EP3984054B1 - Interrupter unit having a vacuum tube and an insulating housing - Google Patents

Interrupter unit having a vacuum tube and an insulating housing Download PDF

Info

Publication number
EP3984054B1
EP3984054B1 EP20725438.4A EP20725438A EP3984054B1 EP 3984054 B1 EP3984054 B1 EP 3984054B1 EP 20725438 A EP20725438 A EP 20725438A EP 3984054 B1 EP3984054 B1 EP 3984054B1
Authority
EP
European Patent Office
Prior art keywords
insulating housing
interrupter unit
unit according
layer
switch tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20725438.4A
Other languages
German (de)
French (fr)
Other versions
EP3984054A1 (en
EP3984054C0 (en
Inventor
Tobias Alexander GOEBELS
Sylvio Kosse
Paul Gregor Nikolic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3984054A1 publication Critical patent/EP3984054A1/en
Application granted granted Critical
Publication of EP3984054C0 publication Critical patent/EP3984054C0/en
Publication of EP3984054B1 publication Critical patent/EP3984054B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66223Details relating to the sealing of vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings

Definitions

  • the invention relates to an interrupter unit according to the preamble of patent claim 1.
  • This insulating housing is thus arranged between the outer circumference of the vacuum interrupter and the gas space, which contains clean air, for example.
  • the insulating housing is pushed over the vacuum tube or the insulating housing is cast around the vacuum tube in a casting process.
  • Such bubbles in turn lead to partial discharges in this area during operation, as a result of which the material of the insulating housing is subject to erosion. The material is attacked at this point and loses its electrical insulating ability.
  • long-term damage to the material of the insulating housing can lead to a breakdown in the boundary layer or a breakdown to the outside into the gas space.
  • the object of the invention is to provide an interrupter unit with a vacuum interrupter and an insulating housing which, compared to the prior art, has improved protection against partial discharges in the border area between the vacuum interrupter and the insulating housing and thus prevents premature damage or erosion of the material of the insulating housing becomes.
  • the interrupter unit according to claim 1 comprises a vacuum interrupter and an insulating housing, the insulating housing having an inner surface and the vacuum interrupter being at least partially bounded by an electrically insulating structural material.
  • the structural material in turn has an outer surface, with the insulating housing at least partially surrounding the vacuum interrupter.
  • the inner surface of the insulating housing and the outer surface of the vacuum interrupter are separated from one another by an adhesion layer.
  • the invention is characterized in that both the inner surface and the outer surface are at least partially provided with a conductive layer, so that the following layer sequence results in a border area between the vacuum interrupter and the insulating housing, directed radially outwards from a switching axis:
  • This structural material has the outer surface, which in turn is provided with a conductive layer or includes such a conductive layer.
  • an adhesion layer which is surrounded by a further conductive layer on the insulating housing or on its inner surface, and this further conductive layer is on the Inner surface of the insulating housing attached.
  • a volume material of the insulating housing also follows.
  • the layer sequence described comprises two electrically conductive layers which delimit the adhesion layer from both sides when viewed radially.
  • the adhesion layer is preferably an adhesive layer that is additionally introduced between the two conductive layers.
  • the two conductive layers can also be designed in such a way that they interact with one another through a corresponding process treatment, for example heat treatment, again for example through diffusion processes, so that the adhesion layer forms in the border region between the two electrically conductive layers.
  • the adhesion layer could thus also emerge from the two conductive layers.
  • the term electrically conductive also means a semiconductive material that is based on conventional semiconductor materials, for example such as silicon, silicon carbide or compound semiconductors such as gallium arsenide or includes this.
  • the electrical conductivity of the layer is dimensioned in such a way that the electrical resistance of the layer in the axial direction is in a range between 10 8 and 10 15 ohms.
  • the insulating housing prefferably has a decreasing permittivity radially outward, starting from the switching axis.
  • the permittivity at the outer edge of the insulating housing is preferably as close as possible to 1, which means a small jump in field strength at the transition to the outer insulating medium, for example the cleaned air.
  • Realistic values for the permittivity of well-suited materials for the insulating housing, such as e.g. B. plastics, especially based on epoxy resin are between 1.2 and 2, especially between 1.2 and 1.5.
  • the permittivity in the insulating housing can decrease in steps radially outwards, which can be achieved by layering different materials in the insulating housing. A gradual change in permittivity radially outwards can also be useful and can be represented.
  • FIG 1 the structure or the creation of an interrupter unit 2 with a vacuum interrupter 4 and an insulating housing 6 is illustrated.
  • a vacuum interrupter 4 which has a structural material 22 which surrounds a vacuum space 28 .
  • Two switching contacts 26 are shown schematically in the vacuum space 28 , at least one of which can be moved translationally along a switching axis 20 .
  • the outer shape of the vacuum interrupter 4 is to be understood purely schematically, the structural material 22, which usually consists of an insulating ceramic material or includes this, usually only represents part of a housing of a vacuum interrupter 4. In particular in one area , In which the switching contacts 26 move along the switching axis 20, the vacuum interrupter 4 is delimited on the outside by a metallic outer material.
  • a conductive or semiconductive layer 16 is applied to an outer surface 10 of the vacuum tube 4 or the structural material 22 .
  • This is, for example, a powdered silicon carbide material that is embedded in an epoxy matrix and has a SIC filling level of between 50 and 70 percent of the total volume.
  • the resulting layer 16 has a conductivity which is dimensioned such that the electrical resistance of the layer is in a range between 10 8 and 10 15 ohms in the axial direction.
  • the conductivity of the layer 16 is determined according to the resulting from the rated voltage and the specified geometric parameters of the vacuum interrupter and the resulting electric field.
  • an insulating housing 6 is pushed over the vacuum interrupter 4 .
  • the insulating housing 6 is configured cylindrically here schematically, where here a form-fitting application of the insulating housing 6 is illustrated.
  • a further conductive layer 14 which is attached to an inner surface 8 of the insulating housing 6 is expedient here.
  • layers 14 and 16 should be of the same type. However, they can also be different in terms of their material and their conductivity if, for example, different adhesion conditions and the resulting different coating processes make this necessary. This is expedient if the field freedom or field reduction between the layers 14, 16, to be described in more detail below, is achieved.
  • the interrupter unit is shown schematically in a finished state in partial figure d.
  • the boundary area 18 between the structural material 22 of the vacuum interrupter 4 and a volume material 24 of the insulating housing 6 is in figure 1 represented by a circle, which is provided with the reference number II and its enlarged representation in FIG figure 2 is shown.
  • figure 2 shows therefore this section, the boundary area 18 between the vacuum interrupter 4 and the insulating housing 6, wherein on the left side of the figure 2 the structural material 22 (for example aluminum oxide) is shown as the outer boundary of the vacuum interrupter 4 .
  • This structural material 22 has an outer surface 10 on which a conductive layer 16 is applied. The composition of the conductive layer 16 has already been described in the previous paragraph.
  • An adhesion layer 12 follows, which is preferably and essentially formed by an organic adhesive. Then follows another electrically conductive layer 14, which is very similar in composition to layer 16 or even consists of the same material. This is applied to an inner surface 8 of the insulating housing 6 .
  • the volume material follows 24 of the insulating housing 6. This material is preferably an epoxy resin.
  • bubbles 32 are shown between layers 16 and 14 in adhesion layer 12.
  • FIG. These bubbles 32 form undesirably, but are difficult to avoid when the insulating housing is applied to the vacuum interrupter 4 or to the structural material 22 of the vacuum interrupter 4 .
  • the sequence of the layers in the boundary region 18 is described along the arrow r, which describes a radial sequence starting from the shifting axis 20 outwards.
  • figure 3 which also represents the electric field seen along the radial extension of the arrow r from the switching axis 20, it can be seen how the electric field weakens continuously starting from the switching axis 20 in the vacuum space 28.
  • the offset of the field strength in figure 3 which is separated in the area 28 by the two dashed lines, only shows that this is a section, which means that in a true-to-scale representation this area 28 in figure 3 would have a greater extent.
  • a real jump in electric field strength occurs with the appearance of the structural material 22, in which case the field penetrates from the vacuum into the structural material 22, which has a higher permittivity than the vacuum in the vacuum space 28, and therefore the electric field strong is reduced.
  • the electric field E gradually decreases radially outwards.
  • a jump between the material 24 of the insulating housing 6 can again be seen with respect to the electric field.
  • the material 24 of the insulating housing 6 usually has a higher permittivity, and it would be desirable for the permittivity of the material 24 to decrease along the radius, so that the jump that can be seen here between the transition from 24 to the area 30 reduced and as low as possible.
  • the volume material 24 of the insulating housing 6 it can be expedient for the volume material 24 of the insulating housing 6 to have different permittivities along the arrow r.
  • the permittivity of the material outdoors should be as low as possible, i.e. as close to 1 as possible. Inside, the permittivity can be higher.
  • the adhesion layer 12 is embedded in such a way that the same potential is present on its inside and outside and the electric field there therefore drops to zero and therefore no partial discharge in the critical area of the adhesion layer 12 , in which bubbles 32 can form, takes place.
  • the risk of erosion in this transition or boundary area 18 is reduced to almost zero by the layers 14 and 16 described.
  • the adhesion layer 12 is generally an adhesive layer that is suitable for gluing the material 24 of the insulating housing 6 to the structural material 22 of the vacuum interrupter 4 .
  • it can also be expedient to bring the layers 14 and 16 directly onto one another and to subject them to a corresponding treatment so that an adhesion layer forms between them, or the adhesion layer 12 is formed directly by the layers 14 and 16 .
  • This can involve, for example, diffusion processes or chemical conversion in a further border area between these two layers 14 and 16 .
  • This measure also helps to suppress bubbles 32 and, if they do occur, to render them harmless with regard to a partial discharge by embedding them in materials with the same potential.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

Die Erfindung betrifft eine Unterbrechereinheit nach dem Oberbegriff des Patentanspruchs 1.The invention relates to an interrupter unit according to the preamble of patent claim 1.

Zur Vermeidung des klimaschädlichen Schwefelhexafluorids werden moderne Unterbrechereinheiten einerseits mit alternativen Isoliergasen befüllt oder es kommen Kombinationen aus Vakuumschaltröhren mit einer diese umgebenden Luftisolierung zum Tragen. In dem zweiten beschriebenen Fall ist ein üblicher Aufbau in der Form gestaltet, dass eine Vakuumschaltröhre wiederum in einem weiteren geschlossenen Raum angeordnet ist, in dem sich gereinigte Luft oder ein anderes luftähnliches Gasgemisch befindet. Um die Isolierfähigkeit einer derartigen Anordnung noch zu erhöhen, ist es zweckmäßig, die Vakuumschaltröhre, die in dem äußeren Umfang zumindest teilweise durch ein Isolatormaterial, beispielsweise eine Isolierkeramik, gebildet ist, mit einem weiteren Isoliergehäuse, insbesondere auf einer Kunststoffbasis wie Epoxidharz bestehend, zu umhüllen. Dieses Isoliergehäuse ist somit zwischen dem äu-ßeren Umfang der Vakuumschaltröhre und dem Gasraum, der beispielsweise reine Luft enthält, angeordnet. Dabei wird das Isoliergehäuse über die Vakuumröhre geschoben oder das Isoliergehäuse wird in einem Gießprozess um die Vakuumröhre herumgegossen. In beiden alternativen Verfahren ist es stets schwer eine Grenzfläche zwischen der Vakuumröhre und dem Isoliergehäuse frei von Luftblasen bzw. anderen Einschlüssen zu gestalten. Derartige Blasen führen wiederum im Betrieb zu Teilentladungen in diesem Bereich, wodurch das Material des Isoliergehäuses einer Erosion unterliegt. Das Material wird an dieser Stelle angegriffen und verliert dabei seine elektrische Isolierfähigkeit. Im schlimmsten Falle kann es nach einer längeren Schädigung des Materials des Isoliergehäuses zu einem Durchschlag in der Grenzschicht kommen oder ein Durchschlag nach außen in den Gasraum hin erfolgen. Eine Unterbrechereinheit mit einer Vakuumschaltröhre, angeordnet in einem Isoliergehäuse, ist z. B. aus der WO 00/41199 A1 bekannt.To avoid climate-damaging sulfur hexafluoride, modern interrupter units are either filled with alternative insulating gases or combinations of vacuum interrupters with surrounding air insulation are used. In the second case described, a common structure is designed in such a way that a vacuum interrupter is in turn arranged in another closed space in which cleaned air or another air-like gas mixture is located. In order to further increase the insulating capability of such an arrangement, it is expedient to enclose the vacuum interrupter, the outer circumference of which is formed at least partially by an insulating material, for example an insulating ceramic, with a further insulating housing, in particular on a plastic basis such as epoxy resin . This insulating housing is thus arranged between the outer circumference of the vacuum interrupter and the gas space, which contains clean air, for example. The insulating housing is pushed over the vacuum tube or the insulating housing is cast around the vacuum tube in a casting process. In both alternative methods, it is always difficult to make an interface between the vacuum tube and the insulating housing free of air bubbles or other inclusions. Such bubbles in turn lead to partial discharges in this area during operation, as a result of which the material of the insulating housing is subject to erosion. The material is attacked at this point and loses its electrical insulating ability. In the worst case, long-term damage to the material of the insulating housing can lead to a breakdown in the boundary layer or a breakdown to the outside into the gas space. A breaker unit with a vacuum interrupter, arranged in an insulating housing, z. B. from the WO 00/41199 A1 known.

Die Aufgabe der Erfindung besteht darin, eine Unterbrechereinheit mit einer Vakuumschaltröhre und einem Isoliergehäuse bereitzustellen, das gegenüber dem Stand der Technik einen verbesserten Schutz gegenüber Teilentladungen im Grenzbereich zwischen der Vakuumschaltröhre und dem Isoliergehäuse aufweist und somit eine frühzeitige Beschädigung bzw. Erosion des Materials des Isoliergehäuses verhindert wird.The object of the invention is to provide an interrupter unit with a vacuum interrupter and an insulating housing which, compared to the prior art, has improved protection against partial discharges in the border area between the vacuum interrupter and the insulating housing and thus prevents premature damage or erosion of the material of the insulating housing becomes.

Die Lösung der Aufgabe besteht in einer Unterbrechereinheit mit den Merkmalen des Patentanspruchs 1.The solution to the problem consists in an interrupter unit with the features of patent claim 1.

Die Unterbrechereinheit gemäß Patentanspruch 1 umfasst eine Vakuumschaltröhre und ein Isoliergehäuse, wobei das Isoliergehäuse eine Innenoberfläche aufweist und die Vakuumschaltröhre zumindest teilweise durch ein elektrisch isolierendes Strukturmaterial begrenzt ist. Das Strukturmaterial wiederum weist eine Außenoberfläche auf, wobei das Isoliergehäuse die Vakuumschaltröhre zumindest teilweise umgibt. In einem betriebsbereiten Zustand der Unterbrechereinheit ist die Innenoberfläche des Isoliergehäuses und die Außenoberfläche der Vakuumschaltröhre durch eine Adhäsionsschicht voneinander getrennt. Die Erfindung zeichnet sich dadurch aus, dass sowohl die Innenoberfläche als auch die Außenoberfläche zumindest teilweise mit einer leitfähigen Schicht versehen sind, sodass sich in einem Grenzbereich zwischen der Vakuumschaltröhre und dem Isoliergehäuse von einer Schaltachse radial nach außen gerichtet folgende Schichtfolge ergibt: Zuerst folgt von innen nach außen das Strukturmaterial der Vakuumschaltröhre. Dieses Strukturmaterial weist die Außenoberfläche auf, die wiederum mit einer leitfähigen Schicht versehen ist, bzw. eine derartige leitfähige Schicht umfasst. Es folgt im Weiteren eine Adhäsionsschicht, die von einer weiteren leitfähigen Schicht am Isoliergehäuse bzw. an dessen Innenoberfläche umgeben ist, und diese weitere leitfähige Schicht ist auf der Innenoberfläche des Isoliergehäuses angebracht. Im Weiteren folgt noch ein Volumenmaterial des Isoliergehäuses.The interrupter unit according to claim 1 comprises a vacuum interrupter and an insulating housing, the insulating housing having an inner surface and the vacuum interrupter being at least partially bounded by an electrically insulating structural material. The structural material in turn has an outer surface, with the insulating housing at least partially surrounding the vacuum interrupter. In an operational state of the interrupter unit, the inner surface of the insulating housing and the outer surface of the vacuum interrupter are separated from one another by an adhesion layer. The invention is characterized in that both the inner surface and the outer surface are at least partially provided with a conductive layer, so that the following layer sequence results in a border area between the vacuum interrupter and the insulating housing, directed radially outwards from a switching axis: First comes from the inside to the outside the structural material of the vacuum interrupter. This structural material has the outer surface, which in turn is provided with a conductive layer or includes such a conductive layer. There then follows an adhesion layer, which is surrounded by a further conductive layer on the insulating housing or on its inner surface, and this further conductive layer is on the Inner surface of the insulating housing attached. A volume material of the insulating housing also follows.

Die beschriebene Schichtfolge umfasst zwei elektrisch leitfähige Schichten, die die Adhäsionsschicht radial gesehen von beiden Seiten begrenzen. Beim Betrieb der Unterbrechereinheit, insbesondere bei einem Schaltvorgang, bei dem ein entsprechendes elektrisches Feld von der Schaltachse radial nach außen gerichtet ist, bedeutet dies, dass die beiden leitfähigen Schichten zum einen auf dem Strukturmaterial der Vakuumschaltröhre und zum anderen auf der Innenoberfläche des Isoliergehäuses jeweils dasselbe Potenzial aufweisen. Das wiederum bedeutet, dass in der Adhäsionsschicht, die sich zwischen den beiden leitfähigen Schichten befindet, und in der auch mögliche Lufteinschlüsse vorhanden sind, kein elektrisches Feld befindet. Die Adhäsionsschicht ist somit feldfrei. Durch das lokale Fehlen eines elektrischen Feldes im Bereich der Adhäsionsschicht kommt es im Bereich von etwaigen Lufteinschlüssen bzw. Gasblasen somit auch nicht zu einer Teilentladung und somit auch im Weiteren nicht zu einer lokalen Erosion des betroffenen Materials. Auf diese Weise wird die Lebensdauer der Kombination aus Unterbrechereinheit und Isoliergehäuse und ihre Betriebssicherheit gegenüber dem Stand der Technik deutlich erhöht.The layer sequence described comprises two electrically conductive layers which delimit the adhesion layer from both sides when viewed radially. During operation of the interrupter unit, in particular during a switching process in which a corresponding electrical field is directed radially outwards from the switching axis, this means that the two conductive layers on the one hand on the structural material of the vacuum interrupter and on the other hand on the inner surface of the insulating housing are the same have potential. This in turn means that there is no electric field in the adhesion layer, which is located between the two conductive layers and in which there are also possible air pockets. The adhesion layer is therefore field-free. Due to the local absence of an electrical field in the area of the adhesion layer, there is no partial discharge in the area of any air inclusions or gas bubbles and therefore no local erosion of the affected material. In this way, the service life of the combination of interrupter unit and insulating housing and its operational reliability is significantly increased compared to the prior art.

Dabei ist anzumerken, dass es sich bei der Adhäsionsschicht bevorzugt um eine Klebeschicht handelt, die zusätzlich zwischen den beiden leitfähigen Schichten eingebracht ist. Grundsätzlich können jedoch auch die beiden leitfähigen Schichten so ausgestaltet sein, dass sie durch eine entsprechende Prozessbehandlung, beispielsweise durch eine Wärmebehandlung, wiederum beispielsweise durch Diffusionsvorgänge so miteinander interagieren, sodass sich im Grenzbereich zwischen den beiden elektrisch leitenden Schichten die Adhäsionsschicht ausbildet. Die Adhäsionsschicht könnte somit auch aus den beiden leitenden Schichten hervorgehen. Unter dem Begriff elektrisch leitfähig wird auch ein halbleitendes Material verstanden, das auf üblichen Halbleitermaterialien, beispielsweise wie Silizium, Siliziumkarbid oder Verbindungshalbleitern wie Galliumarsenid besteht bzw. dieses umfasst. Die elektrische Leitfähigkeit der Schicht ist dabei so bemessen, dass der elektrische Widerstand der Schicht in axialer Richtung einen Bereich zwischen 108 und 1015 Ohm liegt.It should be noted that the adhesion layer is preferably an adhesive layer that is additionally introduced between the two conductive layers. In principle, however, the two conductive layers can also be designed in such a way that they interact with one another through a corresponding process treatment, for example heat treatment, again for example through diffusion processes, so that the adhesion layer forms in the border region between the two electrically conductive layers. The adhesion layer could thus also emerge from the two conductive layers. The term electrically conductive also means a semiconductive material that is based on conventional semiconductor materials, for example such as silicon, silicon carbide or compound semiconductors such as gallium arsenide or includes this. The electrical conductivity of the layer is dimensioned in such a way that the electrical resistance of the layer in the axial direction is in a range between 10 8 and 10 15 ohms.

Ferner ist es zweckmäßig, dass das Isoliergehäuse ausgehend von der Schaltachse radial nach außen gerichtet eine abnehmende Permittivität aufweist. Bevorzugt liegt dabei die Permittivität am äußeren Rand des Isoliergehäuses möglichst nahe bei 1, was einen geringen Feldstärkesprung am Übergang zum äußeren Isolationsmedium, beispielsweise der gereinigten Luft, bedeutet. Realistischen Werte für die Permittivität von gut geeigneten Materialien für das Isoliergehäuse, wie z. B. Kunststoffe, insbesondere auf Epoxidharzbasis liegen zwischen 1,2 und 2, insbesondere zwischen 1,2 und 1,5. Dabei kann die Permittivität im Isoliergehäuse radial nach außen stufenförmig abnehmen, was durch eine Schichtung von unterschiedlichem Material im Isoliergehäuse erreicht werden kann. Auch eine graduelle Änderung der Permittivität radial nach außen kann zweckmäßig sein und ist darstellbar.Furthermore, it is expedient for the insulating housing to have a decreasing permittivity radially outward, starting from the switching axis. The permittivity at the outer edge of the insulating housing is preferably as close as possible to 1, which means a small jump in field strength at the transition to the outer insulating medium, for example the cleaned air. Realistic values for the permittivity of well-suited materials for the insulating housing, such as e.g. B. plastics, especially based on epoxy resin are between 1.2 and 2, especially between 1.2 and 1.5. The permittivity in the insulating housing can decrease in steps radially outwards, which can be achieved by layering different materials in the insulating housing. A gradual change in permittivity radially outwards can also be useful and can be represented.

Weitere Ausgestaltungsformen der Erfindung:
Weitere Merkmale und weitere Ausführungsbeispiele werden anhand der folgenden Zeichnungen näher erläutert. Dabei handelt es sich um rein schematische Darstellungen, die keine Einschränkung des Schutzbereichs darstellen.
Further embodiments of the invention:
Further features and further exemplary embodiments are explained in more detail with reference to the following drawings. These are purely schematic representations that do not represent a restriction of the scope of protection.

Dabei zeigen:

Figur 1
eine Darstellung zur Herstellung einer Unterbrechereinheit mit einem Isoliergehäuse
Figur 2
eine vergrößerte Darstellung des Grenzbereichs zwischen Isoliergehäuse und Vakuumschaltröhre gemäß des Ausschnittes II aus Figur 1,
Figur 3
eine Abhängigkeit des elektrischen Feldes entlang der radialen Ausdehnung r gemäß III aus Figur 1.
show:
figure 1
an illustration of the production of an interrupter unit with an insulating housing
figure 2
an enlarged view of the border area between the insulating housing and the vacuum interrupter according to section II figure 1 ,
figure 3
a dependency of the electric field along the radial extent r according to III figure 1 .

In Figur 1 ist der Aufbau bzw. die Entstehung einer Unterbrechereinheit 2 mit einer Vakuumschaltröhre 4 und einem Isoliergehäuse 6 veranschaulicht. In der ganz linken Darstellung gemäß a ist eine Vakuumschaltröhre 4 dargestellt, die ein Strukturmaterial 22 aufweist, das einen Vakuumraum 28 umgibt. Im Vakuumraum 28 sind schematisch zwei Schaltkontakte 26 dargestellt, wobei zumindest einer davon entlang einer Schaltachse 20 translatorisch bewegbar ist. Dabei ist die äußere Gestalt der Vakuumschaltröhre 4 rein schematisch zu verstehen, das Strukturmaterial 22, das in der Regel aus einem isolierenden keramischen Material besteht bzw. diese umfasst, stellt in der Regel lediglich einen Teil eines Gehäuses einer Vakuumschaltröhre 4 dar. Insbesondere in einem Bereich, in dem sich die Schaltkontakte 26 entlang der Schaltachse 20 bewegen, ist die Vakuumschaltröhre 4 im Äußeren durch ein metallisches Außenmaterial begrenzt.In figure 1 the structure or the creation of an interrupter unit 2 with a vacuum interrupter 4 and an insulating housing 6 is illustrated. In the illustration on the far left according to a, a vacuum interrupter 4 is shown which has a structural material 22 which surrounds a vacuum space 28 . Two switching contacts 26 are shown schematically in the vacuum space 28 , at least one of which can be moved translationally along a switching axis 20 . The outer shape of the vacuum interrupter 4 is to be understood purely schematically, the structural material 22, which usually consists of an insulating ceramic material or includes this, usually only represents part of a housing of a vacuum interrupter 4. In particular in one area , In which the switching contacts 26 move along the switching axis 20, the vacuum interrupter 4 is delimited on the outside by a metallic outer material.

Im Weiteren wird gemäß der Teilfigur b in Figur 1 eine leitfähige bzw. halbleitende Schicht 16 auf einer Außenoberfläche 10 der Vakuumröhre 4 bzw. des Strukturmaterials 22 aufgebracht. Hierbei handelt es sich beispielsweise um ein pulverförmiges Siliziumkarbidmaterial, das in einer Epoxidmatrix eingebettet ist und einen SIC-Befüllungsgrad aufweist, der zwischen 50 und 70 Prozent des Gesamtvolumens beträgt. Die hieraus resultierende Schicht 16 weist eine Leitfähigkeit auf, die die so bemessen ist, dass der elektrische Widerstand der Schicht in axialer Richtung einen Bereich zwischen 108 und 1015 Ohm liegt. Die Leitfähigkeit der Schicht 16 wird dabei entsprechend der sich aus der Bemessungsspannung und den vorgegebenen geometrischen Parametern der Vakuumschaltröhre und dem daraus resultierenden elektrischen Feld bestimmt.Furthermore, according to sub-figure b in figure 1 a conductive or semiconductive layer 16 is applied to an outer surface 10 of the vacuum tube 4 or the structural material 22 . This is, for example, a powdered silicon carbide material that is embedded in an epoxy matrix and has a SIC filling level of between 50 and 70 percent of the total volume. The resulting layer 16 has a conductivity which is dimensioned such that the electrical resistance of the layer is in a range between 10 8 and 10 15 ohms in the axial direction. The conductivity of the layer 16 is determined according to the resulting from the rated voltage and the specified geometric parameters of the vacuum interrupter and the resulting electric field.

Im Weiteren, gemäß Teilfigur c wird ein Isoliergehäuse 6 über die Vakuumschaltröhre 4 geschoben. Dabei ist hier schematisch das Isoliergehäuse 6 zylindrisch ausgestaltet, wobei hierbei ein formschlüssiges Aufbringen des Isoliergehäuses 6 veranschaulicht wird. Grundsätzlich ist es auch möglich bzw. zweckmäßig das Isoliergehäuse 6 auf die Vakuumschaltröhre 4, insbesondere auf das Strukturmaterial 22 aufzugießen. Zweckmäßig ist dabei jedoch eine weitere leitfähige Schicht 14, die auf einer inneren Oberfläche 8 des Isoliergehäuses 6 angebracht ist. Für die Schicht 16 gelten die gleichen Bedingungen, die bereits zur Schicht 16 erläutert sind, grundsätzlich sollten die Schichten 14 und 16 artgleich sein. Sie können jedoch auch unterschiedlich bezüglich ihres Materials und ihrer Leitfähigkeit sein, wenn dies beispielsweise unterschiedliche Haftbedingungen und daraus resultierend unterschiedliche Beschichtungsverfahren erforderlich machen. Dies ist zweckmäßig, wenn die noch näher zu beschreibende Feldfreiheit oder Feldreduktion zwischen den Schichten 14, 16 erzielt wird.Furthermore, according to part c, an insulating housing 6 is pushed over the vacuum interrupter 4 . In this case, the insulating housing 6 is configured cylindrically here schematically, where here a form-fitting application of the insulating housing 6 is illustrated. In principle, it is also possible or expedient to cast the insulating housing 6 onto the vacuum interrupter 4, in particular onto the structural material 22. However, a further conductive layer 14 which is attached to an inner surface 8 of the insulating housing 6 is expedient here. The same conditions that have already been explained for layer 16 apply to layer 16; in principle, layers 14 and 16 should be of the same type. However, they can also be different in terms of their material and their conductivity if, for example, different adhesion conditions and the resulting different coating processes make this necessary. This is expedient if the field freedom or field reduction between the layers 14, 16, to be described in more detail below, is achieved.

In der Teilfigur d ist die Unterbrechereinheit in einem fertigen Zustand schematisch dargestellt. Der Grenzbereich 18 zwischen dem Strukturmaterial 22 der Vakuumschaltröhre 4 und einem Volumenmaterial 24 des Isoliergehäuses 6 ist in Figur 1 durch einen Kreis dargestellt, der mit dem Bezugszeichen II versehen ist und dessen vergrößerte Darstellung in der Figur 2 abgebildet ist. Figur 2 zeigt demnach diesen Ausschnitt, den Grenzbereich 18 zwischen der Vakuumschaltröhre 4 und dem Isoliergehäuse 6, wobei auf der linken Seite der Figur 2 das Strukturmaterial 22 (beispielsweise Aluminiumoxid) als Außenbegrenzung der Vakuumschaltröhre 4 dargestellt ist. Dieses Strukturmaterial 22 weist eine Außenoberfläche 10 auf, auf der eine leitfähige Schicht 16 aufgebracht ist. Die Zusammensetzung der leitfähigen Schicht 16 wurde bereits im vorhergehenden Absatz beschrieben. Es folgt eine Adhäsionsschicht 12, die bevorzugt und im Wesentlichen durch einen organischen Klebstoff gebildet wird. Als Weiteres folgt eine weitere elektrisch leitende Schicht 14, die in ihrer Zusammensetzung der Schicht 16 sehr ähnelt oder sogar aus dem gleichen Material besteht. Diese ist auf einer inneren Oberfläche 8 des Isoliergehäuses 6 aufgebracht. Im Weiteren folgt noch das Volumenmaterial 24 des Isoliergehäuses 6. Bei diesem Material handelt es sich bevorzugt um ein Epoxidharz.The interrupter unit is shown schematically in a finished state in partial figure d. The boundary area 18 between the structural material 22 of the vacuum interrupter 4 and a volume material 24 of the insulating housing 6 is in figure 1 represented by a circle, which is provided with the reference number II and its enlarged representation in FIG figure 2 is shown. figure 2 shows therefore this section, the boundary area 18 between the vacuum interrupter 4 and the insulating housing 6, wherein on the left side of the figure 2 the structural material 22 (for example aluminum oxide) is shown as the outer boundary of the vacuum interrupter 4 . This structural material 22 has an outer surface 10 on which a conductive layer 16 is applied. The composition of the conductive layer 16 has already been described in the previous paragraph. An adhesion layer 12 follows, which is preferably and essentially formed by an organic adhesive. Then follows another electrically conductive layer 14, which is very similar in composition to layer 16 or even consists of the same material. This is applied to an inner surface 8 of the insulating housing 6 . The volume material follows 24 of the insulating housing 6. This material is preferably an epoxy resin.

Gemäß Figur 2 sind zwischen den Schichten 16 und 14 in der Adhäsionsschicht 12 Blasen 32 dargestellt. Diese Blasen 32 bilden sich unerwünscht, sind aber beim Aufbringen des Isoliergehäuses auf die Vakuumschaltröhre 4 bzw. auf das Strukturmaterial 22 der Vakuumschaltröhre 4 schwer zu vermeiden. Es ist dabei anzumerken, dass die Reihenfolge der Schichten im Grenzbereich 18 entlang des Pfeiles r beschrieben ist, der eine radiale Abfolge ausgehend von der Schaltachse 20 nach außen beschreibt.According to figure 2 12, bubbles 32 are shown between layers 16 and 14 in adhesion layer 12. FIG. These bubbles 32 form undesirably, but are difficult to avoid when the insulating housing is applied to the vacuum interrupter 4 or to the structural material 22 of the vacuum interrupter 4 . It should be noted here that the sequence of the layers in the boundary region 18 is described along the arrow r, which describes a radial sequence starting from the shifting axis 20 outwards.

In Figur 3, die das elektrische Feld ebenfalls entlang der radialen Ausdehnung des Pfeiles r von der Schaltachse 20 aus gesehen, darstellt, ist zu erkennen, wie sich das elektrische Feld ausgehend von der Schaltachse 20 im Vakuumraum 28 kontinuierlich abschwächt. Der Versatz der Feldstärke in Figur 3, der in dem Bereich 28 durch die zwei gestrichelten Linien getrennt ist, zeigt lediglich, dass es sich hier um einen Schnitt handelt, der besagt, dass bei einer maßstabsgetreuen Darstellung dieser Bereich 28 in Figur 3 eine größere Ausdehnung aufweisen würde. Ein echter Sprung in der Stärke des elektrischen Feldes tritt mit dem Auftreten des Strukturmaterials 22 auf, in diesem Fall dringt das Feld vom Vakuum in das Strukturmaterial 22 ein, das eine höhere Permittivität als das Vakuum im Vakuumraum 28 aufweist, und daher das elektrische Feld stark reduziert wird. Auch hier nimmt das elektrische Feld E radial nach außen sukzessive ab.In figure 3 , which also represents the electric field seen along the radial extension of the arrow r from the switching axis 20, it can be seen how the electric field weakens continuously starting from the switching axis 20 in the vacuum space 28. The offset of the field strength in figure 3 , which is separated in the area 28 by the two dashed lines, only shows that this is a section, which means that in a true-to-scale representation this area 28 in figure 3 would have a greater extent. A real jump in electric field strength occurs with the appearance of the structural material 22, in which case the field penetrates from the vacuum into the structural material 22, which has a higher permittivity than the vacuum in the vacuum space 28, and therefore the electric field strong is reduced. Here, too, the electric field E gradually decreases radially outwards.

Im Weiteren folgen entlang des Pfeils r in radialer Richtung die Schichten 12, 14 und 16. In Figur 3 ist zu erkennen, dass in diesem Bereich kein elektrisches Feld vorhanden ist. Hiernach folgt das Volumenmaterial 24 des Isoliergehäuses 6, in dem das elektrische Feld E weiterhin abnimmt, bis an der äu-ßeren Oberfläche des Isoliergehäuses 6 der Luftraum 30 beginnt, der ebenfalls eine isolierende Wirkung aufweist. In diesem Luftraum 30 kann sich gereinigte Luft, jedoch auch ganz normale Luft, also eine Außenatmosphäre, jedoch auch ein luftähnliches Gemisch, das Stickstoff und Kohlendioxid umfasst, befinden. Hierbei handelt es sich um eine weitere Isolationsstufe für die Unterbrechereinheit 2, in der das elektrische Feld weiter abnimmt.The layers 12, 14 and 16 then follow along the arrow r in the radial direction figure 3 it can be seen that there is no electric field in this area. This is followed by the volume material 24 of the insulating housing 6, in which the electric field E continues to decrease until the air space 30 begins on the outer surface of the insulating housing 6, which also has an insulating effect. In this air space 30 can be cleaned air, but also normal air, i.e. an outside atmosphere, but also an air-like mixture that includes nitrogen and carbon dioxide. This is a further level of isolation for the breaker unit 2 in which the electric field continues to decrease.

In Figur 3 ist bezüglich des elektrischen Feldes wiederum ein Sprung zwischen dem Material 24 des Isoliergehäuses 6 zu erkennen. Dies liegt daran, dass die Permittivität der Luft bzw. des Gases, das außerhalb des Isoliergehäuses 6 anliegt, in der Nähe von 1 liegt. Das Material 24 des Isoliergehäuses 6 hat in der Regel eine höhere Permittivität, wobei es wünschenswert wäre, dass sich die Permittivität des Materials 24 entlang des Radius erniedrigt, sodass der Sprung, der hier zwischen dem Übergang von 24 auf den Bereich 30 zu erkennen ist, reduziert und möglichst gering ausfällt. Hierfür kann es zweckmäßig sein, dass das Volumenmaterial 24 des Isoliergehäuses 6 entlang des Pfeiles r unterschiedliche Permittivitäten aufweist. Grundsätzlich sollte im Außenbereich die Permittivität des Materials so niedrig wie möglich, also so nah wie möglich an 1 liegen. Im Inneren kann die Permittivität höher sein. Dies kann durch einen schichtförmigen Aufbau des Volumenmaterials 24 gelingen, sodass zwei oder mehrere Schichten unterschiedlichen Materials mit unterschiedlichen Permittivitäten konzentrisch umeinander gelegt werden. Es ist jedoch auch zweckmäßig, das Material so auszugestalten, dass sich ein gradientenförmiges Verhalten der Permittivität in Richtung des Pfeils r ergibt.In figure 3 a jump between the material 24 of the insulating housing 6 can again be seen with respect to the electric field. This is because the permittivity of the air or gas outside the insulating case 6 is close to 1. The material 24 of the insulating housing 6 usually has a higher permittivity, and it would be desirable for the permittivity of the material 24 to decrease along the radius, so that the jump that can be seen here between the transition from 24 to the area 30 reduced and as low as possible. For this purpose, it can be expedient for the volume material 24 of the insulating housing 6 to have different permittivities along the arrow r. Basically, the permittivity of the material outdoors should be as low as possible, i.e. as close to 1 as possible. Inside, the permittivity can be higher. This can be achieved by a layered structure of the volume material 24, so that two or more layers of different material with different permittivities are placed concentrically around one another. However, it is also expedient to design the material in such a way that there is a gradient-like behavior of the permittivity in the direction of the arrow r.

In den Bereichen 12, 14 und 16, in denen gemäß Figur 3 das elektrische Feld Null oder nahe Null ist, sind wie beschrieben die elektrisch leitfähigen Schichten 14 und 16 angeordnet, die die Adhäsionsschicht 12 einschließen. Wie in Figur 2 dargestellt, können in der Adhäsionsschicht 12 Blasen 32 auftreten, in denen es bei Anlegen eines elektrischen Feldes zu einer Teilentladung kommen kann, wodurch das Material der Adhäsionsschicht bzw. auch das umliegende Material, bzw. das Volumenmaterial 24 des Isoliergehäuses 6 erodiert und letztendlich altert. Dieser Alterungsprozess kann die Durchschlagfestigkeit und somit auch die Lebensdauer der Kombination aus Isoliergehäuse 6 und Unterbrechereinheit 2 reduzieren und somit einen früheren Austausch erforderlich machen. Durch die beschriebenen Schichten 14 und 16 ist die Adhäsionsschicht 12 jedoch so eingebettet, dass auf ihrer Innen- und auf ihrer Außenseite jeweils das gleiche Potenzial anliegt und somit dort das elektrische Feld auf null zurückgeht und daher auch keine Teilentladung in dem kritischen Bereich der Adhäsionsschicht 12, in der sich Blasen 32 bilden können, stattfindet. Die Gefahr der Erosion in diesem Übergangs- oder Grenzbereich 18 ist durch die beschriebenen Schichten 14 und 16 nahezu auf null reduziert.In areas 12, 14 and 16, where according to figure 3 the electric field is zero or near zero, the electrically conductive layers 14 and 16 sandwiching the adhesion layer 12 are positioned as described. As in figure 2 shown, bubbles 32 can occur in the adhesion layer 12, in which a partial discharge can occur when an electric field is applied, whereby the material of the adhesion layer or also the surrounding material or the volume material 24 of the insulating housing 6 erodes and ultimately ages. This aging process can reduce the dielectric strength and thus also the service life of the combination of insulating housing 6 and interrupter unit 2 and thus necessitate an earlier replacement. However, due to the layers 14 and 16 described, the adhesion layer 12 is embedded in such a way that the same potential is present on its inside and outside and the electric field there therefore drops to zero and therefore no partial discharge in the critical area of the adhesion layer 12 , in which bubbles 32 can form, takes place. The risk of erosion in this transition or boundary area 18 is reduced to almost zero by the layers 14 and 16 described.

Dabei ist anzumerken, dass es sich bei der Adhäsionsschicht 12 in der Regel um eine Klebeschicht handelt, die dazu geeignet ist, das Material 24 des Isoliergehäuses 6 mit dem Strukturmaterial 22 der Vakuumschaltröhre 4 zu verkleben. Grundsätzlich kann es auch zweckmäßig sein, die Schichten 14 und 16 so direkt aufeinander zu bringen und einer entsprechenden Behandlung zu unterziehen, sodass sich zwischen ihnen eine Adhäsionsschicht ausbildet, bzw. die Adhäsionsschicht 12 direkt durch die Schichten 14 und 16 gebildet wird. Hierbei kann es sich beispielsweise um Diffusionsprozesse oder durch chemische Umwandlung in einem weiteren Grenzbereich zwischen diesen beiden Schichten 14 und 16 handeln. Auch diese Maßnahme trägt dazu bei, Blasen 32 zu unterdrücken und falls sie doch auftreten, durch die Einbettung in Materialien mit demselben Potenzial bezüglich einer Teilentladung unschädlich zu machen.It should be noted here that the adhesion layer 12 is generally an adhesive layer that is suitable for gluing the material 24 of the insulating housing 6 to the structural material 22 of the vacuum interrupter 4 . In principle, it can also be expedient to bring the layers 14 and 16 directly onto one another and to subject them to a corresponding treatment so that an adhesion layer forms between them, or the adhesion layer 12 is formed directly by the layers 14 and 16 . This can involve, for example, diffusion processes or chemical conversion in a further border area between these two layers 14 and 16 . This measure also helps to suppress bubbles 32 and, if they do occur, to render them harmless with regard to a partial discharge by embedding them in materials with the same potential.

BezugszeichenlisteReference List

22
Unterbrechereinheitbreaker unit
44
Vakuumschaltröhrevacuum interrupter
66
Isoliergehäuseinsulating housing
88th
innere Oberfläche Isoliergehäuseinner surface insulating housing
1010
Außenoberfläche Vakuumröhreouter surface vacuum tube
1212
Adhäsionsschichtadhesion layer
1414
leitfähige Schicht Innenoberflächeconductive layer inner surface
1616
leitfähige Schicht Außenoberflächeconductive layer outer surface
1818
Grenzbereichborder area
2020
Schaltachseshift axis
2222
Strukturmaterialstructural material
2424
Vakuummaterial Isoliergehäusevacuum material insulation housing
2626
Schaltkontakteswitching contacts
2828
Vakuumraumvacuum space
3030
Luftraum/Gasraumair space/gas space
3232
BlasenBlow

Claims (8)

  1. Interrupter unit comprising a vacuum switch tube (4) and an insulating housing (6), wherein the insulating housing (6) has an inner surface (8) and the vacuum switch tube (4) is bordered at least partially by an electrically insulating structure material (22), which has an outer surface (10), and the insulating housing (6) at least partially surrounds the vacuum switch tube (4), wherein, in an operational state of the interrupter unit (2), the inner surface (8) of the insulating housing (6) and the outer surface (10) of the vacuum switch tube (4) are separated by an adhesion layer (12), characterized in that both the inner surface (8) of the insulating housing and the outer surface (10) of the vacuum switch tube are provided at least partially with an electrically conductive layer (14, 16) so that, in a boundary region (18) between the vacuum switch tube (4) and the insulating housing (6), the following layer sequence is produced in the radially outward direction from a switch axis (20): structure material (22) of the vacuum switch tube, outer surface (10) of the structure material (22), conductive layer (16) at the outer surface (10) of the structure material (22), adhesion layer (12), conductive layer (14) at the insulating housing (6), inner surface of the insulating housing (8), volume material (24) of the insulating housing (6).
  2. Interrupter unit according to Claim 1, characterized in that the conductive layers (14, 16) comprise a semiconducting material.
  3. Interrupter unit according to Claim 1 or 2, characterized in that the conductivity of the conductive layer is calculated such that the electric resistance of the layer in the axial direction is in a range between 108 and 1015 ohm.
  4. Interrupter unit according to one of the preceding claims, characterized in that the conductive layer contains silicon carbide.
  5. Interrupter unit according to one of the preceding claims, characterized in that the insulating housing (6) has a decreasing permittivity in the radially outward direction starting from the switch axis (20).
  6. Interrupter unit according to Claim 4, characterized in that the permittivity of the insulating housing decreases radially outwards in stages.
  7. Interrupter unit according to one of the preceding claims, characterized in that the insulating housing has, at its radially outer edge, a permittivity which is between 1 and 2, in particular is between 1.2 and 1.5.
  8. Interrupter unit according to one of the preceding claims, characterized in that the insulating housing is formed substantially by a plastic material, in particular by an epoxy resin.
EP20725438.4A 2019-07-30 2020-04-28 Interrupter unit having a vacuum tube and an insulating housing Active EP3984054B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019211345.1A DE102019211345A1 (en) 2019-07-30 2019-07-30 Interrupter unit with a vacuum tube and an insulating housing
PCT/EP2020/061663 WO2021018426A1 (en) 2019-07-30 2020-04-28 Interrupter unit having a vacuum tube and an insulating housing

Publications (3)

Publication Number Publication Date
EP3984054A1 EP3984054A1 (en) 2022-04-20
EP3984054C0 EP3984054C0 (en) 2023-07-05
EP3984054B1 true EP3984054B1 (en) 2023-07-05

Family

ID=70681779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20725438.4A Active EP3984054B1 (en) 2019-07-30 2020-04-28 Interrupter unit having a vacuum tube and an insulating housing

Country Status (6)

Country Link
US (1) US11915895B2 (en)
EP (1) EP3984054B1 (en)
JP (1) JP7263615B2 (en)
CN (1) CN114175201B (en)
DE (1) DE102019211345A1 (en)
WO (1) WO2021018426A1 (en)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002867A (en) * 1972-11-01 1977-01-11 Westinghouse Electric Corporation Vacuum-type circuit interrupters with condensing shield at a fixed potential relative to the contacts
JPH05298974A (en) * 1992-04-21 1993-11-12 Toshiba Corp Resin mould vacuum valve
WO2000041199A1 (en) * 1999-01-06 2000-07-13 Nu-Lec Industries Pty Ltd Method for assembly of insulated housings for electrical equipment and incorporation of circuit interrupters therein
JP4537569B2 (en) * 2000-04-24 2010-09-01 三菱電機株式会社 Vacuum insulated switchgear and manufacturing method thereof
FR2821479B1 (en) * 2001-02-28 2003-04-11 Alstom INSULATING MATERIAL FOR OVER-MOLDING ON MEDIUM AND HIGH VOLTAGE APPARATUSES, AND MEDIUM AND HIGH VOLTAGE ELECTRICAL APPARATUS USING SUCH MATERIAL
DE10139624C1 (en) * 2001-08-14 2003-04-03 Siemens Ag Electrical switching device for medium or high voltage
DE10249615A1 (en) * 2002-10-21 2004-05-13 Siemens Ag Manufacture of a solid-insulated switch pole
JP4391115B2 (en) * 2003-04-09 2009-12-24 三菱電機株式会社 Epoxy resin casting article
US20040242034A1 (en) * 2003-05-30 2004-12-02 Hubbell Incorporated Electrical assembly and dielectric material
DE102005039555A1 (en) * 2005-08-22 2007-03-01 Abb Technology Ltd. Method for producing switch pole parts for low - medium and high - voltage switchgear, as well as switch pole part itself
EP2407990A1 (en) * 2010-07-15 2012-01-18 ABB Technology AG Circuit-breaker pole part and method for producing such a pole part
JP2013089376A (en) * 2011-10-14 2013-05-13 Toshiba Corp Resin molded vacuum valve and manufacturing method therefor
CN105518819A (en) * 2013-08-22 2016-04-20 陶氏环球技术有限责任公司 Method for producing circuit-breaker pole parts
DE102014210587A1 (en) * 2014-06-04 2015-12-17 Siemens Aktiengesellschaft Process for the production of a solid-insulated switch pole and solid-insulated switch pole
DE102014213944A1 (en) 2014-07-17 2016-01-21 Siemens Aktiengesellschaft Electrical switching device for medium and / or high voltage applications
EP2996131B1 (en) * 2014-09-12 2020-08-05 ABB Schweiz AG Vacuum interrupter pole for high pressure environment application
DE102015213738A1 (en) * 2015-07-21 2017-01-26 Siemens Aktiengesellschaft Energy-technical component, in particular vacuum interrupter
DE102016214755A1 (en) * 2016-08-09 2018-02-15 Siemens Aktiengesellschaft Ceramic insulator for vacuum interrupters
JP6808591B2 (en) * 2017-08-09 2021-01-06 株式会社日立産機システム Switchgear and its manufacturing method
FR3073663A1 (en) * 2017-11-16 2019-05-17 Schneider Electric Industries Sas CUT POLE FOR ELECTRICAL CUTTING APPARATUS

Also Published As

Publication number Publication date
US20220319786A1 (en) 2022-10-06
CN114175201A (en) 2022-03-11
DE102019211345A1 (en) 2021-02-04
EP3984054A1 (en) 2022-04-20
EP3984054C0 (en) 2023-07-05
US11915895B2 (en) 2024-02-27
JP7263615B2 (en) 2023-04-24
CN114175201B (en) 2024-03-08
JP2022542594A (en) 2022-10-05
WO2021018426A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
EP2243145B1 (en) Field-controlled composite insulator
EP1476928B1 (en) Sleeve for a high-voltage cable and cable element provided with a sleeve of this type
DE602005002724T2 (en) Gas-insulated switchgear
WO2016008729A1 (en) Electric switching device for medium- and/or high-voltage uses
DE19510850C1 (en) Vacuum switch tube for low voltage protection
WO2008028676A1 (en) Vacuum circuit breaker
DE3105133C2 (en) Gas-insulated disconnector
WO2018028946A1 (en) Insulator arrangement for a high or medium voltage switchgear assembly
EP3984054B1 (en) Interrupter unit having a vacuum tube and an insulating housing
DE2633543C3 (en) Vacuum switch
EP3811386B1 (en) Ceramic multilayer component and method for manufacturing it
WO2010000769A1 (en) Vacuum switching tube
DE69509774T2 (en) OVERCURRENT PROTECTION DEVICE FOR ELECTRICAL CIRCUITS
DE2420996A1 (en) DEVICE FOR CURRENT LIMITING
EP0215034B1 (en) X-ray tube with a cylindrical metal component enclosing the anode and cathode
WO2020035224A1 (en) Winding arrangement with field smoothing and armouring
DE102019104702A1 (en) camp
DE2822510A1 (en) VACUUM CIRCUIT SWITCH
EP0167896B1 (en) Disc coil winding for transformers
DE19903939A1 (en) Self-recovering current limiting device with liquid metal
EP2689447A1 (en) Vacuum interrupter and switch pole
EP0029205A1 (en) High-current switch
DE19640106A1 (en) Under-oil fuse
DE102014203027A1 (en) Switching contact for a vacuum switch and method for its production
DE102020204210A1 (en) Electrically insulating press element for a vacuum switching device and manufacturing process

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585621

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004043

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230726

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020004043

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240429

26N No opposition filed

Effective date: 20240408