EP3995439B1 - Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut - Google Patents

Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut Download PDF

Info

Publication number
EP3995439B1
EP3995439B1 EP20206564.5A EP20206564A EP3995439B1 EP 3995439 B1 EP3995439 B1 EP 3995439B1 EP 20206564 A EP20206564 A EP 20206564A EP 3995439 B1 EP3995439 B1 EP 3995439B1
Authority
EP
European Patent Office
Prior art keywords
value
curve
preliminary
control
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20206564.5A
Other languages
English (en)
French (fr)
Other versions
EP3995439A1 (de
Inventor
Stefano d'Errico
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidel Participations SAS
Original Assignee
Sidel Participations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidel Participations SAS filed Critical Sidel Participations SAS
Priority to EP20206564.5A priority Critical patent/EP3995439B1/de
Priority to PCT/EP2021/077667 priority patent/WO2022100935A1/en
Publication of EP3995439A1 publication Critical patent/EP3995439A1/de
Application granted granted Critical
Publication of EP3995439B1 publication Critical patent/EP3995439B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/28Flow-control devices, e.g. using valves
    • B67C3/287Flow-control devices, e.g. using valves related to flow control using predetermined or real-time calculated parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/007Applications of control, warning or safety devices in filling machinery

Definitions

  • the present invention relates to a method for filling a plurality of containers by means of a flow of pourable product occurring through a filling device.
  • the present invention also relates to a filling device configured for carrying out the method.
  • a type of filling device comprises a flow channel for guiding a flow of pourable product.
  • the filling device comprises a valve element which can adopt a variable position with respect to said flow channel.
  • the filling device is configured so that by controlling said position the flow rate of said flow con be influenced.
  • the filling device comprises an electromagnetic or magnetic actuator for controlling said position by means of an electrical quantity.
  • the filling device comprises a flowmeter for measuring the flow rate.
  • the filling device comprises a position sensor for detecting said position.
  • the filling device is configured so that the flow rate can be influenced by sending a control value of the electrical quantity to the electromagnetic or magnetic actuator, said control value being dependent on the measured actual flow rate and upon the measured actual position.
  • the position sensor increases the mechanical complexity of the filling device.
  • a filling method allows for the filling device used for carrying out the method, to improve automatically the precision and/or accuracy of the flow rate automatic control of subsequent filling operations which are carried out for filling subsequently a plurality of respective containers by means of the same filling device.
  • a filling method according to any of the appended method claims or according to present description does not require, for the purpose of flow rate automatic control, to carry out any closed loop control of the position of the valve element, thereby obtaining a reduction in the mechanical complexity of the filling device used for carrying out the method.
  • a filling device according to any of the appended device claims or according to present description is configured for carrying out a method according to any of the appended method claims or according to present description.
  • the example embodiment of the filling method will be defined for the sake of convenience as “method”.
  • the example embodiment of the filling device will be defined for the sake of convenience as “device”.
  • the method is for filling a plurality of containers by means of a flow of pourable product, which flow occurs through the device 1.
  • the device 1 is indicated in Figure 1 .
  • the pourable product can be for example a pourable food product such as water, juice, milk, beer, carbonated soft drinks, or the like.
  • the pourable product can be alternatively a pourable product which is not a food product.
  • the containers of said plurality are to be considered different from each other in the sense that each container is a different instance or specimen of the same type of container. Therefore, all the containers of said plurality are of the same type.
  • the method comprises a preliminary phase PP and, after the preliminary phase PP, a temporally ordered sequence of filling operations. During each filling operation, a respective container is filled by means of the device 1.
  • the plurality of filling operations can comprise any number of filling operations.
  • box PP represents the preliminary phase.
  • each of the dashed boxes FO 1 , FO 2 , FO 3 represents a different filling operation.
  • the plurality of filling operations comprises a first filling operation FO 1 , a second filling operation FO 2 , and a third filling operation FO 3 .
  • the number of filling operations can be 1.
  • the number of filling operations can be greater than 1.
  • the enclosed Figures are referred to a case in which the number of filling operations is 3.
  • the preliminary phase PP comprises setting a preliminary curve PC.
  • box M1 represents the step of setting the preliminary curve PP.
  • Figure 4 shows an example of preliminary curve, which is indicated with PC.
  • the preliminary curve PC correlates a flow rate F of said flow with an electrical physical quantity EQ.
  • the device 1 is configured so that said flow rate can be influenced by means of the electrical quantity EQ.
  • the preliminary curve PC corresponds to a mathematical relationship correlating the flow rate F with the electrical quantity EQ.
  • the step of setting M1 the preliminary curve PC is carried out experimentally.
  • the preliminary phase PP comprises setting a control curve.
  • Figure 4 shows an example of control curve, which is indicated with CC.
  • the control curve CC correlates said flow rate F with said electrical physical quantity EQ.
  • the control curve CC corresponds to a mathematical relationship correlating the flow rate F with the electrical quantity EQ.
  • box M2 represents the step of setting the control curve CC.
  • the step of setting M2 the control curve CC is carried out so that control curve CC is set equal to the preliminary curve PC.
  • Figure 4 it can be seen, that the control curve CC, during the preliminary phase PP, is set equal to preliminary curve PC.
  • Preliminary phase PP comprises setting a table.
  • box M3 represents the setting of the table.
  • the table associates at least one time instant to a respective desired value of the flow rate.
  • the desired value is the value of flow rate which is desired to be obtained at the respective instant.
  • Figure 5 shows an example of the table, which is indicated with T.
  • a first time instant t 1 is associated to a first desired value D1
  • a second time instant t 2 is associated to a second desired value D2
  • a third time instant t 3 is associated to a third desired value D3. Therefore at the first time instant t 1 it is desired to obtain the first desired value D1 of the flow rate, at the second time instant t 2 it is desired to obtain the second desired value D2 of the flow rate, and at the third time instant t 3 it is desired to obtain the third desired value D3 of the flow rate.
  • table T associates each instant of a plurality of time instants to a respective desired value of said flow rate, said desired value being desired to be obtained at the respective instant.
  • the plurality of time instants comprises the first instant t 1 , the second instant t 2 , and the third instant t 3 .
  • the plurality of time instants can comprise any number of time instants.
  • the number of time instants can be 1.
  • the number of time instants can be greater than 1.
  • the enclosed Figures are referred to the case in which the number of time instants is three.
  • the step of setting M3 the table T can be carried out before or after or at least partially simultaneously with respect to the step of setting M1 the preliminary curve PC and/or with respect to the step of setting M2 the control curve CC.
  • Each filling operation comprises a respective controlling phase and a respective updating phase.
  • Figure 6 shows a generic filling operation FO.
  • the filling operation FO can correspond to any one of the first filling operation FO 1 , second filling operation FO 2 , and third filling operation FO 3 .
  • box CP represents the controlling phase of the generic filling operation FO.
  • box UP represents the updating phase of the generic filling operation FO. More specifically, in Figure 2 , box CP 1 represents the controlling phase of the first filling operation FO 1 , box CP 2 represents the controlling phase of the second filling operation FO 2 , and box CP 3 represents the controlling phase of the third filling operation FO 3 . More specifically, in Figure 2 , box UP 1 represents the updating phase of the first filling operation FO 1 , box UP 2 represents the updating phase of the second filling operation FO 2 , and box UP 3 represents the updating phase of the third filling operation FO 3 .
  • the controlling phase CP comprises, for each time instant of the table T, a respective operative sequence associated to the instant.
  • box OS 1 represents a first operative sequence which is associated to first instant t 1
  • box OS 2 represents a second operative sequence which is associated to second instant t 2
  • box OS 3 represents a third operative sequence which is associated to third instant t 3 .
  • operative sequence OS can correspond to any one of first operative sequence OS 1 , second operative sequence OS 2 , and third operative sequence OS 3 .
  • the operative sequence OS comprises a step of obtaining the desired value associated to the respective instant.
  • the step of obtaining the desired value is carried out based on the table T.
  • box S1 represents the step of obtaining the desired value.
  • the first desired value D1 is obtained based on the table T.
  • the second desired value D2 is obtained based on the table T.
  • the third desired value D3 is obtained based on the table T.
  • the operative sequence OS comprises a step of determining a control value of the electrical quantity EQ.
  • the step of determining the control value is carried out by applying said control curve CC to the obtained desired value.
  • box S2 represents the step of determining the control value. The determined control value is therefore associated to the obtained desired value through the control curve CC.
  • C1 is a first control value.
  • the first control value C1 is the control value determined during the first operative sequence OS 1 .
  • First control value C1 is determined by applying control curve CC to the obtained first desired value D1.
  • C2 is a second control value.
  • the second control value C2 is the control value determined during the second operative sequence OS 2 .
  • Second control value C2 is determined by applying control curve CC to the obtained second desired value D2.
  • C3 is a third control value.
  • the third control value C3 is the control value determined during the third operative sequence OS 3 .
  • Third control value C3 is determined by applying control curve CC to the obtained third desired value D3.
  • the operative sequence OS comprises a step of influencing said flow rate.
  • the step of influencing the flow rate is carried out by means of the determined control value.
  • box S3 represents the step of influencing the flow rate.
  • the step of influencing S3 the flow rate is carried out by means of the determined first control value C1.
  • the step of influencing the flow rate S3 is carried out by means of the determined second control value C2.
  • the step of influencing the flow rate is carried out by means of the determined third control value C3.
  • Operative sequence OS comprises, after said step of influencing S3, a step of measuring an actual value of said flow rate.
  • box S5 represents the step of measuring the actual value of the flow rate.
  • A1 is a first actual value.
  • the first actual value A1 is the actual value measured during the first operative sequence OS 1 .
  • A2 is a second actual value.
  • the second actual value A2 is the actual value measured during the second operative sequence OS 2 .
  • A3 is a third actual value.
  • the third actual value A3 is the actual value measured during the third operative sequence OS 3 .
  • the operative sequence OS comprises a step of determining a preliminary value of said flow rate.
  • the step of determining the preliminary value is carried out by applying the preliminary curve PC to the determined control value.
  • box S4 represents the step of determining the preliminary value.
  • the determined preliminary value is therefore associated to the determined control value through the preliminary curve PC.
  • P1 is a first preliminary value.
  • the first preliminary value P1 is the preliminary value determined during the first operative sequence OS 1 .
  • First preliminary value P1 is determined by applying preliminary curve PC to the determined first control value C1.
  • P2 is a second preliminary value.
  • the second preliminary value P2 is the preliminary value determined during the second operative sequence OS 2 .
  • Second preliminary value P2 is determined by applying preliminary curve PC to the determined second control value C2.
  • P3 is a third preliminary value.
  • the third preliminary value P3 is the preliminary value determined during the third operative sequence OS 3 .
  • Third preliminary value P3 is determined by applying preliminary curve PC to the determined third control value C3.
  • the step S4 of determining the preliminary value and the step of influencing S3 can be carried out in any temporal order, and/or at least partially simultaneously with each other.
  • the step S4 of determining the preliminary value is showed for example after the step of influencing S3.
  • the step of determining S4 the preliminary value and the step of measuring S5 can be carried out in any temporal order, and/or at least partially simultaneously with each other.
  • the step S4 of determining the preliminary value is showed for example before the step S5 of measuring.
  • the step S4 of determining the preliminary value can be carried out after the step S5 of measuring.
  • the operative sequence OS comprises determining an error value.
  • the error value is the deviation between the measured actual value and the determined preliminary value.
  • box S6 represents the step of determining the error value.
  • E1 is a first error value.
  • the first error value E1 is the error value determined during the first operative sequence OS 1 .
  • First error value E1 is the deviation of the measured first actual value A1 with respect to the determined first preliminary value P1.
  • E2 is a second error value.
  • the second error value E2 is the error value determined during the second operative sequence OS 2 .
  • Second error value E2 is the deviation of the measured second actual value A2 with respect to the determined second preliminary value P2.
  • E3 is a third error value.
  • the third error value E3 is the error value determined during the third operative sequence OS 3 .
  • Third error value E3 is the deviation of the measured third actual value A3 with respect to the determined third preliminary value P3.
  • the operative sequence OS comprises associating the determined error value with or to the determined control value.
  • box S7 represents the step of associating.
  • the first error value E1 is associated to the first control value C1.
  • the second error value E2 is associated to the second control value C2.
  • the third error value E3 is associated to the third control value C3.
  • the updating phase UP comprises a step of determining an error curve correlating the error with said electrical quantity EQ.
  • box J1 represents the step of determining the error curve.
  • Figure 11 shows an example of error curve, which is indicated with EC.
  • the error curve EC corresponds to a mathematical relationship correlating the error E with the electrical quantity EQ.
  • the error E corresponds to the deviation between the preliminary value and the actual flow rate.
  • the step of determining the error curve EC is carried out by means of at least one determined error value E1 or E2 or E3, and by means of the associated at least one determined control value C1 or C2 or C3.
  • the step of determining J1 the error curve can be carried out by means of the determined error values E1, E2, E3, and by means of the respective associated and determined control values C1, C2 and C3.
  • the updating phase comprises a step of reinitializing the control curve CC.
  • box J2 represents the step of reinitializing the control curve CC.
  • the step of reinitializing J2 the control curve CC is carried out by means of the determined error curve EC and the preliminary curve PC.
  • Figure 12 shows an example of reinitialized control curve, which is indicated with CC.
  • Control curve CC of Figure 12 is for example obtained by adding error curve EC of Figure 11 to control curve CC of Figure 11 .
  • Error values E1, E2, E3 of Figure 11 are to be considered negative values, for simplicity of illustration and for the sake of convenience.
  • the reinitialized control curve CC is obtained by means of the determined error curve EC and the preliminary curve PC.
  • the step of reinitializing is carried out by adding the determined error curve EC to the preliminary curve PC. Therefore the reinitialized control curve CC is obtained by adding the error curve EC to the preliminary curve PC.
  • the reinitialized control curve CC ( Figure 12 ) is equal to the sum of the preliminary curve PC ( Figure 4 , 10 and 11 ) and the determined error curve EC ( Figure 11 ).
  • the preliminary curve PC remains constant and is kept the same for all the filling operations of the filling method, as can be derived from Figure 12 , while the control curve CC can vary from one filling operation to another filling operation of the same filling method.
  • control curve CC is updated or reinitialized during each of the filling operation.
  • control curve CC used during the controlling phase CP 2 of the second filling operation FO 2 corresponds to the control curve CC which has been reinitialized during the updating phase UP 1 of the previous first filling operation FO 1 .
  • control curve CC used during the controlling phase CP 3 of the third filling operation FO 3 corresponds to the control curve CC which has been reinitialized during the updating phase UP 2 of the previous second filling operation FO 2 .
  • control curve CC of each filling operation occurring after the first filling operation FO 1 corresponds to the control curve CC which has been reinitialized during the updating phase UP of the previous filling operation.
  • the automatic control of the filling operations carried out by means of the same device 1 can automatically change from one filling operation to the next one, and therefore from one container to be filled to the next one.
  • the precision of the automatic control can be automatically increased in the passage from one filling operation to the next one, and therefore in the passage from one container to be filled to the next one.
  • this allows to have an automatic improvement of the automatic control performance of the device 1 in the passage from one container to the next one to be filled by the same device 1.
  • the automatic improvement in the precision of the automatic control of the filling operations is due to the error curve EC being constructed, for each filling operation, with: y values corresponding to error values E1, E2, E3, which are determined as deviations always with respect to the constant preliminary curve PC, and not with respect to the possibly varying control curve CC; and with x values corresponding to control values C1, C2, C3, which are in turn determined starting from respective desired values D1, D2, D3 and by means of the control curve CC.
  • Figure 10 , 11 and 12 can be referred to first filling operation FO 1 or to second filling operation FO 2 or to third filling operation FO 3 .
  • the control curve CC showed in Figure 10 and 11 is showed as different from preliminary curve PC, because probably during each of second filling operation FO 2 and third filling operation FO 3 the control curve CC is, already before the reinitializing step J2, different from the preliminary curve PC.
  • control curve CC during the preliminary phase PP, is set to be equal to the preliminary curve PC, and if Figures 10 and 11 are considered to be referred to the first filling operation FO 1 , the control curve CC of Figure 10 and 11 should be equal to preliminary curve PC, as is showed in Figure 4 , which is referred to a preliminary phase PP, during which the control curve CC is initially set equal to preliminary curve PC.
  • the device 1 comprises a flow channel 7 for guiding said flow of pourable product.
  • the flow channel is indicated in Figure 1 .
  • the device 1 comprises a valve element 8.
  • the valve element 8 can adopt a variable position with respect to said flow channel 7.
  • the device 1 is configured so that said step S3 of influencing of the flow rate is carried out by controlling said position of the valve element 8.
  • the device comprises an electromagnetic or magnetic actuator 19 for controlling said position.
  • the device 1 comprises an automatic control unit 23.
  • the device 1 is configured so that the step S3 of influencing is carried out by the actuator 19 receiving automatically the control value C1 or C2 or C3 from the control unit 23 and the actuator 19 controlling automatically the position of the valve element 8 as a function of the received control value C1 or C2 or C3.
  • the device 1 comprises a flowmeter 22 for measuring said actual value A1 or A2 or A3.
  • Said step S5 of measuring the actual flow rate is carried out by the control unit 23 receiving automatically a signal from the flowmeter 22.
  • Said step of setting M1 the preliminary curve PC is carried out by means of the flowmeter 22, the control unit 23, and the actuator 19.
  • Said step of setting M2 the control curve CC is carried out by means of the control unit 23, for example by means of a user setting the control curve CC in the control unit 23.
  • Said step of setting M3 the table T is carried out by means of the control unit 23, for example by means of a user setting the table T in the control unit 23.
  • Said preliminary phase PP is carried out by means of the control unit 23.
  • Said step of obtaining S1 the desired value D1 or D2 or D3 is carried out automatically by means of or by the control unit 23.
  • Said step of determining S2 the control value C1 or C2 or C3 is carried out automatically by means of or by the control unit 23.
  • Said step of determining S4 the preliminary value P1 or P2 or P3 is carried out automatically by means of or by the control unit 23.
  • Said step of determining S6 the error value E1 or E2 or E3 is carried out automatically by means of or by the control unit 23.
  • Said step of associating the determined error value E1 or E2 or E3 to the determined control value C1 or C2 or C3 is carried out automatically by means of or by the control unit 23.
  • Said updating phase UP is carried out automatically by means of or by said control unit 23.
  • the controlling phase CP of the filling operation FO is less dependent on the detections of the flowmeter 22, leading to an increase in the precision of controlling the filling operation.
  • the magnetic and/or electromagnetic nature of the actuator 19 allows for improving the cleanliness of the device, in particular for ultraclean and aseptic filling operations.
  • the method allows to improve the precision of the automatic control of the filling operations carried out by the same device 1 provided with a magnetic and/or electromagnetic actuator 19 for controlling the position of the valve element 8, which device 1 is in particular adapted for ultraclean and aseptic filling operations.
  • the device 1 does not need any position sensor for detecting the position of the valve element 8 with respect to the flow channel 7. In this way a great reduction of the mechanical complexity of the device 1 is obtained. Therefore it is reduced the mechanical complexity of a device 1 provided with a magnetic and/or electromagnetic actuator 19 for controlling the position of the valve element 8, which device 1 can be in particular adapted for ultraclean and aseptic filling operations.
  • the electrical quantity EQ can be a Pulse-Width Modulation electric signal.
  • the filling device 1 does not need and therefore does not comprise any position sensor for controlling said position of the valve element 8, so that the automatic control of said flow rate is carried out without any closed loop control of said position of the valve element 8. Therefore a great reduction of complexity and cost is obtained.
  • the method by reinitializing the control curve CC at each filling operation, allows for avoiding the problem related to typical actual not linear correlation between the flow rate F and the electrical quantity EQ, which would render very difficult to control the filling operations based on real time values of electrical quantity EQ and associated actual flow rates values.
  • the filling method comprising the plurality of filling operations can be considered a production cycle carried out by the filling device 1.
  • the preliminary curve PC can be considered a mathematical relationship between the flow rate F and the electrical quantity EQ.
  • the preliminary curve PC remains the same and constant for all the filling operations of the production cycle.
  • control curve CC can be considered a mathematical relationship between the flow rate F and the electrical quantity EQ.
  • the control curve CC is initially set preferably equal to the preliminary curve PC and is reinitialized at each filling operation of the production cycle, based on the preliminary curve PC and the error curve EC determined during the respective filling operation.
  • the device 1 can progressively automatically adapt, from one filling operation to the next one, the automatic control of the flow rate during the filling operation to the actual boundary conditions of the production cycle, for example in terms of temperature and/or pressure, which boundary conditions can change from one production cycle to the other.
  • the device 1 is configured for carrying out the method.
  • the method is for filling a plurality of containers with a pourable product, by means of the same device 1 and during a sequence of respective filling operations.
  • the method allows the filling device 1 to have a reduction of the mechanical complexity and to have the ability of automatically improving the precision and/or the accuracy of the automatic control of subsequent filling operations carried out by the same device 1.
  • the type to which the containers to be filled belong can be a bottle or the like, or any other kind or type of container or receptacle.
  • device 1 is fluidically connected, by means of a duct 4, to a tank 3 (only partially shown) containing the pourable product.
  • device 1 is part of a well-known rotary filling machine (not shown) comprising a rotary carousel rotatable around a vertical axis, centrally carrying the tank 3 and peripherally carrying a plurality of devices 1, each connected to the tank 3 by means of one respective duct 4.
  • Device 1 comprises:
  • the device 1 comprises a tubular body 6 defining the flow channel 7 for feeding the pourable product to the container 2 to be filled and arranged below the tubular body 6 itself, and
  • the valve element 8 is a shutter 8, which movably, in particular slidingly, engages tubular body 6 and is reciprocally movable inside flow channel 7 in order to open or close an outflow passage 10 of the pourable product towards the container 2.
  • shutter 8 is movable within flow channel 7 to selectively allow or prevent the flow of pourable product therein and towards the container 2.
  • tubular body 6 ends at a lower end 11 thereof with an axial outlet opening 12 fluidically communicating, in use, with an end opening 2a defined by an upper edge of the container 2 to be filled.
  • Flow channel 7 comprises, at an upper portion 15 thereof, a first stretch 13 having a constant section, conveniently cylindrical, and, at lower portion 11, a second stretch 14 with variable section, conveniently frusto-conical, positioned upstream of outlet opening 12 and narrowing in the direction of the latter, up to a minimum-diameter section or narrow section 16.
  • Shutter 8 comprises a main portion 17 configured to cooperate in a sliding manner in contact with an internal wall of flow channel 7, preferably by means of guide portions 17a, and a shutting portion 18 configured to cooperate in contact with narrow section 16.
  • shutter 8 is movable at least between a closing position ( Figure 1 ), in which shutting portion 18 closes in a fluid-tight manner narrow section 16, thereby preventing any flow of pourable product towards outlet opening 12, and an opening position (not shown), in which shutter 8 delimits together with the narrow section and the second stretch 14, an annular outflow passage fluidically communicating with outlet opening 12, so as to allow the flow of the pourable product towards the latter and into container 2.
  • filling valve 5 is of the well-known modulating type.
  • shutter 8 is movable between a maximum closing position and a maximum opening position and in a plurality of intermediate opening positions, which define with narrow section 16 respective intermediate annular outflow passages with increasing dimensions (apertures).
  • the actuator 19 is configured to drive the movement of shutter 8 within flow channel 7.
  • actuator 19 comprises a driving member, in particular a coil 20 arranged at upper portion 15 of tubular body 6 and a driven member, preferably a permanent magnet 21 carried by shutter 8, in particular arranged within main portion 17 of shutter 8.
  • coil 20 is configured to be supplied with an electric current and to be magnetically coupled to permanent magnet 21, which is appropriately incorporated in shutter 8.
  • driven member could comprise a plurality of permanent magnets 21 carried by shutter 8 or shutter 8 could be made of ferromagnetic material, for example at least at its central portion 17, thereby defining the permanent magnet 21.
  • an efficient and simple adaptive method for controlling the filling operations which takes into account the variability of the boundary conditions of the filling method (such as pressure, temperature or the like) for each device 1 of the filling machine.
  • the obtained control is highly adaptive and depends on the actual filling conditions.
  • Control curve CC is advantageously dynamic and is recalculated continuously at each filling operation, while at the very first filling operation is conveniently set to be the same to the preliminary curve PC.

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Basic Packing Technique (AREA)

Claims (15)

  1. Verfahren zum Füllen einer Vielzahl von Behältern mittels eines Flusses von rieselfähigem Gut, wobei der Fluss über eine Füllvorrichtung (1) erfolgt, wobei das Verfahren eine vorläufige Phase (PP) und nach der vorläufigen Phase (PP) eine zeitlich geordnete Folge von Füllvorgängen (FO1, FO2, FOs) umfasst, wobei jeder Füllvorgang (FO1, FO2, FOs) zum Füllen eines jeweiligen Behälters dient;
    dadurch gekennzeichnet, dass:
    die vorläufige Phase (PP) Folgendes umfasst:
    - Festlegen (M1) einer vorläufigen Kurve (PC), die eine Durchflussmenge (F) des Flusses mit einer elektrischen physikalischen Größe (EQ) korreliert, wobei die Füllvorrichtung (1) so ausgelegt ist, dass die elektrische Größe (EQ) die Durchflussmenge beeinflussen kann;
    - Festlegen (M2) einer Steuerungskurve (CC), die die Durchflussmenge (F) mit der physikalischen elektrischen Größe (EQ) korreliert;
    - Festlegen (M3) einer Tabelle (T), die mindestens einen Zeitpunkt (t1; t2; t3) einem jeweiligen Sollwert (D1; D2; D3) der Durchflussmenge zuordnet, wobei der Sollwert (Dl; D2; D3) zu dem jeweiligen Zeitpunkt (t1; t2; t3) erhalten werden soll;
    wobei jeder Füllvorgang (FO1; FO2; FOs) eine jeweilige Steuerungsphase (CP1; CP2; CP3) und eine jeweilige Aktualisierungsphase (UP1; UP2; UP3) umfasst;
    wobei für jeden Füllvorgang (FO1; FO2; FOs) die Steuerungsphase (CP1; CP2; CP3) mindestens für den Zeitpunkt (t1; t2; t3) eine Betriebsabfolge (OS1 OS2; OSs) umfasst, wobei die Betriebsabfolge (OS1 OS2; OSs) Folgendes umfasst:
    - Erhalten (S1) des dem jeweiligen Zeitpunkt (t1; t2; t3) zugeordneten Sollwerts (D1; D2; D3) basierend auf der Tabelle (T);
    - Ermitteln (S2) eines Steuerungswertes (C1; C2; C3) der elektrischen Größe (EQ) durch Anwenden der Steuerungskurve (CC) auf den Sollwert (D1; D2; D3) ;
    - Beeinflussen (S3) der Durchflussmenge mithilfe des ermittelten Steuerungswertes (C1; C2; C3);
    - Messen (S5) eines Istwertes (A1; A2; A3) der Durchflussmenge nach dem Beeinflussen;
    Ermitteln (S4) eines vorläufigen Wertes (P1; P2; P3) der Durchflussmenge durch Anwenden der vorläufigen Kurve (PC) auf den ermittelten Steuerungswert (C1; C2; C3);
    - Ermitteln (S6) eines Fehlerwertes (E1; E2; E3), der eine Abweichung zwischen dem gemessenen Istwert (A1; A2; A3) und dem ermittelten vorläufigen Wert (P1; P2; P3) ist;
    - Zuordnen (S7) des ermittelten Fehlerwertes (E1; E2; E3) zum ermittelten Steuerungswert (C1; C2; C3);
    wobei die Aktualisierungsphase (UP1; UP2; UP3) für jeden Füllvorgang (FO1; FO2; FO3) Folgendes umfasst:
    - Ermitteln (J1) einer Fehlerkurve (EC), die einen Fehler (E) mit der elektrischen Größe (EQ) korreliert, anhand mindestens eines ermittelten Fehlerwertes (E1; E2; E3) und des zugeordneten mindestens einen ermittelten Steuerungswertes (C1; C2; C3);
    - Neuinitialisieren (J2) der Steuerungskurve (CC) anhand der ermittelten Fehlerkurve (EC) und der vorläufigen Kurve (PC).
  2. Verfahren gemäß Anspruch 1, wobei:
    - die Tabelle (T) jeden Zeitpunkt (t1; t2; t3) einer Vielzahl von Zeitpunkten (t1; t2; t3) einem jeweiligen Sollwert (D1; D2; D3) der Durchflussmenge zuordnet, wobei der Sollwert (D1; D2; D3) zu dem jeweiligen Zeitpunkt (t1; t2; t3) erhalten werden soll;
    - die Steuerungsphase (CP1; CP2; CP3) für jeden Füllvorgang (FO1; FO2; FOs) für jeden Zeitpunkt (t1; t2; t3) der Tabelle (T) eine jeweilige Betriebsabfolge (OSl; OS2; OSs) umfasst;
    - die Aktualisierungsphase (UP1; UP2; UP3) für jeden Füllvorgang (FO1; FO2; FOs) das Ermitteln (J1) der Fehlerkurve (EC) anhand der ermittelten Fehlerwerte (E1, E2, E3) und der zugeordneten jeweils ermittelten Steuerungswerte (C1, C2, C3) umfasst.
  3. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Schritt des Neuinitialisierens (J2) durch Addieren der ermittelten Fehlerkurve (EC) zur vorläufigen Kurve (PC) durchgeführt wird, sodass die neuinitialisierte Steuerungskurve (CC) gleich der Summe aus der vorläufigen Kurve (PC) und der ermittelten Fehlerkurve (EC) ist.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die vorläufige Kurve (PC) experimentell festgelegt wird.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei während der vorläufigen Phase (PP) die Steuerungskurve (CC) als gleich der vorläufigen Phase (PC) festgelegt wird.
  6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die elektrische Größe (EQ) ein elektrisches Pulsweitenmodulationssignal ist.
  7. Verfahren gemäß einem der vorherigen Ansprüche, wobei die Füllvorrichtung (1) Folgendes umfasst:
    - einen Durchflusskanal (7) zum Leiten des Flusses von rieselfähigem Gut;
    - ein Ventilelement (8), das eine variable Position in Bezug auf den Durchflusskanal (7) einnehmen kann, wobei die Füllvorrichtung (1) dazu ausgelegt ist, den Schritt des Beeinflussens (S3) durch Steuern der Position auszuführen;
    - ein elektromagnetisches oder magnetisches Stellglied (19) zum Steuern der Position durch Empfangen des Steuerungswertes (C1; C2; C3);
    - einen Durchflussmesser (22) zum Messen des Istwertes (A1; A2; A3);
    - eine automatische Steuereinheit (23);
    wobei:
    - der Schritt (S3) des Beeinflussens der Durchflussmenge dadurch ausgeführt wird, dass das Stellglied (19) automatisch den Steuerungswert (C1; C2; C3) aus der Steuereinheit (23) empfängt und das Stellglied (19) automatisch die Position des Ventilelements (8) in Abhängigkeit von dem empfangenen Steuerungswert (C1; C2; C3) steuert;
    - der Schritt (S5) des Messens der Istdurchflussmenge dadurch ausgeführt wird, dass die Steuereinheit (23) automatisch ein Signal aus dem Durchflussmesser (22) empfängt;
    - der Schritt (M1) des Festlegens der vorläufigen Kurve (PC) mithilfe des Durchflussmessers (22), der Steuereinheit (23) und des Stellglieds (19) ausgeführt wird;
    - der Schritt des Festlegens (M2) der Steuerungskurve (CC) mithilfe der Steuereinheit (23) ausgeführt wird;
    - der Schritt des Festlegens (M3) der Tabelle (T) mithilfe der Steuereinheit (23) ausgeführt wird;
    - der Schritt des Erhaltens (S1) des Sollwertes (D1; D2; D3), der Schritt des Ermittelns (S2) des Steuerungswertes (C1; C2; C3), der Schritt des Ermittelns (S4) des vorläufigen Wertes (S6) des Fehlers (P1; P2; P3), der Schritt des Ermittelns des Wertes (E1; E2; E3), der Schritt des Zuordnens (S7) des ermittelten Fehlerwertes (E1; E2; E3) zum ermittelten Steuerungswert (C1; C2; C3) und die Aktualisierungsphase (UP) automatisch mithilfe der Steuereinheit (23) durchgeführt werden.
  8. Füllverfahren gemäß einem der vorhergehenden Ansprüche, wobei die Füllvorrichtung (1) keinen Positionssensor zum Steuern der Position des Ventilelements (8) umfasst, sodass die automatische Steuerung der Durchflussmenge ohne Regelung der Position des Ventilelements (8) durchgeführt wird.
  9. Füllvorrichtung (1) zum Füllen einer Vielzahl von Behältern mittels eines Flusses von rieselfähigem Gut, wobei der Fluss durch eine Füllvorrichtung (1) erfolgt, wobei die Füllvorrichtung (1) zum Durchführen einer vorläufigen Phase (PP) und, nach der vorläufigen Phase (PP), einer zeitlich geordneten Abfolge von Füllvorgängen (FO1, FO2, FOs) ausgelegt ist, wobei jeder Füllvorgang (FO1, FO2, FOs) zum Füllen eines jeweiligen Behälters dient;
    wobei die Füllvorrichtung (1) Folgendes umfasst:
    - einen Durchflusskanal (7) zum Leiten des Flusses von rieselfähigem Gut;
    - ein Ventilelement (8), das eine variable Position in Bezug auf den Durchflusskanal (7) einnehmen kann;
    - ein elektromagnetisches oder magnetisches Stellglied (19) zum Steuern der Position;
    - eine automatische Steuereinheit (23);
    - einen Durchflussmesser (22);
    dadurch gekennzeichnet, dass:
    die Füllvorrichtung (1) so ausgelegt ist, dass die vorläufige Phase (PP) Folgendes umfasst:
    - Festlegen (M1) einer vorläufigen Kurve (PC), die eine Durchflussmenge (F) des Flusses mit einer elektrischen physikalischen Größe (EQ) korreliert, wobei die Füllvorrichtung (1) so ausgelegt ist, dass die elektrische Größe (EQ) die Durchflussmenge beeinflussen kann;
    - Festlegen (M2) einer Steuerungskurve (CC), die die Durchflussmenge (F) mit der physikalischen Größe (EQ) korreliert;
    - Festlegen (M3) einer Tabelle (T), die mindestens einen Zeitpunkt (t1; t2; t3) einem jeweiligen Sollwert (D1; D2; D3) der Durchflussmenge zuordnet, wobei der Sollwert (D1; D2; D3) zu dem jeweiligen Zeitpunkt (t1; t2; t3) erhalten werden soll;
    wobei die Füllvorrichtung (1) so ausgelegt ist, dass jeder Füllvorgang (FO1; FO2; FOs) eine jeweilige Steuerungsphase (CP1; CP2; CP3) und eine jeweilige Aktualisierungsphase (UP1; UP2; UP3) umfasst;
    wobei die Füllvorrichtung (1) so ausgelegt ist, dass die Steuerungsphase (CP1; CP2; CP3) für jeden Füllvorgang (FO1; FO2; FOs) mindestens für den Zeitpunkt (t1; t2; t3) eine Betriebsabfolge (OSl; OS2; OSs) umfasst;
    wobei die Füllvorrichtung (1) so ausgelegt ist, dass die Betriebsabfolge (OSl; OS2; OSs) Folgendes umfasst:
    - Erhalten (S1) des dem jeweiligen Zeitpunkt (t1; t2; t3) zugeordneten Sollwerts (D1; D2; D3) basierend auf der Tabelle (T);
    - Ermitteln (S2) eines Steuerungswertes (C1; C2; C3) der elektrischen Größe (EQ) durch Anwenden der Steuerungskurve (CC) auf den Sollwert (D1; D2; D3) ;
    - Beeinflussen (S3) der Durchflussmenge mithilfe des ermittelten Steuerungswertes (C1; C2; C3);
    - Messen (S5) eines Istwertes (A1; A2; A3) der Durchflussmenge nach dem Beeinflussen;
    - Ermitteln (S6) eines vorläufigen Wertes (P1; P2; P3) der Durchflussmenge durch Anwenden der vorläufigen Kurve (PC) auf den ermittelten Steuerungswert (C1; C2; C3) ;
    - Ermitteln (S6) eines Fehlerwertes (E1; E2; E3), der eine Abweichung zwischen dem gemessenen Istwert (A1; A2; A3) und dem ermittelten vorläufigen Wert (P1; P2; P3) ist;
    - Zuordnen (S7) des ermittelten Fehlerwertes (E1; E2; E3) zum ermittelten Steuerungswert (C1; C2; C3);
    wobei die Füllvorrichtung (1) so ausgelegt ist, dass für jeden Füllvorgang (FO1; FO2; FOs) die Aktualisierungsphase (UP1; UP2; UP3) Folgendes umfasst:
    - Ermitteln einer Fehlerkurve (EC), die einen Fehler (E) mit der elektrischen Größe (EQ) korreliert, anhand mindestens eines ermittelten Fehlerwertes (E1; E2; E3) und des zugeordneten mindestens einen ermittelten Steuerungswertes (C1; C2; C3);
    - Neuinitialisieren der Steuerungskurve (CC) anhand der ermittelten Fehlerkurve (EC) und der vorläufigen Kurve (PC).
  10. Füllvorrichtung gemäß Anspruch 9, wobei die Füllvorrichtung (1) so ausgelegt ist, dass:
    - die Tabelle (T) jeden Zeitpunkt (t1; t2; t3) einer Vielzahl von Zeitpunkten (t1; t2; t3) einem jeweiligen Sollwert (D1; D2; D3) der Durchflussmenge zuordnet, wobei der Sollwert (D1; D2; D3) zu dem jeweiligen Zeitpunkt (t1; t2; t3) erhalten werden soll;
    - die Steuerungsphase (CP1; CP2; CP3) für jeden Füllvorgang (FO1; FO2; FOs) für jeden Zeitpunkt (t1; t2; t3) der Tabelle (T) eine jeweilige Betriebsabfolge (OS1; OS2; OS3) umfasst;
    - die Aktualisierungsphase (UP1; UP2; UP3) für jeden Füllvorgang (FO1; FO2; FO3) das Ermitteln (S6) der Fehlerkurve (EC) anhand der ermittelten Fehlerwerte (E1, E2, E3) und der zugeordneten jeweiligen Steuerwerte (C1, C2, C3) umfasst.
  11. Füllvorrichtung (1) gemäß Anspruch 9 oder 10, wobei die Füllvorrichtung (1) so ausgelegt ist, dass der Schritt des Neuinitialisierens (J2) durch Addieren der ermittelten Fehlerkurve (EC) zur vorläufigen Kurve (PC) durchgeführt wird, sodass die neuinitialisierte Steuerungskurve (CC) gleich der Summe aus der vorläufigen Kurve (PC) und der ermittelten Fehlerkurve (EC) ist.
  12. Füllvorrichtung (1) gemäß einem der Ansprüche 9 bis 11, wobei die Füllvorrichtung (1) so ausgelegt ist, dass die vorläufige Kurve (PC) experimentell festgelegt wird.
  13. Füllvorrichtung (1) gemäß einem der Ansprüche 9 bis 12, wobei die Füllvorrichtung (1) so ausgelegt ist, dass während der vorläufigen Phase (PP) die Steuerungskurve (CC) gleich der vorläufigen Kurve (PC) festgelegt ist.
  14. Füllvorrichtung (1) gemäß einem der Ansprüche 9 bis 13, wobei die Füllvorrichtung (1) so ausgelegt ist, dass die elektrische Größe (EQ) ein elektrisches Pulsweitenmodulationssignal ist.
  15. Füllvorrichtung (1) gemäß einem der Ansprüche 9 bis 14, wobei:
    - die Füllvorrichtung (1) so ausgelegt ist, dass der Schritt des Beeinflussens (S3) durch Steuern der Position ausgeführt wird;
    - das elektromagnetische oder magnetische Stellglied (19) dazu ausgelegt ist, die Position durch Empfangen des Steuerungswertes (C1; C2; C3) zu steuern;
    - der Durchflussmesser (22) zum Messen des Istwertes (A1; A2; A3) ausgelegt ist;
    wobei die Füllvorrichtung so ausgelegt ist, dass:
    - der Schritt (S3) des Beeinflussens der Durchflussmenge dadurch ausgeführt wird, dass das Stellglied (19) automatisch den Steuerungswert (C1; C2; C3) aus der Steuereinheit (23) empfängt und das Stellglied (19) automatisch die Position des Ventilelements (8) in Abhängigkeit von dem empfangenen Steuerungswert (C1; C2; C3) steuert;
    - der Schritt (S5) des Messens der Istdurchflussmenge dadurch ausgeführt wird, dass die Steuereinheit (23) automatisch ein Signal aus dem Durchflussmesser (22) empfängt;
    - der Schritt (M1) des Festlegens der vorläufigen Kurve (PC) mithilfe des Durchflussmessers (22), der Steuereinheit (23) und des Stellglieds (19) ausgeführt wird;
    - der Schritt des Festlegens (M2) der Steuerungskurve (CC) mithilfe der Steuereinheit (23) ausgeführt wird;
    - der Schritt des Festlegens (M3) der Tabelle (T) mithilfe der Steuereinheit (23) ausgeführt wird;
    - der Schritt des Erhaltens (S1) des Sollwertes (D1; D2; D3), der Schritt des Ermittelns (S2) des Steuerungswertes (C1; C2; C3), der Schritt des Ermittelns (S4) des vorläufigen Wertes (S6) des Fehlers (P1; P2; P3), der Schritt des Ermittelns des Wertes (E1; E2; E3), der Schritt des Zuordnens des ermittelten Fehlerwertes (E1; E2; E3) zum ermittelten Steuerungswert (C1; C2; C3) und die Aktualisierungsphase (UP) automatisch mithilfe der Steuereinheit (23) durchgeführt werden.
EP20206564.5A 2020-11-10 2020-11-10 Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut Active EP3995439B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20206564.5A EP3995439B1 (de) 2020-11-10 2020-11-10 Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut
PCT/EP2021/077667 WO2022100935A1 (en) 2020-11-10 2021-10-07 Method for controlling a filling device during a filling operation and filling device for filling receptacles with a pourable product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20206564.5A EP3995439B1 (de) 2020-11-10 2020-11-10 Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut

Publications (2)

Publication Number Publication Date
EP3995439A1 EP3995439A1 (de) 2022-05-11
EP3995439B1 true EP3995439B1 (de) 2023-05-17

Family

ID=73288383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20206564.5A Active EP3995439B1 (de) 2020-11-10 2020-11-10 Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut

Country Status (2)

Country Link
EP (1) EP3995439B1 (de)
WO (1) WO2022100935A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005035264B4 (de) * 2005-07-25 2018-04-12 Endress + Hauser Flowtec Ag Steuerung einer Abfüllung eines Mediums

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019121151A1 (en) * 2017-12-21 2019-06-27 Sidel Participations Method for controlling a modulating filling valve and filling device for performing such method
EP3705450B1 (de) * 2019-03-08 2022-08-03 Sidel Participations Vorrichtung und verfahren zum befüllen eines behälters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005035264B4 (de) * 2005-07-25 2018-04-12 Endress + Hauser Flowtec Ag Steuerung einer Abfüllung eines Mediums

Also Published As

Publication number Publication date
WO2022100935A1 (en) 2022-05-19
EP3995439A1 (de) 2022-05-11

Similar Documents

Publication Publication Date Title
EP1995208B2 (de) Rotationsfüllmaschine zur Füllung von Behältern mit Flüssigkeiten
US11148924B2 (en) Filling valve and filling machine for filling receptacles
CN111372887B (zh) 控制调节填充阀的方法以及用于执行该方法的填充装置
EP3176126B1 (de) Füllvorrichtung für eine füllmaschine
MX2008012068A (es) Elemento de llenado comprendiendo un medidor de caudal.
AU2018226513B2 (en) Machine for filling containers with liquids, provided with a filling level correction system
EP3057904A1 (de) Verfahren für ein füllventil und füllventilsystem
EP3543205B1 (de) Füllventil, füllmaschine und verfahren zum füllen von behältern
EP3995439B1 (de) Verfahren zum steuern einer füllvorrichtung während eines füllvorgangs und füllvorrichtung zum füllen von behältern mit rieselfähigem gut
US11111124B2 (en) Method and device for filling with a filling product
EP3640197B1 (de) Füllmaschine zur heissfüllung
EP3473590B1 (de) Verbesserte füllvorrichtung für eine füllmaschine
US10926897B2 (en) Volumetric metering device for container filling machine
EP3572372B1 (de) Füllstutzen für füllmaschinen, insbesondere ponderal-füllmaschinen, von behältern wie fässern, flaschen, dosen und/oder ähnlichem
US6892771B2 (en) Filling machine
EP3705450B1 (de) Vorrichtung und verfahren zum befüllen eines behälters
US20180170740A1 (en) Filling system and filling packages
KR102185972B1 (ko) 액체 정량 공급 장치
US20220135388A1 (en) Device and method for filling a container with a filling product
US20230211993A1 (en) Device for dispensing a small quantity of a liquid product
EP3725734B1 (de) Verfahren und vorrichtung zum befüllen eines behälters
US20220063979A1 (en) Filling device for filling a receptacle and process for the sanitisation thereof
EP3795533A1 (de) Ventil für ein giessbares produkt und füllmaschine mit einem ventil für ein giessbares produkt
NZ746196A (en) Machine for filling containers with liquids, provided with a filling level correction system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220620

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020010931

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230424

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1568325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230517

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1568325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 4

Ref country code: FR

Payment date: 20231019

Year of fee payment: 4

Ref country code: DE

Payment date: 20231019

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020010931

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517