EP3979786A1 - Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages - Google Patents

Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages

Info

Publication number
EP3979786A1
EP3979786A1 EP20728784.8A EP20728784A EP3979786A1 EP 3979786 A1 EP3979786 A1 EP 3979786A1 EP 20728784 A EP20728784 A EP 20728784A EP 3979786 A1 EP3979786 A1 EP 3979786A1
Authority
EP
European Patent Office
Prior art keywords
culture
unit
shelving
row
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20728784.8A
Other languages
German (de)
English (en)
Inventor
Cyril VERAN
Thomas DALBARADE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Farming System
Original Assignee
Smart Farming System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Farming System filed Critical Smart Farming System
Publication of EP3979786A1 publication Critical patent/EP3979786A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • Above-ground cultivation rack unit particularly intended to be included in such a shelving, an above-ground culture module comprising such a unit and an above-ground culture system comprising at least two such racks.
  • the present invention relates to the field of soil-less cultivation, which encompasses in particular hydroponics and aeroponics.
  • the invention relates to a system of soilless cultivation.
  • Soil-less cultivation unlike the so-called traditional culture, consists mainly of doing without earthy soil, in order to provide plants directly and only with the nutrients, also called inputs, which they need, with increased control over traditional culture.
  • the advantages of soilless cultivation are numerous. In particular, the yields are increased, and the risks of disease are limited. The use of treatments to cure or prevent disease is thus also limited.
  • the field of soilless culture includes, but is not limited to, hydroponics and aeroponics.
  • Hydroponics consists of using an inert substrate in which the roots of plants develop, and irrigating the substrate with a nutrient solution including the inputs. Aeroponics dispenses with the substrate, and plant roots develop in the air. The inputs are then for example sprinkled on the roots.
  • Low pressure aeroponic systems are the most widely used systems today. They are characterized in particular by the fact that the nutrient solution is sprayed through nozzles by a water pump having, generally, a high flow rate but delivering a low pressure. They correspond to an evolution of hydroponic systems where the irrigation system has been replaced.
  • the high pressure employs nozzles aimed at misting the nutrient solution on the root system.
  • This mist is made up of droplets, for example having a size of about fifty microns. This figure is recognized to be close to the size of the pores located on the roots of plants.
  • the plants' assimilation capacity is maximum and the exchange between the roots and its propagation medium is optimized.
  • Soil-less cultivation is of particular interest in regions where the climate makes traditional cultivation particularly complicated, if not impossible, due to the absence of cultivable soils and / or extreme temperatures and / or large climatic variations. .
  • a soilless cultivation system is installed in a dedicated room, in which conditions are improved compared to the outside.
  • the invention relates to an above-ground cultivation shelving comprising at least a first row and a second row.
  • Each row includes at least one culture unit.
  • Each culture unit comprises a frame surrounding at least one culture compartment, the frame of each unit having an opening opening into the culture compartment, and closed by a bottom on the side opposite the opening.
  • Each cultivation unit is equipped with equipment to allow the cultivation of at least one plant without soil.
  • each unit comprises at least one growth support in the culture compartment fixed to the frame.
  • the growth medium is intended to allow the attachment and development of at least one plant.
  • the shelving includes a system for distributing a nutrient solution into the growing compartment of each unit.
  • the shelving further comprises a device for moving the two rows relative to one another so that the shelving can take two configurations:
  • the shelving further comprising a sealing system limiting air exchange between the culture chamber of the shelving in closed configuration and the outside.
  • the grow room forms an environment which can be easily controlled, separated from the external environment, favoring the development of the plant.
  • the open configuration gives access to the interior of the units in order, for example, to carry out operations on the plants, to place them on the growth support, to harvest them.
  • the shelving can be set up in any location.
  • the closed shelving configuration isolates plants from the outside environment, so the environment does not need to be precisely controlled.
  • the shelving makes it possible to form as many culture chambers as desired, for example by increasing the number of units and / or culture compartments per unit
  • the sealing system may include a device for pressurizing the culture chamber and / or at least one seal extending around the culture chamber, when the shelving is in the closed configuration.
  • the two rows are movable relative to each other by sliding in a transverse direction, and in which the opening of the frame of each unit extends parallel to a longitudinal plane.
  • the transverse direction is horizontal
  • the longitudinal direction is vertical.
  • the shelving units are in a vertical position, limiting the occupied floor area.
  • each row of the shelving can include at least two cultivation units.
  • the two units are arranged adjacent to each other.
  • the number of units per rack can be any.
  • the frame of each unit includes in particular two side walls connecting an upper wall and a lower wall.
  • the side walls, top wall and bottom wall frame the grow room.
  • the two or more units in the same row are joined together by a side wall.
  • the frame opening of two units in the same row is oriented in the same direction so that the grow compartment in one row is accessible from the aisle when the shelving is in the open configuration.
  • the grow compartment of each unit in a first row is then in communication with the grow compartment of a unit in the second row when the shelving is in the closed position.
  • the shelving may include equipment for measuring at least one characteristic of the atmosphere of the culture chamber and a system for regulating said characteristic of the atmosphere in the culture chamber of the shelving in closed position.
  • control of the atmosphere in the culture chamber can be done according to a regulation instruction, from the characteristics of the atmosphere can be:
  • the shelving can provide a nutrient solution control system.
  • the invention relates to a unit for cultivation without soil for cultivation of plants especially intended to be included in a cultivation rack as presented above.
  • the unit notably comprises a frame surrounding at least one culture compartment.
  • the frame of each unit has an opening opening into the growing compartment, and each unit has a growing medium in the growing compartment attached to the frame.
  • the growth support comprises at least one inert plate defining a side called root, in which the roots of the plant are intended to be placed, and a side called plant, in which the stems and / or the leaves of the plant are intended to be placed.
  • the unit then includes an outlet for the nutrient solution distribution system on the root side.
  • the outlet of the distribution system comprises at least one nozzle projecting droplets of the nutrient solution.
  • the growth support plate extends parallel to the opening of the frame.
  • the growth medium plate is thus preferably vertical.
  • the invention relates to a soil-less cultivation module which comprises at least two cultivation units as presented above, in which the frame of the two units comprises a bottom on the side opposite the opening. , the bottom of the frames of the two units of the module being common.
  • the invention relates to a soil-less cultivation system comprising at least two racks as presented above, the rows of the two racks being arranged substantially parallel to each other.
  • the units of a row of a first shelf and the units of a row of a second shelf are assembled and form a row of modules as shown above.
  • FIG. 1 schematically shows a system of cultivation without soil according to an embodiment of the invention, seen from the side, the system comprising two racks, each rack comprising two rows of cultivation units, the two racks being in a closed configuration.
  • FIG. 2 schematically shows an embodiment of a cultivation unit of the cultivation system of Figure 1, front view.
  • FIG. 3 schematically shows an example of a module comprising two cultivation units according to Figure 2 seen in side section.
  • FIG.4 shows schematically an example of a module comprising a cultivation unit according to Figure 2 seen in side section.
  • FIG. 5 is a side sectional view of the system of FIG. 1.
  • FIG. 6 is a top view of the culture system of Figure 1.
  • FIG. 7 shows schematically the system of culture without soil of FIG. 1, seen from the side, one rack being in an open configuration, the other rack being in a closed configuration.
  • FIG. 8 is a side sectional view of the system of FIG. 7.
  • FIG. 9 is a top view of the cultivation system of figure 7.
  • FIG. 10 is a schematic representation of an exemplary embodiment of a regulation system and a nutrient solution control system.
  • FIG. 1 there is shown an example of a system 100 for cultivation without soil comprising two racks 200 for cultivation.
  • the system 100 may include more than two racks 200, as will follow from the following.
  • Each shelving 200 comprises at least at least two units 300 for aboveground cultivation, arranged face to face.
  • a rack 200 is organized from two rows of units 300.
  • Each row includes at least one, in practice several, cultivation units 300.
  • 300 grow units in one row of one rack face 300 grow units in the other row.
  • the shelving 200 will be described further below.
  • Each culture unit 300 comprises a frame 301 which has two side walls 302 connecting an upper wall 303 and a lower wall 304.
  • the walls 302, 303, 304 of the frame 301 form a frame, of generally substantially rectangular shape according to the example of the figures, closed on one side by a bottom wall 305 and having an opening 306 on the other side.
  • the opening 306 provides access to at least one culture compartment 307 bordered by the walls 302, 303 and 304 of the frame.
  • the opening 306 extends in a longitudinal plane, which is substantially vertical according to the embodiment shown in the figures.
  • the culture compartment 307 includes equipment making it possible to carry out the culture without soil.
  • it comprises at least one growth support 308 fixed to the frame 301, optionally in a detachable manner.
  • the growth medium 308 allows plants to hang on and develop in the presence of nutrients, also called inputs.
  • unit 300 is particularly intended for aeroponics culture.
  • the growth support 308 comprises at least one inert plate 309, that is to say it is made of a material which does not interact with the plant.
  • the plate 309 separates in the culture compartment 307 a side 310 called root, that is to say a side in which the roots of a plant attached to the plate 309 are located, and a side 311 called plants, c That is, the side in which the stem (s) and leaf (s) of a plant hanging from plate 309 lie and grow.
  • the plate 309 extends substantially parallel to the opening 306 of the frame, that is, it extends vertically.
  • the plate 309 then comprises a plurality of holes 312, each hole 312 being through so that a plant placed in a hole 312 can have its roots on the root side 310 and its stems and / or leaves on the plant side 31 1.
  • the axis of the holes 312 can be horizontal, that is to say perpendicular to the plane of the plate 309 or be inclined with respect to the horizontal direction, downwards from the root side, in order to promote the development of the plant which is naturally vertical.
  • the plate 309 of the growth support 308 extends vertically over the entire height in the compartment 307. It can also extend over the entire width of the compartment 307. More preferably, the plate 309 is opaque, in order to avoid any light pollution from the side 31 1 of the plant towards the root side 310.
  • plate 309 can extend horizontally. In this case, several plates 309 can be arranged in the culture compartment 307 in the manner of shelf boards.
  • the growth medium 309 may comprise a container containing a substrate in which the roots of the plants develop.
  • each culture unit 300 can include two culture compartments 307, which may or may not be identical.
  • the two culture compartments 307 can be separated from one another by an intermediate wall 313 of the frame 301, the intermediate wall 313 being parallel to the side walls 302. This makes it possible, for example, to physically separate different species in each compartment 307, favoring the control of their development.
  • each unit 300 further comprises an outlet 314, in practice a plurality of outlets 314, for a distribution system of a nutrient solution.
  • the outlets 314 are for example injection nozzles making it possible to project the nutrient solution on the root side 310 of the culture compartment 307.
  • the nutrient solution is typically water and a mixture of inputs, such as nitrogen, potassium, oxygen and potassium, or any other element necessary for the development of the plant.
  • the nozzles are adjusted so as to project the nutrient solution in the form of a mist, that is to say droplets of a size suitable for being easily absorbed by the roots, as presented in the introduction.
  • the nozzles are distributed so that the roots on the root side 310 are all affected by droplets, the mist being homogeneously formed on the root side.
  • composition of the nutrient solution can be adapted according to measurements made in culture compartment 307, indicative of the condition of the plant, and / or according to a determined cycle.
  • a device can be provided in order to isolate the root side 310 from the side 31 1 of the plant, in order to prevent part of the nutrient solution from unnecessarily going to the 31 1 side of the plant.
  • a recovery system can be set up on the root side 310, making it possible to recover at least part of the solution not absorbed by the roots and to filter it in order to send it again to the roots.
  • the unit 300 may further include equipment 315 for measuring at least one characteristic of the atmosphere of the culture chamber 307 and a system 316 for regulating said characteristic.
  • the measuring equipment 315 may include in particular:
  • the sensors 317, 318, 319 side 31 1 of the plant can be common to two or more units 300.
  • the light sensor 317 can advantageously include a camera which also makes it possible to have a visual on the plants 31 1 side of the plant.
  • the measuring equipment 315 may further include:
  • the regulation system 316 is for example a controller housed in a lower compartment of the unit 300. It is connected to any device making it possible to vary the temperature, the humidity level and the brightness on the side 31 1 of the unit. plant, and the temperature and the humidity level on the root side 310 according to a regulation setpoint.
  • the control system 316 preferably operates in real time, based on data from the measuring equipment 315.
  • the lighting of the side 31 1 is achieved by means of a lighting device 322 for lighting the side 31 1 of the plant in the culture compartment 307.
  • the lighting device 322 comprises, for example, horizontal arms 323 fixed to the frame 301.
  • the arms 323 are fixed for example between each side wall 302 and the intermediate wall 313.
  • the arms 323 each support an arrangement of LEDs, not shown in the figures, the LEDs being arranged facing the plate 309 of the growth support 308, and distributed so as to illuminate the stems and leaves of the plants attached to the plate 309 of uniformly, on the side 31 1 of plants.
  • the regulation system 316 then acts on the intensity of the power supply to the LEDs in order to vary the brightness.
  • the arms 323 can be articulated by contribution to the frame 301, for example using a ball joint, in order to change their orientation and / or to move them away from the plate 309 of the growth support 308 in order to facilitate access. to support 308.
  • the regulation system 316 is connected to a ventilation device in the culture compartment 307.
  • the control system 316 can also be provided to regulate the flow rate and pressure of the nutrient solution projected from the nozzles 314 into the root side 310.
  • a unit 300 may further include a nutrient solution control system 324.
  • the control system 324 makes it possible in particular to control the proportions of the inputs, that is to say the formula, of the nutrient solution, for example according to the measurements by the measuring equipment 315, according to the species of plants, according to a defined cycle or according to a manual adjustment.
  • the control system 324 can be connected to the control system 316, so as to determine the proportions of the inputs based, for example, on the data of the measuring equipment 315.
  • the regulation system 316 as well as the control system 324 may be common to several units 300.
  • the 300 units are assembled in pairs to form 200 shelves.
  • a rack 200 comprises two rows 201 of units 300 facing each other.
  • Each row 210 comprises at least one, and in practice several cultivation units 300, as in the remainder of the description.
  • 300 units in a row are integral with each other so that they can be moved together.
  • two adjacent units 300 are in contact with each other along one of their side walls 302, and can be secured together.
  • the units 300 of the same row 201 are oriented in the same direction, that is to say that their opening 306 is oriented in the same direction.
  • the units 200 of a row 201 are substantially identical, so that their bottoms 305 can be in the same plane and, likewise, their openings 306 may be in the same plane.
  • the grow compartment 307 of a first row unit 300 faces the grow compartment 307 of a second row unit 300.
  • each culture compartment 307 of the units of a first row faces a culture compartment 307 of the units 300 of the second row 201.
  • the openings 306 of the units 300 of a first row. row 201 are oriented in the same direction and in the opposite direction with respect to the openings 306 of the units 300 of the second row 201.
  • the shelving 200 further comprises a device 202 for moving the two rows 201 relative to one another so that the shelving 200 can take two configurations:
  • the shelving further comprising a sealing system 205 limiting air exchanges between the culture chamber 204 of the shelving in the closed configuration and the outside.
  • the dimension of the corridor 203 when the rack 200 is in the open configuration is adapted to allow the movement of an operator, automatic or human, and to give him access to the culture compartments 307 of the units 300 of the rack 200.
  • the operator can thus in particular harvest the plants on the growth support 308, or place new plants on the growth support 308.
  • the sealing system 205 comprises for example a device for pressurizing the culture chamber 204, in order to limit the entry and exit of air with the outside.
  • the overpressure device is for example connected to the system 316 for regulating a unit 300 which deactivates the overpressure when the shelving is in the open configuration.
  • the sealing system 205 may alternatively or in combination comprise a seal, for example made of elastomer, extending around the culture chamber 204, when the shelving 200 is in the closed configuration.
  • the joint is for example formed of two half-joints 206, each half-joint 206 being fixed to the units 300 of the two rows 201 of the shelving 200.
  • the rack 200 can define a single culture chamber 204 formed by all of the culture compartments 307 of the units 300 of the rack.
  • the shelving comprises several culture chambers 204.
  • the culture compartment 307 of a unit 300 of the first row defines with the culture compartment 307 of a unit 300 of the second row a culture chamber 204.
  • the sealing device 205 can provide a seal between the culture chambers 204. Any intermediate arrangement between these two cases is obviously conceivable.
  • the culture chamber 204 is formed more precisely by the pooling of the side 31 1 of plants of the culture compartments 307 of the units of the two rows 201.
  • the measuring equipment 315 already described can then be common to several units, in particular for measurements in a culture chamber 204. Indeed, the closed configuration of a shelving 204 is in principle the configuration which is implemented most of the time compared to the open configuration. The measuring equipment 315 can therefore monitor the characteristics of the atmosphere in the culture chamber (s) 204, and not in each culture compartment 307.
  • the regulation system 316 may be common to several units.
  • the devices making it possible to modify the characteristics of the atmosphere can also be common to several 300 units.
  • the units 300 of a first row 201 of a rack 200 include a measuring equipment 315, a control system 316, and a lighting device 322, and the units 300 of the second row in are lacking.
  • the displacement device 202 makes it possible to move the rows 201 of the shelving 200 in a sliding movement in a transverse direction, that is to say horizontal, substantially perpendicular to the plane of the opening. 306 of the units 300, in order to separate the two rows 200 from one another in the open configuration.
  • the moving device 202 comprises, for example, a system 207 of rails and an actuator connected to the upper walls 303 of the units 300 to move the rows 201 along the rails.
  • the device 202 can advantageously be used to pass there any connection and / or power cables from a central computer unit to each unit 300. All or part of the regulation system 316 can be integrated into the system. central computer unit, and a regulation command is then transmitted to each unit 300, by cables or not.
  • the rail system 207 may include at least one base comprising guide rails.
  • the base is intended to be fixed to a wall, for example of a frame in which the shelving 200 is intended to be installed. This is for example a vertical wall, floor or ceiling of the building.
  • the units 300 of each row 201 then comprise a member complementary to the rails of the base.
  • the cultivation system 100 includes at least two racks 200, arranged parallel to each other, each rack 200 being able to take an open configuration and a closed configuration.
  • the culture units 300 of the culture system 100 are organized in module 101, 102.
  • the system 100 comprises two types of modules:
  • a first type of so-called intermediate module 101 comprising two cultivation units 300 as described above, secured to each other by the bottom 305 of their frame 301. More precisely, the two units 300 of an intermediate module 101 have their frame 300 in common, their funds 305 being common. Their openings 306 are then oriented in two opposite directions. The side walls 302, the upper walls 303 and the lower walls 304 of the two units 300 of a module 101 are merged, in the extension of each other from the common bottom 305.
  • a second type of so-called end module 102 comprising a unit 300 as described above.
  • the modules 101, 102 are arranged in rows so as to form rows 201 for the shelves 200.
  • the culture system 100 successively comprises a first row of end modules 102, at least one row of intermediate modules 101, and a second row of end modules 102.
  • the frames of the intermediate modules 101 are identical to the frames of the end modules 102, so that an end module comprises, in addition to the culture compartment 307 of a unit 300 culture, a secondary compartment 103.
  • the secondary compartment 103 can be used to house, for example, the central computer unit, which comprises the regulation system 316, and / or the system 324 for controlling the nutrient solution for all the units 300 of the system. 100 of culture.
  • the central computer unit which comprises the regulation system 316, and / or the system 324 for controlling the nutrient solution for all the units 300 of the system. 100 of culture.
  • the secondary compartment 103 of a first row of end modules 102 can be used to place 104 germination tablets therein. In fact, before placing the plants on the growth support 308, they must have reached the stage of germination. This can be done in a less controlled environment than the rest of the crop. Thus, the secondary compartment 103 can be equipped for this purpose.
  • the secondary compartment 103 of the second row of end modules 102 can then be used to place there the input reservoirs 105 as well as a pump system 106 connected to the nutrient solution distribution system to supply the nutrients. 300 units of culture in nutrient solution according to a formula determined by the control system 324.
  • a cover 107 may be provided to close the secondary compartment 103 of each end module 102.
  • Each row of module 101, 102 may comprise, on a side wall 302 of a module 101, 102 at the end of a row, a verification console 108, making it possible to monitor the characteristics of the atmosphere in the row.
  • the console 108 can also include a control panel to allow an operator to act if necessary directly on the regulation of the characteristics of the atmosphere and / or on the supply of nutrient solution.
  • system 316 for regulation may be common to several units 300, for example the units 300 of a row 201, of a rack 200, or even for all the units of the culture system 100.
  • the regulation system 316 is connected to the sensors 317, 318, 319 on the side 31 1 of plants and to the sensors 320, 321 on the root side 310 of the culture compartment 307 of the unit.
  • System 316 is also connected to lighting device 322.
  • the unit 300 may further include a ventilation device 325, connected to the control system 316
  • the control system 316 is further connected to the nutrient solution system 3264.
  • the control system 324 comprises, according to this example, distributor 327 of inputs containing the various inputs.
  • Dispenser 327 is fluidly connected to nutrient solution reservoir 328.
  • the mixture of inputs is produced in the reservoir 328 from the distributor 327, the proportions of inputs being controlled for example by the regulation system 316.
  • the nutrient solution is then sprayed into the culture compartment 307, preferably on the root side 310 using a pump 329.
  • a filter 330 is interposed between the nutrient solution reservoir 328 and the pump 329 in order to avoid s' ensure that only particles smaller than a determined size reach the culture compartment 307.
  • the pump 329 is associated with a booster 331 in order to ensure the spraying of the nutrient solution in the form of droplets of determined dimensions.
  • the regulation system 316 is for this purpose connected to a pressure sensor 332 and a flow controller 333 at the inlet of the culture compartment 307
  • the control system 316 can also be connected to a set 334 of sensors to monitor the nutrient solution in the reservoir 328, for example the temperature, the pH, the electroconductivity and the input composition of the solution. .
  • the regulation system 316 then operates taking into account the information transmitted by the sensors 317, 318, 319, 320, 321 in the culture compartment 307 in order to adjust the characteristics of the atmosphere in the culture compartment 307 , in particular the power of the ventilation device 325, of the lighting device 322 or of a temperature control device according to a predetermined control command.
  • the regulation system 316 can also perform regulation of the composition of the nutrient solution, for example based on sensor data, and / or based on a recorded regulation cycle. To this end, the regulation system 316 regulates the distributor 327 so that the composition of the nutrient solution in the reservoir 328 has the expected characteristics, in particular on the basis of the information transmitted by the set 334 of sensors. The nutrient solution with determined characteristics is then pumped and sprayed into culture compartment 307. The regulation system 316, from the data of the pressure sensor 322 and the state of the flow controller 33, makes it possible to regulate the power of the pump 329.
  • the culture compartment 307 may include a recuperator for the excess nutrient solution, in order to reinject it into the nutrient solution reservoir 328 after possible passage through a filter 335.
  • the regulation system 316 may be common to several units 300, or even to all of the units of the culture system 100. To this end, each unit can be identified in the regulation system 316, and the regulation setpoints can be adapted to each unit 300.
  • the cultivation system 100 comprising the cultivation units 300 thus makes it possible to achieve soil-less cultivation in a controlled manner, by adapting to the needs of the plants.
  • [1 1 1] the arrangement in units 300 makes it possible to create, for a shelving 220, one or more culture chambers 204, each culture chamber 204 having its own characteristics, adapted in particular according to the species of plants.
  • the number of units 300 is easily adaptable by juxtaposing them, increasing the number of units per row per rack 200 and / or increasing the number of shelving.
  • the control system 316 offers increased control of the parameters of the soilless culture, in particular of the characteristics of the atmosphere in the culture chambers 204, but also of the characteristics of the nutrient solution sprayed on the root side of the units. 300.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

Rayonnage (200) de culture hors-sol comprenant au moins une première rangée (201) et une deuxième rangée (201), chaque rangée (201) comprenant au moins une unité (300) de culture, chaque unité (300) de culture comportant au moins un compartiment (307) de culture, le rayonnage comprenant en outre un dispositif (202) de déplacement des deux rangées (201) l'une par rapport à l'autre de sorte que le rayonnage (200) peut prendre deux configurations : - une configuration ouverte, dans laquelle les supports (308) de croissances sont accessibles depuis un couloir (203) de circulation séparant les deux rangées (201); - une configuration fermée, dans laquelle les compartiments (307) de culture forment au moins une chambre (204) de culture, le rayonnage (200) comprenant en outre un système (205) d'étanchéité limitant les échanges d'air entre la chambre (204) de culture du rayonnage (200) en configuration fermée et l'extérieur.

Description

Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages.
[1 ] DOMAINE DE L’INVENTION
[2] La présente invention se rapporte au domaine de la culture hors sol, qui englobe notamment l’hydroponie et l’aéroponie.
[3] ARRIERE-PLAN TECHNOLOGIQUE
[4] Plus précisément, l’invention se rapporte à un système de culture hors sol.
[5] La culture hors sol, à la différence de la culturelle dite traditionnelle, consiste principalement à se passer d’un sol terreux, afin d’apporter aux plantes directement et uniquement les nutriments, également appelés intrants, dont elles ont besoin, avec un contrôle augmenté par rapport à la culture traditionnelle. Les avantages de la culture hors sol sont nombreux. Notamment, les rendements sont augmentés, et les risques de maladie sont limités. Le recours à des traitements pour soigner ou prévenir les maladies est ainsi également limité.
[6] Le domaine de la culture hors sol comprend, mais non exclusivement, l’hydroponie et l’aéroponie.
[7] L’hydroponie consiste à utiliser un substrat inerte dans lequel les racines des plantes se développent, et à irriguer le substrat avec une solution nutritive comprenant les intrants. L’aéroponie se passe du substrat, et les racines des plantes se développent dans l’air. Les intrants sont alors par exemple aspergés sur les racines.
[8] Dans l’aéroponie, on distingue en outre l’aéroponie basse pression et l’aéroponie haute pression.
[9] Les systèmes aéroponiques basse pression sont les systèmes les plus répandus actuellement. Ils se caractérisent notamment par le fait que la solution nutritive est pulvérisée au travers de gicleurs par une pompe à eau ayant, généralement, un débit élevé mais délivrant une faible pression. Ils correspondent à une évolution des systèmes hydroponiques où le système d'irrigation a été remplacé.
[10] Dans les systèmes aéroponiques à haute pression, il n'est plus question d'utiliser de simples gicleurs mais des buses. [1 1] Le développement d'une plante ainsi que sa productivité restent étroitement liés à la proportion d'eau/nutriments et d'oxygène disponible au niveau de ses racines. En effet, une grande proportion de l'oxygène capté se fait au niveau du système racinaire.
[12] Or, la haute pression emploie des buses visant à brumiser la solution nutritive sur le système racinaire. Cette brume est composée de gouttelettes, ayant par exemple une dimension d'environ cinquante microns. Ce chiffre est reconnu pour être proche de la dimension des pores situés sur les racines des plantes. Ainsi, la capacité d'assimilation des plantes est maximum et l'échange entre les racines et son milieu de propagation se retrouve optimisé.
[13] La culture hors sol présente un intérêt particulier dans les régions dans lesquelles le climat rend la culture traditionnelle particulièrement compliquée, voire impossible, du fait de l’absence de sols cultivables et/ou de températures extrêmes et/ou de grandes variations climatiques. Typiquement, un système de culture hors sol est installé dans un local dédié, dans lequel les conditions sont améliorées par rapport à l’extérieur.
[14] Toutefois, l’installation de systèmes de culture hors sol, comme par exemple dans US 2014/144,079, demande de mettre en place l’ensemble des équipements nécessaires, tels que notamment les supports pour les plantes, les moyens pour apporter les intrants et un système de contrôle de différents paramètres de la culture, comme par exemple la température. Installer l’ensemble de ces équipements requiert donc du temps et de l’expertise, est coûteux, et peut demander de monopoliser une surface non négligeable.
[15] En outre, lorsque différentes espèces de plantes sont cultivées dans un même local, des précautions particulières peuvent être nécessaires afin de séparer les espèces qui requièrent des conditions différentes, complexifiant encore le système de culture et augmentant davantage ses coûts.
[16] Il existe donc un besoin pour apporter une solution notamment aux inconvénients précités.
[17] RESUME DE L’INVENTION
[18] Ainsi, selon un premier aspect, l’invention se rapporte à un rayonnage culture hors- sol comprenant au moins une première rangée et une deuxième rangée. Chaque rangée comprend au moins une unité de culture. Chaque unité de culture comporte un bâti encadrant au moins un compartiment de culture, le bâti de chaque unité présentant une ouverture débouchant dans le compartiment de culture, et fermé par un fond du côté opposé à l’ouverture. Chaque unité de culture est pourvue d’équipements pour permettre la culture hors sol d’au moins un plant. Ainsi, chaque unité comporte au moins un support de croissance dans le compartiment de culture fixé au bâti. Le support de croissance est destiné à permettre l’accrochage et le développement d’au moins une plante. Le rayonnage comprend un système de distribution d’une solution nutritive dans le compartiment de culture de chaque unité. Le rayonnage comprend en outre un dispositif de déplacement des deux rangées l’une par rapport à l’autre de sorte que le rayonnage peut prendre deux configurations :
une configuration ouverte, dans laquelle le compartiment de culture de chaque unité de la première rangée est séparé du compartiment de culture de chaque unité de la deuxième rangée par un couloir de circulation à l’air libre, les supports de croissance étant accessibles depuis le couloir de circulation ;
une configuration fermée, dans laquelle l’ouverture de chaque unité de la première rangée est en communication avec l’ouverture d’au moins une unité de la deuxième rangée, de sorte que les compartiments de culture sont mis en commun et forment au moins une chambre de culture, le rayonnage comprenant en outre un système d’étanchéité limitant les échanges d’air entre la chambre de culture du rayonnage en configuration fermée et l’extérieur.
[19] Ainsi, en configuration fermée du rayonnage, la chambre de culture forme un environnement qui peut être contrôlé aisément, séparé de l’environnement extérieur, favorisant le développement de la plante. La configuration ouverte donne accès à l’intérieur des unités afin par exemple d’effectuer des opérations sur les plantes, de les mettre en place sur le support de croissance, de les récolter.
[20] La culture hors sol est ainsi réalisée plus facilement, avec un contrôle accru de l’atmosphère dans lequel les plantes se développent.
[21] Le rayonnage peut se mettre en place dans n’importe quel endroit. La configuration fermée du rayonnage isolant les plantes de l’environnement extérieur, ce dernier n’a pas besoin d’être contrôlé avec précision.
[22] Le rayonnage permet de former autant de chambres de culture que souhaiter, par exemple en augmentant le nombre d’unités et/ou de compartiment de culture par unité
[23] Selon différents aspects, il est possible de prévoir l’une et/ou l’autre des dispositions ci-dessous.
[24] Selon une réalisation, le système d’étanchéité peut comprendre un dispositif de mise en surpression de la chambre de culture et/ou au moins un joint s’étendant autour de la chambre de culture, lorsque le rayonnage est en configuration fermée.
[25] Selon une réalisation, les deux rangées sont mobiles l’une par rapport à l’autre par glissement selon une direction transversale, et dans lequel l’ouverture du bâti de chaque unité s’étend parallèlement à un plan longitudinal. De préférence, la direction transversale est horizontale, la direction longitudinale est verticale. Ainsi, les unités du rayonnage sont dans une position verticale, limitant la surface occupée au sol.
[26] Selon une réalisation, chaque rangée du rayonnage peut comprendre au moins deux unités de culture. Les deux unités sont disposées adjacentes l’une à l’autre. En pratique, le nombre d’unités par rayonnage peut être quelconque. Le bâti de chaque unité comprend notamment deux parois latérales reliant une paroi supérieure et une paroi inférieure. Les parois latérales, la paroi supérieure et la paroi inférieure encadrent le compartiment de culture. Les deux, ou plus, unités d’une même rangée sont assemblées l’une à l’autre par une paroi latérale. L’ouverture du bâti des deux unités de la même rangée est orientée dans un même sens de sorte que le compartiment de culture d’une rangée est accessible par le couloir lorsque le rayonnage est en configuration ouverte. Le compartiment de culture de chaque unité d’une première rangée est alors en communication avec le compartiment de culture d’une unité de la deuxième rangée lorsque le rayonnage est en position fermée.
[27] Selon une réalisation, le rayonnage peut comprendre un équipement de mesure d’au moins une caractéristique de l’atmosphère de la chambre de culture et un système de régulation de ladite caractéristique de l’atmosphère dans la chambre de culture du rayonnage en position fermée.
[28] Ainsi, le contrôle de l’atmosphère dans la chambre de culture peut se faire selon une consigne de régulation, à partir des la caractéristique de l’atmosphère peut être :
la température, et/ou
l’hygrométrie, et/ou
la luminosité.
[29] Selon une réalisation, le rayonnage peut un système de contrôle de la solution nutritive.
[30] Selon un deuxième aspect, l’invention concerne une unité de culture hors sol pour culture de plante hors particulièrement destinée à être comprise dans un rayonnage de culture tel que présenté ci-dessus. L’unité comprend notamment un bâti encadrant au moins un compartiment de culture. Le bâti de chaque unité présente une ouverture débouchant dans le compartiment de culture, et chaque unité comporte un support de croissance dans le compartiment de culture fixé au bâti.
[31] Selon une réalisation, le support de croissance comprend au moins une plaque inerte définissant un côté dit racinaire, dans lequel les racines de la plante sont destinées à être placées, et un côté dit de plante, dans lequel les tiges et/ou les feuilles de la plante sont destinées à être placées. L’unité comprend alors une sortie du système de distribution de la solution nutritive du côté racinaire.
[32] Selon une réalisation, la sortie du système de distribution comprend au moins une buse projetant des gouttelettes de la solution nutritive.
[33] Selon une réalisation, la plaque du support de croissance s’étend parallèlement à l’ouverture du bâti. La plaque du support de croissance est ainsi de préférence verticale.
[34] Selon un troisième aspect, l’invention concerne un module de culture hors sol qui comprend au moins deux unités de culture tel que présenté ci-dessus, dans lequel le bâti des deux unités comprend un fond du côté opposé à l’ouverture, le fond des bâtis des deux unités du module étant communes.
[35] Selon un quatrième aspect, l’invention concerne un système de culture hors sol comprenant au moins deux rayonnages tels que présenté ci-dessus, les rangées des deux rayonnages étant disposées sensiblement parallèlement les unes aux autres.
[36] Selon une réalisation, les unités d’une rangée d’un premier rayonnage et les unités d’une rangée d’un deuxième rayonnage sont assemblées et forment une rangée de modules tels que présentés ci-dessus.
[37] BREVE DESCRIPTION DES DESSINS
[38] Des modes de réalisation de l’invention seront décrits ci-dessous par référence aux dessins, décrits brièvement ci-dessous :
[39] [Fig. 1 ] représente schématiquement un système de culture hors sol selon un mode de réalisation de l’invention, vu de côté, le système comprenant deux rayonnages, chaque rayonnage comprenant deux rangées d’unités de culture, les deux rayonnages étant dans une configuration fermée.
[40] [Fig. 2] représente schématiquement un exemple de réalisation d’une unité de culture du système de culture de la figure 1 vue de face.
[41] [Fig. 3] représente schématiquement un exemple d’un module comprenant deux unités de culture selon la figure 2 vu en coupe de côté.
[42] [Fig.4] représente schématiquement un exemple d’un module comprenant une unité de culture selon la figure 2 vu en coupe de côté.
[43] [Fig. 5] est une vue en coupe de côté du système de la figure 1.
[44] [Fig. 6] est une vue de dessus du système de culture de la figure 1. [45] [Fig. 7] représente schématiquement le système de culture hors sol de la figure 1 , vu de côté, un rayonnage étant dans une configuration ouverte, l’autre rayonnage étant dans une configuration fermée.
[46] [Fig. 8] est une vue en coupe de côté du système de la figure 7.
[47] [Fig. 9] est une vue de dessus du système de culture de la figure 7.
[48] [Fig. 10] est une représentation schématique d’un exemple de réalisation d’un système de régulation et d’un système de contrôle d’une solution nutritive.
[49] Sur les dessins, des références identiques désignent des objets identiques ou similaires.
[50] DESCRIPTION DETAILLEE
[51] Sur la figure 1 , il est représenté un exemple d’un système 100 de culture hors sol comprenant deux rayonnages 200 de culture. En pratique, le système 100 pourra comprendre plus que deux rayonnages 200, comme cela découlera de ce qui suit.
[52] Chaque rayonnage 200 comprend au moins aux moins deux unités 300 de culture hors sol, disposées face à face. En pratique, un rayonnage 200 est organisé à partir de deux rangées d’unités 300. Chaque rangée comprend au moins une, en pratique plusieurs, unités 300 de culture. Les unités 300 de culture d’une rangée d’un rayonnage font face aux unités 300 de culture de l’autre rangée. Le rayonnage 200 sera davantage décrit plus loin.
[53] Chaque unité 300 de culture comprend un bâti 301 qui comporte deux parois 302 latérales reliant une paroi 303 supérieure et une paroi 304 inférieure. Les parois 302, 303, 304 du bâti 301 forment un cadre, de forme générale sensiblement rectangulaire selon l’exemple des figures, fermé d’un côté par une paroi 305 de fond et présentant une ouverture 306 de l’autre côté.
[54] L’ouverture 306 donne accès à au moins un compartiment 307 de culture bordé par les parois 302, 303 et 304 du bâti. L’ouverture 306 s’étend dans un plan longitudinal, qui est sensiblement vertical selon le mode de réalisation présenté sur les figures.
[55] A des fins de clarté, les termes horizontal, vertical, supérieur, inférieur, haut, bas et leurs variantes font référence à l’orientation naturelle des figures, sur lesquelles, selon le mode de réalisation présenté ici, les unités 300 sont disposées dans une position verticale, la paroi 304 inférieure étant en contact directement ou indirectement avec le sol, et la paroi 303 supérieure étant décalée verticalement par rapport à la paroi 304 inférieure, et ne doivent pas être compris comme étant limitatifs. [56] Le compartiment 307 de culture comprend des équipements permettant de réaliser la culture hors sol. Notamment, il comprend au moins un support 308 de croissance fixé au bâti 301 , éventuellement de manière détachable. Le support 308 de croissance permet aux plantes de s’accrocher et de se développer en présence de nutriments, également appelés intrants.
[57] Selon le mode de réalisation présenté ici, l’unité 300 est particulièrement destinée à la culture aéroponique. A cet effet, le support 308 de croissance comprend au moins une plaque 309 inerte, c'est-à-dire qu’elle est réalisée en un matériau qui n’interagit pas avec la plante. La plaque 309 sépare dans le compartiment 307 de culture un côté 310 dit racinaire, c'est-à-dire un côté dans lequel les racines d’une plante accrochée à la plaque 309 se trouvent, et un côté 311 dit de plantes, c'est-à-dire le côté dans lequel la ou les tiges et les feuilles d’une plante accrochée à la plaque 309 se trouvent et se développent.
[58] Selon le mode de réalisation présenté, la plaque 309 s’étend sensiblement parallèlement à l’ouverture 306 du bâti, c'est-à-dire qu’elle s’étend verticalement. La plaque 309 comprend alors une pluralité de trous 312, chaque trou 312 étant traversant de manière qu’une plante placée dans un trou 312 peut avoir ses racines du côté 310 racinaire et ses tiges et/ou feuilles du côté 31 1 de plante. L’axe des trous 312 peut être horizontal, c'est-à- dire perpendiculaire au plan de la plaque 309 ou être incliné par rapport à la direction horizontale, vers le bas du côté racinaire, afin de favoriser le développement de la plante qui est naturellement vertical.
[59] De préférence, la plaque 309 du support 308 de croissance s’étend verticalement sur l’ensemble de la hauteur dans le compartiment 307. Elle peut également s’étendre sur toute la largeur du compartiment 307. De préférence encore, la plaque 309 est opaque, afin d’éviter toute pollution lumineuse du côté 31 1 de plante vers le côté 310 racinaire.
[60] En variante, la plaque 309 peut s’étendre horizontalement. Dans ce cas, plusieurs plaques 309 peuvent être disposées dans le compartiment 307 de culture à la manière de planches d’étagère.
[61] Dans le cas de l’hydroponie, le support 309 de croissance peut comprendre un récipient contenant un substrat dans lequel les racines des plantes se développent.
[62] Comme illustré sur les figures, chaque unité 300 de culture peut comprendre deux compartiments 307 de culture, identiques ou non. Par exemple, les deux compartiments 307 de culture peuvent être séparés l’un de l’autre par une paroi 313 intermédiaire du bâti 301 , la paroi 313 intermédiaire étant parallèle aux parois 302 latérales. Cela permet par exemple de séparer physiquement des espèces différentes dans chaque compartiment 307, favorisant le contrôle de leur développement. [63] Selon le mode de réalisation des figures, chaque unité 300 comprend en outre une sortie 314, en pratique une pluralité de sorties 314, pour un système de distribution d’une solution nutritive. Les sorties 314 sont par exemple des buses d’injection permettant de projeter la solution nutritive du côté 310 racinaire du compartiment 307 de culture. La solution nutritive est typiquement de l’eau et un mélange d’intrants, tels que de l’azote, du potassium, de l’oxygène et du potassium, ou tout autre élément nécessaire au développement de la plante. Les buses sont réglées afin de projeter la solution nutritive sous formes de brume, c'est-à-dire de gouttelettes de taille adaptée pour être facilement absorbée par les racines, comme présenté en introduction. Les buses sont réparties de manière à ce que les racines du côté 310 racinaire soient toutes atteintes par des gouttelettes, la brume étant formée de manière homogène du côté racinaire.
[64] La composition de la solution nutritive peut être adaptée en fonction de mesures effectuées dans le compartiment 307 de culture, indicatives de l’état de la plante, et/ou en fonction d’un cycle déterminé.
[65] Un dispositif peut être prévu afin d’isoler le côté 310 racinaire du côté 31 1 de plante, afin d’éviter qu’une partie de la solution nutritive passe inutilement du côté 31 1 de plante. Un système de récupération peut être mis en place du côté 310 racinaire, permettant de récupérer au moins une partie de la solution non absorbées par les racines et de la filtrer afin de l’envoyer de nouveau sur les racines.
[66] L’unité 300 peut comprendre en outre un équipement 315 de mesure d’au moins une caractéristique de l’atmosphère de la chambre 307 de culture et un système 316 de régulation de ladite caractéristique.
[67] Plus précisément, l’équipement 315 de mesure peut comprendre notamment :
un capteur 317 de température du côté 31 1 de plante ;
un hygromètre 318 du côté 31 1 de plante ;
un capteur 319 de luminosité du côté 31 1 de plante.
[68] Comme cela sera explicité plus loin, les capteurs 317, 318, 319 côté 31 1 de plante peuvent être communs à deux ou plus unités 300.
[69] Le capteur 317 de luminosité peut avantageusement comprendre une caméra permettant en outre d’avoir un visuel sur les plantes côté 31 1 de plante.
[70] L’équipement 315 de mesure peut en outre comprendre :
un capteur 320 de température du côté 310 racinaire ;
un hygromètre 321 du côté 310 racinaire ; [71] Le système 316 de régulation est par exemple un contrôleur logé dans un compartiment inférieur de l’unité 300. Il est connecté à tout appareil permettant de faire varier la température, le taux d’humidité et la luminosité du côté 31 1 de plante, et la température et le taux d’humidité du côté 310 racinaire selon une consigne de régulation. Le système 316 de régulation fonctionne de préférence en temps réel, en fonction des données de l’équipement 315 de mesure.
[72] Par exemple, l’éclairage du côté 31 1 est réalisé grâce à un dispositif 322 d’éclairage pour éclairer le côté 31 1 de plante dans le compartiment 307 de culture. Le dispositif 322 d’éclairage comprend par exemple des bras 323 horizontaux fixés au bâti 301 . Les bras 323 sont fixés par exemple entre chaque paroi 302 latérale et la paroi 313 intermédiaire. Les bras 323 supportent chacun un arrangement de LEDs, non représenté sur les figures, les LEDs étant disposées face à la plaque 309 du support 308 de croissance, et réparties de manière à éclairer les tiges et les feuilles des plantes accrochées à la plaque 309 de manière uniforme, du côté 31 1 de plantes. Le système 316 de régulation agit alors sur l’intensité de l’alimentation électrique des LEDs afin de faire varier la luminosité. Les bras 323 peuvent être articulés par apport au bâti 301 , par exemple à l’aide d’une liaison rotule, afin de changer leur orientation et/ou de les écarter de la plaque 309 du support 308 de croissance afin de faciliter l’accès au support 308.
[73] Par exemple également, le système 316 de régulation est connecté à un dispositif de ventilation dans le compartiment 307 de culture.
[74] Le système 316 de régulation peut également être prévu pour réguler le débit et la pression de la solution nutritive projetée par les buses 314 dans le côté 310 racinaire.
[75] Une unité 300 peut en outre comprendre un système 324 de contrôle de la solution nutritive. Le système 324 de contrôle permet notamment de contrôler les proportions des intrants, c'est-à-dire la formule, de la solution nutritive, par exemple en fonction des mesures par l’équipement 315 de mesure, en fonction des espèces de plantes, en fonction d’un cycle défini ou encore en fonction d’un ajustement manuel. Le système 324 de contrôle peut être connecté au système 316 de régulation, de manière à déterminer les proportions des intrants en fonction par exemple des données de l’équipement 315 de mesure.
[76] En pratique, comme cela sera vu plus loin, le système 316 de régulation ainsi que le système 324 de contrôle peuvent être communs à plusieurs unités 300.
[77] Les unités 300 sont assemblées deux à deux afin de former des rayonnages 200.
[78] Plus précisément, un rayonnage 200 comprend deux rangées 201 d’unités 300 en vis-à-vis. Chaque rangée 210 comprend au moins une, et en pratique plusieurs unités 300 de culture comme dans la suite de la description. Les unités 300 d’une rangée sont solidaires les unes des autres de manière à pouvoir être déplacées ensemble. Par exemple, deux unités 300 adjacentes sont en contact l’une avec l’autre selon une de leurs parois 302 latérales, et peuvent être fixées ensemble. Les unités 300 d’une même rangée 201 sont orientées dans le même sens, c'est-à-dire que leur ouverture 306 est orientée dans le même sens. Selon un mode de réalisation, les unités 200 d’une rangée 201 sont sensiblement identiques, de sorte que leurs fonds 305 peuvent être dans un même plan et, de même, leurs ouvertures 306 peuvent être dans un même plan.
[79] Au sein d’un rayonnage 200, le compartiment 307 de culture d’une unité 300 d’une première rangée est orienté face au compartiment 307 de culture d’une unité 300 d’une deuxième rangée. En pratique, chaque compartiment 307 de culture des unités d’une première rangée est en orienté face à un compartiment 307 de culture des unités 300 de la deuxième rangée 201. En d’autres termes, les ouvertures 306 des unités 300 d’une première rangée 201 sont orientées dans la même direction et dans le sens opposé par rapport aux ouvertures 306 des unités 300 de la deuxième rangée 201 . Le rayonnage 200 comprend en outre un dispositif 202 de déplacement des deux rangées 201 l’une par rapport à l’autre de sorte que le rayonnage 200 peut prendre deux configurations :
une configuration ouverte, dans laquelle le compartiment 307 de culture de chaque unité 300 de la première rangée 201 est séparé du compartiment 307 de culture de chaque unité 300 de la deuxième rangée 201 par un couloir 203 de circulation à l’air libre, les supports 308 de croissances étant accessibles depuis le couloir 203 de circulation ;
une configuration fermée, dans laquelle l’ouverture 306 de chaque unité 300 de la première rangée 201 est en communication avec l’ouverture 306 d’au moins une unité 300 de la deuxième rangée 201 , de sorte que les compartiments 307 de culture sont mis en commun et forment au moins une chambre 204 de culture, le rayonnage comprenant en outre un système 205 d’étanchéité limitant les échanges d’air entre la chambre 204 de culture du rayonnage en configuration fermée et l’extérieur.
[80] La dimension du couloir 203 lorsque le rayonnage 200 est en configuration ouverte est adaptée pour permettre la circulation d’un opérateur, automatique ou humain, et pour lui donner l’accès aux compartiments 307 de culture des unités 300 du rayonnage 200. L’opérateur peut ainsi notamment récolter les plantes sur le support 308 de croissance, ou placer de nouveaux plants sur le support 308 de croissance.
[81] Le système 205 d’étanchéité comprend par exemple un dispositif de mise en surpression de la chambre 204 de culture, afin de limiter les entrées et les sorties d’air avec l’extérieur. Le dispositif de mise en surpression est par exemple relié au système 316 de régulation d’une unité 300 qui désactive la mise en surpression lorsque le rayonnage est en configuration ouverte. [82] Le système 205 d’étanchéité peut en variante ou en combinaison comprendre un joint, par exemple en élastomère, s’étendant autour de la chambre 204 de culture, lorsque le rayonnage 200 est en configuration fermée. Le joint est par exemple formé de deux demi- joints 206, chaque demi-joint 206 étant fixé sur les unités 300 des deux rangées 201 du rayonnage 200.
[83] En configuration fermée, le rayonnage 200 peut définir une unique chambre 204 de culture formée par l’ensemble des compartiments 307 de culture des unités 300 du rayonnage. En variante, le rayonnage comprend plusieurs chambres 204 de culture. Par exemple, le compartiment 307 de culture d’une unité 300 de la première rangée définit avec le compartiment 307 de culture d’une unité 300 de la deuxième rangée une chambre 204 de culture. Dans ce cas, le dispositif 205 d’étanchéité peut assurer une étanchéité entre les chambres 204 de culture. Toute disposition intermédiaire entre ces deux cas est envisageable de manière évidente.
[84] Selon le mode de réalisation des figures, la chambre 204 de culture est formée plus précisément par la mise en commun du côté 31 1 de plantes des compartiments 307 de culture des unités des deux rangées 201 .
[85] L’équipement 315 de mesure déjà décrit peut alors être commun à plusieurs unités, notamment pour des mesures dans une chambre 204 de culture. En effet, la configuration fermée d’un rayonnage 204 est en principe la configuration qui est mise en oeuvre la plupart du temps comparée à la configuration ouverte. L’équipement 315 de mesure peut donc surveiller les caractéristiques de l’atmosphère dans la ou les chambres 204 de culture, et non dans chaque compartiment 307 de culture.
[86] De même, le système 316 de régulation peut être commun à plusieurs unités. Les appareils permettant de modifier les caractéristiques de l’atmosphère peuvent également être communs à plusieurs unités 300.
[87] Par exemple, les unités 300 d’une première rangée 201 d’un rayonnage 200 comprennent un équipement 315 de mesure, un système 316 de régulation, et un dispositif 322 d’éclairage, et les unités 300 de la deuxième rangée en sont dépourvues.
[88] Selon un mode de réalisation, le dispositif 202 de déplacement permet de déplacer les rangées 201 du rayonnage 200 dans un mouvement de glissement selon une direction transversale, c'est-à-dire horizontale, sensiblement perpendiculaire au plan de l’ouverture 306 des unités 300, afin d’écarter les deux rangées 200 l’une de l’autre l’une de l’autre en configuration ouverte. [89] Le dispositif 202 de déplacement comprend par exemple un système 207 de rails et un actionneur connecté aux parois 303 supérieures des unités 300 pour déplacer les rangées 201 le long des rails.
[90] Le dispositif 202 peut avantageusement être utilisé pour y faire passer d’éventuels câbles de connexion et/ou d’alimentation depuis un organe informatique central vers chaque unité 300. Tout ou partie du système 316 de régulation peut être intégré dans l’organe informatique central, et une commande de régulation est alors transmise à chaque unité 300, par câbles ou non.
[91] Plus précisément, le système 207 de rails peut comprendre au moins une base comprenant des rails de guidage. La base est destinée à être fixée à une paroi par exemple d’un bâti dans lequel le rayonnage 200 est destiné à être installé. Il s’agit par exemple d’une paroi verticale, d’un sol ou d’un plafond du bâtiment. Les unités 300 de chaque rangée 201 comprennent alors un organe complémentaire des rails de la base.
[92] Le système 100 de culture comprend au moins deux rayonnages 200, disposés parallèlement l’un à l’autre, chaque rayonnage 200 pouvant prendre une configuration ouverte et une configuration fermée.
[93] Selon le mode de réalisation des figures, les unités 300 de culture du système 100 de culture sont organisées en module 101 , 102. Le système 100 comprend deux types de modules :
Un premier type de module 101 dit intermédiaire comprenant deux unités 300 de culture telles que décrites ci-dessus, solidaires l’une de l’autre par le fond 305 de leur bâti 301 . Plus précisément, les deux unités 300 d’un module 101 intermédiaire ont leur bâti 300 en commun, leurs fonds 305 étant commun. Leurs ouvertures 306 sont alors orientées dans deux sens opposés. Les parois 302 latérales, les parois 303 supérieures et les parois 304 inférieures des deux unités 300 d’un module 101 sont confondues, dans le prolongement les unes des autres à partir du fond 305 commun.
Un deuxième type de module 102 dit d’extrémité, comprenant une unité 300 telle que décrite ci-dessus.
[94] Les modules 101 , 102 sont agencés en rangées de manière à former des rangées 201 pour les rayonnages 200.
[95] Ainsi, selon le mode de réalisation présenté ici, le système 100 de culture comprend successivement une première rangée de modules 102 d’extrémité, au moins une rangée de modules 101 intermédiaires, et une deuxième rangée de modules 102 d’extrémité. [96] Afin de diminuer les coûts de fabrication, les bâtis des modules 101 intermédiaire sont identiques aux bâtis des modules 102 d’extrémité, de sorte qu’un module d’extrémité comprend, outre le compartiment 307 de culture d’une unité 300 de culture, un compartiment 103 secondaire.
[97] Le compartiment 103 secondaire peut être utilisé pour y loger par exemple l’organe informatique central, qui comprend le système 316 de régulation, et/ou le système 324 de contrôle de la solution nutritive pour l’ensemble des unités 300 du système 100 de culture.
[98] Selon un mode de réalisation, le compartiment 103 secondaire d’une première rangée de modules 102 d’extrémité peut être utilisé afin d’y placer des 104 tablettes de germination. En effet, avant de placer les plants sur le support 308 de croissance, il faut qu’ils aient atteint le stade de la germination. Celle-ci peut se faire dans un environnement moins contrôlé que le reste de la culture de la plante. Ainsi, le compartiment 103 secondaire peut être équipé à cet effet.
[99] Le compartiment 103 secondaire de la deuxième rangée de modules 102 d’extrémité peut alors être utilisé pour y placer les réservoirs 105 d’intrants ainsi qu’un système 106 de pompe connecté au système de distribution de la solution nutritive pour alimenter les unités 300 de culture en solution nutritive selon une formule déterminée par le système 324 de contrôle. Un capot 107 peut être prévu pour fermer le compartiment 103 secondaire de chaque module 102 d’extrémité.
[100] Chaque rangée de module 101 , 102 peut comprendre, sur une paroi 302 latérale d’un module 101 , 102 à l’extrémité d’une rangée, une console 108 de vérification, permettant de surveiller les caractéristiques de l’atmosphère dans les chambres 204 de culture, et/ou du côté 310 racinaires des unités 300, et/ou d’avoir un vision sur l’intérieur des unités 300 notamment lorsque les rayonnages 200 sont en configuration fermée. La console 108 peut également comprendre un panneau de commande afin de permettre à un opérateur d’agir si besoin directement sur la régulation des caractéristiques de l’atmosphère et/ou sur l’alimentation en solution nutritive.
[101 ] Lorsqu’un opérateur souhaite avoir accès à une ou des plantes, il identifie l’unité 300 concernée et passe le rayonnage 200 de l’unité 300 concernée en configuration ouverte. De préférence, lorsque le système 100 comprendre d’autres rayonnages 200, ceux-ci demeurent alors en configuration fermée. L’opérateur peut se déplacer dans le couloir 203 de circulation pour atteindre la ou les plantes visées, entre deux rangées 201 d’unités 300.
[102] On va maintenant décrire un exemple de réalisation du système 316 de régulation d’une unité 300, étant entendu que le système 316 de régulation pourra être commun à plusieurs unités 300, par exemple les unités 300 d’une rangée 201 , d’un rayonnage 200, voire pour l’ensemble des unités du système 100 de culture.
[103] Selon cet exemple, le système 316 de régulation est connecté aux capteurs 317, 318, 319 du côté 31 1 de plantes et aux capteurs 320, 321 du côté 310 racinaire du compartiment 307 de culture de l’unité. Le système 316 est également connecté au dispositif 322 d’éclairage. L’unité 300 peut en outre comprendre un dispositif 325 de ventilation, connecté au système 316 de régulation
[104] Le système 316 de régulation est en outre connecté au système 3264de la solution nutritive. Le système 324 de contrôle comprend selon cet exemple distributeur 327 d’intrants contenant les différents intrants. Le distributeur 327 est connecté fluidiquement à un réservoir 328 de solution nutritive. Le mélange d’intrants est réalisé dans le réservoir 328 à partir du distributeur 327, les proportion en intrants étant commandées par exemple par le système 316 de régulation. La solution nutritive est ensuite pulvérisée dans le compartiment 307 de culture, de préférence du côté 310 racinaire grâce à une pompe 329. Eventuellement, un filtre 330 est interposé entre le réservoir 328 de solution nutritive et la pompe 329 afin d’éviter de s’assurer que seul les particules inférieures à une taille déterminée arrivent jusque dans le compartiment 307 de culture. La pompe 329 est associée à un surpresseur 331 afin d’assurer la pulvérisation de la solution nutritive sous forme de gouttelettes de dimensions déterminées. Le système 316 de régulation est à cet effet connecté à un capteur 332 de pression et un contrôleur 333 de débit à l’entrée du compartiment 307 de culture
[105] Le système 316 de régulation peut également être connecté à un ensemble 334 de capteurs permettant de surveiller la solution nutritive dans le réservoir 328, par exemple la température, le pH, l’électro-conductivité et la composition en intrants de la solution.
[106] Le système 316 de régulation fonctionne alors en tenant compte des informations transmises par les capteurs 317, 318, 319, 320, 321 dans le compartiment 307 de culture afin d’ajuster les caractéristiques de l’atmosphère dans le compartiment 307 de culture, notamment la puissance du dispositif 325 de ventilation, du dispositif 322 d’éclairage ou d’un dispositif de contrôle de la température selon une commande de régulation prédéterminée.
[107] Le système 316 de régulation peut également réaliser une régulation de la composition de la solution nutritive, par exemple en fonction des données des capteurs, et/ou d’après un cycle de régulation enregistré. A cet effet, le système 316 de régulation régule le distributeur 327 afin que la composition de la solution nutritive dans le réservoir 328 présente les caractéristiques attendues, à partir notamment des informations transmises par l’ensemble 334 de capteurs. La solution nutritive aux caractéristiques déterminées est ensuite pompée et pulvérisée dans le compartiment 307 de culture. Le système 316 de régulation, à partir des données du capteur 322 de pression et de l’état du contrôleur 33 de débit, permet de réguler la puissance de la pompe 329.
[108] Eventuellement, le compartiment 307 de culture peut comprendre un récupérateur de la solution nutritive en excès, afin de la réinjecter dans le réservoir 328 de solution nutritive après passage éventuel dans un filtre 335.
[109] Le système 316 de régulation peut être commun à plusieurs unités 300, voire à l’ensemble des unités du système 100 de culture. A cet effet, chaque unité peut être identifiée dans le système 316 de régulation, et les consignes de régulation peuvent être adaptées à chaque unité 300.
[1 10] Le système de culture 100 comprenant les unités 300 de culture permet ainsi de réaliser une culture hors sol de manière contrôlée, en s’adaptant aux besoins des plantes.
[1 1 1 ] En effet, la disposition en unités 300 permet de créer, pour un rayonnage 220, une ou plusieurs chambres 204 de culture, chaque chambre 204 de culture possédant ses propres caractéristiques, adaptées notamment en fonction des espèces des plantes.
[1 12] Le nombre d’unités 300 est facilement adaptable en les juxtaposant, en augmentant le nombre d’unités par rangée par rayonnage 200 et/ou en augmentant le nombre de rayonnage.
[1 13] Le système 316 de régulation offre un contrôle accru des paramètres de la culture hors sol, notamment des caractéristiques de l’atmosphère dans les chambres 204 de culture, mais également des caractéristiques de la solution nutritive pulvérisée du côté 310 racinaire des unités 300.
[1 14] L’accès aux plantes se fait aisément en passant en configuration ouverte pour un rayonnage 200, en laissant les éventuels autres rayonnages fermés et donc sans perturber l’atmosphère dans la ou les chambres 204 de culture des autres rayonnages 200.
[1 15] La configuration verticale notamment des plaques 309 des supports 308 de croissance permet diminuer la surface au sol occupée par le système 100 de culture.

Claims

REVENDICATIONS
1 . Rayonnage (200) de culture hors-sol comprenant au moins une première rangée (201 ) et une deuxième rangée (201), chaque rangée (201) comprenant au moins une unité (300) de culture, chaque unité (300) de culture comportant un bâti (301) encadrant au moins un compartiment (307) de culture, le bâti (301) de chaque unité présentant une ouverture (306) débouchant dans le compartiment (307) de culture, et fermé par un fond du côté opposé à l’ouverture, et chaque unité (300) comportant au moins un support (308) de croissance dans le compartiment (307) de culture fixé au bâti (301), le support (308) de croissance étant destiné à permettre l’accrochage et le développement d’au moins une plante, le rayonnage (200) comprenant un système de distribution d’une solution nutritive dans le compartiment (307) de culture de chaque unité (300), le rayonnage comprenant en outre un dispositif (202) de déplacement des deux rangées (201) l’une par rapport à l’autre de sorte que le rayonnage (200) peut prendre deux configurations :
- une configuration ouverte, dans laquelle le compartiment (307) de culture de chaque unité (300) de la première rangée (201 ) est séparé du compartiment (307) de culture de chaque unité (300) de la deuxième rangée (201 ) par un couloir (203) de circulation à l’air libre, les supports (308) de croissances étant accessibles depuis le couloir (203) de circulation ;
- une configuration fermée, dans laquelle l’ouverture (306) de chaque unité (300) de la première rangée (201) est en communication avec l’ouverture (306) d’au moins une unité (300) de la deuxième rangée (201 ), de sorte que les compartiments (307) de culture sont mis en commun et forment au moins une chambre (204) de culture, le rayonnage (200) comprenant en outre un système (205) d’étanchéité limitant les échanges d’air entre la chambre (204) de culture du rayonnage (200) en configuration fermée et l’extérieur.
2. Rayonnage (200) de culture selon la revendication 1 , dans lequel le système (205) d’étanchéité comprend un dispositif de mise en surpression de la chambre (204) de culture.
3. Rayonnage (200) de culture selon la revendication 1 ou la revendication 2, dans lequel le système d’étanchéité comprend au moins un joint (206) s’étendant autour de la chambre (204) de culture, lorsque le rayonnage (200) est en configuration fermée.
4. Rayonnage (200) de culture selon l’une quelconque des revendications précédentes, dans lequel les deux rangées (201) sont mobiles l’une par rapport à l’autre par glissement selon une direction transversale, et dans lequel l’ouverture (306) du bâti (301 ) de chaque unité (300) s’étend parallèlement à un plan longitudinal.
5. Rayonnage (200) de culture selon l’une quelconque des revendications précédentes, dans lequel chaque rangée (201 ) comprend au moins deux unités (300) de culture, le bâti (300) de chaque unité (301 ) comprenant deux parois (302) latérales reliant une paroi (303) supérieure et une paroi (304) inférieure, les parois (302) latérales, la paroi (302) supérieure et la paroi (304) inférieure encadrant le compartiment (204) de culture, les deux unités (300) d’une même rangée (201 ) étant assemblées l’une à l’autre par une paroi latérale (302), l’ouverture (306) du bâti (300) des deux unités (300) de la même rangée (201 ) étant orientée dans un même sens de sorte que le compartiment (307) du culture d’une rangée (200) est accessible par le couloir (203) lorsque le rayonnage (200) est en configuration ouverte, le compartiment (307) de culture de chaque unité (300) d’une première rangée (201 ) étant en communication avec le compartiment (307) de culture d’une unité (300) de la deuxième rangée (201 ) lorsque le rayonnage (200) est en position fermée.
6. Rayonnage (200) de culture selon l’une quelconque des revendications précédentes, comprenant un équipement (315) de mesure d’au moins une caractéristique de l’atmosphère de la chambre (204) de culture et un système (316) de régulation de ladite caractéristique de l’atmosphère dans la chambre (204) de culture du rayonnage (200) en position fermée.
7. Rayonnage (200) selon la revendication précédente, dans lequel la caractéristique de l’atmosphère comprend :
- la température,
- l’hygrométrie,
- la luminosité.
8. Rayonnage (200) selon l’une quelconque des revendications précédentes, comprenant un système (326) de contrôle de la solution nutritive.
9. Module (101) de culture hors sol comprenant au moins deux unités (300) de culture hors sol pour culture de plante particulièrement destinées à être comprises dans un rayonnage (200) de culture selon l’une quelconque des revendications précédentes, chaque unité (300) comprenant un bâti (301) encadrant au moins un compartiment (307) de culture, le bâti (301) de chaque unité (300) présentant une ouverture (306) débouchant dans le compartiment (307) de culture, et chaque unité (300) comportant un support (308) de croissance dans le compartiment (307) de culture fixé au bâti (301 ), dans lequel le bâti (301 ) des deux unités (300) comprend un fond (305) du côté opposé à l’ouverture (306), le fond (305) des bâtis (301 ) des deux unités (300) du module (101) étant communes.
10. Module (101 ) selon la revendication précédente, dans laquelle le support (308) de croissance de chaque unité (300) comprend au moins une plaque (309) inerte définissant un côté (310) dit racinaire, dans lequel les racines de la plante sont destinées à être placées, et un côté (311) dit de plante, dans lequel les tiges et/ou les feuilles de la plante sont destinées à être placées, l’unité (300) comprenant une sortie (314) du système de distribution de la solution nutritive du côté (310) racinaire.
1 1. Module (101 ) selon la revendication précédente, dans laquelle la sortie (314) du système de distribution de chaque unité comprend au moins une buse projetant des gouttelettes de la solution nutritive.
12. Module (101 ) selon l’une quelconque des revendications 9 à 1 1 , dans laquelle la plaque (309) du support (308) de croissance de chaque unité s’étend parallèlement à l’ouverture (306) du bâti.
13. Système (100) de culture hors sol comprenant au moins deux rayonnages (200) selon l’une quelconque des revendications 1 à 8, les rangées (201 ) des deux rayonnages (200) étant disposées sensiblement parallèlement les unes aux autres.
14. Système (100) de culture hors sol selon la revendication précédente, dans lequel les unités (300) d’une rangée (201) d’un premier rayonnage (200) et les unités (300) d’une rangée (201 ) d’un deuxième rayonnage (200) sont assemblées et forment une rangée de modules (101) selon l’une des revendications 9 à 12.
EP20728784.8A 2019-06-04 2020-06-02 Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages Withdrawn EP3979786A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905923A FR3096869B1 (fr) 2019-06-04 2019-06-04 Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages.
PCT/EP2020/065247 WO2020245134A1 (fr) 2019-06-04 2020-06-02 Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages

Publications (1)

Publication Number Publication Date
EP3979786A1 true EP3979786A1 (fr) 2022-04-13

Family

ID=68072694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20728784.8A Withdrawn EP3979786A1 (fr) 2019-06-04 2020-06-02 Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages

Country Status (6)

Country Link
US (1) US20220312701A1 (fr)
EP (1) EP3979786A1 (fr)
CN (1) CN113966168A (fr)
CA (1) CA3141439A1 (fr)
FR (1) FR3096869B1 (fr)
WO (1) WO2020245134A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115553205B (zh) * 2022-10-08 2024-04-19 安徽一鸣塑胶股份有限公司 一种基于无土栽培的多功能室内高密度种植架
CN116965317B (zh) * 2023-07-17 2024-06-21 广东省农业科学院环境园艺研究所 一种无土繁育设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255146A1 (en) * 2012-04-02 2013-10-03 Filene Lori Lehman Indoor farming device and method
US20140144079A1 (en) * 2012-11-28 2014-05-29 Ming-Tsun LIN Plant culturing equipment
JP6155381B2 (ja) * 2013-03-20 2017-06-28 孝安 張 密閉式植栽工場
WO2015188177A2 (fr) * 2014-06-06 2015-12-10 RackREIT, LLC Système et procédé pour cultiver des plantes
US9374953B2 (en) * 2014-07-30 2016-06-28 Indoor Farms Of America, Llc Vertical aeroponic plant growing enclosure with support structure
WO2016129674A1 (fr) * 2015-02-13 2016-08-18 伊東電機株式会社 Dispositif et système de culture de plantes
CN204560510U (zh) * 2015-04-18 2015-08-19 浙江大学 一种可用气雾栽培的家庭蔬菜花卉培养装置
CN106508649B (zh) * 2015-09-11 2019-10-18 爱勒康农业科技有限公司 植物无土栽培系统
ITUA20163962A1 (it) * 2016-05-31 2017-12-01 Fabio Monteleone Dispositivo completamente automatico per la coltivazione aeroponica
CN205848241U (zh) * 2016-07-06 2017-01-04 郑州海力特农林科技有限公司 一种高压细水雾云雾培喷头
CN109122277A (zh) * 2017-06-27 2019-01-04 四季洋圃生物机电股份有限公司 光电光导货柜型植物工厂
JP7033291B2 (ja) * 2017-06-30 2022-03-10 伊東電機株式会社 植物栽培装置、植物栽培システム及び植物栽培方法

Also Published As

Publication number Publication date
CA3141439A1 (fr) 2020-12-10
WO2020245134A1 (fr) 2020-12-10
CN113966168A (zh) 2022-01-21
US20220312701A1 (en) 2022-10-06
FR3096869B1 (fr) 2023-03-24
FR3096869A1 (fr) 2020-12-11

Similar Documents

Publication Publication Date Title
US8505238B2 (en) Vertical aeroponic plant growing system
US10034435B2 (en) Self-sustaining artificially controllable environment within a storage container or other enclosed space
CA2779344C (fr) Dispositif pour un agencement vertical ou incline de culture hors sol de vegetaux
WO2020245134A1 (fr) Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages
KR101430728B1 (ko) 다단 적층형 입체 녹화 식생 자원 재배 용기의 틸팅 장치
JP6462867B2 (ja) 人工水耕栽培装置
EP3192356B1 (fr) Dispositif de culture en bac, notamment hydroponique, modulaire
KR101882196B1 (ko) 분무 수경 재배 시스템
KR20090088668A (ko) 트롤리컨베이어를 이용한 새싹재배장치
KR102416018B1 (ko) 분무식 수경 재배장치
US6279263B1 (en) Artificial cultivating room and method for cultivating plants
KR20110051934A (ko) 엘이디를 이용한 케비넷형 식물 재배기
EP4023055A2 (fr) Système de détection automatique des paramètres de croissance des plantes et module d'irrigation aéroponique passive des plantes dans le sens vertical, ainsi qu'installation de culture
CN108651267A (zh) 一种多功能光照种植单元
JPH01235525A (ja) 水耕栽培方法およびその方法で使用する栽培ベッドおよび栽培ポット
KR20210059242A (ko) 작물 재배 장치
WO2013136014A2 (fr) Equipement de culture en aeroponie a bloc de substrat individuel et permanent
WO2018029409A1 (fr) Systeme de culture hors-sol
KR20230099699A (ko) 스마트 팜 시스템
CN210630359U (zh) 一种自补水式植物观赏架
US20240196822A1 (en) Vertical cultivation system for growing plants and method for growing of plants
KR20240032407A (ko) 재배방식의 변경이 가능한 혼합형 수경재배기
CN110199846A (zh) 一种自补水式植物观赏架
KR20220160726A (ko) 움직이는 화분 조경물
FR2846850A1 (fr) Systeme de culture de plantes hors sol

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240103