EP4018521A1 - Batteriesystem mit kurzschlusseinrichtung zum auslösen einer schmelzsicherung für ein kraftfahrzeug, verfahren zum betreiben eines batteriesystems und kraftfahrzeug - Google Patents

Batteriesystem mit kurzschlusseinrichtung zum auslösen einer schmelzsicherung für ein kraftfahrzeug, verfahren zum betreiben eines batteriesystems und kraftfahrzeug

Info

Publication number
EP4018521A1
EP4018521A1 EP20747393.5A EP20747393A EP4018521A1 EP 4018521 A1 EP4018521 A1 EP 4018521A1 EP 20747393 A EP20747393 A EP 20747393A EP 4018521 A1 EP4018521 A1 EP 4018521A1
Authority
EP
European Patent Office
Prior art keywords
switching element
connection
switching
battery module
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20747393.5A
Other languages
English (en)
French (fr)
Inventor
Joachim Oehl
Andreas Gleiter
Sven Landa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP4018521A1 publication Critical patent/EP4018521A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle

Definitions

  • the invention relates to a battery system for a motor vehicle which comprises a battery module, which has an internal voltage source, a positive pole and a negative pole, and a switching unit for electrically connecting the battery module to an on-board network of the motor vehicle.
  • the invention also relates to a method for operating a battery system according to the invention and to a motor vehicle that has a corresponding battery system.
  • Conventional motor vehicles have a drive which usually comprises an internal combustion engine. Furthermore, conventional motor vehicles include a battery system for supplying a starter and other consumers of the motor vehicle with electrical energy and a generator for charging the battery system. Electric vehicles have a battery system for supplying a traction motor and other consumers with electrical energy.
  • a generic battery system of a conventional motor vehicle comprises a battery module with at least one, preferably with several battery cells, which are for example connected in series.
  • a battery module has a nominal voltage of 12 V, 24 V or 48 V, for example.
  • An output voltage of a battery system of a conventional motor vehicle corresponds to the nominal voltage of the battery module.
  • a battery system of an electric vehicle can comprise several serially connected battery modules and thus have a higher output voltage of 600 V, for example.
  • a generic battery system also includes a switching unit for electrically connecting the battery module to an on-board network of the Motor vehicle. By activating the switching unit accordingly, the battery module can be electrically connected to the vehicle electrical system and also disconnected from the electrical system.
  • the battery cells of the battery module are, for example, lithium-ion battery cells. If a short circuit occurs in the vehicle electrical system connected to the battery module, this can cause a relatively high short circuit current which flows through the battery module. A high short-circuit current can destroy the battery cells of the battery module.
  • the document US 5,602,460 A discloses a battery pack with a protection circuit against an overcharge current. Battery cells of the battery pack can be charged by a charger. If an excessively high charging current is detected when charging the battery cells, an overcurrent switch is opened, whereby the battery cells are disconnected from the charger.
  • a hybrid drive train system is known from the documents DE 10 2011 110 906 A1 and CN 102 398507 B, which contains a high-voltage battery and a DC coupling which is coupled to a rectifier / inverter module.
  • the rectifier / inverter module is electrically connected to two torque machines and includes a switch device which includes a pair of power transistors.
  • the document WO 2017/064820 A1 discloses a system for generating electrical energy with a generator and with a frequency converter.
  • Said frequency converter has a switching unit with several switching elements.
  • a battery system for a motor vehicle comprises a battery module, which has an internal voltage source, a positive pole and a negative pole, and a switching unit for electrically connecting the battery module to an electrical system of the motor vehicle.
  • the battery module can thus electrically connected to the electrical system of the motor vehicle and disconnected from the electrical system.
  • the battery module comprises a plurality of battery cells, which can be connected to one another both in series and in parallel within the battery module.
  • the battery cells are preferably designed as lithium ion battery cells.
  • the battery cells simulate electrical voltage sources.
  • the electrical voltage sources of the battery cells form the internal voltage source of the battery module.
  • Internal resistances of the battery cells and a resistance of electrical lines form an internal resistance of the battery module.
  • An inductance of the electrical lines forms an internal inductance of the battery module.
  • the switching unit has a first switching element, a second switching element and a third switching element.
  • the switching elements each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
  • a first connection of the first switching element is connected to a junction, and a second connection of the first switching element is connected to one of the poles of the battery module.
  • a first connection of the second switching element is connected to the node, and a second connection of the second switching element can be connected to the electrical system of the motor vehicle.
  • a first connection of the third switching element is connected to the other of the poles of the battery module and can be connected to the electrical system of the motor vehicle.
  • a second connection of the third switching element is connected to the node.
  • the second connection of the first switching element is connected to the positive pole of the battery module.
  • the first connection of the third switching element is then connected to the negative pole of the battery module.
  • the negative pole of the battery module can be directly connected to the vehicle electrical system.
  • the battery module also has a fuse element which is connected in series with the internal voltage source.
  • the Fuse element trips when too high a current flows through the internal voltage source and the fuse element.
  • the fuse element thus opens a circuit in the battery module in order to prevent an excessively high current from destroying the battery cells of the battery module.
  • the inventive interconnection of the switching elements of the switching unit enables multiple switching states of the battery system.
  • a first switching state when the first switching element is open, no current can flow through the battery module.
  • a second switching state when the first switching element is closed, the second switching element is closed and the third switching element is open, a current can flow through the battery module and through the electrical system of the motor vehicle.
  • a third switching state when the first switching element is closed and the third switching element is closed, a relatively high short-circuit current can also flow through the battery module. Said short-circuit current in particular also flows through the fuse element and in the process causes the fuse element to trip.
  • the fuse element is designed as a fuse. If too high a current flows through the fuse element, said fuse melts and the circuit in the battery module is opened as a result. The circuit also remains open, and automatic reconnection of the battery module to the vehicle's electrical system is prevented.
  • the first switching element, the second switching element and the third switching element are designed as field effect transistors and each have a SOURCE connection, a DRAIN connection and a GATE connection.
  • the switching elements are connected in such a way that the first connection is the SOURCE connection, the second connection is the DRAIN connection and the third connection is the GATE connection.
  • the switching elements are MOSFETs, in particular n-channel MOSFETs of the enhancement type.
  • the SOURCE connections of the first switching element and the second switching element are therefore connected to one another via the node.
  • the first switching element and the second switching element can, however, also be interconnected in such a way that the first connection is the DRAIN connection, the second connection is the SOURCE connection and the third connection is the GATE connection.
  • the DRAIN connections of the first switching element and the second switching element would then be connected to one another via the node.
  • the switching path of the switching elements is therefore formed between the SOURCE connection and the DRAIN connection of the field effect transistor.
  • the switching path can be controlled by applying a voltage to the GATE connection.
  • the relevant switching element can be closed and opened by applying a corresponding voltage to the GATE connection.
  • the first switching element, the second switching element and the third switching element of the switching unit preferably each have a switching path and an inverse diode connected in parallel to the switching path, which is also referred to as a body diode.
  • the inverse diode of the switching elements is also formed between the SOURCE connection and the DRAIN connection of the field effect transistor.
  • the battery system further comprises a control device for activating the switching elements of the switching unit and a current sensor for measuring a current flowing through the first switching element.
  • the current sensor is in communication with the control unit and transmits in particular Measured values of a flowing current to the control unit.
  • the control device is, for example, electrically connected to the GATE connections of the switching elements of the switching unit.
  • the battery system is electrically connected in such a way that a current flowing through the fuse element of the battery module also flows through the first switching element of the switching unit. By measuring the current flowing through the first switching element, the current flowing through the fuse is also known.
  • the control device is set up to close the third switching element of the switching unit when the current flowing through the first switching element exceeds a predetermined threshold value.
  • the control device has, for example, a processor and a memory area in which the corresponding program code is stored.
  • a method for operating a battery system according to the invention is also proposed.
  • the third switching element of the switching unit is closed when a current flowing through the first switching element exceeds a predetermined threshold value.
  • Said threshold value of the current is preferably smaller than a value of a current at which the fuse element trips.
  • the battery system is electrically connected in such a way that a current flowing through the fuse of the battery module also flows through the first switching element of the switching unit.
  • the current flowing through the first switching element thus corresponds to the current flowing through the fuse.
  • the third switching element is closed by a control device.
  • the control device is used in particular to control the switching elements of the switching unit and is, for example, electrically connected to the GATE connections of the switching elements of the switching unit.
  • the current flowing through the first switching element is preferably measured by a current sensor which is in communication with the control device. As already mentioned, the current flowing through the first switching element corresponds to the current flowing through the fuse.
  • a motor vehicle which comprises at least one battery system according to the invention, which is operated with the method according to the invention.
  • the battery cells are advantageously protected against excessive current by means of the fuse element, which current could otherwise destroy the battery cells.
  • Said fuse element triggers if too high a current flows through the internal voltage source and the fuse element and opens a circuit in the battery module. If the fuse element is designed as a fuse, the circuit remains open. For example, after the fuse element has been triggered, the cause can first be searched for and eliminated, and then a new fuse can be inserted into the battery module.
  • the safety element By means of the method according to the invention, it is also possible to trigger the safety element in a targeted manner in a battery system according to the invention for a motor vehicle.
  • a relatively high short-circuit current can be generated, which in particular also through the Fuse element flows.
  • the said short-circuit current immediately triggers the fuse element, whereby the current is switched off.
  • the targeted triggering of the fuse element can be used, for example, when a relatively high current flows through the internal voltage source and the fuse element, but which is not high enough to cause the fuse element to trigger. Such a current could damage or destroy the battery cells of the battery module.
  • the targeted triggering of the fuse element advantageously prevents damage and destruction of the battery cells.
  • Figure 1 is a schematic representation of a battery system on an electrical system of a motor vehicle.
  • FIG. 1 shows a schematic illustration of a battery system 10 on an on-board network 70 of a motor vehicle.
  • the battery system 10 comprises a battery module 5, a switching unit 60 and a control device 32.
  • the switching unit 60 is used to electrically connect the battery module 5 to the on-board network 70 of the motor vehicle.
  • the control device 32 is used in particular to control the switching unit 60.
  • the battery module 5 comprises several battery cells, not shown here, which can be connected to one another both in series and in parallel within the battery module 5. Each of the battery cells simulates an electrical voltage source.
  • the electrical voltage sources of the battery cells form an internal voltage source Vi.
  • Each of the battery cells has an internal resistance.
  • the internal resistances of the battery cells and an electrical resistance of electrical lines form an internal resistance, not shown here, of the battery module 5.
  • Inductances of the electrical lines form an internal inductance Li of the battery module 5.
  • the battery module 5 also has a fuse element 30, which is connected in series with the internal voltage source Vi and in series with the internal inductance Li. When the fuse element 30 trips, the fuse element 30 opens a circuit in the battery module 5.
  • the battery module 5 also has a positive pole 22 and a negative pole 21. When idling, a voltage supplied by the internal voltage source Vi is applied between the positive pole 22 and the negative pole 21 of the battery module 5.
  • the switching unit 60 has a first switching element 61, a second switching element 62 and a third switching element 63.
  • the switching elements 61, 62, 63 each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
  • the first switching element 61, the second switching element 62 and the third switching element 63 are in the present case designed as field effect transistors.
  • the switching elements 61, 62, 63 each have a SOURCE connection, a DRAIN connection and a GATE connection.
  • the first connection is the SOURCE connection
  • the second connection is the DRAIN connection
  • the third connection is the GATE connection.
  • the respective switching path can be controlled by applying a voltage to the GATE connection of the corresponding switching element 61, 62, 63.
  • the relevant switching element 61, 62, 63 can be closed and opened by applying a corresponding voltage to the GATE connection.
  • the switching elements 61, 62, 63 are in the present case n-channel MOSFETs of the enhancement type.
  • the switching elements 61, 62, 63 each have a switching path and an inverse diode connected in parallel to the switching path.
  • the inverse diode which is also referred to as a body diode, is created in every MOSFET due to its internal structure and is not an explicit component.
  • the first connection of the first switching element 61 is connected to a node 25.
  • a second connection of the first switching element 61 is connected to the positive pole 22 of the battery module 5.
  • a first connection of the second switching element 62 is connected to the node 25.
  • a second connection of the second switching element 62 is connected to the vehicle electrical system 70 of the motor vehicle.
  • a first connection of the third switching element 63 is connected to the negative pole 21 of the battery module 5 and to the electrical system 70 of the motor vehicle.
  • a second connection of the third switching element 63 is connected to the node 25.
  • the SOURCE connections of the first switching element 61 and of the second switching element 62 are therefore connected to one another via the node 25.
  • the first switching element 61 and the second switching element 62 can also be interconnected in such a way that the first connection is the DRAIN connection, the second connection is the SOURCE connection and the third connection is the GATE connection.
  • the DRAIN connections of the first switching element 61 and of the second switching element 62 would be connected to one another via the node 25.
  • the battery system 10 further comprises a current sensor 34 for measuring a current I flowing through the first switching element 61.
  • the battery system 10 is electrically connected in such a way that the current I flowing through the first switching element 61 of the switching unit 60 also flows through the fuse element 30 of the battery module 5 .
  • the current I flowing through the first switching element 61 thus corresponds to the current I flowing through the fuse element 30.
  • the control unit 32 is in communication with the current sensor 34.
  • the current sensor 34 transmits, in particular, measured values of the flowing current I to the control unit 32.
  • the control unit 32 is also electrically connected to the GATE connections of the switching elements 61, 62, 63 of the switching unit 60. By applying a corresponding voltage to a GATE connection, the relevant switching element 61, 62, 63 can be closed and opened.
  • a short-circuit current flows through the battery module 5, through the first switching element 61 and the second switching element 62, and through the on-board network 70 Circuit opens.
  • a fault can occur in the on-board network 70 of the motor vehicle, through which a current I flows that is not high enough to cause the fuse element 30 to trip. However, this current I could be high enough to damage or destroy the battery cells of the battery module 5.
  • the third switching element 63 of the switching unit 60 is closed by the control device 32.
  • a short circuit then occurs and a short circuit current flows through the battery module 5, through the first switching element 61 and the third switching element 63.
  • the short circuit current flows through the fuse element 30, which then trips and opens the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Protection Of Static Devices (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Batteriesystem (10) für ein Kraftfahrzeug, umfassend ein Batteriemodul (5), welches eine interne Spannungsquelle (Vi), einen positiven Pol (22) und einen negativen Pol (21) aufweist, und eine Schalteinheit (60) zur elektrischen Verbindung des Batteriemoduls (5) mit einem Bordnetz (70) des Kraftfahrzeugs. Die Schalteinheit (60) weist ein erstes Schaltelement (61), ein zweites Schaltelement (62) und ein drittes Schaltelement (63) auf, wobei ein erster Anschluss des ersten Schaltelements (61) mit einem Knotenpunkt (25) verbunden ist, ein zweiter Anschluss des ersten Schaltelements (61) mit einem der Pole (21, 22) des Batteriemoduls (5) verbunden ist, ein erster Anschluss des zweiten Schaltelements (62) mit dem Knotenpunkt (25) verbunden ist, ein zweiter Anschluss des zweiten Schaltelements (62) mit dem Bordnetz (70) verbindbar ist, ein erster Anschluss des dritten Schaltelements (63) mit dem anderen der Pole (21, 22) des Batteriemoduls (5) verbunden und mit dem Bordnetz (70) verbindbar ist, und ein zweiter Anschluss des dritten Schaltelements (63) mit dem Knotenpunkt (25) verbunden ist. Das Batteriemodul (5) weist auch ein Sicherungselement (30) auf, welches seriell zu der internen Spannungsquelle (Vi) geschaltet ist. Die Erfindung betrifft auch ein Verfahren zum Betreiben eines erfindungsgemäßen Batteriesystems (10), wobei das dritte Schaltelement (63) geschlossen wird, wenn ein durch das erste Schaltelement (61) fließender Strom (I) einen vorgegebenen Schwellenwert übersteigt. Die Erfindung betrifft ferner ein Kraftfahrzeug, umfassend mindestens ein erfindungsgemäßes Batteriesystem (10), welches mit einem erfindungsgemäßen Verfahren betrieben wird.

Description

BATTERIESYSTEM MIT KURZSCHLUSSEINRICHTUNG ZUM AUSLÖSEN EINER
SCHMELZSICHERUNG FÜR EIN KRAFTFAHRZEUG VERFAHREN ZUM
BETREIBEN EINES BATTERIESYSTEMS UND KRAFTFAHRZEUG
Die Erfindung betrifft ein Batteriesystem für ein Kraftfahrzeug, das ein Batteriemodul, welches eine interne Spannungsquelle, einen positiven Pol und einen negativen Pol aufweist, und eine Schalteinheit zur elektrischen Verbindung des Batteriemoduls mit einem Bordnetz des Kraftfahrzeugs umfasst. Die Erfindung betrifft auch ein Verfahren zum Betreiben eines erfindungsgemäßen Batteriesystems sowie ein Kraftfahrzeug, welches ein entsprechendes Batteriesystem aufweist.
Stand der Technik
Konventionelle Kraftfahrzeuge weisen einen Antrieb auf, welcher üblicherweise einen Verbrennungsmotor umfasst. Ferner umfassen konventionelle Kraftfahrzeuge ein Batteriesystem zur Versorgung eines Anlassers und weiterer Verbraucher des Kraftfahrzeugs mit elektrischer Energie sowie einen Generator zum Laden des Batteriesystems. Elektrofahrzeuge weisen ein Batteriesystem zur Versorgung eines Traktionsmotors und weiterer Verbraucher mit elektrischer Energie auf.
Ein gattungsgemäßes Batteriesystem eines konventionellen Kraftfahrzeugs umfasst ein Batteriemodul mit mindestens einer, vorzugsweise mit mehreren Batteriezellen, die beispielsweise seriell verschaltet sind. Ein solches Batteriemodul weist eine Nominalspannung von beispielsweise 12 V, 24 V oder 48 V auf. Eine Ausgangsspannung eines Batteriesystems eines konventionellen Kraftfahrzeugs entspricht dabei der Nominalspannung des Batteriemoduls. Ein Batteriesystem eines Elektrofahrzeugs kann mehrere seriell verschaltete Batteriemodule umfassen und dadurch eine höhere Ausgangsspannung von beispielsweise 600 V aufweisen.
Ein gattungsgemäßes Batteriesystem umfasst ferner eine Schalteinheit zur elektrischen Verbindung des Batteriemoduls mit einem Bordnetz des Kraftfahrzeugs. Durch entsprechende Ansteuerung der Schalteinheit kann das Batteriemodul elektrisch mit dem Bordnetz des Kraftfahrzeugs verbunden, sowie von dem Bordnetz getrennt werden.
Bei den Batteriezellen des Batteriemoduls handelt es sich beispielsweise um Lithium-Ionen-Batteriezellen. Wenn in dem mit dem Batteriemodul verbundenen Bordnetz des Kraftfahrzeugs ein Kurzschluss auftritt, so kann dies einen verhältnismäßig hohen Kurzschlussstrom verursachen, welcher durch das Batteriemodul fließt. Ein hoher Kurzschlussstrom kann die Batteriezellen des Batteriemoduls zerstören.
Das Dokument US 5,602,460 A offenbart ein Batteriepack mit einer Schutzschaltung gegen einen Überladungsstrom. Batteriezellen des Batteriepacks können von einem Ladegerät geladen werden. Wenn beim Laden der Batteriezellen ein zu hoher Ladestrom detektiert wird, so wird ein Überstromschalter geöffnet, wodurch die Batteriezellen von dem Ladegerät getrennt werden.
Aus den Dokumenten DE 10 2011 110 906 Al und CN 102 398507 B ist ein Hybridantriebsstrangsystem bekannt, welches eine Hochspannungsbatterie und eine DC-Kopplung enthält, welche mit einem Gleichrichter/Wechselrichter-Modul gekoppelt ist. Das Gleichrichter/Wechselrichter-Modul ist mit zwei Drehmomentmaschinen elektrisch verbunden und umfasst eine Schaltereinrichtung, welche ein Paar von Leistungstransistoren umfasst.
Das Dokument WO 2017/064820 Al offenbart ein System zur Erzeugung von elektrischer Energie mit einem Generator und mit einem Frequenzumrichter. Der besagte Frequenzumrichter weist dabei eine Schalteinheit mit mehreren Schaltelementen auf.
Offenbarung der Erfindung
Es wird ein Batteriesystem für ein Kraftfahrzeug vorgeschlagen. Das Batteriesystem umfasst dabei ein Batteriemodul, welches eine interne Spannungsquelle, einen positiven Pol und einen negativen Pol aufweist, und eine Schalteinheit zur elektrischen Verbindung des Batteriemoduls mit einem Bordnetz des Kraftfahrzeugs. Mittels der Schalteinheit kann das Batteriemodul also elektrisch mit dem Bordnetz des Kraftfahrzeugs verbunden, sowie von dem Bordnetz getrennt werden.
Das Batteriemodul umfasst mehrere Batteriezellen, die innerhalb des Batteriemoduls sowohl seriell als auch parallel miteinander verschaltetet sein können. Die Batteriezellen sind vorzugsweise als Lithium- lonen-Batteriezellen ausgeführt. Die Batteriezellen bilden elektrische Spannungsquellen nach. Die elektrischen Spannungsquellen der Batteriezellen bilden die interne Spannungsquelle des Batteriemoduls. Innenwiderstände der Batteriezellen und ein Widerstand von elektrischen Leitungen bilden einen internen Widerstand des Batteriemoduls. Eine Induktivität der elektrischen Leitungen bildet eine interne Induktivität des Batteriemoduls.
Erfindungsgemäß weist die Schalteinheit ein erstes Schaltelement, ein zweites Schaltelement und ein drittes Schaltelement auf. Die Schaltelemente weisen jeweils drei Anschlüsse auf, wobei zwischen einem ersten Anschluss und einem zweiten Anschluss eine Schaltstrecke gebildet ist, welche mittels eines dritten Anschlusses ansteuerbar ist.
Dabei ist ein erster Anschluss des ersten Schaltelements mit einem Knotenpunkt verbunden, und ein zweiter Anschluss des ersten Schaltelements ist mit einem der Pole des Batteriemoduls verbunden. Ein erster Anschluss des zweiten Schaltelements ist mit dem Knotenpunkt verbunden, und ein zweiter Anschluss des zweiten Schaltelements ist mit dem Bordnetz des Kraftfahrzeugs verbindbar. Ein erster Anschluss des dritten Schaltelements ist mit dem anderen der Pole des Batteriemoduls verbunden und mit dem Bordnetz des Kraftfahrzeugs verbindbar. Ein zweiter Anschluss des dritten Schaltelements ist mit dem Knotenpunkt verbunden.
Beispielsweise ist der zweite Anschluss des ersten Schaltelements mit dem positiven Pol des Batteriemoduls verbunden. Der erste Anschluss des dritten Schaltelements ist dann mit dem negativen Pol des Batteriemoduls verbunden. Der negative Pol des Batteriemoduls ist dabei mit dem Bordnetz des Kraftfahrzeugs unmittelbar verbindbar.
Erfindungsgemäß weist das Batteriemodul auch ein Sicherungselement auf, welches seriell zu der internen Spannungsquelle geschaltet ist. Das Sicherungselement löst aus, wenn ein zu hoher Strom durch die interne Spannungsquelle und das Sicherungselement fließt. Beim Auslösen öffnet das Sicherungselement somit einen Stromkreis in dem Batteriemodul um zu verhindern, dass ein zu hoher Strom die Batteriezellen des Batteriemoduls zerstört.
Die erfindungsgemäße Verschaltung der Schaltelemente der Schalteinheit ermöglicht mehrere Schaltzustände des Batteriesystems. In einem ersten Schaltzustand, wenn das erste Schaltelement geöffnet ist, kann kein Strom durch das Batteriemodul fließen. In einem zweiten Schaltzustand, wenn das erste Schaltelement geschlossen, das zweite Schaltelement geschlossen und das dritte Schaltelement geöffnet ist, kann ein Strom durch das Batteriemodul und durch das Bordnetz des Kraftfahrzeugs fließen. In einem dritten Schaltzustand, wenn das erste Schaltelement geschlossen und das dritte Schaltelement geschlossen ist, kann ferner ein verhältnismäßig hoher Kurzschlussstrom durch das Batteriemodul fließen. Der besagte Kurzschlussstrom fließt insbesondere auch durch das Sicherungselement und verursacht dabei, dass das Sicherungselement auslöst.
Wenn beispielsweise ein verhältnismäßig hoher Strom durch die interne Spannungsquelle und das Sicherungselement fließt, welcher jedoch nicht hoch genug ist, um ein Auslösen des Sicherungselements zu bewirken, so könnte dieser Strom die Batteriezellen des Batteriemoduls beschädigen oder zerstören. Durch Schließen des dritten Schaltelements kann nun ein verhältnismäßig hoher Kurzschlussstrom erzeugt werden, welcher insbesondere auch durch das Sicherungselement fließt. Der besagte Kurzschlussstrom bewirkt dabei unmittelbar ein Auslösen des Sicherungselements, wodurch der Strom abgeschaltet wird.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist das Sicherungselement als Schmelzsicherung ausgeführt. Wenn ein zu hoher Strom durch das Sicherungselement fließt, so schmilzt die besagte Schmelzsicherung, und der Stromkreis in dem Batteriemodul wird dadurch geöffnet. Der Stromkreis bleibt auch geöffnet, eine automatische erneute Verbindung des Batteriemoduls mit dem Bordnetz des Kraftfahrzeugs ist verhindert. Gemäß einer bevorzugten Ausgestaltung der Erfindung sind das erste Schaltelement, das zweite Schaltelement und das dritte Schaltelement als Feldeffekttransistoren ausgebildet und weisen jeweils einen SOURCE- Anschluss, einen DRAIN-Anschluss und einen GATE-Anschluss auf. Die Schaltelemente sind derart verschaltet, dass jeweils der erste Anschluss der SOURCE-Anschluss, der zweite Anschluss der DRAIN-Anschluss und der dritte Anschluss der GATE-Anschluss ist. Beispielsweise handelt es sich bei den Schaltelementen um MOSFETs, insbesondere um n-Kanal-MOSFETs vom Anreicherungstyp.
Die SOURCE-Anschlüsse des ersten Schaltelements und des zweiten Schaltelements sind also über den Knotenpunkt miteinander verbunden. Das erste Schaltelement und das zweite Schaltelement können aber auch derart verschaltet sein, dass jeweils der erste Anschluss der DRAIN-Anschluss, der zweite Anschluss der SOURCE-Anschluss und der dritte Anschluss der GATE- Anschluss ist. Dann wären die DRAIN-Anschlüsse des ersten Schaltelements und des zweiten Schaltelements über den Knotenpunkt miteinander verbunden.
Die Schaltstrecke der Schaltelemente ist also jeweils zwischen dem SOURCE- Anschluss und dem DRAIN-Anschluss des Feldeffekttransistors gebildet. Die Schaltstrecke ist durch Anlegen einer Spannung an den GATE-Anschluss ansteuerbar. Insbesondere kann durch Anlegen einer entsprechenden Spannung an den GATE-Anschluss das betreffende Schaltelement geschlossen sowie geöffnet werden.
Vorzugsweise weisen das erste Schaltelement, das zweite Schaltelement und das dritte Schaltelement der Schalteinheit jeweils eine Schaltstrecke sowie eine parallel zu der Schaltstrecke geschaltete Inversdiode, welche auch als Body- Diode bezeichnet wird, auf. Die Inversdiode der Schaltelemente ist ebenfalls jeweils zwischen dem SOURCE-Anschluss und dem DRAIN-Anschluss des Feldeffekttransistors gebildet.
Gemäß einer bevorzugten Weiterbildung der Erfindung umfasst das Batteriesystem ferner ein Steuergerät zur Ansteuerung der Schaltelemente der Schalteinheit und einen Stromsensor zur Messung eines durch das erste Schaltelement fließenden Stroms. Der Stromsensor steht dabei in Kommunikationsverbindung mit dem Steuergerät und übermittelt insbesondere Messwerte eines fließenden Stroms an das Steuergerät. Das Steuergerät ist beispielsweise mit den GATE-Anschlüssen der Schaltelemente der Schalteinheit elektrisch verbunden.
Das Batteriesystem ist dabei derart elektrisch verschaltet, dass ein durch das Sicherungselement des Batteriemoduls fließender Strom auch durch das erste Schaltelement der Schalteinheit fließt. Durch eine Messung des durch das erste Schaltelement fließenden Stroms ist also auch der durch die Schmelzsicherung fließende Strom bekannt.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist das Steuergerät dazu eingerichtet, das dritte Schaltelement der Schalteinheit zu schließen, wenn der durch das erste Schaltelement fließende Strom einen vorgegebenen Schwellenwert übersteigt. Das Steuergerät weist dazu beispielsweise einen Prozessor sowie einen Speicherbereich auf, in welchem entsprechender Programmcode abgelegt ist.
Es wird auch ein Verfahren zum Betreiben eines erfindungsgemäßen Batteriesystems vorgeschlagen Dabei wird das dritte Schaltelement der Schalteinheit geschlossen, wenn ein durch das erste Schaltelement fließender Strom einen vorgegebenen Schwellenwert übersteigt. Der besagte Schwellenwert des Stroms ist vorzugsweise kleiner als ein Wert eines Stroms, bei welchem das Sicherungselement auslöst.
Wie bereits erwähnt, ist das Batteriesystem derart elektrisch verschaltet, dass ein durch die Schmelzsicherung des Batteriemoduls fließender Strom auch durch das erste Schaltelement der Schalteinheit fließt. Der durch das erste Schaltelement fließende Strom entspricht damit dem durch die Schmelzsicherung fließenden Strom.
Wenn beispielsweise ein Strom durch die interne Spannungsquelle und das Sicherungselement fließt, welcher den besagten Schwellenwert übersteigt, welcher jedoch nicht hoch genug ist, um ein Auslösen des Sicherungselements zu bewirken, so könnte dieser Strom die Batteriezellen des Batteriemoduls beschädigen oder zerstören. Durch Schließen des dritten Schaltelements wird nun ein verhältnismäßig hoher Kurzschlussstrom erzeugt, welcher insbesondere auch durch das Sicherungselement fließt. Der besagte Kurzschlussstrom bewirkt dabei unmittelbar ein Auslösen des Sicherungselements, wodurch der Strom abgeschaltet wird.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird das dritte Schaltelement von einem Steuergerät geschlossen. Das Steuergerät dient insbesondere zur Ansteuerung der Schaltelemente der Schalteinheit und ist beispielsweise mit den GATE-Anschlüssen der Schaltelemente der Schalteinheit elektrisch verbunden.
Vorzugsweise wird der durch das erste Schaltelement fließende Strom von einem Stromsensor gemessen, welcher in Kommunikationsverbindung mit dem Steuergerät steht. Wie bereits erwähnt, entspricht der durch das erste Schaltelement fließende Strom dem durch die Schmelzsicherung fließenden Strom.
Es wird auch ein Kraftfahrzeug vorgeschlagen, das mindestens ein erfindungsgemäßes Batteriesystem umfasst, welches mit dem erfindungsgemäßen Verfahren betrieben wird.
Vorteile der Erfindung
In einem erfindungsgemäßen Batteriesystem für ein Kraftfahrzeug sind die Batteriezellen mittels des Sicherungselements vorteilhaft gegen einen zu hohen Strom geschützt, welcher die Batteriezellen sonst zerstören könnte. Besagtes Sicherungselement löst aus, wenn ein zu hoher Strom durch die interne Spannungsquelle und das Sicherungselement fließt und öffnet dabei einen Stromkreis in dem Batteriemodul. Wenn das Sicherungselement als Schmelzsicherung ausgeführt ist, so bleibt der Stromkreis auch geöffnet. Beispielsweise kann nach dem Auslösen des Sicherungselements zunächst die Ursache gesucht und beseitigt werden, und anschließend kann eine neue Schmelzsicherung in das Batteriemodul eingesetzt werden.
Mittels des erfindungsgemäßen Verfahrens ist es ferner möglich, in einem erfindungsgemäßen Batteriesystem für ein Kraftfahrzeug ein Auslösen des Sicherungselements gezielt herbei zu führen. Durch Schließen des dritten Schaltelements der Schalteinheit kann ein verhältnismäßig hoher Kurzschlussstrom erzeugt werden, welcher insbesondere auch durch das Sicherungselement fließt. Der besagte Kurzschlussstrom bewirkt dabei unmittelbar ein Auslösen des Sicherungselements, wodurch der Strom abgeschaltet wird. Das gezielte Auslösen des Sicherungselements kann beispielsweise dann angewandt werden, wenn ein verhältnismäßig hoher Strom durch die interne Spannungsquelle und das Sicherungselement fließt, welcher jedoch nicht hoch genug ist, um ein Auslösen des Sicherungselements zu bewirken. Ein solcher Strom könnte die Batteriezellen des Batteriemoduls beschädigen oder zerstören. Durch das gezielte Auslösen des Sicherungselements werden Beschädigungen sowie Zerstörungen der Batteriezellen vorteilhaft verhindert.
Kurze Beschreibung der Zeichnungen
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigt:
Figur 1 eine schematische Darstellung eines Batteriesystems an einem Bordnetz eines Kraftfahrzeugs.
Ausführungsformen der Erfindung
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figur stellt den Gegenstand der Erfindung nur schematisch dar.
Figur 1 zeigt eine schematische Darstellung eines Batteriesystems 10 an einem Bordnetz 70 eines Kraftfahrzeugs. Das Batteriesystem 10 umfasst ein Batteriemodul 5, eine Schalteinheit 60 und ein Steuergerät 32. Die Schalteinheit 60 dient zur elektrischen Verbindung des Batteriemoduls 5 mit dem Bordnetz 70 des Kraftfahrzeugs. Das Steuergerät 32 dient insbesondere zur Ansteuerung der Schalteinheit 60. Das Batteriemodul 5 umfasst mehrere hier nicht dargestellte Batteriezellen, die innerhalb des Batteriemoduls 5 sowohl seriell als auch parallel miteinander verschaltetet sein können. Jede der Batteriezellen bildet eine elektrische Spannungsquelle nach. Die elektrischen Spannungsquellen der Batteriezellen bilden eine interne Spannungsquelle Vi.
Jede der Batteriezellen weist einen Innenwiderstand auf. Die Innenwiderstände der Batteriezellen und ein elektrischer Widerstand von elektrischen Leitungen bilden einen hier nicht dargestellten internen Widerstand des Batteriemoduls 5. Induktivitäten der elektrischen Leitungen bilden eine interne Induktivität Li des Batteriemoduls 5.
Das Batteriemodul 5 weist auch ein Sicherungselement 30 auf, welches seriell zu der internen Spannungsquelle Vi und seriell zu der internen Induktivität Li geschaltet ist. Wenn das Sicherungselement 30 auslöst, so öffnet das Sicherungselement 30 einen Stromkreis in dem Batteriemodul 5. Das Batteriemodul 5 weist ferner einen positiven Pol 22 und einen negativen Pol 21 auf. Im Leerlauf liegt eine von der internen Spannungsquelle Vi gelieferte Spannung zwischen dem positiven Pol 22 und dem negativen Pol 21 des Batteriemoduls 5 an.
Die Schalteinheit 60 weist ein erstes Schaltelement 61, ein zweites Schaltelement 62 und ein drittes Schaltelement 63 auf. Die Schaltelemente 61, 62, 63 weisen jeweils drei Anschlüsse auf, wobei zwischen einem ersten Anschluss und einem zweiten Anschluss eine Schaltstrecke gebildet ist, welche mittels eines dritten Anschlusses ansteuerbar ist.
Das erste Schaltelement 61, das zweite Schaltelement 62 und das dritte Schaltelement 63 sind vorliegend als Feldeffekttransistoren ausgebildet. Die Schaltelemente 61, 62, 63 weisen jeweils einen SOURCE-Anschluss, einen DRAIN-Anschluss und einen GATE-Anschluss auf. Die Schaltelemente 61, 62,
63 sind derart verschaltet, dass jeweils der erste Anschluss der SOURCE- Anschluss, der zweite Anschluss der DRAIN-Anschluss und der dritte Anschluss der GATE-Anschluss ist.
Die jeweilige Schaltstrecke ist durch Anlegen einer Spannung an den GATE- Anschluss des entsprechenden Schaltelements 61, 62, 63 ansteuerbar. Insbesondere kann durch Anlegen einer entsprechenden Spannung an den GATE-Anschluss das betreffende Schaltelement 61, 62, 63 geschlossen sowie geöffnet werden.
Bei den Schaltelemente 61, 62, 63 handelt es sich vorliegend um n-Kanal- MOSFETs vom Anreicherungstyp. Die Schaltelement 61, 62, 63 weisen jeweils eine Schaltstrecke sowie eine parallel zu der Schaltstrecke geschaltete Inversdiode auf. Die Inversdiode, welche auch als Body-Diode bezeichnet wird, entsteht in jedem MOSFET aufgrund von dessen interner Struktur und ist kein explizites Bauteil.
Der erste Anschluss des ersten Schaltelements 61 ist mit einem Knotenpunkt 25 verbunden. Ein zweiter Anschluss des ersten Schaltelements 61 ist mit dem positiven Pol 22 des Batteriemoduls 5 verbunden. Ein erster Anschluss des zweiten Schaltelements 62 ist mit dem Knotenpunkt 25 verbunden. Ein zweiter Anschluss des zweiten Schaltelements 62 ist mit dem Bordnetz 70 des Kraftfahrzeugs verbunden. Ein erster Anschluss des dritten Schaltelements 63 ist mit dem negativen Pol 21 des Batteriemoduls 5 und mit dem Bordnetz 70 des Kraftfahrzeugs verbunden. Ein zweiter Anschluss des dritten Schaltelements 63 ist mit dem Knotenpunkt 25 verbunden.
Die SOURCE-Anschlüsse des ersten Schaltelements 61 und des zweiten Schaltelements 62 sind also über den Knotenpunkt 25 miteinander verbunden. Alternativ können das erste Schaltelement 61 und das zweite Schaltelement 62 auch derart verschaltet sein, dass jeweils der erste Anschluss der DRAIN- Anschluss, der zweite Anschluss der SOURCE-Anschluss und der dritte Anschluss der GATE-Anschluss ist. In diesem Fall wären die DRAIN-Anschlüsse des ersten Schaltelements 61 und des zweiten Schaltelements 62 über den Knotenpunkt 25 miteinander verbunden.
Das Batteriesystem 10 umfasst ferner einen Stromsensor 34 zur Messung eines durch das erste Schaltelement 61 fließenden Stroms I. Das Batteriesystem 10 ist derart elektrisch verschaltet, dass der durch das erste Schaltelement 61 der Schalteinheit 60 fließende Strom I auch durch das Sicherungselement 30 des Batteriemoduls 5 fließt. Der durch das erste Schaltelement 61 fließende Strom I entspricht somit dem durch das Sicherungselement 30 fließenden Strom I. Das Steuergerät 32 steht in Kommunikationsverbindung mit dem Stromsensor 34. Der Stromsensor 34 übermittelt insbesondere Messwerte des fließenden Stroms I an das Steuergerät 32. Das Steuergerät 32 ist ferner mit den GATE- Anschlüssen der Schaltelemente 61, 62, 63 der Schalteinheit 60 elektrisch verbunden. Durch Anlegen einer entsprechenden Spannung an einen GATE- Anschluss kann das betreffende Schaltelement 61, 62, 63 geschlossen sowie geöffnet werden.
Wenn in dem Bordnetz 70 des Kraftfahrzeugs ein Kurzschluss auftritt, so fließt ein Kurzschlussstrom durch das Batteriemodul 5, durch das erste Schaltelement 61 und das zweite Schaltelement 62 sowie durch das Bordnetz 70. Insbesondere fließt der Kurzschlussstrom durch das Sicherungselement 30, welches daraufhin auslöst und den Stromkreis öffnet.
In dem Bordnetz 70 des Kraftfahrzeugs kann ein Fehler auftreten, durch welchen ein Strom I fließt, der nicht hoch genug ist, um ein Auslösen des Sicherungselements 30 zu bewirken. Dieser Strom I könnte jedoch hoch genug sein, um die Batteriezellen des Batteriemoduls 5 zu beschädigen oder zu zerstören.
Wenn der besagte Strom I, der von dem Stromsensor 34 gemessen wird, einen vorgegebenen Schwellenwert übersteigt, so wird das dritte Schaltelement 63 der Schalteinheit 60 von dem Steuergerät 32 geschlossen. Daraufhin entsteht ein Kurzschluss und es fließt ein Kurzschlussstrom durch das Batteriemodul 5, durch das erste Schaltelement 61 und das dritte Schaltelement 63. Insbesondere fließt der Kurzschlussstrom durch das Sicherungselement 30, welches daraufhin auslöst und den Stromkreis öffnet.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Batteriesystem (10) für ein Kraftfahrzeug, umfassend ein Batteriemodul (5), welches eine interne Spannungsquelle (Vi), einen positiven Pol (22) und einen negativen Pol (21) aufweist, und eine Schalteinheit (60) zur elektrischen Verbindung des Batteriemoduls (5) mit einem Bordnetz (70) des Kraftfahrzeugs, dadurch gekennzeichnet, dass die Schalteinheit (60) ein erstes Schaltelement (61), ein zweites Schaltelement (62) und ein drittes Schaltelement (63) aufweist, wobei ein erster Anschluss des ersten Schaltelements (61) mit einem Knotenpunkt (25) verbunden ist, ein zweiter Anschluss des ersten Schaltelements (61) mit einem der Pole (21, 22) des Batteriemoduls (5) verbunden ist, ein erster Anschluss des zweiten Schaltelements (62) mit dem Knotenpunkt (25) verbunden ist, ein zweiter Anschluss des zweiten Schaltelements (62) mit dem Bordnetz (70) verbindbar ist, ein erster Anschluss des dritten Schaltelements (63) mit dem anderen der Pole (21, 22) des Batteriemoduls (5) verbunden und mit dem Bordnetz (70) verbindbar ist, und ein zweiter Anschluss des dritten Schaltelements (63) mit dem Knotenpunkt (25) verbunden ist, und dass das Batteriemodul (5) ein Sicherungselement (30) aufweist, welches seriell zu der internen Spannungsquelle (Vi) geschaltet ist.
2. Batteriesystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Sicherungselement (30) als Schmelzsicherung ausgeführt ist.
3. Batteriesystem (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das erste Schaltelement (61), das zweite Schaltelement (62) und das dritte Schaltelement (63) als Feldeffekttransistoren ausgebildet sind, wobei jeweils der erste Anschluss ein SOURCE-Anschluss, der zweite Anschluss ein DRAIN-Anschluss und ein dritter Anschluss ein GATE-Anschluss ist.
4. Batteriesystem (10) nach Anspruch 3, dadurch gekennzeichnet, dass das erste Schaltelement (61), das zweite Schaltelement (62) und das dritte Schaltelement (63) jeweils eine Schaltstrecke sowie eine parallel zu der Schaltstrecke geschaltete Inversdiode aufweisen.
5. Batteriesystem (10) nach einem der vorstehenden Ansprüche, ferner umfassend ein Steuergerät (32) zur Ansteuerung der Schaltelemente (61, 62, 63) der Schalteinheit (60) und einen Stromsensor (34) zur Messung eines durch das erste Schaltelement (61) fließenden Stroms (I), welcher in Kommunikationsverbindung mit dem Steuergerät (32) steht.
6. Batteriesystem (10) nach Anspruch 5, dadurch gekennzeichnet, dass das Steuergerät (32) dazu eingerichtet ist, das dritte Schaltelement (63) zu schließen, wenn der durch das erste Schaltelement (61) fließende Strom (I) einen vorgegebenen Schwellenwert übersteigt.
7. Verfahren zum Betreiben eines Batteriesystems (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das dritte Schaltelement (63) geschlossen wird, wenn ein durch das erste Schaltelement (61) fließender Strom (I) einen vorgegebenen Schwellenwert übersteigt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das dritte Schaltelement (63) von einem Steuergerät (32) geschlossen wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der durch das erste Schaltelement (61) fließende Strom (I) von einem Stromsensor (34) gemessen wird, welcher in Kommunikationsverbindung mit dem Steuergerät (32) steht.
10. Kraftfahrzeug, umfassend mindestens ein Batteriesystem (10) nach einem der Ansprüche 1 bis 6, welches mit einem Verfahren nach einem der Ansprüche 7 bis 9 betrieben wird.
EP20747393.5A 2019-08-21 2020-07-28 Batteriesystem mit kurzschlusseinrichtung zum auslösen einer schmelzsicherung für ein kraftfahrzeug, verfahren zum betreiben eines batteriesystems und kraftfahrzeug Pending EP4018521A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019212473.9A DE102019212473A1 (de) 2019-08-21 2019-08-21 Batteriesystem für ein Kraftfahrzeug, Verfahren zum Betreiben eines Batteriesystems und Kraftfahrzeug
PCT/EP2020/071199 WO2021032412A1 (de) 2019-08-21 2020-07-28 Batteriesystem mit kurzschlusseinrichtung zum auslösen einer schmelzsicherung für ein kraftfahrzeug, verfahren zum betreiben eines batteriesystems und kraftfahrzeug

Publications (1)

Publication Number Publication Date
EP4018521A1 true EP4018521A1 (de) 2022-06-29

Family

ID=71846396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20747393.5A Pending EP4018521A1 (de) 2019-08-21 2020-07-28 Batteriesystem mit kurzschlusseinrichtung zum auslösen einer schmelzsicherung für ein kraftfahrzeug, verfahren zum betreiben eines batteriesystems und kraftfahrzeug

Country Status (4)

Country Link
EP (1) EP4018521A1 (de)
CN (1) CN114302830A (de)
DE (1) DE102019212473A1 (de)
WO (1) WO2021032412A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191756A1 (en) * 2021-03-10 2022-09-15 Scania Cv Ab An electric battery junction arrangement and an electrical system
DE102021202408A1 (de) 2021-03-12 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriesystem
DE102021208466A1 (de) 2021-08-04 2023-02-09 Vitesco Technologies GmbH Trennschaltereinheit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602460A (en) * 1995-04-28 1997-02-11 Motorola, Inc. Overcharge current protection circuit and battery pack using same
US8860348B2 (en) * 2010-09-02 2014-10-14 GM Global Technology Operations LLC Method and apparatus for controlling a high-voltage battery connection for hybrid powertrain system
DE102010045904A1 (de) * 2010-09-17 2011-05-12 Daimler Ag Energiespeichereinrichtung mit Kurzschlusssicherungsschaltung
JP2015196453A (ja) * 2014-04-01 2015-11-09 トヨタ自動車株式会社 車両
WO2017064820A1 (en) * 2015-10-13 2017-04-20 Hitachi, Ltd. Electric power generation system and its control system
DE102016213851A1 (de) * 2016-07-28 2018-02-01 Robert Bosch Gmbh Batteriesystem, Controller und Verfahren zum Trennen eines Stromflusses zwischen einer Batterie und einem Verbraucher der Batterie
KR102194985B1 (ko) * 2016-09-07 2020-12-24 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 팩
DE102018203636B3 (de) * 2018-03-09 2019-07-04 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs

Also Published As

Publication number Publication date
CN114302830A (zh) 2022-04-08
DE102019212473A1 (de) 2021-02-25
WO2021032412A1 (de) 2021-02-25

Similar Documents

Publication Publication Date Title
EP4018521A1 (de) Batteriesystem mit kurzschlusseinrichtung zum auslösen einer schmelzsicherung für ein kraftfahrzeug, verfahren zum betreiben eines batteriesystems und kraftfahrzeug
WO2017060354A1 (de) Fahrzeugbatterievorrichtung
WO2015078685A1 (de) Überspannungsschutz für kraftfahrzeugbordnetz bei lastabwurf
WO2021083687A1 (de) Entladungsvorrichtung für eine elektrische antriebsanordnung von einem fahrzeug sowie elektrische antriebsanordnung mit der entladungsvorrichtung
DE102020007868A1 (de) Verfahren zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs unter Berücksichtigung einer elektrischen Isolation einer Ladestation, sowie Ladevorrichtung und Fahrzeug
DE102012203467A1 (de) Bordnetz für ein Fahrzeug
DE102013208968A1 (de) Kraftfahrzeugbordnetz mit aktivem Brückengleichrichter und Überspannungsschutz bei Lastabwurf, Gleichrichteranordnung, zugehöriges Betriebsverfahren und Mittel zu dessen Implementierung
WO2021032413A1 (de) Batteriesystem für ein kraftfahrzeug mit schalteinheit zur erwärmung der batteriezellen, verfahren zum betreiben des batteriesystems und kraftfahrzeug
DE102015201899B4 (de) Verfahren zur Absicherung eines Hochvolt-Bordnetzes eines Kraftfahrzeugs mit einer ersten und einer zweiten Energiequelle, Computerprogrammprodukt und Kraftfahrzeug
WO2014063876A1 (de) Schaltungsanordnung und verfahren zum vorladen eines kapazitiven bauelements
WO2013127550A1 (de) Vorrichtung und verfahren zum absichern eines stromkreises für ein fahrzeug und stromkreis
DE102021205819B3 (de) DC-Fahrzeugladeschaltung mit Transistor und Inversdiode zur Sperrung von Fehlerstrom durch ladestationsseitige Varistoren
DE102018004625A1 (de) Ladeverfahren und Ladevorrichtung zum Laden eines ersten und eines zweiten elektrisch betriebenen Fahrzeugs
DE10313752A1 (de) Vorrichtung und Verfahren zum Laden von Batterien eines Mehrspannungsbordnetzes eines Kraftfahrzeuges
DE102019210926A1 (de) Verfahren und Steuergerät zum Kurzschließen von zumindest zwei Phasen einer elektrischen Maschine eines Fahrzeugs
DE102017209183B4 (de) Fahrzeugenergiespeicher
DE102014016239A1 (de) Gleichspannungswandler für ein Kraftfahrzeug und Verfahren zum Betreiben eines derartigen Gleichspannungswandlers
DE102013009991A1 (de) Fremdstartfähige Integration einer Batterie in ein Kraftfahrzeug-Bordnetz
WO2018065597A1 (de) Batterieeinheit und verfahren zum betrieb einer batterieeinheit
DE102012208349A1 (de) Verfahren und Vorrichtung zum Einstellen der Ladezustände von Batteriemodulen einer Batterie
DE19958998C2 (de) Verfahren und Vorrichtung zur sicheren Fremdstarthilfe bei Kraftfahrzeugen und dergleichen
EP2689970A1 (de) Schaltungsanordnung zum Steuern einer induktiven Last mit Freilaufkreis
WO2011082733A2 (de) Hybridantrieb eines hybridfahrzeugs
DE102022200915B3 (de) Überwachtes Ladeverfahren unter Berücksichtigung von ladestationsseitigen Überspannungsschutzmaßnahmen
EP3900147B1 (de) Batteriemodul für ein kraftfahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)