EP3985631B1 - Optischer rauchmelder - Google Patents

Optischer rauchmelder Download PDF

Info

Publication number
EP3985631B1
EP3985631B1 EP20202001.2A EP20202001A EP3985631B1 EP 3985631 B1 EP3985631 B1 EP 3985631B1 EP 20202001 A EP20202001 A EP 20202001A EP 3985631 B1 EP3985631 B1 EP 3985631B1
Authority
EP
European Patent Office
Prior art keywords
light source
light
optical
difference
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20202001.2A
Other languages
English (en)
French (fr)
Other versions
EP3985631A1 (de
Inventor
Pierre Clerivet
Xavier XIE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to EP20202001.2A priority Critical patent/EP3985631B1/de
Publication of EP3985631A1 publication Critical patent/EP3985631A1/de
Application granted granted Critical
Publication of EP3985631B1 publication Critical patent/EP3985631B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Definitions

  • the present invention relates to an optical smoke detector.
  • an optical smoke detector comprises an optical detection chamber equipped with an LED (Light-Emitting Diode) and a photoelectric detector positioned in the chamber so as not to receive any direct light from the LED.
  • the operating principle of the optical detector is based on the diffusion by smoke particles of the light emitted by the LED. For example, in the event of a fire, smoke particles will enter the optical chamber via openings made in the walls of said chamber. The beam of light emitted by the LED is configured to interact with these smoke particles so as to be diffused into the optical chamber.
  • the photoelectric detector is for its part configured and positioned to capture at least part of this scattered light, the detection of this scattered light triggering an alarm.
  • a problem with optical smoke detectors is linked to their aging. Indeed, over time, two phenomena can disrupt smoke detection: on the one hand, the aging of the LED which alters the intensity of the light beam emitted, and on the other hand the presence of dust which accumulates in the optical detection chamber and disrupts or prevents smoke detection. Both phenomena reduce the intensity of scattered light that can reach the photoelectric detector, preventing it from reaching a predefined intensity threshold which is configured to trigger the alarm.
  • An aim of the present invention is to propose an optical smoke detector which makes it possible to resolve the aforementioned problem, in particular by detecting any disturbance which could come from dust and/or the aging of the LED and which could disrupt the detection of smoke particles.
  • the present invention provides an optical smoke detector as described by the independent claim. Further advantages of the invention are set forth in the dependent claims.
  • the control unit is configured to calculate a first difference and a second difference, the first difference being the difference between a value obtained for said first signal from a measurement of the latter by the control unit. control and a first reference value, and the second difference being the difference between a value obtained for said second signal from a measurement of the latter by the control unit and a second reference value, and to detect said presence of dust in the optical chamber and/or said aging of the light source from said differences.
  • Said values obtained for said first and second signals are for example RMS values measured for the respective signals by said control unit.
  • the reference values for said first and second signals are for example calibration values or nominal values recorded in a memory of the control unit.
  • control unit is preferably configured to compare a first ratio with a second ratio, said first ratio being equal to the value of the first difference divided by said first reference value and the second ratio being equal to the value of said second difference divided by said second reference value.
  • said first ratio may be equal to the absolute value of the first difference divided by said first reference value and the second ratio can be equal to the absolute value of said second difference divided by said second reference value.
  • the interpretation by the control unit of the result of said comparison of the first report with the second report may be different, as may the method of detecting aging or presence of dust from the first and second difference.
  • the second signal is delivered by the first photodetector in response to said emission of the light beam by said first light source.
  • a first predefined threshold value for example, less than 0
  • the unit of control is configured to signal aging of the first light source.
  • the control unit is configured to signal the presence of dust in the optical chamber.
  • the third predefined threshold value is greater than the second predefined threshold value.
  • the temporal comparison by the control unit of the values of said first signal with the first reference value makes it possible to detect a variation in the light emitted by the light source and directly received by the second photodetector.
  • the control unit is configured to signal aging of the first light source, while if the absolute value of the first difference is greater than said other first predefined threshold value and the absolute value of the second difference is greater than said other second predefined threshold value, then the control unit is configured to signal the presence of dust in the optical chamber.
  • each value measured by the control unit for said first signal is preferably stored in a memory of the control unit.
  • control unit will signal an aging of the first light source, and otherwise, a presence of dust.
  • a processor of the control unit can be configured to periodically compare said values measured for said first and second signals with respectively said first and second threshold value in order to determine, by means of said first and second differences, the temporal variations of the light intensity measured by the first and second photodetector.
  • the optical detector comprises at least a second light source and is characterized in that the second signal is delivered by the second photodetector in response to an emission of a beam of light by said second light source, said emission by the second light source and said emission by the first light source being preferentially temporally offset and separated from each other (ie the control unit is configured to keep each light source on during successive time intervals which do not do not overlap with the successive time intervals for switching on the other light sources).
  • the control unit is configured to determine if the first light source has suffered a loss of light power greater than a predefined threshold, ie if said first difference is less than said first threshold value.
  • control unit is then configured to determine and report the presence of dust if the absolute value of the difference between the first gear and the second gear is smaller than a fourth predefined threshold value and to determine and signal aging of the first light source if the absolute value of this difference is greater than a fifth predefined threshold value.
  • said first and/or second detection unit comprises a waveguide.
  • the waveguide is configured to guide the light from said collection surface to the photodetector (for example to the first photodetector when the waveguide equips the first detection unit, and/or to the second photodetector when the waveguide equips the second detection unit), the photodetector then being located outside said optical chamber.
  • This embodiment notably saves space and reduces the noise of the signals delivered by the photodetector.
  • FIG. 1 schematically presents an optical smoke detector 1 according to the invention, seen from above.
  • FIG. 2 presents a schematic side view of the optical detector 1 presented in Fig. 1 and seen from section plane BB.
  • This optical smoke detector 1 comprises an optical detection chamber 11, at least one light source 12, for example a first light source 121 and a second light source 122, a first detection unit 13, and a second detection unit 14.
  • the first light source 121 and the second light source 122 are located in the same electronic component, for example in a two-color LED.
  • the optical chamber 11 comprises one or more openings 111, for example lateral, configured to allow smoke particles to enter the interior of the optical chamber 11, for example in the event of a fire.
  • the optical chamber 11 is thus preferably produced in the form of a closed box comprising one or more of said openings 111.
  • these openings are configured to allow smoke particles to penetrate, while preventing external light from entering. penetrate into the optical chamber 11 and disrupt the detection of said smoke particles.
  • the interior of the optical chamber 11 is configured to prevent light of each of the light sources is reflected and/or diffused by an internal wall of the optical chamber 11 in the direction of said first detection unit 13, or more precisely in the direction of a collection surface A1 of said first collection unit 13.
  • the internal walls of said optical chamber 11 may comprise a structure/geometry or construction in the form of a labyrinth configured to prevent reflection and/or diffusion of light from the wall towards the first photodetector 13.
  • the light sources such as the first and second light sources 121, 122, may be light-emitting diodes usually called “LEDs”.
  • Said light sources 12 may also include a polychromatic light source whose emission spectrum covers several wavelengths.
  • Each light source can be configured to emit radiation at one or more, preferably two, different wavelengths, for example 940 nm and 455 nm, each LED emitting for example at a different wavelength, for example alternately. .
  • the optical smoke detector 1 comprises at least one light source 12 emitting radiation at a wavelength capable of being diffused and/or reflected by the smoke particles when the latter are present in the optical chamber 11
  • the radiation from the light source 12, for example from said first and second light source 121, 122, is emitted in the form of a directed beam of light, in the optical chamber.
  • the light beam from at least one, preferably each of said light sources 12, is directed towards a detection center C.
  • the optical axis of each of said light sources 12 is aligned with said detection center C.
  • the first detection unit 13 and the second detection unit 14 each comprise a photoelectric detector, respectively called the first photodetector 131 and the second photodetector 141.
  • a photoelectric detector respectively called the first photodetector 131 and the second photodetector 141.
  • the first detection unit 13 is configured to detect this scattered and/or reflected light.
  • said first photodetector 131 has an optical axis configured to be directed towards or aligned with said detection center C.
  • the first detection unit 13 is configured so that the first photodetector 131 is free from any direct illumination from each of said light sources 12.
  • the configuration of the optical chamber and/or of said first detection unit 13 is such that said first photodetector 131 cannot be reached by direct light from each of the light sources.
  • the first photodetector 131 is configured and/or positioned to only indirectly receive the light emitted by each of said light sources 12: it is configured not to measure any flux of light directly emitted by said light sources, but only a indirect light, ie diffused or reflected by the smoke particles inside the optical chamber.
  • the collection surface A1 defines the single passage/opening allowing light to reach the first photodetector 131, this collection surface A1 being located in an area of the optical chamber 11 free from any direct illumination by each of the sources luminous 12.
  • the optical smoke detector 1 further comprises a unit 15 for controlling the aging of said optical detector 1 configured to signal, by means of an alarm signal, eg light and/or sound, a decrease in the light intensity of one of said light sources 12 and/or a presence of dust in said optical chamber 11.
  • This control unit 15 is connected on the one hand to each of said light sources 12 in order to control/control the emission of said beam of light from the latter, and on the other hand to the first and the second detection unit so as to receive from said first and second photodetector signals (electrical current or voltage) generated by the absorption of light by the photodetector.
  • the control unit 15 is in particular configured to control said light sources 12 so that a single beam of light is emitted in the optical chamber at each instant, ie at each time t.
  • the beams of light emitted inside the optical chamber 11 are thus preferably emitted alternately, whether for the same light source emitting for example at least two beams each at a different wavelength, or for all light beams emitted by all the light sources 12.
  • the control unit 11 controls each light source so that only one beam of light is emitted at a time in the optical chamber 11.
  • the control unit 11 controls at least one two-color LED, so that one of the two diodes composing the two-color LED emits a beam alternately, ie never both at the same time.
  • Said first detection unit 13 comprises said light collection surface A1 and is configured to define a detection zone Z1 in said optical chamber.
  • Said surface A1 is for example a surface of a lens 132 intended to collimate on the first photodetector 131 the light scattered/reflected in the optical chamber 11, this surface A1 receiving the incident light from the optical chamber and directing it towards the first photodetector 131.
  • Said detection zone Z1 is a three-dimensional zone included in the optical chamber 11 and for which a light scattered or reflected in the direction of said surface A1 will reach the first photodetector 131 to generate a signal which can be used, according to the present invention, to detect aging or the presence of dust in the optical chamber 11.
  • This detection zone Z1 depends on the characteristics optics of the first detection unit 13 and the optical chamber 11, such as for example the focal length of the lens 132, etc., as well as technical characteristics of the first photodetector 131. These characteristics are well known to those skilled in the art.
  • This detection zone Z1 is typically defined symmetrically around the optical axis of the first detection unit 13 and therefore includes the detection center C aligned with said optical axis.
  • the second detection unit 14, and in particular said second photodetector 141, are configured as well as positioned to measure a direct light flux emitted by one, preferably each, of said light sources 12.
  • said second detection unit 14 comprises a surface A2 for collecting the direct light emitted by the light sources 12, this surface A2 being positioned in the optical chamber 11 so as to be illuminated directly by each of said light sources 12, while being outside said detection zone Z1 so as not to disturb the measurement by the first photodetector 131 of the flux of diffused/reflected light.
  • Said second detection unit 14 is configured to transmit the flow of direct light collected/received by said collection surface A2 to said second photodetector 141, the latter being configured to generate a signal, called first signal S1, which is a function of said flow of light. direct light received by said A2 collection surface.
  • first signal S1 is thus generated for each beam of light received by the second photodetector 141.
  • the collection surface A2 is positioned as close as possible to the detection zone Z1, for example at its outer limit, i.e. without being located inside said detection zone Z1.
  • said second photodetector 141 can be positioned directly in the optical chamber 11, preferably as close as possible to the detection zone Z1 so as to be able to detect only dust likely to disrupt the measurements carried out by the first photodetector 131. Indeed, any positioning further from the detection zone Z1 could result in detection of dust located in the middle. outside the detection zone Z1, but between the latter and the second photodetector 141. This could thus generate a false alarm by said control unit 15.
  • the direct light flux is directly absorbed by the second photodetector 141 (considering for example the case of a photodiode), said collection surface A2 then corresponding to the light absorption surface of said second photodetector 141. absorption by the second photodetector 141 of the light flux received by said collection surface A2 is configured to generate said first signal S1, which is then transmitted to the control unit 15.
  • each light source 12 is associated with a second different detection unit 14, so that the optical smoke detector comprises as many light sources 12 as second detection units 14 as described previously, with the difference that in this case, each second detection unit 14 is configured to collect via said collection surface A2 the direct light emitted by one and only one light source 12.
  • each light source 12 and each second detection unit 14 all point towards said detection center C , ie have their respective optical axes aligned with the latter.
  • each second detection unit 14 comprises a collection surface A2 placed as close as possible to the detection zone Z1.
  • FIG. 4 presents an embodiment for which said second detection unit 14 comprises a waveguide 145 configured to collect the direct light emitted by one or more light sources 12 and guide it towards the second photodetector 141 in order to generate said first signal S1.
  • the collection surface A2 corresponds to the surface of the waveguide 145 located in the optical chamber 11 is intended to collect the direct light emitted by one or more of said light sources 12.
  • the second photodetector 141 is installed outside said optical chamber 11.
  • each detection unit comprising such a waveguide preferably has its photodetector installed outside the optical chamber 11 and directly fixed to a printed circuit comprising all or part of the electrical components of the control unit 15.
  • This difference D1 calculated by the control unit 15 for each first signal S1 received is a measurement of a temporal variation of the flux of light received by the second photodetector 141. It in fact compares for the same light source the flux received by the second photodetector at time t i at a nominal flux, which was for example received at time t 0 different from t i . This comparison is preferably carried out by the control unit 15 for each of the light sources 12 of the optical detector or for a predefined group of said light sources.
  • the control unit 15 is further configured to determine if this difference is less than a first predefined threshold value (or alternatively if the absolute value of its difference is greater than the absolute value of said first threshold value), or if it is lies outside a range of predefined values. If this is the case, then either the light source whose beam of light is at the origin of the first signal S1 has aged and its intensity has fallen and/or dust are found in the optical chamber 11 and disrupt the light flux measurements.
  • the control unit measures a second signal S2.
  • the method by which the control unit determines the presence of dust and/or aging of the LED will be explained in detail by taking the figure 1 as a non-restrictive illustration.
  • this second signal S2 is the signal provided by the first photodetector 131 at time t i , ie generated by the first photodetector 131 in response to the beam of light emitted by the first light source at time t i .
  • this second signal S2 is the signal supplied by the second photodetector 141 in response to a beam of light emitted by the second light source 122 at a time t' i different from t i .
  • the control unit 15 can use or combine the two embodiments in order to determine more precisely the cause of the variation in the flow of light received by the second photodetector 141 at time t i .
  • the control unit 15 is then configured to compare D1 and D2 in order to determine whether dust and/or aging of the first light source is the cause of the variation measured via D1.
  • the control unit is configured to calculate said second difference D2 according to the second embodiment and/or according to the first embodiment for part or all of the light sources of the optical detector different from the first light source 121 and for use a dust and/or aging detection algorithm from said first difference D1 and all the second differences D2 calculated.
  • control unit is configured to determine whether D1/V 1 0 has a value comparable to D2/V 2 0, for example to determine whether
  • the detection zone of the second photodetector is disturbed by dust and the control unit 15 is then configured to signal presence of dust; on the other hand, if the control unit 15 determines that D1/V 1 0 has a value different from D2/V 2 0, for example if
  • the flux of each light source 12 is compared by the control unit 15 to a nominal flux defined for the second photodetector 141 for each of the light sources 12.
  • the first difference D1 is calculated, normalized relative to the first reference value, then compared to the value D2 obtained for another light source and normalized relative to the second reference value defined for this other light source.
  • the control unit 15 can compare the variations in luminous flux of each light source 12 and, by correlating the results, determine precisely the cause of a variation in flux for one of said light sources by distinguishing the presence of dust aging of the light source.
  • said first embodiment is used in conjunction with said second embodiment by the control unit 15 in order to validate the results obtained by each of the embodiments and send an alarm signal only in the event of convergence of the results.
  • control unit 15 is configured to store in an internal memory of said optical detector 1 the different signals delivered by the first and each of said second detection units and to predict, from the recorded signals, the evolution of aging and /or the state of dustiness of the optical detector so as to automatically alert and in advance (i.e. before the state of dustiness or aging exceeds a predefined threshold value for dustiness and aging respectively) a center of maintenance or an operator.
  • said control unit comprises in particular a prediction algorithm configured to predict the evolution of aging and/or dustiness from each of the measured signals S1 and S2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Claims (13)

  1. Optischer Rauchmelder (1) umfassend:
    - eine optische Detektionskammer (11);
    - mindestens eine Lichtquelle (12), die dazu ausgebildet ist, einen Lichtstrahl in die optische Kammer (11) auszustrahlen;
    - eine erste Detektionseinheit (13), die mindestens einen fotoelektrischen Detektor - nachfolgend "erster Fotodetektor" - (131) frei von jeglicher direkten Beleuchtung durch die Lichtquelle(n) (12) umfasst;
    - eine zweite Detektionseinheit (14), die mindestens einen fotoelektrischen Detektor - nachfolgend "zweiter Fotodetektor" - (141) umfasst, wobei die zweite Einheit (14) so ausgebildet ist, dass der zweite Fotodetektor (141) das von mindestens einer der Lichtquellen (12) ausgestrahlte Licht, nachfolgend "erste Lichtquelle" (121) genannt, direkt empfängt;
    - eine Kontrolleinheit (15) der Alterung des optischen Rauchmelders (1), die dazu ausgebildet ist, die erste Lichtquelle (121) zu kontrollieren/zu steuern, damit sie vorübergehend einen Lichtstrahl ausstrahlt, wobei die Kontrolleinheit (15) weiter zum Empfangen, als Reaktion auf das Ausstrahlen des von der ersten Lichtquelle (121) ausgestrahlten Lichtstrahls eines ersten Signals (S1) ausgebildet ist, das von dem zweiten Fotodetektor (141) abgegeben wird, und aus dem ersten Signal (S1) und mindestens einem zweiten Signal (S2), das von einem der Fotodetektoren des optischen Rauchmelders (1) erzeugt wird, ein Vorhandensein von Stäuben in der optischen Kammer und/oder eine Alterung der ersten Lichtquelle (121) zu detektieren;
    wobei der optische Rauchmelder (1) gemäß der Erfindung dadurch gekennzeichnet ist, dass die Kontrolleinheit (15) dazu ausgebildet ist, eine erste Differenz und eine zweite Differenz zu berechnen, wobei die erste Differenz die Differenz zwischen einem Wert, der für das erste Signal (S1) aus einer Messung dieses letzteren durch die Kontrolleinheit (15) erhalten wird, und einem ersten Referenzwert ist, und die zweite Differenz die Differenz zwischen einem Wert, der für das zweite Signal (S2) aus einer Messung dieses letzteren durch die Kontrolleinheit (15) erhalten wird, und einem zweiten Referenzwert ist, und das Vorhandensein von Stäuben in der optischen Kammer (11) und/oder die Alterung der ersten Lichtquelle (121) aus den Differenzen zu detektieren.
  2. Optischer Rauchmelder (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kontrolleinheit (15) dazu ausgebildet ist, ein erstes Verhältnis und ein zweites Verhältnis zu berechnen und zu vergleichen, um das Vorhandensein von Stäuben in der optischen Kammer und/oder die Alterung der ersten Lichtquelle (12) zu detektieren, wobei das erste Verhältnis eine Funktion von oder gleich der ersten Differenz geteilt durch den ersten Referenzwert ist, und das zweite Verhältnis eine Funktion von oder gleich der zweiten Differenz geteilt durch den zweiten Referenzwert ist.
  3. Optischer Rauchmelder (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kontrolleinheit (15) dazu ausgebildet ist, ein erstes Verhältnis und ein zweites Verhältnis zu berechnen und zu vergleichen, um das Vorhandensein von Stäuben in der optischen Kammer und/oder die Alterung der ersten Lichtquelle (12) zu detektieren, wobei das erste Verhältnis gleich dem absoluten Wert der ersten Differenz geteilt durch den ersten Referenzwert ist, und das zweite Verhältnis gleich dem absoluten Wert der zweiten Differenz geteilt durch den zweiten Referenzwert ist.
  4. Optischer Rauchmelder (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das zweite Signal (S2) vom ersten Fotodetektor (131) als Reaktion auf das Ausstrahlen des Lichtstrahls durch die erste Lichtquelle (121) abgegeben wird.
  5. Optischer Rauchmelder (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Kontrolleinheit (15) dazu ausgebildet ist, eine Alterung der ersten Lichtquelle (121) zu signalisieren, wenn der Wert der ersten Differenz kleiner als ein erster vordefinierter Schwellenwert ist, während der Wert der zweiten Differenz kleiner als ein zweiter vordefinierter Schwellenwert ist, und ein Vorhandensein von Staub zu signalisieren, wenn der Wert der ersten Differenz kleiner als der erste vordefinierte Schwellenwert, und der Wert der zweiten Differenz größer als ein dritter vordefinierter Schwellenwert ist.
  6. Optischer Rauchmelder (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Kontrolleinheit (15) dazu ausgebildet ist, eine Alterung der ersten Lichtquelle (121) zu signalisieren, wenn der absolute Wert der ersten Differenz größer als ein erster vordefinierter Schwellenwert ist, während der absolute Wert der zweiten Differenz kleiner als ein anderer zweiter vordefinierter Schwellenwert ist, und ein Vorhandensein von Staub zu signalisieren, wenn der absolute Wert der ersten Differenz größer als der andere erste vordefinierte Schwellenwert, und der absolute Wert der zweiten Differenz größer als der andere zweite vordefinierte Schwellenwert ist.
  7. Optischer Rauchmelder (1) nach Anspruch 1 bis 2, umfassend eine zweite Lichtquelle (122), die dazu ausgebildet ist, einen Lichtstrahl in die optische Kammer (11) auszustrahlen, und dadurch gekennzeichnet, dass das zweite Signal (S2) durch den zweiten Fotodetektor (141) als Reaktion auf ein Ausstrahlen eines Lichtstrahls durch die zweite Lichtquelle (122) abgegeben wird, wobei das Ausstrahlen zeitlich verschoben, und von dem Ausstrahlen des Lichtstrahls durch die erste Lichtquelle (121) getrennt ist.
  8. Optischer Rauchmelder (1) nach Anspruch 7, dadurch gekennzeichnet, dass er eine zweifarbige LED umfasst, welche die erste und zweite Lichtquelle umfasst.
  9. Optischer Rauchmelder (1) nach einem der
    Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Kontrolleinheit (15) dazu ausgebildet ist, zu bestimmen, ob die erste Lichtquelle einen Lichtleistungsverlust erlitten hat, der größer als eine vordefinierte Schwelle ist, und wenn dies der Fall ist, um ein Vorhandensein von Staub zu signalisieren, wenn der absolute Wert der Differenz zwischen dem ersten Verhältnis und dem zweiten Verhältnis kleiner als ein vierter vordefinierter Schwellenwert ist, und um eine Alterung der ersten Lichtquelle (121) zu signalisieren, wenn der absolute Wert dieser Differenz größer als ein fünfter vordefinierter Schwellenwert ist.
  10. Optischer Rauchmelder (1) nach einem der
    Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Kontrolleinheit 15 dazu ausgebildet ist, in einem internen Speicher des optischen Rauchmelders 1 jedes erste Signal (S1), das von dem zweiten Fotodetektor (141) erzeugt wird, sowie jedes zweite Signal (S2) zu speichern, und um aus den gespeicherten Signalen S1, S2 eine Entwicklung der Alterung und/oder einen Staubbelastungszustand des optischen Rauchmelders vorherzusagen.
  11. Optischer Rauchmelder (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die zweite Detektionseinheit (14) einen Wellenleiter (145) umfasst, der dazu ausgebildet ist, das direkte Licht, das von einer oder mehreren Lichtquellen (12) ausgestrahlt wird, zu sammeln, und zum zweiten Fotodetektor (141) zu leiten.
  12. Optischer Rauchmelder (1) nach Anspruch 11, dadurch gekennzeichnet, dass der zweite Fotodetektor (141) außerhalb der optischen Kammer 11 installiert ist.
  13. Optischer Rauchmelder (1) nach Anspruch 12, dadurch gekennzeichnet, dass der zweite Fotodetektor (141) direkt an einer Leiterplatte befestigt ist, die alle elektrischen Komponenten der Kontrolleinheit (15) oder einen Teil davon umfasst.
EP20202001.2A 2020-10-15 2020-10-15 Optischer rauchmelder Active EP3985631B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20202001.2A EP3985631B1 (de) 2020-10-15 2020-10-15 Optischer rauchmelder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20202001.2A EP3985631B1 (de) 2020-10-15 2020-10-15 Optischer rauchmelder

Publications (2)

Publication Number Publication Date
EP3985631A1 EP3985631A1 (de) 2022-04-20
EP3985631B1 true EP3985631B1 (de) 2024-08-07

Family

ID=72943866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20202001.2A Active EP3985631B1 (de) 2020-10-15 2020-10-15 Optischer rauchmelder

Country Status (1)

Country Link
EP (1) EP3985631B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110432A1 (de) 2022-11-22 2024-05-30 Wagner Group Gmbh Verfahren zur überwachung einer led
EP4375640A1 (de) 2022-11-22 2024-05-29 Wagner Group GmbH Verfahren zur überwachung einer led

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210347A (ja) * 1983-05-16 1984-11-29 Nohmi Bosai Kogyo Co Ltd 散乱光式煙感知器の機能試験装置
EP0503167B1 (de) * 1991-03-12 1995-06-14 Matsushita Electric Works, Ltd. Rauchmelder und Verfahren zum Testen eines solchen Melders

Also Published As

Publication number Publication date
EP3985631A1 (de) 2022-04-20

Similar Documents

Publication Publication Date Title
EP1679469B1 (de) Lichtsignalgerät
EP3985631B1 (de) Optischer rauchmelder
EP2821692B1 (de) Gesichertes optisches modul für kraftfahrzeug, das eine laser-lichtquelle umfasst
JP4027374B2 (ja) 煙感知器および監視制御システム
FR2723448A1 (fr) Dispositif de detection d'eau ou analogue sur une glace de vehicule automobile
EP0620051A1 (de) Verfahren und Vorrichtung zur automatischen Sortierung von Produkten, hauptsächlich von Früchten oder Gemüsen
EP1292472A1 (de) Automatische steuerung zur reinigung von der oberfläche einer platte mit verschiedenen schmutzzuständen und verwendungsverfahren
EP0333575B1 (de) Verfahren und Vorrichtung zum automatischen Auslesen eines Flüssigkeitszählers mit einem mechanischen Zählwerk
FR2482753A1 (fr) Dispositif de detection d'incendie et d'explosion
CH686157A5 (fr) Detecteur photoelectrique de fumee.
FR2754347A1 (fr) Dispositif de detection de fumee pour appareil de cuisson
EP1105712B1 (de) Messvorrichtung der grösse sich bewegender teilchen, insbesondere für regenmessungen
FR2666163A1 (fr) Dispositif opto-electronique de detection de fumees ou de gaz en suspension dans l'air.
WO2000037292A1 (fr) Procede de commande de nettoyage d'une surface de plaque par controle optique dynamique, et equipement de mise en oeuvre
EP0497649A1 (de) Verfahren und Vorrichtung zur Ermittlung der Oberflächenbeschaffenheit eines lichtdurchlässigen optischen Elements
FR2977315A1 (fr) Systeme de detection a faible consommation d'energie
EP0528702B1 (de) Abbildungssystem mit integrierter Abnutzungsmessung der in Transmission arbeitenden optischen Elemente und optronische Abbildungseinrichtung, bestehend aus solch einem Abbildungssystem
EP0825431A1 (de) Vorrichtung zur Kalibrierung eines spektroskopischen Gerätes
FR3101195A1 (fr) Liaison électrique comprenant un dispositif optronique de protection électrique.
FR2944143A1 (fr) Detection de salissure
FR2815715A1 (fr) Systeme de detection de fumee
EP2508856B1 (de) Verfahren und Sensor für die Sonneneinstrahlung, und aktives Fenster, das einen solchen Sensor umfasst
EP2515277A1 (de) Vorrichtung zur Überwachung des Vorbeilaufens/-fahrens eines Wettkämpfers bei einem Sportwettkampf
EP1734382A1 (de) Vorrichtung zur Bestimmung der Position eines beweglichen Objekts im Verhältnis zu einem Fixpunkt
WO2006136576A1 (fr) Capteur pour spectrometre, dont les moyens optiques sont mobiles, et spectrometre correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221017

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602020035206

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G08B0017100000

Ipc: G08B0017107000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: G08B0017100000

Ipc: G08B0017107000

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 29/24 20060101ALI20240221BHEP

Ipc: G08B 29/18 20060101ALI20240221BHEP

Ipc: G08B 29/14 20060101ALI20240221BHEP

Ipc: G08B 17/107 20060101AFI20240221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020035206

Country of ref document: DE