of the subject in need thereof a graft of invention, the graft comprising a volume of the stromal vascular fraction (“SVF”) generated by a method of invention, the method comprising subjecting a volume of adipose tissue to fragmentation and separation by a device to generate a volume of fragmented adipose tissue; and subject the fragmented adipose tissue to centrifuging to generate a volume of the SVF, wherein the device is a device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), the device comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, where - the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater; and the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
[0089] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about
0.4 mm to about 3 mm. [0090] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises at least one filter having multiple holes of alternating sizes.
[0091] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about 2.2 mm to about 1.45 mm; the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
[0092] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
[0093] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
[0094] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the inlet and outlet comprise a Luer lock thread.
[0095] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
[0096] In some embodiments of the invention graft, optionally in combination with any or all the various embodiments disclosed herein, the device is a disposable device.
[0097] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a pharmaceutically acceptable carrier.
[0098] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the graft further comprises a volume of adipose tissue.
[0099] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the subject is a human being.
[00100] In some embodiments of the invention method, optionally in combination with any or all the various embodiments disclosed herein, the site is a skeletal site, such as a joint or intervertebral, or a soft tissue site, such as breast, cheek or buttock or a scar or wound.
[00101] An exemplary procedure of using the SPING device is described below:
Harvest fat from any designated donor area.
Centrifuge fat from 2.5 to 3.5 min at 3000 rpm until one obtains about 20ml of centrifuged fat.
Use the SPING 30 devices (see Example 2, below) bi-directional times (passes) to mechanically separate the ADRCs. The shorter part is the entry point and the longest the exit (see FIG. 1).
Centrifuge the fragmented fat from 4-5 min at 3000rpm and collect the SVF that will be available on the bottom of the syringe or tube.
The SVF can be used to be directly injected on scars, wounds or joints. The SVF can be mixed with fat for autologous injection.
[00102] It is understood that the foregoing detailed description and the following examples are illustrative only and are not to be taken as limitations upon the scope of the invention. Various changes and modifications to the disclosed embodiments, which will be apparent to those of skill in the art, may be made without departing from the spirit and scope of the present invention. Further, all patents, patent applications, and publications identified are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents are based on the information available to the applicants and do not constitute any admission as to the correctness of the dates or contents of these documents.
[00103] The following examples illustrate rather than limit the embodiments of the present invention.
EXAMPLES
Example 1. Construction of a device and method for adipose tissue harvesting, microfragmentation, facilitation of stem cell extraction and stem cell mechanical separation and nanofragmentation (“SPING”)
[00104] A SPING device was constructed using polycarbonate material, and another was constructed using stainless steel. FIGs. 1-7 show the SPING device made from polycarbonate. Referring to FIG. 1, FIG. 1 A shows the structural components of the SPING device, having a filter stack having Filter 1, Filter 2, Filter 3, a spiral 4, an upper housing 5, and a lower housing 6; FIG. IB shows the outside overall appearance of the SPING device; FIG. C shows the dimension of the SPING device; and FIG. ID shows a cross-sectional view of the SPING device.
[00105] FIG. 2 shows various views of an upper housing 5 of the SPING device: FIG. 2A, a perspective, side view; FIG. 2B, cross-sectional view; FIG. 2C, bottom view, which faces and joins a lower housing 6 (FIG. 3); and FIG. 2D, overall appearance. 501 in FIGs. 2A, B and D is a Luer Lock thread.
[00106] FIG. 3 shows various views of an upper housing of the SPING device: FIG. 3A, a perspective, side view; FIG. 3B, cross-sectional view; FIG. 3C, top view, which faces and joins an upper housing 5 (FIG. 2); and FIG. 3D, overall appearance, showing the internal housing space of the lower housing 5. 601 in FIGs. 3 A, B and D is a Luer Lock thread.
[00107] FIG. 4 shows a top view and side perspective views of Filter 2 of the SPING device: FIG. 4A, top view, showing pores of a diameter in mm 201 ; FIG. 4B, side view, showing pore channels 202.
[00108] FIG. 5 shows a top view and side perspective views of Filter 1 of a filter stack of the SPING device: FIG. 5 A, top view, showing pores 101 of two different diameters in mm (larger diameter) and 101’ (smaller diameter); FIG. 5B, side view, showing pore channels 102.
[00109] FIG. 6 shows a top view and side perspective views of Filter 3 of a filter stack of the SPING device: FIG. 6A, top view, showing pores 301 of a diameter in mm; FIG.
6B, side view, showing pore channels 302. [00110] FIG. 7 shows various views of a spiral of an embodiment of invention device: FIG. 7A, side view; FIG. 7B, top view; FIG. 7C, top-side view; where 401 is the spiral component, 402 is opening for filtrate fluid.
[00111] Data for the SPING device made from stainless steel is not shown. The stainless steel SPING device and the polycarbonate SPING device were both used in the experiments of Example 2, below.
Example 2. Studies on cell separation using SPING devices: a comparison study
Materials and Methods
[00112] SPING devices constructed in Example 1 were used for cell separation and cell viability studies. Cell separation and cell viability studies were also performed on a device by TONNARD Technique (“Tonnard Technique device”). Adipose tissue was harvested from 5 female at the abdomen, which was stored at 4 °C for 24 hrs before use. SPRING prototype plastic: mechanical dissociation 20 passes (MS 20);
SPRING prototype stainless steel: mechanical dissociation 30 passes (MS 30);
Tonnard Technique device: Luer to Luer, 30 passes.
Table 1.
[00113] Table 1 shows the SPING device (metal: stainless steel) provides the best cell separation result and SVF yield. Compared to Tonnard devices, SPING devices produced SVF cells almost twice as many, which is significant.
[00114] Cell culture studies were performed on SVF cells obtained by SPING devices in comparison with that on SVF cells obtained by Tonnard devices. After 14 days culture, SVF cells by the SPING device were shown to be alive, while cells by Tonnard devices were shown to be dead (FIG. 8: SPING SVF cells 801, bottom, shown alive via dye, purple; Tonnard SVF cells 802, top, shown dead via dye, no color).
[00115] The results shown in Example 2 are even more convincing and demonstrate that SPING devices generate SVF cells almost twice as efficient as compared with the Tonnard devices. The culture cell viability studies clearly demonstrate that due to reduced impact on cells by SPING device and that the SVF are convincingly far more viable as compared with SVF cells obtained by Tonnard devices, which is very significant in cell regeneration and cell therapy.
[00116] Those skilled in the art will know, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. These and all other equivalents are intended to be encompassed by the following claims.

Claims

I claim:
1. A device for adipose tissue processing, microfragmentation and facilitation of mechanical separation of adipose derived stem cells (“ADSCs”), comprising: an upper housing with an inlet, a lower housing with an outlet, a filter stack, and a spiral flow effectuate, wherein the upper housing and the lower housing are configured to join to form an enclosure that encloses the filter stack and the spiral flow effectuater, wherein the spiral effectuate is configured to receive a flower of filtrate from the filter stack and generate a spiral flow of the adipose tissue to minimize a direct shock of the adipose tissue with walls of the filter stacker to promote enhanced mechanical separation with less trauma to cells of the adipose tissue.
2. The device according to claim 1, wherein the filter stack comprises at least one filter having multiple holes of a size that is the same or different, the size ranging from about 0.4 mm to about 3 mm.
3. The device according to claim, wherein the filter stack comprises at least one filter having multiple holes of alternating sizes.
4. The device according to claim 1, wherein the filter stack comprises a first filter, a second filter, and a third filter, where - the first filter having multiple holes of a size that is the same ranging from about
2.2 mm to about 1.45 mm;
27 the second filter having multiple holes of alternating sizes where one size that is the same ranging from about 1.8 mm to 0.9 mm and another size that is the same ranging from about 1.35 mm to about 0.6 mm; and the third filter having multi holes of a size that is the same ranging from about 1.35 mm to about 0.45 mm.
5. The device according to claim 1, wherein the upper housing and lower housing are joined by a tongue and groove joint joined by ultrasonic welding.
6. The device according to claim 1, wherein the filter stack comprises more than one filters, and the more than one filters are connected via rods or tubes.
7. The device according to claim 1, wherein the inlet and outlet comprise a Luer lock thread.
8. The device according to claim 1, wherein at least one of the upper housing, lower housing, the filter stack or the spiral flow effectuater is made from polycarbonate or stainless steel.
9. The device according to claim 1, which is a disposable device.
10. A method of producing stromal vascular fraction of adipose tissue, comprising subjecting a volume of adipose tissue to fragmentation and separation by a device according to any of claims 1-9 to generate a volume of fragmented adipose tissue, and subject the fragmented adipose tissue to centrifuging to generate a volume of the stromal vascular fraction.
11. A graft, comprising a volume of the stromal vascular fraction (“SVF”) generated according to claim 10.
12. The graft according to claim 11, further comprising a pharmaceutically acceptable carrier.
13. The graft according to claim 11, further comprising a volume of adipose tissue.
14. A method of treating a condition in a subject, comprising applying to a site of the subject in need thereof a graft according to any of claims 11-13.
EP20938505.3A 2020-11-03 2020-11-03 Fat fragmentation device and method Pending EP4021466A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/060324 WO2022096917A1 (en) 2020-11-03 2020-11-03 Fat fragmentation device and method

Publications (2)

Publication Number Publication Date
EP4021466A1 true EP4021466A1 (en) 2022-07-06
EP4021466A4 EP4021466A4 (en) 2023-07-19

Family

ID=81457578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20938505.3A Pending EP4021466A4 (en) 2020-11-03 2020-11-03 Fat fragmentation device and method

Country Status (4)

Country Link
EP (1) EP4021466A4 (en)
KR (1) KR20230103754A (en)
CN (1) CN114729296A (en)
WO (1) WO2022096917A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112695A1 (en) * 2008-11-03 2010-05-06 Kyungyoon Min Apparatus And Methods For Processing Tissue to Release Cells
IT1400069B1 (en) * 2010-05-20 2013-05-17 Tremolada DEVICE AND METHOD FOR THE PREPARATION OF FABRIC, IN PARTICULAR ADIPOUS FABRIC FOR TRANSPLANTATION OBTAINED FROM ADIPOUS LOBULAR MATERIAL EXTRACTED THROUGH LIPOSUCTION
EP2677024B1 (en) * 2012-06-22 2019-11-20 Human Med AG Device for separating adult stem cells
US10772997B2 (en) 2014-05-15 2020-09-15 Ronald D. Shippert Tissue parcelization method and apparatus
US10184111B2 (en) 2015-02-19 2019-01-22 Lifecell Corporation Tissue processing device and associated systems and methods
FR3068986B1 (en) * 2017-07-12 2019-08-09 Stemcis DEVICE FOR MECHANICAL FRAGMENTATION OF TISSUES FOR THE PREPARATION OF A COMPOSITION OF ISOLATED CELLS, CORRESPONDING PROCESS
WO2019145276A1 (en) 2018-01-25 2019-08-01 Bh Swiss Sa Device for producing globules of adipose tissue
WO2020008805A1 (en) * 2018-07-05 2020-01-09 富士フイルム株式会社 Cell division device
JP7450600B2 (en) * 2018-07-24 2024-03-15 ヒーレオン メディカル, インコーポレイテッド Apparatus and method for resizing fat and other tissue for transplantation

Also Published As

Publication number Publication date
EP4021466A4 (en) 2023-07-19
CN114729296A (en) 2022-07-08
KR20230103754A (en) 2023-07-07
WO2022096917A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US7008394B2 (en) System and method for processing bone marrow
US8172832B1 (en) Fat harvesting container
JP6605552B2 (en) Apparatus and method for preparing tissue for transplantation, in particular adipose tissue, from leaflet fat extracted by liposuction
RU2591763C1 (en) Device for extraction and re-injection of adipose tissue
US8048678B2 (en) Cell separation method and apparatus
US8361042B1 (en) Fat harvesting container
US20220135930A1 (en) Fat fragmentation device and method
US20230392102A1 (en) Cell culture system and methods of using the same
US20160106889A1 (en) Novel chamber for the collection of lipoaspirate
WO2022096917A1 (en) Fat fragmentation device and method
ES2964374T3 (en) Isolation of stem cells from adipose tissue
JPWO2014092115A1 (en) Blood component separation and storage device and method for preparing platelet-rich plasma
US20150320918A1 (en) Point of care isolation and concentration of blood cells
US20180042589A1 (en) Method for Harvesting and Transplanting Cells
CN111778212B (en) Preparation method and application of mobilized hematopoietic stem cell plasma exosome
US20220133954A1 (en) Penis augmentation
Nathan Ultrasonic blood fractionation
WO2017179705A1 (en) Container for cell suspension preparation, and preparation method for cell suspension
US20150290369A1 (en) Inertial Cell Washing Device
WO2019059278A1 (en) Method for separating and collecting cells from biological tissue
WO2012011705A2 (en) Centrifuge cell strainer and centrifuge method using same
WO2022076660A1 (en) Closed-system method and kit of disposable assemblies for isolating mesenchymal stromal cells from lipoaspirate
TW202202181A (en) Liquid separation kit
JPWO2019054468A1 (en) Method of releasing cells from cell-containing sample
Alciona et al. BIOETHICAL CONCEPTS RELATED TO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THE RELIGIOUS AND SOCIO-CULTURAL CONTEXT

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20230619

RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 5/07 20100101ALI20230613BHEP

Ipc: C12M 3/08 20060101ALI20230613BHEP

Ipc: C12M 1/02 20060101ALI20230613BHEP

Ipc: A61K 35/35 20150101ALI20230613BHEP

Ipc: A61K 35/12 20150101ALI20230613BHEP

Ipc: A61K 35/28 20150101AFI20230613BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)