EP3976716A1 - Coloured material based on metal nanoparticles - Google Patents

Coloured material based on metal nanoparticles

Info

Publication number
EP3976716A1
EP3976716A1 EP20743192.5A EP20743192A EP3976716A1 EP 3976716 A1 EP3976716 A1 EP 3976716A1 EP 20743192 A EP20743192 A EP 20743192A EP 3976716 A1 EP3976716 A1 EP 3976716A1
Authority
EP
European Patent Office
Prior art keywords
gold
colored material
nanoparticles
colored
micrometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20743192.5A
Other languages
German (de)
French (fr)
Inventor
Jérome MAJIMEL
Lydia ROUDIER
Uli CASTANET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3976716A1 publication Critical patent/EP3976716A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0078Pigments consisting of flaky, non-metallic substrates, characterised by a surface-region containing free metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/64Aluminium
    • C09C1/642Aluminium treated with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/066Treatment or coating resulting in a free metal containing surface-region
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1004Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1054Interference pigments characterized by the core material the core consisting of a metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1054Interference pigments characterized by the core material the core consisting of a metal
    • C09C2200/1058Interference pigments characterized by the core material the core consisting of a metal comprising a protective coating on the metallic layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/50Interference pigments comprising a layer or a core consisting of or comprising discrete particles, e.g. nanometric or submicrometer-sized particles
    • C09C2200/502Metal particles

Definitions

  • the present invention relates to methods of preparing colored materials using metallic nanoparticles of gold, copper or silver, said colored materials, and their uses in various applications.
  • a metal in the form of nanoparticles can make it possible to confer on a suspension or on a solid substrate comprising said nanoparticles a color different from the original color of the solid metal (ie not being in the form of nanoparticles).
  • a metal particle is subjected to an electromagnetic field whose wave length is much larger than the particle size: l >> 0 pa rticuies, all the free electrons of the conduction band undergo the same field and oscillate collectively and in phase.
  • plasmon resonance a resonance phenomenon occurs, called plasmon resonance. This resonance takes place in the visible domain, only for gold, copper and silver, hence the particular coloration of the nanoparticles of these metals.
  • 20nm gold nanoparticles typically have a plasmon resonance band at 520nm (green absorption) and are red.
  • the plasmon resonance frequency depends on the nature of the metal, on the size of the particle and on its shape, as well as on the dielectric properties of the substrate or of the surrounding medium (eg suspension) and on inter-particle interactions. It is possible to play on these different parameters to vary the color of the gold nanoparticles throughout the visible range, or even to shift the plasmon resonance frequency in the near infrared.
  • International application WO2011035446 A1 describes the manufacture of a colored material comprising the mixture of an organo-mineral matrix based on a thermosetting or photopolymerizable resin with a suspension or dispersion of metallic nanoparticles of noble metal coated by a shell. (in particular based on oxide), the deposition of the mixture in a cavity of a substrate, and the polymerization of the mixture. This process provides access to a colored material in pink or red shades in the cavity. The colors obtained are limited and localized in a specific place on the substrate.
  • the aim of the present invention is therefore to overcome the aforementioned drawbacks, and in particular to provide a method of manufacturing a colored material, possibly capable of changing color under the influence of at least one stimulus, said method being simple. , economical, guaranteeing optimum color stability, making it possible to obtain an extremely well defined color spectrum, having an important modularity in that it allows access to a large palette of colors and types of colored substrates, and avoiding transfers of solvents as much as possible.
  • the first subject of the invention is a process for preparing a colored material, characterized in that it comprises at least the following steps:
  • said colored material being in the form of gold nanoparticles supported by said micrometric particulate support.
  • the manufacturing process for the colored material is simple, economical, it guarantees optimum color stability, enables an extremely well-defined color spectrum to be obtained, exhibits significant modularity, and avoids solvent transfers as much as possible.
  • nanoparticles means particles having at least one dimension less than or equal to 500 nm, of preferably less than or equal to 250 nm, and particularly preferably less than or equal to approximately 100 nm.
  • the term “dimension” means the number-average dimension of all the particles of a given population, this dimension being conventionally determined by methods well known to those skilled in the art.
  • the size of the particle (s) according to the invention can for example be determined by microscopy, in particular by scanning electron microscope (SEM) or by transmission electron microscope (TEM).
  • the gold salt (+ III) is a salt in which the gold is in the oxidation state (+ III).
  • the gold (+ III) salt is chosen from tetrachloroauric acid HAuCU, potassium tetrachloroaurate KAuCU and their mixture, and preferably KAuCU.
  • Gold nanoparticles are gold nanoparticles in which gold is at zero oxidation state.
  • the aqueous suspension may comprise one or more solvents, the one or more solvents containing at least 50% by volume approximately of water, preferably at least 80% by volume approximately of water, and particularly preferably 100% by volume approximately of water, relative to the total volume of solvent (s) in the aqueous suspension.
  • the heating of step i) can be carried out by heating to temperature, in particular using a heating plate, or by microwave heating.
  • the temperature heating can be carried out at a temperature ranging from 30 to 200 ° C approximately, and particularly preferably from 50 to 110 ° C approximately.
  • the microwave heating can be carried out at a frequency ranging from approximately 25 to 65 Hz, and preferably of the order of 45 kHz.
  • Step i) can be carried out with stirring, for example with mechanical or magnetic stirring.
  • the aqueous suspension used in step i) may comprise from 0.005 to 1.0% by mass approximately of gold (+ III) salt, and preferably from 0.01 to 0.5% by mass approximately of salt d. 'gold (+ III), relative to the total mass of said aqueous suspension.
  • the aqueous suspension used in step i) may comprise from 0.05 to 1.0% by mass approximately of reducing agent, and preferably from 0.08 to 0.5% by mass approximately of reducing agent, by relative to the total mass of said aqueous suspension.
  • the mass ratio in the aqueous suspension used in step i): mass of gold salt (+ III) / mass of reducing agent varies from 0.1 to 1, About 5, and preferably about 0.1 to 1.0.
  • the aqueous suspension used in step i) can comprise from 0.002 to 0.6% by mass approximately of gold nanoparticles, and preferably from 0.04 to 0.3% by mass approximately of gold nanoparticles, by relative to the total mass of said aqueous suspension.
  • the mass ratio in the aqueous suspension of step i): mass of gold nanoparticles / mass of reducing agent varies from approximately 0.05 to 0.55, and from preferably from 0.1 to 0.5 approximately.
  • the reducing agent can be chosen from alkali metal citrates, citrates of zwitterionic derivatives of amino acids, borohydrides, hydrazine, hydroquinone, and one of their mixtures, and preferably chosen from metal citrates. alkaline, citrates of zwitterionic amino acids, and their mixture.
  • borohydrides mention may be made of sodium borohydride.
  • alkali metal citrates mention may be made of potassium or sodium citrate.
  • citrates of zwitterionic amino acid derivatives mention may be made of citrates of derivatives comprising at least one carboxylate function and at least one quaternary ammonium function, such as betaine citrate.
  • the aqueous suspension used in step i) can also comprise a stabilizing agent, in particular when the reducing agent has no stabilizing or surfactant properties.
  • a stabilizing agent in particular when the reducing agent has no stabilizing or surfactant properties.
  • citrates exhibit, in addition to their reducing power, stabilizing properties.
  • the stabilizing agent can be chosen from polymers such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), sulfur derivatives such as thiols, ligands based on triphenylphosphine, dendrimers, and surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) or amine surfactants.
  • polymers such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), sulfur derivatives such as thiols, ligands based on triphenylphosphine, dendrimers, and surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) or amine surfactants.
  • CTAB cetyltrimethylammonium bromide
  • SDS sodium dodecylsulfate
  • micrometric particulate support means that the support is in the form of micrometric particles.
  • the micrometric particles acting as a support for the gold nanoparticles may have at least one dimension less than approximately 300 ⁇ m, preferably ranging from 50 nm to 150 ⁇ m approximately, and particularly preferably ranging from 1 to 100 ⁇ m approximately. .
  • the micrometric particulate support can be organic or inorganic.
  • Said support can comprise or consist of an inorganic material chosen from silicates such as, for example, micas, borosilicates, or talc; glasses such as silica; metal oxides, such as for example zinc oxide; rare earth oxides such as cerium oxide; metals such as for example aluminum; and one of their mixtures; or can include or be made up of an organic material chosen from materials derived from natural compounds such as oyster powders or oyster shells, and derivatives of materials from the forest and wood industry such as cellulose or its derivatives.
  • An inorganic particulate carrier is preferred.
  • the particulate support can be in the form of flakes, platelets, polyhedra, balls, in particular solid or hollow, particles, for example spherical, or a powder.
  • the support comprises at the surface a layer containing at least one metal oxide.
  • the support material can be coated with a layer containing at least one metal oxide. This thus makes it possible to facilitate the attachment of the gold nanoparticles to said support.
  • the support is preferably inorganic.
  • the layer containing at least one metal oxide can be of hydrophilic or hydrophobic nature. Depending on the nature of the layer, different colors can be obtained.
  • the layer containing at least one metal oxide may have a thickness ranging from 5 to 200 nm approximately, preferably ranging from 30 to 160 nm approximately, and particularly preferably ranging from 50 to 145 nm approximately. Depending on the thickness of the layer, different colors can be obtained. These thickness ranges allow better control of the final color of the pigment, while ensuring access to a large palette of different colors.
  • the layer containing at least one metal oxide can be a layer of silica, for example of amorphous silica.
  • the support is chosen from aluminum flakes, preferably comprising a layer of silica; borosilicate flakes, preferably comprising a metal oxide layer; silica beads; mica particles; zinc oxide particles; particles of calcium oxide; cerium oxide particles; talc particles; flakes and beads of cellulose; and a powder of oyster shells.
  • Aluminum flakes coated with a layer of silica are, for example, marketed under the reference Frost, Crystal or Velvet by the company Toyal Europe.
  • the borosilicate flakes coated with a metal oxide layer are for example sold under the reference KT700 by the company Kolortek.
  • the silica beads are, for example, sold under the reference CL-Silica-900 by the company Maprecos.
  • the mica particles are for example sold under the reference C86-6105 Satin Mica by the company Maprecos.
  • the zinc oxide particles are for example sold by the company Sigma Aldrich.
  • the calcium oxide particles are for example sold by the company Sigma Aldrich.
  • the aqueous suspension used in step i) can comprise from 0.005 to 60% by mass approximately, preferably from 0.01 to 50% by mass approximately, and particularly preferably from 0.1 to 10% by mass approximately, of micrometric particulate support, relative to the total mass of said aqueous suspension.
  • Step i) can last from 0.5 to 120 minutes approximately, and preferably from 2 to 45 minutes approximately.
  • the process further comprises, before step i), a step iO) of preparing the aqueous suspension.
  • step i) uses at least one gold salt (+ III).
  • the gold nanoparticles are prepared in situ.
  • step iO) for preparing the aqueous suspension can in particular comprise the following sub-steps:
  • Sub-step iO-1) prepare an aqueous solution comprising the gold (+ III) salt, iO-2) prepare an aqueous solution comprising the reducing agent, and iO-3) add the micrometric particulate support and the aqueous solution obtained to the sub-step iO-1), to the aqueous solution of sub-step iO-2).
  • Sub-step iO-1) can be carried out at room temperature (ie 18-
  • Sub-step iO-2) can be carried out at room temperature (i.e. 18-
  • Step iO) for preparing the aqueous suspension can further comprise, after sub-step iO-2) and before sub-step iO-3), a sub-step iO-2 ′) consisting in heating the aqueous solution obtained in the sub-step iO-2).
  • the heating during the sub-step iO-2 ′) can be carried out by heating to temperature, in particular using a hot plate, or by microwave heating.
  • the temperature heating can be carried out at a temperature ranging from 80 to 200 ° C approximately, and particularly preferably from 80 to 110 ° C approximately.
  • the microwave heating can be carried out at a frequency ranging from approximately 25 to 65 Hz, and preferably of the order of 45 kHz.
  • the proportion of aqueous solution of gold (+ III) salt added is such that the volume ratio: volume of the aqueous solution comprising the gold (+ III) salt obtained at the sub-step iO-1) / volume of the aqueous solution comprising the reducing agent obtained in the sub-step iO-2), preferably ranges from 0.1 to 2.5 approximately, and particularly preferably from 0 , 5 to 2.0.
  • Sub-step iO-3 can be carried out all at once (i.e. the whole quantity of gold salt solution (+ III) is added at once) or in several times.
  • step iO) comprises substep iO-2 ′
  • heating is maintained during substeps iO-3) and i).
  • step i) uses at least gold nanoparticles.
  • This second variant makes it possible to prepare the gold nanoparticles beforehand and then to bring them into contact with the micrometric support. particulate matter, which leaves more latitude in the choice of support, the shape of gold nanoparticles, and the possibilities for recycling raw materials.
  • the gold nanoparticles can be obtained beforehand according to any method well known from the state of the art, such as the Turkevich method.
  • step iO) of preparing the aqueous suspension can in particular comprise the following sub-steps: iO-A) preparing an aqueous suspension comprising the gold nanoparticles,
  • iO-C add the micrometric particulate support.
  • the aqueous suspension of substep iO-A) can be obtained according to any method well known from the state of the art, such as the Turkevich method.
  • Step ii) of recovering said colored material can be carried out by filtration, decantation, or centrifugation.
  • the method may further comprise a step iii) of drying, in particular by steaming.
  • the method can further comprise a step iv) of implementing a stimulus, in order to modify the color of the colored material.
  • the stimulus can be an external stimulus such as heating or annealing the colored material obtained in step ii) or iii), exposure to UV radiation, use of a laser, or its spontaneous or induced rehydration.
  • the gold nanoparticles of the colored material obtained according to the process in accordance with the first subject of the invention have at least one dimension ranging from approximately 5 to 100 nm.
  • the second subject of the invention is a colored material obtained according to a process in accordance with the first subject of the invention, characterized in that it is in the form of gold nanoparticles supported on a micrometric particulate support.
  • the gold nanoparticles and the micrometric particulate support can be as defined in the first subject of the invention.
  • the colored material may comprise from 1 to 20% by mass approximately gold, and from 99 to 80% by mass approximately of micrometric particulate support, relative to the total mass of the colored material.
  • the colored material is preferably in the form of a powder or a powdery material.
  • the gold nanoparticles in the colored material obtained according to the process in accordance with the second subject of the invention have at least one dimension ranging from approximately 2 to 100 nm.
  • the third subject of the invention is a colored composition comprising at least one colored material in accordance with the second subject of the invention or obtained according to a process in accordance with the first subject of the invention, and at least one solvent in which said colored material is dispersed. .
  • the solvent can be an organic solvent, such as a solvent chosen from alcohols such as ethanol, and esters such as ethyl acetate; or an aqueous solvent.
  • the colored composition may further comprise any additive suitable for forming a nail varnish base, in particular translucent or transparent.
  • Such additives can be chosen from a film-forming agent, a plasticizer, a thixotropic agent, a resin, and one of their mixtures. These additives are well known to those skilled in the art.
  • the expression “translucent” means having an optical transmission coefficient ranging from approximately 10% to approximately 80%, measured by a conventional UV-visible spectrometer.
  • the expression “transparent” means having an optical transmission coefficient greater than approximately 80%, measured by a conventional UV-visible spectrometer.
  • the colored composition can be obtained by mixing the colored material with at least one organic solvent, and optionally the aforementioned additive (s).
  • the colored composition can be applied to a support, for example a flexible or rigid support, and dried, so as to form a support comprising a continuous colored layer.
  • the support can be chosen from a leather, fabric, polymeric material, or metal surface.
  • the application can be done with an airbrush, or with a brush.
  • the fourth subject of the invention is a process for preparing a colored material, characterized in that it comprises at least the following steps:
  • step b) a step of mixing the crosslinkable composition of step a) with a suspension in a polar protic solvent of metallic nanoparticles of a metal chosen from gold, copper, silver, and one of their mixtures, in order to obtain a colored composition, and
  • said colored material is in the form of metallic nanoparticles of a metal chosen from gold, copper, silver, and a mixture thereof, dispersed in a crosslinked epoxy polymer material.
  • the manufacturing process for the colored material is simple, economical, it guarantees optimum color stability, enables an extremely well-defined color spectrum to be obtained, exhibits significant modularity, and avoids solvent transfers as much as possible.
  • Step a) can be carried out with stirring, in particular in the presence of ultrasound. This thus makes it possible to form a homogeneous mixture while avoiding the presence of air bubbles.
  • Step a) is preferably carried out at ambient temperature (i.e. approximately 18-25 ° C.).
  • the epoxy precursor comprises one or more epoxy groups (or oxyran rings).
  • the epoxy precursor of the crosslinkable composition can be chosen from cycloaliphatic epoxy resins, epoxy resins of glycidyl ethers, in particular (poly) phenolic and / or aliphatic, epoxy resins of glycidyl esters, epoxy resins obtained by copolymerization with glycidyl methacrylate, and epoxy resins obtained from glycerides of unsaturated fatty acids.
  • epoxy resins of glycidyl ethers in particular (poly) phenolic and / or aliphatic, such as the condensation reaction products of epichlorohydrin with polyalcohols or polyphenols. (eg bisphenol A, bisphenol F), epoxy aliphatic resins of glycidyl ethers, or a mixture thereof.
  • Step b) is preferably carried out by adding the suspension of metal nanoparticles in the crosslinkable composition, in particular in several times and / or gradually.
  • Step b) can be carried out with stirring, in particular in the presence of ultrasound. This thus makes it possible to form a homogeneous mixture while avoiding the presence of air bubbles.
  • the polar protic solvent can be chosen from lower alcohols (ie C 1 -C 5 )
  • the polar protic solvent is preferably ethanol.
  • the molar concentration of the metal nanoparticles in the suspension preferably ranges from approximately 1 ⁇ 10 9 to 1 ⁇ 10 7 mol / l, and particularly preferably from 5 ⁇ 10 9 to 5 ⁇ 10 8 mol / l approximately.
  • the mass ratio: mass of the metallic nanoparticles / mass of the crosslinkable epoxy precursors ranges from approximately 3 ⁇ 10 9 to 3 ⁇ 10 7 and preferably from 1.5 ⁇ 10 8 to 1.5 ⁇ 10 7 .
  • Step b) is preferably carried out at room temperature.
  • Step c) is preferably carried out at room temperature. Step c) can last from 5 minutes to approximately 24 hours.
  • Steps b) and c) can be concomitant, or step c) can take place before or after step b).
  • Step c) can be a photopolymerization step or a step using at least one crosslinking agent.
  • the crosslinking agent is preferably introduced into the crosslinkable composition during step a).
  • the crosslinked epoxy polymer material is obtained by polymerization of at least epoxy precursor as defined in the invention and of the crosslinking agent (also called hardener), in particular by polycondensation or by polyaddition.
  • the crosslinking agent also called hardener
  • the crosslinking agent can be based on at least one acid anhydride, on at least one polyamine (eg (cyclo) aliphatic amines, aromatic amines), on at least one polyamide, on at least one amidoamine , or one of their mixtures.
  • polyamine eg (cyclo) aliphatic amines, aromatic amines
  • acid anhydrides examples include methyltetrahydrophthalic (MTHPA), methylnadic anhydride (NMA) or methylhexahydrophthalic anhydride (MHHPA).
  • MTHPA methyltetrahydrophthalic
  • NMA methylnadic anhydride
  • MHHPA methylhexahydrophthalic anhydride
  • polyamines of the aliphatic or cycloaliphatic amine type mention may be made of those comprising two primary amines such as diethylene triamine (DETA), tetraethylene tetramine (TETA), polyetheramines such as polyoxypropylene diamine or the compounds marketed under the Jeffamine® reference, or isophorone diamine (IPDA).
  • DETA diethylene triamine
  • TETA tetraethylene tetramine
  • IPDA isophorone diamine
  • polyamines of the aromatic amine type mention may be made of those comprising two primary amines such as 4,4′-diaminodiphenylmethane (DDM), diaminodiphenylsulfone (DDS), methylene-bis (diisopropylaniline) (MPDA) or bis (amino-chloro-diethylphenyl) methane (MCDEA).
  • DDM 4,4′-diaminodiphenylmethane
  • DDS diaminodiphenylsulfone
  • MPDA methylene-bis (diisopropylaniline)
  • MCDEA bis (amino-chloro-diethylphenyl) methane
  • polyamides mention may be made of the condensation products of polyamines with acid or fatty acid dimers.
  • amidoamines there may be mentioned the reaction products of carboxylic acids (derivatives of C 6 -C 9 fatty acids) with aliphatic polyamines (TETA).
  • the method may further comprise between steps b) and c), a step b ′) during which the colored composition is cast in a mold, in particular in a silicone mold.
  • Step c) can be concomitant with step b ′).
  • step c) can be followed by a step d) during which the colored material obtained is demolded.
  • the suspension of metal nanoparticles as used in step b) can be obtained by techniques well known to those skilled in the art.
  • the suspension of metal nanoparticles can for example be obtained by preparing an aqueous suspension of gold nanoparticles according to the Turkevich method, then a transfer of solvent inducing the replacement of the water with a polar protic solvent as defined in the invention.
  • the metallic nanoparticles in the colored material obtained according to the process in accordance with the fourth subject of the invention have at least one dimension ranging from approximately 2 to 100 nm.
  • the metallic nanoparticles are preferably nanoparticles of a metal chosen from copper, silver, a mixture of copper and silver or a mixture of copper, silver and gold.
  • the metal nanoparticles can be coated with an organic or inorganic layer.
  • they can be free of an organic or inorganic layer, and in particular free of an organic layer, in particular when the metal nanoparticles are gold particles.
  • the organic layer can comprise a material chosen from polymers such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), sulfur derivatives such as thiols, ligands based on triphenylphosphine, dendrimers, surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) or amino surfactants, and preferably such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), ligands made of triphenylphosphine, dendrimers, surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulphate (SDS) or amino surfactants.
  • polymers such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), sulfur derivatives such as thiols, ligands based on triphenylphosphine, dendrimers, surfactants
  • the organic layer is preferably different from a layer comprising a polyvinylpyrrolidone such as poly-N-vinyl-2-pyrrolidone, or a thiol such as dodecanethiol, in particular when the metal nanoparticles are gold particles.
  • a polyvinylpyrrolidone such as poly-N-vinyl-2-pyrrolidone
  • a thiol such as dodecanethiol
  • the inorganic layer may comprise a metal or metalloid oxide such as, for example, a layer of silicon oxide.
  • An inorganic silica layer is particularly suitable for gold or silver nanoparticles.
  • the method may further comprise, before step b), a step a ′) of coating the nanoparticles.
  • the method may further comprise, during step b) or between steps b) and c), the addition to the colored composition of a color modifying agent.
  • This agent makes it possible to modify the color of the colored composition.
  • the method may further comprise a step e) of implementing a stimulus in order to modify the color of the colored material.
  • This step e) can make it possible to switch from a material having a homogeneous distribution of metallic nanoparticles to a heterogeneous distribution of metallic nanoparticles within said material, then inducing a change in color.
  • Step e) is particularly suitable when the metal nanoparticles are gold and silver nanoparticles.
  • the stimulus can be an external stimulus such as heating or annealing the colored material obtained in step c), exposure to UV radiation, or the use of a laser.
  • the stimulus can be an internal stimulus such as step c) of polymerization “proper”, or the pH of the crosslinkable composition, and in particular of the crosslinking or hardening agent.
  • the crosslinked epoxy polymer material of the colored material is obtained from the crosslinkable composition as defined in the invention.
  • the fifth subject of the invention is a colored material obtained according to a process in accordance with the fourth subject of the invention, characterized in that it is in the form of metallic nanoparticles of a metal chosen from gold, copper, l silver, and a mixture thereof, dispersed in a crosslinked epoxy polymeric material.
  • the colored material obtained according to a process in accordance with the fourth object of the invention is preferably different from a colored material in the form of gold nanoparticles dispersed in a crosslinked epoxy polymer material, said gold nanoparticles comprising an organic layer comprising a polyvinylpyrrolidone such as poly-N-vinyl-2-pyrrolidone, or a thiol such as dodecanethiol.
  • the metallic nanoparticles and the crosslinked epoxy polymer material can be as defined in the fourth subject of the invention.
  • the colored material may comprise from 0.5 to 10% by mass approximately of metallic nanoparticles, and from 90 to 99.5% by mass approximately of crosslinked epoxy polymer material, relative to the total mass of the colored material.
  • the colored material is preferably in the form of a solid mass, i.e. in the form of a non-pulverulent material.
  • all of the primary colors of the visible light spectrum are obtained using only one or more metals, as well as an infinite range of secondary colors by simply mixing two or more.
  • three types of metal nanoparticles in particular in the case of the process in accordance with the fourth subject of the invention.
  • the methods also make it possible to modulate the hue of a coloration, to confer irreversible and / or photosensitive thermochromic properties to certain micrometric particulate supports or crosslinked polymer materials, and to offer a range of micrometric-sized pigments whose optical properties are provided. by the nanometric entities that compose them.
  • the sixth object of the invention is the use of a colored material conforming to the second object (or obtained according to a process conforming to the first object) or conforming to the fifth object of the invention (or obtained according to a process conforming to the fourth object) , in cosmetic or perfume applications, in the field of fashion articles such as buttons, in packaging, in jewelery, in printing, in a paint or varnish, or as a means of authentication, in particular of counterfeiting, or decoration.
  • Example 1 process for preparing a colored material in the form of gold nanoparticles on aluminum flakes coated with a layer of amorphous silica
  • a 1.5 g / L aqueous solution of KAuCU was prepared.
  • the aqueous solution of betaine citrate was heated using a hotplate with magnetic stirring at 100 ° C. Then, the aluminum flakes were added and the aqueous solution of KAuCU was added in 3 batches over a period of 15 minutes, while maintaining the heating.
  • the colored material obtained was recovered by centrifugation and then dried in an oven at 120 ° C.
  • the colored material obtained is in the form of gold nanoparticles of average size approximately 20 nm supported.
  • Example 2 process for preparing a colored material in the form of gold nanoparticles on aluminum flakes coated with a layer of amorphous silica
  • a 1.5 g / L aqueous solution of KAuCU was prepared.
  • the aqueous solution of betaine citrate was heated using a hotplate with magnetic stirring at 100 ° C. Then, the aluminum flakes were added and the aqueous solution of KAuCU was added in 3 batches over a period of 15 minutes, while maintaining the heating.
  • the colored material obtained was recovered by centrifugation and then dried in an oven at 120 ° C.
  • the colored material obtained is in the form of gold nanoparticles of average size approximately 20 nm supported.
  • the colored material obtained has a pale pink color (pantone color: 5245).
  • the colored material obtained is in the form of gold nanoparticles with an average size of approximately 30 nm supported, forming a semi-continuous layer on the surface of the particles of the micrometric support.
  • the colored material obtained has a midnight blue color (pantone color: 2705).
  • Example 3 process for preparing a colored material in the form of gold nanoparticles on aluminum flakes coated with a layer of amorphous silica
  • a 1.5 g / L aqueous solution of KAuCU was prepared.
  • the aqueous solution of betaine citrate was heated using a hotplate with magnetic stirring at 100 ° C. Then, the aluminum flakes were added and the aqueous solution of KAuCU was added in 3 batches over a period of 15 minutes, while maintaining the heating.
  • the colored material obtained was recovered by centrifugation and then dried in an oven at 120 ° C.
  • the colored material obtained is in the form of gold nanoparticles of average size approximately 30 nm supported.
  • the colored material obtained exhibits a fuchsia color in normal incidence, and a golden color in grazing incidence (pantone colors: 17-2034 (fuchsia) and 871-C (gold)).
  • FIG. 1 represents a scanning electron microscopy image of the aluminum flakes used as a particulate micrometric support in the process of Example 3.
  • FIG. 2 represents images by STEM-EDX of the colored material obtained in example 3.
  • FIG. 2 [a) and b)] shows in particular a deposit of gold particles on an aluminum flake.
  • the support represents an aluminum flake and appears in blue
  • layer 1 represents a layer of amorphous silica and appears in green
  • layer 3 represents the gold particles and appears in red.
  • Example 4 process for preparing a colored material in the form of gold nanoparticles dispersed in an epoxy polymer material
  • aqueous solution comprising 20 ml of ultrapure water (water resistivity of at least about 10 MQ.cm) and 0.25 mM HAuCU gold salt was prepared and stirred vigorously. It was heated to reflux, then 1 ml of a 1.7 x 10 -2 M sodium citrate solution was added. The resulting solution was stirred for 20 min while maintaining heating at reflux. The solution turns gray, then purple and finally ruby red in the first few minutes. Then, the resulting solution was allowed to cool to room temperature. Gold nanoparticles 15 nm in diameter in aqueous suspension were thus obtained. The aqueous suspension obtained comprises 2.0 x 10 -9 mol / l of gold nanoparticles.
  • An epoxy resin was prepared as follows: 10 ml of resin and 5 ml of hardener, sold under the name Crystal Resin marketed by the company PEBEO, are mixed.
  • Example 5 process for preparing a colored material in the form of copper nanoparticles dispersed in an epoxy polymer material
  • a suspension of copper nanoparticles is obtained according to the solvothermal synthesis route assisted by microwave heating.
  • 0.1178 g of CuCl 2 , 0.4 g of PVP 10000 sold under the trade name PVP-10 by the company Sigma Aldrich, and 40 ml of ethanol are introduced into a Teflon reactor, and the reactor is inserted in a microwave oven. It then undergoes heating according to the following schedule: temperature rise from room temperature to 140 ° C in 5 minutes / no temperature maintenance / microwave heating off / and drop to room temperature by inertia. Microwave heating is carried out at a frequency of 45 Hz. An alcoholic suspension of bright yellow-orange color is then obtained.
  • An epoxy resin is prepared as follows: 10 ml of resin and 5 ml of hardener, sold under the name Crystal Resin marketed by the company PEBEO, are mixed.
  • the solid obtained is in the form of a translucent material of blue color (Pantone color 18-3949).
  • Example 6 process for preparing a colored material in the form of silver nanoparticles dispersed in an epoxy polymer material
  • a solution of silver nanoparticles is obtained according to the solvothermal synthesis route assisted by microwave heating.
  • a mixture comprising 0.1578 g of silver nitrate AgN0 3 , and 12 ml of a solution of PVP 10000 sold under the trade name PVP-10 by the company Sigma Aldrich in ethanol at 33.3 g / L, is subjected to ultrasound using an ultrasonic bath, in order to dissolve all of the silver salt in the ethanoic solution of PVP, then the resulting mixture is introduced into a Teflon reactor. The reactor is inserted into a microwave oven. It then undergoes heating according to the following schedule: temperature rise from room temperature to 150 ° C in 2 minutes / temperature maintenance for 30 seconds at 150 ° C / microwave heating off / and drop to room temperature by inertia. Microwave heating was carried out at a frequency of 45 Hz. An alcoholic suspension of bright yellow-orange color is then obtained.
  • An epoxy resin is prepared as follows: 10 ml of resin and 5 ml of hardener, sold under the name Crystal Resin marketed by the company PEBEO, are mixed.
  • the solid obtained is in the form of a translucent material of yellow color (Pantone PMS color 109).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The invention relates to methods for producing coloured materials with the use of metal nanoparticles of gold, copper or silver, to said coloured materials, and to the uses of same in various applications.

Description

Matériau coloré à base de nanoparticules m étalliques Colored material based on metallic nanoparticles
La présente invention concerne des procédés de préparation de matériaux colorés mettant en oeuvre des nanoparticules métalliques d'or, de cuivre ou d'argent, lesdits matériaux colorés, et leurs utilisations dans diverses applications. The present invention relates to methods of preparing colored materials using metallic nanoparticles of gold, copper or silver, said colored materials, and their uses in various applications.
Elle s'applique plus particulièrement à des matériaux comprenant des nanoparticules métalliques ayant des propriétés optiques basées sur le phénomène de résonance de plasmon de surface. It applies more particularly to materials comprising metallic nanoparticles having optical properties based on the phenomenon of surface plasmon resonance.
Art antérieur Prior art
L'utilisation d'un métal sous la forme de nanoparticules peut permettre de conférer à une suspension ou à un substrat solide comprenant lesdites nanoparticules une couleur différente de la couleur originale du métal massif (i.e. n'étant pas sous forme de nanoparticules). En effet, lorsqu'une particule métallique est soumise à un champ électromagnétique dont la longueur d'onde est beaucoup plus grande que la taille des particules : l >> 0particuies, tous les électrons libres de la bande de conduction subissent le même champ et oscillent collectivement et en phase. Lorsque la fréquence de l'onde incidente correspond à la fréquence propre de ces oscillations, il se produit un phénomène de résonance, appelé résonance de plasmon. Cette résonance a lieu dans le domaine du visible, seulement pour l'or, le cuivre et l'argent, d'où la coloration particulière des nanoparticules de ces métaux. Typiquement, des nanoparticules d'or de 20 nm ont une bande de résonance de plasmon à 520 nm (absorption dans le vert) et sont rouges. La fréquence de résonance de plasmon dépend de la nature du métal, de la taille de la particule et de sa forme ainsi que des propriétés diélectriques du substrat ou du milieu environnant (e.g. suspension) et des interactions inter-particules. Il est possible de jouer sur ces différents paramètres pour faire varier la couleur des nanoparticules d'or dans tout le domaine du visible, voire de déplacer la fréquence de résonance de plasmon dans le proche infrarouge. The use of a metal in the form of nanoparticles can make it possible to confer on a suspension or on a solid substrate comprising said nanoparticles a color different from the original color of the solid metal (ie not being in the form of nanoparticles). Indeed, when a metal particle is subjected to an electromagnetic field whose wave length is much larger than the particle size: l >> 0 pa rticuies, all the free electrons of the conduction band undergo the same field and oscillate collectively and in phase. When the frequency of the incident wave corresponds to the natural frequency of these oscillations, a resonance phenomenon occurs, called plasmon resonance. This resonance takes place in the visible domain, only for gold, copper and silver, hence the particular coloration of the nanoparticles of these metals. Typically, 20nm gold nanoparticles have a plasmon resonance band at 520nm (green absorption) and are red. The plasmon resonance frequency depends on the nature of the metal, on the size of the particle and on its shape, as well as on the dielectric properties of the substrate or of the surrounding medium (eg suspension) and on inter-particle interactions. It is possible to play on these different parameters to vary the color of the gold nanoparticles throughout the visible range, or even to shift the plasmon resonance frequency in the near infrared.
La demande internationale WO2011035446 Al décrit la fabrication d'un matériau coloré comprenant le mélange d'une matrice organo-minérale à base d'une résine thermo-durcissable ou photopolymérisable avec une suspension ou dispersion de nanoparticules métalliques de métal noble enrobées par une coque (notamment à base d'oxyde), le dépôt du mélange dans une cavité d'un substrat, et la polymérisation du mélange. Ce procédé permet d'accéder à un matériau coloré dans les teintes rose ou rouge au niveau de la cavité. Les teintes obtenues sont limitées et localisées dans un endroit spécifique du substrat. International application WO2011035446 A1 describes the manufacture of a colored material comprising the mixture of an organo-mineral matrix based on a thermosetting or photopolymerizable resin with a suspension or dispersion of metallic nanoparticles of noble metal coated by a shell. (in particular based on oxide), the deposition of the mixture in a cavity of a substrate, and the polymerization of the mixture. This process provides access to a colored material in pink or red shades in the cavity. The colors obtained are limited and localized in a specific place on the substrate.
Description de l’invention Description of the invention
Le but de la présente invention est donc de pallier les inconvénients précités, et en particulier de fournir un procédé de fabrication d'un matériau coloré, éventuellement capable de changer de couleur sous l'influence d'au moins un stimulus, ledit procédé étant simple, économique, garantissant une stabilité optimale de la couleur, permettant d'obtenir un spectre de couleurs extrêmement bien défini , ayant une importante modularité en ce qu'il permet d'accéder à une palette importante de couleurs et de types de substrats colorés, et évitant autant que possible les transferts de solvants. The aim of the present invention is therefore to overcome the aforementioned drawbacks, and in particular to provide a method of manufacturing a colored material, possibly capable of changing color under the influence of at least one stimulus, said method being simple. , economical, guaranteeing optimum color stability, making it possible to obtain an extremely well defined color spectrum, having an important modularity in that it allows access to a large palette of colors and types of colored substrates, and avoiding transfers of solvents as much as possible.
L'invention a pour premier objet un procédé de préparation d'un matériau coloré, caractérisé en ce qu'il comprend au moins les étapes suivantes : The first subject of the invention is a process for preparing a colored material, characterized in that it comprises at least the following steps:
i) une étape de chauffage d'une suspension aqueuse comprenant : i) a step of heating an aqueous suspension comprising:
- au moins un sel d'or (+III) ou au moins des nanoparticules d'or, - at least one gold salt (+ III) or at least gold nanoparticles,
- au moins un agent réducteur, et - at least one reducing agent, and
- au moins un support particulaire micrométrique, - at least one micrometric particulate support,
afin de former ledit matériau coloré en suspension, et to form said colored material in suspension, and
ii) une étape de récupération dudit matériau coloré, ii) a step of recovering said colored material,
ledit matériau coloré étant sous la forme de nanoparticules d'or supportées par ledit support particulaire micrométrique. said colored material being in the form of gold nanoparticles supported by said micrometric particulate support.
Le procédé de fabrication du matériau coloré est simple, économique, il garantit une stabilité optimale de la couleur, permet d'obtenir un spectre de couleurs extrêmement bien défini, présente une importante modularité, et évite autant que possible les transferts de solvants. The manufacturing process for the colored material is simple, economical, it guarantees optimum color stability, enables an extremely well-defined color spectrum to be obtained, exhibits significant modularity, and avoids solvent transfers as much as possible.
Dans la présente invention, l'expression « nanoparticules » signifie des particules ayant au moins une dimension inférieure ou égale à 500 nm, de préférence inférieure ou égale à 250 nm, et de façon particulièrement préférée inférieure ou égale à 100 nm environ. In the present invention, the expression “nanoparticles” means particles having at least one dimension less than or equal to 500 nm, of preferably less than or equal to 250 nm, and particularly preferably less than or equal to approximately 100 nm.
En considérant plusieurs nanoparticules selon l'invention, le terme « dimension » signifie la dimension moyenne en nombre de l'ensemble des particules d'une population donnée, cette dimension étant classiquement déterminée par des méthodes bien connues de l'homme du métier. La dimension de la ou des particules selon l'invention peut être par exemple déterminée par microscopie, notamment par microscope électronique à balayage (MEB) ou par microscope électronique en transmission (MET). Considering several nanoparticles according to the invention, the term “dimension” means the number-average dimension of all the particles of a given population, this dimension being conventionally determined by methods well known to those skilled in the art. The size of the particle (s) according to the invention can for example be determined by microscopy, in particular by scanning electron microscope (SEM) or by transmission electron microscope (TEM).
Le sel d'or (+III) est un sel dans lequel l'or est à l'état d'oxydation (+III). The gold salt (+ III) is a salt in which the gold is in the oxidation state (+ III).
Selon un mode de réalisation, le sel d'or (+III) est choisi parmi l'acide tétrachloroaurique HAuCU, le tétrachloroaurate de potassium KAuCU et leur mélange, et de préférence KAuCU. According to one embodiment, the gold (+ III) salt is chosen from tetrachloroauric acid HAuCU, potassium tetrachloroaurate KAuCU and their mixture, and preferably KAuCU.
Les nanoparticules d'or sont des nanoparticules d'or dont l'or est au degré d'oxydation zéro. Gold nanoparticles are gold nanoparticles in which gold is at zero oxidation state.
La suspension aqueuse peut comprendre un ou plusieurs solvants, les un ou plusieurs solvants contenant au moins 50% en volume environ d'eau, de préférence au moins 80% en volume environ d'eau, et de façon particulièrement préférée 100% en volume environ d'eau, par rapport au volume total de solvant(s) de la suspension aqueuse. The aqueous suspension may comprise one or more solvents, the one or more solvents containing at least 50% by volume approximately of water, preferably at least 80% by volume approximately of water, and particularly preferably 100% by volume approximately of water, relative to the total volume of solvent (s) in the aqueous suspension.
Le chauffage de l'étape i) peut être effectué par chauffage en température, en particulier à l'aide d'une plaque chauffante, ou par chauffage micro-ondes. The heating of step i) can be carried out by heating to temperature, in particular using a heating plate, or by microwave heating.
Le chauffage en température peut être réalisé à une température allant de 30 à 200°C environ, et de façon particulièrement préférée de 50 à 110°C environ. The temperature heating can be carried out at a temperature ranging from 30 to 200 ° C approximately, and particularly preferably from 50 to 110 ° C approximately.
Le chauffage micro-ondes peut être réalisé à une fréquence allant de de 25 à 65 Hz environ, et de préférence de l'ordre de 45 kHz. The microwave heating can be carried out at a frequency ranging from approximately 25 to 65 Hz, and preferably of the order of 45 kHz.
La température ou la fréquence employée permet de moduler la vitesse de dépôt des nanoparticules d'or sur le support, et ainsi les effets coloriels obtenus. L'étape i) peut être effectuée sous agitation, par exemple sous agitation mécanique ou magnétique. The temperature or the frequency used makes it possible to modulate the rate of deposition of the gold nanoparticles on the support, and thus the color effects obtained. Step i) can be carried out with stirring, for example with mechanical or magnetic stirring.
La suspension aqueuse utilisée dans l'étape i) peut comprendre de 0,005 à 1,0% en masse environ de sel d'or (+III), et de préférence de 0,01 à 0,5% en masse environ de sel d'or (+III), par rapport à la masse totale de ladite suspension aqueuse. The aqueous suspension used in step i) may comprise from 0.005 to 1.0% by mass approximately of gold (+ III) salt, and preferably from 0.01 to 0.5% by mass approximately of salt d. 'gold (+ III), relative to the total mass of said aqueous suspension.
La suspension aqueuse utilisée dans l'étape i) peut comprendre de 0,05 à 1,0% en masse environ d'agent réducteur, et de préférence de 0,08 à 0,5% en masse environ d'agent réducteur, par rapport à la masse totale de ladite suspension aqueuse. The aqueous suspension used in step i) may comprise from 0.05 to 1.0% by mass approximately of reducing agent, and preferably from 0.08 to 0.5% by mass approximately of reducing agent, by relative to the total mass of said aqueous suspension.
Selon une forme de réalisation préférée de l'invention, le rapport massique dans la suspension aqueuse utilisée dans l'étape i) : masse de sel d'or (+III)/masse d'agent réducteur varie de 0,1 à 1,5 environ, et de préférence de 0,1 à 1,0 environ. According to a preferred embodiment of the invention, the mass ratio in the aqueous suspension used in step i): mass of gold salt (+ III) / mass of reducing agent varies from 0.1 to 1, About 5, and preferably about 0.1 to 1.0.
La suspension aqueuse utilisée dans l'étape i) peut comprendre de 0,002 à 0,6% en masse environ de nanoparticules d'or, et de préférence de 0,04 à 0,3% en masse environ de nanoparticules d'or, par rapport à la masse totale de ladite suspension aqueuse. The aqueous suspension used in step i) can comprise from 0.002 to 0.6% by mass approximately of gold nanoparticles, and preferably from 0.04 to 0.3% by mass approximately of gold nanoparticles, by relative to the total mass of said aqueous suspension.
Selon une forme de réalisation préférée de l'invention, le rapport massique dans la suspension aqueuse de l'étape i) : masse de nanoparticules d'or/masse d'agent réducteur varie de 0,05 à 0,55 environ, et de préférence de 0,1 à 0,5 environ. According to a preferred embodiment of the invention, the mass ratio in the aqueous suspension of step i): mass of gold nanoparticles / mass of reducing agent varies from approximately 0.05 to 0.55, and from preferably from 0.1 to 0.5 approximately.
L'agent réducteur peut être choisi parmi les citrates de métal alcalin, les citrates de dérivés zwitterioniques d'acides aminés, les borohydrures, l'hydrazine, l'hydroquinone, et un de leurs mélanges, et de préférence choisi parmi les citrates de métal alcalin, les citrates d'acides aminés zwitterioniques, et leur mélange. The reducing agent can be chosen from alkali metal citrates, citrates of zwitterionic derivatives of amino acids, borohydrides, hydrazine, hydroquinone, and one of their mixtures, and preferably chosen from metal citrates. alkaline, citrates of zwitterionic amino acids, and their mixture.
À titre d'exemples de borohydrures, on peut citer le borohydrure de sodium. As examples of borohydrides, mention may be made of sodium borohydride.
À titre d'exemples de citrates de métal alcalin, on peut citer le citrate de potassium ou de sodium. À titre d'exemples de citrates de dérivés zwitterioniques d'acides aminés, on peut citer les citrates de dérivés comprenant au moins une fonction carboxylate et au moins une fonction ammonium quaternaire, tels que le citrate de bétaïne. As examples of alkali metal citrates, mention may be made of potassium or sodium citrate. As examples of citrates of zwitterionic amino acid derivatives, mention may be made of citrates of derivatives comprising at least one carboxylate function and at least one quaternary ammonium function, such as betaine citrate.
La suspension aqueuse utilisée dans l'étape i) peut comprendre en outre un agent stabilisant, notamment lorsque l'agent réducteur n'a pas de propriétés stabilisantes ou tensioactives. Par exemple, les citrates présentent outre leur pouvoir réducteur, des propriétés stabilisantes. The aqueous suspension used in step i) can also comprise a stabilizing agent, in particular when the reducing agent has no stabilizing or surfactant properties. For example, citrates exhibit, in addition to their reducing power, stabilizing properties.
L'agent stabilisant peut être choisi parmi les polymères tels que l'alcool polyvinylique ou l'acide polyacrylique, le poly(éthylèneglycol) (PEG), les dérivés soufrés tels que les thiols, les ligands à base de triphénylphosphine, les dendrimères, et les tensioactifs tels que le bromure de cétyltriméthylammonium (CTAB), le dodécylsulfate de sodium (SDS) ou les tensioactifs aminés. The stabilizing agent can be chosen from polymers such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), sulfur derivatives such as thiols, ligands based on triphenylphosphine, dendrimers, and surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) or amine surfactants.
Le citrate de sodium et le citrate de bétaïne sont particulièrement préférés (en tant qu'agents réducteurs ayant des propriétés stabilisantes). Particularly preferred are sodium citrate and betaine citrate (as reducing agents having stabilizing properties).
Dans l'invention, l'expression « support particulaire micrométrique » signifie que le support est sous la forme de particules micrométriques. In the invention, the expression “micrometric particulate support” means that the support is in the form of micrometric particles.
En particulier, les particules micrométriques faisant office de support des nanoparticules d'or peuvent avoir au moins une dimension inférieure à 300 pm environ, de préférence allant de 50 nm à 150 pm environ, et de façon particulièrement préférée allant de 1 à 100 pm environ. In particular, the micrometric particles acting as a support for the gold nanoparticles may have at least one dimension less than approximately 300 μm, preferably ranging from 50 nm to 150 μm approximately, and particularly preferably ranging from 1 to 100 μm approximately. .
Le support particulaire micrométrique peut être organique ou inorganique. The micrometric particulate support can be organic or inorganic.
Ledit support peut comprendre ou être constitué d'un matériau inorganique choisi parmi les silicates tels que par exemple les micas, les borosilicates, ou le talc ; les verres tels que la silice ; les oxydes de métaux, tels que par exemple l'oxyde de zinc ; les oxydes de terres rares tels que l'oxyde de cérium ; les métaux tels que par exemple l'aluminium ; et un de leurs mélanges ; ou peut comprendre ou être constitué d'un matériau organique choisi parmi les matériaux dérivés de composés naturels tels les poudres d'huitres ou de coquilles d'huitres, et les dérivés des matériaux issus de la filière de la forêt et du bois comme la cellulose ou ses dérivés. Un support particulaire inorganique est préféré. Said support can comprise or consist of an inorganic material chosen from silicates such as, for example, micas, borosilicates, or talc; glasses such as silica; metal oxides, such as for example zinc oxide; rare earth oxides such as cerium oxide; metals such as for example aluminum; and one of their mixtures; or can include or be made up of an organic material chosen from materials derived from natural compounds such as oyster powders or oyster shells, and derivatives of materials from the forest and wood industry such as cellulose or its derivatives. An inorganic particulate carrier is preferred.
Le support particulaire peut être sous la forme de paillettes, de plaquettes, de polyèdres, de billes, notamment pleines ou creuses, de particules, par exemple sphériques, ou d'une poudre. The particulate support can be in the form of flakes, platelets, polyhedra, balls, in particular solid or hollow, particles, for example spherical, or a powder.
Selon une forme de réalisation préférée de l'invention, le support comprend en surface une couche contenant au moins un oxyde de métal. En d'autres termes, le matériau du support peut être revêtu d'une couche contenant au moins un oxyde de métal. Cela permet ainsi de faciliter l'accroche des nanoparticules d'or audit support. Dans ce mode de réalisation, le support est de préférence inorganique. According to a preferred embodiment of the invention, the support comprises at the surface a layer containing at least one metal oxide. In other words, the support material can be coated with a layer containing at least one metal oxide. This thus makes it possible to facilitate the attachment of the gold nanoparticles to said support. In this embodiment, the support is preferably inorganic.
Par ailleurs, la couche contenant au moins un oxyde de métal peut être de nature hydrophile ou hydrophobe. Selon la nature de la couche, des couleurs différentes peuvent être obtenues. Furthermore, the layer containing at least one metal oxide can be of hydrophilic or hydrophobic nature. Depending on the nature of the layer, different colors can be obtained.
La couche contenant au moins un oxyde de métal peut avoir une épaisseur allant de 5 à 200 nm environ, de préférence allant de 30 à 160 nm environ, et de façon particulièrement préférée allant de 50 à 145 nm environ. Selon l'épaisseur de la couche, des couleurs différentes peuvent être obtenues. Ces gammes d'épaisseurs permettent un meilleur contrôle de la couleur finale du pigment, tout en garantissant un accès à une palette importante de couleurs différentes. The layer containing at least one metal oxide may have a thickness ranging from 5 to 200 nm approximately, preferably ranging from 30 to 160 nm approximately, and particularly preferably ranging from 50 to 145 nm approximately. Depending on the thickness of the layer, different colors can be obtained. These thickness ranges allow better control of the final color of the pigment, while ensuring access to a large palette of different colors.
La couche contenant au moins un oxyde de métal peut être une couche de silice, par exemple de silice amorphe. The layer containing at least one metal oxide can be a layer of silica, for example of amorphous silica.
Selon un mode de réalisation préféré de l'invention, le support est choisi parmi des paillettes d'aluminium, de préférence comprenant une couche de silice ; des paillettes de borosilicates, de préférence comprenant une couche d'oxyde métallique ; des billes de silice ; des particules de mica ; des particules d'oxyde de zinc ; des particules d'oxyde de calcium ; des particules d'oxyde de cérium ; des particules de talc ; des paillettes et des billes de cellulose ; et une poudre de coquilles d'huîtres. According to a preferred embodiment of the invention, the support is chosen from aluminum flakes, preferably comprising a layer of silica; borosilicate flakes, preferably comprising a metal oxide layer; silica beads; mica particles; zinc oxide particles; particles of calcium oxide; cerium oxide particles; talc particles; flakes and beads of cellulose; and a powder of oyster shells.
Les paillettes d'aluminium revêtues d'une couche de silice sont par exemple commercialisées sous la référence Frost, Crystal ou Velvet par la société Toyal Europe. Les paillettes de borosilicates revêtues d'une couche d'oxyde métallique sont par exemple commercialisées sous la référence KT700 par la société Kolortek. Aluminum flakes coated with a layer of silica are, for example, marketed under the reference Frost, Crystal or Velvet by the company Toyal Europe. The borosilicate flakes coated with a metal oxide layer are for example sold under the reference KT700 by the company Kolortek.
Les billes de silice sont par exemple commercialisées sous la référence CL-Silica-900 par la société Maprecos. The silica beads are, for example, sold under the reference CL-Silica-900 by the company Maprecos.
Les particules de mica sont par exemple commercialisées sous la référence C86-6105 Satin Mica par la société Maprecos. The mica particles are for example sold under the reference C86-6105 Satin Mica by the company Maprecos.
Les particules d'oxyde de zinc sont par exemple commercialisées par la société Sigma Aldrich. The zinc oxide particles are for example sold by the company Sigma Aldrich.
Les particules d'oxyde de calcium sont par exemple commercialisées par la société Sigma Aldrich. The calcium oxide particles are for example sold by the company Sigma Aldrich.
La suspension aqueuse utilisée dans l'étape i) peut comprendre de 0,005 à 60% en masse environ, de préférence de 0,01 à 50% en masse environ, et de façon particulièrement préférée de 0,1 à 10% en masse environ, de support particulaire micrométrique, par rapport à la masse totale de ladite suspension aqueuse. The aqueous suspension used in step i) can comprise from 0.005 to 60% by mass approximately, preferably from 0.01 to 50% by mass approximately, and particularly preferably from 0.1 to 10% by mass approximately, of micrometric particulate support, relative to the total mass of said aqueous suspension.
L'étape i) peut durer de 0,5 à 120 minutes environ, et de préférence de 2 à 45 minutes environ. Step i) can last from 0.5 to 120 minutes approximately, and preferably from 2 to 45 minutes approximately.
Selon une forme de réalisation préférée de l'invention, le procédé comprend en outre avant l'étape i), une étape iO) de préparation de la suspension aqueuse. According to a preferred embodiment of the invention, the process further comprises, before step i), a step iO) of preparing the aqueous suspension.
Selon une première variante du procédé de l'invention, l'étape i) met en oeuvre au moins un sel d'or (+III). According to a first variant of the process of the invention, step i) uses at least one gold salt (+ III).
Dans la première variante du procédé de l'invention, les nanoparticules d'or sont préparées in situ. In the first variant of the process of the invention, the gold nanoparticles are prepared in situ.
Selon cette première variante, l'étape iO) de préparation de la suspension aqueuse peut en particulier comprendre les sous-étapes suivantes : According to this first variant, step iO) for preparing the aqueous suspension can in particular comprise the following sub-steps:
10- 1) préparer une solution aqueuse comprenant le sel d'or (+III), iO-2) préparer une solution aqueuse comprenant l'agent réducteur, et iO-3) ajouter le support particulaire micrométrique et la solution aqueuse obtenue à la sous-étape iO-1), à la solution aqueuse de la sous-étape iO-2). La sous-étape iO-1) peut être effectuée à température ambiante (i.e. 18-10- 1) prepare an aqueous solution comprising the gold (+ III) salt, iO-2) prepare an aqueous solution comprising the reducing agent, and iO-3) add the micrometric particulate support and the aqueous solution obtained to the sub-step iO-1), to the aqueous solution of sub-step iO-2). Sub-step iO-1) can be carried out at room temperature (ie 18-
25°C). 25 ° C).
La sous-étape iO-2) peut être effectuée à température ambiante (i.e. 18- Sub-step iO-2) can be carried out at room temperature (i.e. 18-
25°C). 25 ° C).
L'étape iO) de préparation de la suspension aqueuse peut en outre comprendre après la sous-étape iO-2) et avant la sous-étape iO-3), une sous- étape iO-2') consistant à chauffer la solution aqueuse obtenue à la sous-étape iO-2). Step iO) for preparing the aqueous suspension can further comprise, after sub-step iO-2) and before sub-step iO-3), a sub-step iO-2 ′) consisting in heating the aqueous solution obtained in the sub-step iO-2).
Le chauffage lors de la sous-étape iO-2') peut être effectué par chauffage en température, en particulier à l'aide d'une plaque chauffante, ou par chauffage micro-ondes. The heating during the sub-step iO-2 ′) can be carried out by heating to temperature, in particular using a hot plate, or by microwave heating.
Le chauffage en température peut être réalisé à une température allant de 80 à 200°C environ, et de façon particulièrement préférée de 80 à 110°C environ. The temperature heating can be carried out at a temperature ranging from 80 to 200 ° C approximately, and particularly preferably from 80 to 110 ° C approximately.
Le chauffage micro-ondes peut être réalisé à une fréquence allant de de 25 à 65 Hz environ, et de préférence de l'ordre de 45 kHz. The microwave heating can be carried out at a frequency ranging from approximately 25 to 65 Hz, and preferably of the order of 45 kHz.
Lors de la sous-étape iO-3), la proportion de solution aqueuse de sel d'or (+III) ajoutée est telle que le rapport volumique : volume de la solution aqueuse comprenant le sel d'or (+III) obtenue à la sous-étape iO-l)/volume de la solution aqueuse comprenant l'agent réducteur obtenue à la sous-étape iO-2), va de préférence de 0,1 à 2,5 environ, et de façon particulièrement préférée de 0,5 à 2,0. During sub-step iO-3), the proportion of aqueous solution of gold (+ III) salt added is such that the volume ratio: volume of the aqueous solution comprising the gold (+ III) salt obtained at the sub-step iO-1) / volume of the aqueous solution comprising the reducing agent obtained in the sub-step iO-2), preferably ranges from 0.1 to 2.5 approximately, and particularly preferably from 0 , 5 to 2.0.
La sous-étape iO-3) peut être effectuée en une seule fois (i.e. toute la quantité de solution de sel d'or (+III) est ajoutée en une fois) ou en plusieurs fois. Sub-step iO-3) can be carried out all at once (i.e. the whole quantity of gold salt solution (+ III) is added at once) or in several times.
Lorsque l'étape iO) comprend la sous-étape iO-2'), un maintien du chauffage est assuré au cours des sous-étapes iO-3) et i). When step iO) comprises substep iO-2 ′), heating is maintained during substeps iO-3) and i).
Selon une deuxième variante du procédé de l'invention, l'étape i) met en oeuvre au moins des nanoparticules d'or. According to a second variant of the process of the invention, step i) uses at least gold nanoparticles.
Cette deuxième variante permet de préparer préalablement les nanoparticules d'or puis de les mettre en contact avec le support micrométrique particulaire, ce qui laisse plus de latitudes sur le choix du support, la forme de nanoparticules d'or, et les possibilités de recyclage des matières premières. This second variant makes it possible to prepare the gold nanoparticles beforehand and then to bring them into contact with the micrometric support. particulate matter, which leaves more latitude in the choice of support, the shape of gold nanoparticles, and the possibilities for recycling raw materials.
Selon cette deuxième variante, les nanoparticules d'or peuvent être préalablement obtenues selon n'importe quelle méthode bien connue de l'état de la technique, telle que la méthode de Turkevich. According to this second variant, the gold nanoparticles can be obtained beforehand according to any method well known from the state of the art, such as the Turkevich method.
Selon cette deuxième variante, l'étape iO) de préparation de la suspension aqueuse peut en particulier comprendre les sous-étapes suivantes : iO-A) préparer une suspension aqueuse comprenant les nanoparticules d'or, According to this second variant, step iO) of preparing the aqueous suspension can in particular comprise the following sub-steps: iO-A) preparing an aqueous suspension comprising the gold nanoparticles,
iO-B) ajouter l'agent réducteur, et iO-B) add the reducing agent, and
iO-C) ajouter le support particulaire micrométrique. iO-C) add the micrometric particulate support.
La suspension aqueuse de la sous-étape iO-A) peut être obtenue selon n'importe quelle méthode bien connue de l'état de la technique, telle que la méthode de Turkevich The aqueous suspension of substep iO-A) can be obtained according to any method well known from the state of the art, such as the Turkevich method.
L'étape ii) de récupération dudit matériau coloré peut être réalisée par filtration, décantation, ou centrifugation. Step ii) of recovering said colored material can be carried out by filtration, decantation, or centrifugation.
Le procédé peut comprendre en outre une étape iii) de séchage, notamment par étuvage. The method may further comprise a step iii) of drying, in particular by steaming.
Le procédé peut comprendre en outre une étape iv) de mise en oeuvre d'un stimulus, afin de modifier la couleur du matériau coloré. The method can further comprise a step iv) of implementing a stimulus, in order to modify the color of the colored material.
Le stimulus peut être un stimulus externe tel que le chauffage ou recuit du matériau coloré obtenu à l'étape ii) ou iii), l'exposition à un rayonnement UV, l'utilisation d'un laser, ou sa réhydratation spontanée ou provoquée. The stimulus can be an external stimulus such as heating or annealing the colored material obtained in step ii) or iii), exposure to UV radiation, use of a laser, or its spontaneous or induced rehydration.
De préférence, les nanoparticules d'or du matériau coloré obtenu selon le procédé conforme au premier objet de l'invention ont au moins une dimension allant de 5 à 100 nm environ. Preferably, the gold nanoparticles of the colored material obtained according to the process in accordance with the first subject of the invention have at least one dimension ranging from approximately 5 to 100 nm.
L'invention a pour deuxième objet un matériau coloré obtenu selon un procédé conforme au premier objet de l'invention, caractérisé en ce qu'il est sous la forme de nanoparticules d'or supportées sur un support particulaire micrométrique. Les nanoparticules d'or et le support particulaire micrométrique peuvent être tels que définis dans le premier objet de l'invention. The second subject of the invention is a colored material obtained according to a process in accordance with the first subject of the invention, characterized in that it is in the form of gold nanoparticles supported on a micrometric particulate support. The gold nanoparticles and the micrometric particulate support can be as defined in the first subject of the invention.
Le matériau coloré peut comprendre de 1 à 20% en masse environ d'or, et de 99 à 80% en masse environ de support particulaire micrométrique, par rapport à la masse totale du matériau coloré. The colored material may comprise from 1 to 20% by mass approximately gold, and from 99 to 80% by mass approximately of micrometric particulate support, relative to the total mass of the colored material.
Le matériau coloré est de préférence sous la forme d'une poudre ou d'un matériau pulvérulent. The colored material is preferably in the form of a powder or a powdery material.
De préférence, les nanoparticules d'or dans le matériau coloré obtenu selon le procédé conforme au deuxième objet de l'invention ont au moins une dimension allant de 2 à 100 nm environ. Preferably, the gold nanoparticles in the colored material obtained according to the process in accordance with the second subject of the invention have at least one dimension ranging from approximately 2 to 100 nm.
L'invention a pour troisième objet une composition colorée comprenant au moins un matériau coloré conforme au deuxième objet de l'invention ou obtenu selon un procédé conforme au premier objet de l'invention, et au moins un solvant dans lequel ledit matériau coloré est dispersé. The third subject of the invention is a colored composition comprising at least one colored material in accordance with the second subject of the invention or obtained according to a process in accordance with the first subject of the invention, and at least one solvent in which said colored material is dispersed. .
Le solvant peut être un solvant organique, tel qu'un solvant choisi parmi les alcools tels que l'éthanol, et les esters tels que l'acétate d'éthyle ; ou un solvant aqueux. The solvent can be an organic solvent, such as a solvent chosen from alcohols such as ethanol, and esters such as ethyl acetate; or an aqueous solvent.
La composition colorée peut en outre comprendre tout additif approprié pour former une base de vernis à ongles, en particulier translucide ou transparent. The colored composition may further comprise any additive suitable for forming a nail varnish base, in particular translucent or transparent.
De tels additifs peuvent être choisis parmi un agent filmogène, un plastifiant, un agent thixotrope, une résine, et un de leurs mélanges. Ces additifs sont bien connus de l'homme du métier. Such additives can be chosen from a film-forming agent, a plasticizer, a thixotropic agent, a resin, and one of their mixtures. These additives are well known to those skilled in the art.
Dans l'invention, l'expression « translucide » signifie présentant un coefficient de transmission optique allant de 10% environ à 80% environ, mesuré par un spectromètre UV-visible conventionnel. Dans l'invention, l'expression « transparent » signifie présentant un coefficient de transmission optique supérieur à 80% environ, mesuré par un spectromètre UV-visible conventionnel. In the invention, the expression “translucent” means having an optical transmission coefficient ranging from approximately 10% to approximately 80%, measured by a conventional UV-visible spectrometer. In the invention, the expression “transparent” means having an optical transmission coefficient greater than approximately 80%, measured by a conventional UV-visible spectrometer.
La composition colorée peut être obtenue par mélange du matériau coloré avec au moins un solvant organique, et optionnellement le ou les additifs précités. La composition colorée peut être appliquée sur un support, par exemple un support souple ou rigide, et séchée, de manière à former un support comprenant une couche colorée continue. The colored composition can be obtained by mixing the colored material with at least one organic solvent, and optionally the aforementioned additive (s). The colored composition can be applied to a support, for example a flexible or rigid support, and dried, so as to form a support comprising a continuous colored layer.
Le support peut être choisi parmi une surface en cuir, en tissu, en matériau polymère, ou en métal. The support can be chosen from a leather, fabric, polymeric material, or metal surface.
L'application peut être effectuée avec un aérographe, ou au pinceau. The application can be done with an airbrush, or with a brush.
L'invention a pour quatrième objet un procédé de préparation d'un matériau coloré, caractérisé en ce qu'il comprend au moins les étapes suivantes : The fourth subject of the invention is a process for preparing a colored material, characterized in that it comprises at least the following steps:
a) une étape de préparation d'une composition réticulable comprenant un ou plusieurs précurseurs époxydes, a) a step of preparing a crosslinkable composition comprising one or more epoxy precursors,
b) une étape de mélange de la composition réticulable de l'étape a) avec une suspension dans un solvant protique polaire de nanoparticules métalliques d'un métal choisi parmi l'or, le cuivre, l'argent, et un de leurs mélanges, afin d'obtenir une composition colorée, et b) a step of mixing the crosslinkable composition of step a) with a suspension in a polar protic solvent of metallic nanoparticles of a metal chosen from gold, copper, silver, and one of their mixtures, in order to obtain a colored composition, and
c) une étape de polymérisation, et c) a polymerization step, and
en ce que ledit matériau coloré est sous la forme de nanoparticules métalliques d'un métal choisi parmi l'or, le cuivre, l'argent, et un de leurs mélanges, dispersées dans un matériau polymère époxyde réticulé. in that said colored material is in the form of metallic nanoparticles of a metal chosen from gold, copper, silver, and a mixture thereof, dispersed in a crosslinked epoxy polymer material.
Le procédé de fabrication du matériau coloré est simple, économique, il garantit une stabilité optimale de la couleur, permet d'obtenir un spectre de couleurs extrêmement bien défini, présente une importante modularité, et évite autant que possible les transferts de solvants. The manufacturing process for the colored material is simple, economical, it guarantees optimum color stability, enables an extremely well-defined color spectrum to be obtained, exhibits significant modularity, and avoids solvent transfers as much as possible.
L'étape a) peut être effectuée sous agitation, notamment en présence d'ultrasons. Cela permet ainsi de former un mélange homogène tout en évitant la présence de bulles d'air. Step a) can be carried out with stirring, in particular in the presence of ultrasound. This thus makes it possible to form a homogeneous mixture while avoiding the presence of air bubbles.
L'étape a) est de préférence effectuée à température ambiante (i.e. 18- 25°C environ). Step a) is preferably carried out at ambient temperature (i.e. approximately 18-25 ° C.).
Au sens de l'invention, le précurseur époxyde comprend un ou plusieurs groupes époxydes (ou cycles oxyranes). Le précurseur époxyde de la composition réticulable peut être choisi parmi les résines époxydes cycloaliphatiques, les résines époxydes d'éthers glycidyliques, notamment (poly)phénoliques et/ou aliphatiques, les résines époxydes d'esters glycidyliques, les résines époxydes obtenues par copolymérisation avec du méthacrylate de glycidyl, et les résines époxydes obtenues à partir de glycérides d'acides gras insaturés. Within the meaning of the invention, the epoxy precursor comprises one or more epoxy groups (or oxyran rings). The epoxy precursor of the crosslinkable composition can be chosen from cycloaliphatic epoxy resins, epoxy resins of glycidyl ethers, in particular (poly) phenolic and / or aliphatic, epoxy resins of glycidyl esters, epoxy resins obtained by copolymerization with glycidyl methacrylate, and epoxy resins obtained from glycerides of unsaturated fatty acids.
À titre d'exemples préférés de précurseurs époxydes, on peut citer les les résines époxydes d'éthers glycidyliques, notamment (poly)phénoliques et/ou aliphatiques, tels que les produits de réaction de condensation de l'épichlorhydrine avec des polyalcools ou des polyphénols (e.g. bisphénol A, bisphénol F), les résines époxydes aliphatiques d'éthers glycidyliques, ou un de leurs mélanges. As preferred examples of epoxy precursors, mention may be made of epoxy resins of glycidyl ethers, in particular (poly) phenolic and / or aliphatic, such as the condensation reaction products of epichlorohydrin with polyalcohols or polyphenols. (eg bisphenol A, bisphenol F), epoxy aliphatic resins of glycidyl ethers, or a mixture thereof.
L'étape b) est de préférence effectuée en ajoutant la suspension de nanoparticules métalliques dans la composition réticulable, en particulier en plusieurs fois et/ou progressivement. Step b) is preferably carried out by adding the suspension of metal nanoparticles in the crosslinkable composition, in particular in several times and / or gradually.
L'étape b) peut être effectuée sous agitation, notamment en présence d'ultrasons. Cela permet ainsi de former un mélange homogène tout en évitant la présence de bulles d'air. Step b) can be carried out with stirring, in particular in the presence of ultrasound. This thus makes it possible to form a homogeneous mixture while avoiding the presence of air bubbles.
Le solvant polaire protique peut être choisi parmi les alcools inférieurs (i.e. en Ci-C5The polar protic solvent can be chosen from lower alcohols (ie C 1 -C 5 )
Le solvant polaire protique est de préférence l'éthanol. The polar protic solvent is preferably ethanol.
Lors de l'étape b), la concentration molaire des nanoparticules métalliques de la suspension va de préférence de lxlO 9 à lxlO 7 mol/l environ, et de façon particulièrement préférée de 5xl0 9 à 5xl0 8 mol/l environ. During step b), the molar concentration of the metal nanoparticles in the suspension preferably ranges from approximately 1 × 10 9 to 1 × 10 7 mol / l, and particularly preferably from 5 × 10 9 to 5 × 10 8 mol / l approximately.
À l'issue de l'étape b), le rapport massique : masse des nanoparticules métalliques/masse des précurseurs époxydes réticulables va de 3xl0 9 à 3xl0 7 environ et de préférence de l,5xl0 8 à l,5xl0 7. At the end of step b), the mass ratio: mass of the metallic nanoparticles / mass of the crosslinkable epoxy precursors ranges from approximately 3 × 10 9 to 3 × 10 7 and preferably from 1.5 × 10 8 to 1.5 × 10 7 .
L'étape b) est de préférence effectuée à température ambiante. Step b) is preferably carried out at room temperature.
L'étape c) est de préférence effectuée à température ambiante. L'étape c) peut durer de 5 minutes à 24 heures environ. Step c) is preferably carried out at room temperature. Step c) can last from 5 minutes to approximately 24 hours.
Les étapes b) et c) peuvent être concomitantes, ou l'étape c) peut avoir lieu avant ou après l'étape b). L'étape c) peut être une étape de photo-polymérisation ou une étape mettant en oeuvre au moins un agent de réticulation. Steps b) and c) can be concomitant, or step c) can take place before or after step b). Step c) can be a photopolymerization step or a step using at least one crosslinking agent.
L'agent de réticulation est de préférence introduit dans la composition réticulable lors de l'étape a). The crosslinking agent is preferably introduced into the crosslinkable composition during step a).
Ainsi, le matériau polymère époxyde réticulé est obtenu par polymérisation d'au moins précurseur époxyde tel que défini dans l'invention et de l'agent de réticulation (également appelé durcisseur), notamment par polycondensation ou par polyaddition. Thus, the crosslinked epoxy polymer material is obtained by polymerization of at least epoxy precursor as defined in the invention and of the crosslinking agent (also called hardener), in particular by polycondensation or by polyaddition.
L'agent de réticulation peut être à base d’au moins un anhydride d’acide, d'au moins une polyamine (e.g. amines (cyclo)aliphatiques, amines aromatiques), d'au moins une polyamide, d'au moins une amidoamine, ou d'un de leurs mélanges. The crosslinking agent can be based on at least one acid anhydride, on at least one polyamine (eg (cyclo) aliphatic amines, aromatic amines), on at least one polyamide, on at least one amidoamine , or one of their mixtures.
À titre d'exemples d'anhydrides d'acide, on peut citer le méthyltétrahydrophtalique (MTHPA), l’anhydride méthylnadique (NMA) ou l’anhydride méthylhexahydrophtalique (MHHPA). Examples of acid anhydrides include methyltetrahydrophthalic (MTHPA), methylnadic anhydride (NMA) or methylhexahydrophthalic anhydride (MHHPA).
À titre d'exemples de polyamines de type amines aliphatiques ou cycloaliphatiques, on peut citer celles comprenant deux amines primaires telles que la diéthylène triamine (DETA), la tétraéthylène tétramine (TETA), les polyétheramines tels que le polyoxypropylène diamine ou les composés commercialisés sous la référence Jeffamine®, ou l’isophorone diamine (IPDA). As examples of polyamines of the aliphatic or cycloaliphatic amine type, mention may be made of those comprising two primary amines such as diethylene triamine (DETA), tetraethylene tetramine (TETA), polyetheramines such as polyoxypropylene diamine or the compounds marketed under the Jeffamine® reference, or isophorone diamine (IPDA).
À titre d'exemples de polyamines de type amines aromatiques, on peut citer celles comprenant deux amines primaires telles que le 4,4’- diaminodiphénylméthane (DDM), la diaminodiphénylsulfone (DDS), la méthylène-bis(diisopropylaniline) (MPDA) ou la bis(amino-chloro- diéthylphényl)méthane (MCDEA). As examples of polyamines of the aromatic amine type, mention may be made of those comprising two primary amines such as 4,4′-diaminodiphenylmethane (DDM), diaminodiphenylsulfone (DDS), methylene-bis (diisopropylaniline) (MPDA) or bis (amino-chloro-diethylphenyl) methane (MCDEA).
À titre d'exemples de polyamides, on peut citer les produits de la condensation de polyamines avec des dimères acides ou d’acides gras. As examples of polyamides, mention may be made of the condensation products of polyamines with acid or fatty acid dimers.
À titre d'exemples d'amidoamines, on peut citer les produits de réaction d'acides carboxyliques (dérivés d’acides gras en Ci6-Ci9) avec des polyamines aliphatiques (TETA). Le procédé peut comprendre en outre entre les étapes b) et c), une étape b') au cours de laquelle la composition colorée est coulée dans un moule, en particulier dans un moule en silicone. As examples of amidoamines, there may be mentioned the reaction products of carboxylic acids (derivatives of C 6 -C 9 fatty acids) with aliphatic polyamines (TETA). The method may further comprise between steps b) and c), a step b ′) during which the colored composition is cast in a mold, in particular in a silicone mold.
L'étape c) peut être concomitante avec l'étape b'). Step c) can be concomitant with step b ′).
Selon ce mode de réalisation, l'étape c) peut être suivie par une étape d) au cours de laquelle le matériau coloré obtenu est démoulé. According to this embodiment, step c) can be followed by a step d) during which the colored material obtained is demolded.
La suspension de nanoparticules métalliques telle qu'utilisée dans l'étape b) peut être obtenue par des techniques bien connues de l'homme du métier. The suspension of metal nanoparticles as used in step b) can be obtained by techniques well known to those skilled in the art.
Lorsque les nanoparticules métalliques sont des nanoparticules d'or, la suspension de nanoparticules métalliques peut par exemple être obtenue par préparation d'une suspension aqueuse de nanoparticules d'or selon la méthode de Turkevich, puis un transfert de solvant induisant le remplacement de l'eau par un solvant protique polaire tel que défini dans l'invention. When the metal nanoparticles are gold nanoparticles, the suspension of metal nanoparticles can for example be obtained by preparing an aqueous suspension of gold nanoparticles according to the Turkevich method, then a transfer of solvent inducing the replacement of the water with a polar protic solvent as defined in the invention.
De préférence, les nanoparticules métalliques dans le matériau coloré obtenu selon le procédé conforme au quatrième objet de l'invention ont au moins une dimension allant de 2 à 100 nm environ. Preferably, the metallic nanoparticles in the colored material obtained according to the process in accordance with the fourth subject of the invention have at least one dimension ranging from approximately 2 to 100 nm.
Les nanoparticules métalliques sont de préférence des nanoparticules d'un métal choisi parmi le cuivre, l'argent, un mélange de cuivre et d'argent ou un mélange de cuivre, d'argent et d'or. The metallic nanoparticles are preferably nanoparticles of a metal chosen from copper, silver, a mixture of copper and silver or a mixture of copper, silver and gold.
Les nanoparticules métalliques peuvent être revêtues d'une couche organique ou inorganique. The metal nanoparticles can be coated with an organic or inorganic layer.
Toutefois, elles peuvent être exemptes d'une couche organique ou inorganique, et en particulier exemptes d'une couche organique, notamment lorsque les nanoparticules métalliques sont des particules d'or. However, they can be free of an organic or inorganic layer, and in particular free of an organic layer, in particular when the metal nanoparticles are gold particles.
La couche organique peut comprendre un matériau choisi parmi les polymères tels que l'alcool polyvinylique ou l'acide polyacrylique, le poly(éthylèneglycol) (PEG), les dérivés soufrés tels que les thiols, les ligands à base de triphénylphosphine, les dendrimères, les tensioactifs tels que le bromure de cétyltriméthylammonium (CTAB), le dodécylsulfate de sodium (SDS) ou les tensioactifs aminés, et de préférence tels que l'alcool polyvinylique ou l'acide polyacrylique, le poly(éthylèneglycol) (PEG), les ligands à base de triphénylphosphine, les dendrimères, les tensioactifs tels que le bromure de cétyltriméthylammonium (CTAB), le dodécylsulfate de sodium (SDS) ou les tensioactifs aminés. The organic layer can comprise a material chosen from polymers such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), sulfur derivatives such as thiols, ligands based on triphenylphosphine, dendrimers, surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) or amino surfactants, and preferably such as polyvinyl alcohol or polyacrylic acid, poly (ethylene glycol) (PEG), ligands made of triphenylphosphine, dendrimers, surfactants such as cetyltrimethylammonium bromide (CTAB), sodium dodecylsulphate (SDS) or amino surfactants.
La couche organique est de préférence différente d'une couche comprenant un polyvinylpyrrolidone tel que le poly-N-vinyl-2-pyrrolidone, ou un thiol tel que le dodécanethiol, notamment lorsque les nanoparticules métalliques sont des particules d'or. The organic layer is preferably different from a layer comprising a polyvinylpyrrolidone such as poly-N-vinyl-2-pyrrolidone, or a thiol such as dodecanethiol, in particular when the metal nanoparticles are gold particles.
La couche inorganique peut comprendre un oxyde de métal ou de métalloïde tel que par exemple une couche d'oxyde de silicium. The inorganic layer may comprise a metal or metalloid oxide such as, for example, a layer of silicon oxide.
Une couche inorganique de silice est particulièrement appropriée pour des nanoparticules d'or ou d'argent. An inorganic silica layer is particularly suitable for gold or silver nanoparticles.
Lorsque les nanoparticules métalliques sont revêtues d'une couche organique ou inorganique, le procédé peut comprendre en outre avant l'étape b), une étape a') d'enrobage des nanoparticules. When the metal nanoparticles are coated with an organic or inorganic layer, the method may further comprise, before step b), a step a ′) of coating the nanoparticles.
Le procédé peut comprendre en outre lors de l'étape b) ou entre les étapes b) et c), l'ajout à la composition colorée d'un agent modificateur de couleur. The method may further comprise, during step b) or between steps b) and c), the addition to the colored composition of a color modifying agent.
Cet agent permet de modifier la couleur de la composition colorée. This agent makes it possible to modify the color of the colored composition.
Le procédé peut comprendre en outre une étape e) de mise en oeuvre d'un stimulus afin de modifier la couleur du matériau coloré. The method may further comprise a step e) of implementing a stimulus in order to modify the color of the colored material.
Cette étape e) peut permettre de passer d'un matériau ayant une distribution homogène des nanoparticules métalliques à une distribution hétérogène des nanoparticules métalliques au sein dudit matériau, induisant alors un changement de couleur. This step e) can make it possible to switch from a material having a homogeneous distribution of metallic nanoparticles to a heterogeneous distribution of metallic nanoparticles within said material, then inducing a change in color.
L'étape e) est particulièrement appropriée lorsque les nanoparticules métalliques sont des nanoparticules d'or et d’argent. Step e) is particularly suitable when the metal nanoparticles are gold and silver nanoparticles.
Le stimulus peut être un stimulus externe tel que le chauffage ou recuit du matériau coloré obtenu à l'étape c), l'exposition à un rayonnement UV, ou l'utilisation d'un laser. Le stimulus peut être un stimulus interne tel que l'étape c) de polymérisation « proprement dite », ou le pH de la composition réticulable, et notamment de l'agent de réticulation ou durcisseur. The stimulus can be an external stimulus such as heating or annealing the colored material obtained in step c), exposure to UV radiation, or the use of a laser. The stimulus can be an internal stimulus such as step c) of polymerization “proper”, or the pH of the crosslinkable composition, and in particular of the crosslinking or hardening agent.
Le matériau polymère époxyde réticulé du matériau coloré est obtenu à partir de la composition réticulable telle que définie dans l'invention. The crosslinked epoxy polymer material of the colored material is obtained from the crosslinkable composition as defined in the invention.
L'invention a pour cinquième objet un matériau coloré obtenu selon un procédé conforme au quatrième objet de l'invention, caractérisé en ce qu'il est sous la forme de nanoparticules métalliques d'un métal choisi parmi l'or, le cuivre, l'argent, et un de leurs mélanges, dispersées dans un matériau polymère époxyde réticulé. The fifth subject of the invention is a colored material obtained according to a process in accordance with the fourth subject of the invention, characterized in that it is in the form of metallic nanoparticles of a metal chosen from gold, copper, l silver, and a mixture thereof, dispersed in a crosslinked epoxy polymeric material.
Le matériau coloré obtenu selon un procédé conforme au quatrième objet de l'invention est de préférence différent d'un matériau coloré sous la forme de nanoparticules d'or dispersées dans un matériau polymère époxyde réticulé, lesdites nanoparticules d'or comprenant une couche organique comprenant un polyvinylpyrrolidone tel que le poly-N-vinyl-2-pyrrolidone, ou un thiol tel que le dodécanethiol. The colored material obtained according to a process in accordance with the fourth object of the invention is preferably different from a colored material in the form of gold nanoparticles dispersed in a crosslinked epoxy polymer material, said gold nanoparticles comprising an organic layer comprising a polyvinylpyrrolidone such as poly-N-vinyl-2-pyrrolidone, or a thiol such as dodecanethiol.
Les nanoparticules métalliques et le matériau polymère époxyde réticulé peuvent être tels que définis dans le quatrième objet de l'invention. The metallic nanoparticles and the crosslinked epoxy polymer material can be as defined in the fourth subject of the invention.
Le matériau coloré peut comprendre de 0,5 à 10% en masse environ de nanoparticules métalliques, et de 90 à 99,5% en masse environ de matériau polymère époxyde réticulé, par rapport à la masse totale du matériau coloré. The colored material may comprise from 0.5 to 10% by mass approximately of metallic nanoparticles, and from 90 to 99.5% by mass approximately of crosslinked epoxy polymer material, relative to the total mass of the colored material.
Le matériau coloré est de préférence sous la forme d'une masse solide, i.e. sous la forme d'un matériau non pulvérulent. The colored material is preferably in the form of a solid mass, i.e. in the form of a non-pulverulent material.
Ainsi, grâce aux procédés de l'invention, l'ensemble des couleurs primaires du spectre de la lumière visible est obtenu à l'aide de seulement un ou plusieurs métaux, ainsi qu'une gamme infinie de teintes secondaires par simple mélange de deux ou trois types de nanoparticules métalliques, notamment dans le cas du procédé conforme au quatrième objet de l'invention. Les procédés permettent également de moduler la teinte d'une coloration, de conférer des propriétés thermochromes irréversibles et/ou photosensibles à certains supports particulaires micrométriques ou matériaux polymères réticulés, et d'offrir une gamme de pigments de tailles micrométriques dont les propriétés optiques sont apportés par les entités nanométriques qui les composent. L'invention a pour sixième objet l'utilisation d'un matériau coloré conforme au deuxième objet (ou obtenu selon un procédé conforme au premier objet) ou conforme au cinquième objet de l'invention (ou obtenu selon un procédé conforme au quatrième objet), dans des applications cosmétiques ou de parfumerie, dans le domaine des articles de mode tels que des boutons, dans les emballages, dans la joaillerie, dans l'imprimerie, dans une peinture ou un vernis, ou comme moyen d'authentification, notamment de la contrefaçon, ou de décoration. Thus, thanks to the methods of the invention, all of the primary colors of the visible light spectrum are obtained using only one or more metals, as well as an infinite range of secondary colors by simply mixing two or more. three types of metal nanoparticles, in particular in the case of the process in accordance with the fourth subject of the invention. The methods also make it possible to modulate the hue of a coloration, to confer irreversible and / or photosensitive thermochromic properties to certain micrometric particulate supports or crosslinked polymer materials, and to offer a range of micrometric-sized pigments whose optical properties are provided. by the nanometric entities that compose them. The sixth object of the invention is the use of a colored material conforming to the second object (or obtained according to a process conforming to the first object) or conforming to the fifth object of the invention (or obtained according to a process conforming to the fourth object) , in cosmetic or perfume applications, in the field of fashion articles such as buttons, in packaging, in jewelery, in printing, in a paint or varnish, or as a means of authentication, in particular of counterfeiting, or decoration.
EXEM PLES EXAMPLES
Exemple 1 : procédé de préparation d'un matériau coloré sous la forme de nanoparticules d'or sur des paillettes d'aluminium revêtues d'une couche de silice amorphe Example 1: process for preparing a colored material in the form of gold nanoparticles on aluminum flakes coated with a layer of amorphous silica
Une solution aqueuse à 1,5 g/L de KAuCU a été préparée. A 1.5 g / L aqueous solution of KAuCU was prepared.
Une solution aqueuse à 4 g/L de citrate de bétaïne a été préparée. A 4 g / L aqueous solution of betaine citrate was prepared.
8 mg de paillettes d'aluminium de dimension moyenne 20 pm revêtues d'une couche de silice amorphe d'épaisseur moyenne 100 nm, vendues sous la dénomination commerciale Frost Silver par la société TOYAL Europe, ont été mélangés avec 5 mL de la solution aqueuse de KAuCU et 3 mL de la solution de citrate de bétaïne, pour former une suspension aqueuse. 8 mg of aluminum flakes of average size 20 μm coated with a layer of amorphous silica of average thickness 100 nm, sold under the trade name Frost Silver by the company TOYAL Europe, were mixed with 5 mL of the aqueous solution of KAuCU and 3 mL of the betaine citrate solution, to form an aqueous suspension.
Pour ce faire, la solution aqueuse de citrate de bétaïne a été chauffée à l'aide d'une plaque chauffante sous agitation magnétique à 100°C. Puis, les paillettes d'aluminium ont été ajoutées et la solution aqueuse de KAuCU a été ajoutée en 3 fois sur une période de 15 minutes, tout en maintenant le chauffage. To do this, the aqueous solution of betaine citrate was heated using a hotplate with magnetic stirring at 100 ° C. Then, the aluminum flakes were added and the aqueous solution of KAuCU was added in 3 batches over a period of 15 minutes, while maintaining the heating.
Puis la suspension résultante a été chauffée pendant 10 minutes. Then the resulting suspension was heated for 10 minutes.
Le matériau coloré obtenu a été récupéré par centrifugation, puis séché à l'étuve à 120°C. The colored material obtained was recovered by centrifugation and then dried in an oven at 120 ° C.
Le matériau coloré obtenu est sous la forme de nanoparticules d'or de dimension moyenne 20 nm environ supportées. The colored material obtained is in the form of gold nanoparticles of average size approximately 20 nm supported.
Le matériau coloré obtenu présente une couleur doré (couleur pantone : 15-0525). Exemple 2 : procédé de préparation d'un matériau coloré sous la forme de nanoparticules d'or sur des paillettes d'aluminium revêtues d'une couche de silice amorphe The colored material obtained has a golden color (pantone color: 15-0525). Example 2: process for preparing a colored material in the form of gold nanoparticles on aluminum flakes coated with a layer of amorphous silica
Une solution aqueuse à 1,5 g/L de KAuCU a été préparée. A 1.5 g / L aqueous solution of KAuCU was prepared.
Une solution aqueuse à 4 g/L de citrate de bétaïne a été préparée. A 4 g / L aqueous solution of betaine citrate was prepared.
3 mg de paillettes d'aluminium de dimension moyenne 20 pm revêtues d'une couche de silice amorphe d'épaisseur moyenne 100 nm, vendues sous la dénomination commerciale Velvet par la société TOYAL Europe, ont été mélangés avec 4,5 mL de la solution aqueuse de KAuCU et 3 mL de la solution de citrate de bétaïne, pour former une suspension aqueuse. 3 mg of aluminum flakes of average size 20 μm coated with a layer of amorphous silica of average thickness 100 nm, sold under the trade name Velvet by the company TOYAL Europe, were mixed with 4.5 mL of the solution. of KAuCU and 3 mL of the betaine citrate solution, to form an aqueous suspension.
Pour ce faire, la solution aqueuse de citrate de bétaïne a été chauffée à l'aide d'une plaque chauffante sous agitation magnétique à 100°C. Puis, les paillettes d'aluminium ont été ajoutées et la solution aqueuse de KAuCU a été ajoutée en 3 fois sur une période de 15 minutes, tout en maintenant le chauffage. To do this, the aqueous solution of betaine citrate was heated using a hotplate with magnetic stirring at 100 ° C. Then, the aluminum flakes were added and the aqueous solution of KAuCU was added in 3 batches over a period of 15 minutes, while maintaining the heating.
Puis la suspension résultante a été chauffée pendant 10 minutes. Then the resulting suspension was heated for 10 minutes.
Le matériau coloré obtenu a été récupéré par centrifugation puis séché à l'étuve à 120°C. The colored material obtained was recovered by centrifugation and then dried in an oven at 120 ° C.
Le matériau coloré obtenu est sous la forme de nanoparticules d'or de dimension moyenne 20 nm environ supportées. The colored material obtained is in the form of gold nanoparticles of average size approximately 20 nm supported.
Le matériau coloré obtenu présente une couleur rose pâle (couleur pantone : 5245). The colored material obtained has a pale pink color (pantone color: 5245).
Un procédé identique à celui tel que décrit ci-dessus a été mis en oeuvre, avec les modifications suivantes : A process identical to that as described above was implemented, with the following modifications:
- 3 mg des paillettes d'aluminium ont été mélangés avec 3 mL de la solution aqueuse de KAuCU et 3 mL de la solution de citrate de bétaïne, pour former une suspension aqueuse, - 3 mg of the aluminum flakes were mixed with 3 mL of the aqueous solution of KAuCU and 3 mL of the solution of betaine citrate, to form an aqueous suspension,
- la solution aqueuse de KAuCU a été ajoutée en 1 fois tout en maintenant le chauffage, et - the aqueous solution of KAuCU was added in 1 time while maintaining the heating, and
- la suspension résultante a été chauffée pendant 20 minutes. Le matériau coloré obtenu est sous la forme de nanoparticules d'or de dimension moyenne 30 nm environ supportées, formant une couche semi- continue à la surface des particules du support micrométrique. - the resulting suspension was heated for 20 minutes. The colored material obtained is in the form of gold nanoparticles with an average size of approximately 30 nm supported, forming a semi-continuous layer on the surface of the particles of the micrometric support.
Le matériau coloré obtenu présente une couleur bleue nuit (couleur pantone : 2705). The colored material obtained has a midnight blue color (pantone color: 2705).
Exemple 3 : procédé de préparation d'un matériau coloré sous la forme de nanoparticules d'or sur des paillettes d'aluminium revêtues d'une couche de silice amorphe Example 3: process for preparing a colored material in the form of gold nanoparticles on aluminum flakes coated with a layer of amorphous silica
Une solution aqueuse à 1,5 g/L de KAuCU a été préparée. A 1.5 g / L aqueous solution of KAuCU was prepared.
Une solution aqueuse à 4 g/L de citrate de bétaïne a été préparée. A 4 g / L aqueous solution of betaine citrate was prepared.
3 mg de paillettes d'aluminium de dimension moyenne 100 pm revêtues d'une couche de silice amorphe d'épaisseur moyenne 100 nm, vendues sous la dénomination commerciale Crystal par la société TOYAL Europe, ont été mélangés avec 4,5 mL de la solution aqueuse de KAuCU et 3 mL de la solution de citrate de bétaïne, pour former une suspension aqueuse. 3 mg of aluminum flakes of average size 100 μm coated with a layer of amorphous silica of average thickness 100 nm, sold under the trade name Crystal by the company TOYAL Europe, were mixed with 4.5 ml of the solution of KAuCU and 3 mL of the betaine citrate solution, to form an aqueous suspension.
Pour ce faire, la solution aqueuse de citrate de bétaïne a été chauffée à l'aide d'une plaque chauffante sous agitation magnétique à 100°C. Puis, les paillettes d'aluminium ont été ajoutées et la solution aqueuse de KAuCU a été ajoutée en 3 fois sur une période de 15 minutes, tout en maintenant le chauffage. To do this, the aqueous solution of betaine citrate was heated using a hotplate with magnetic stirring at 100 ° C. Then, the aluminum flakes were added and the aqueous solution of KAuCU was added in 3 batches over a period of 15 minutes, while maintaining the heating.
Puis la suspension résultante a été chauffée pendant 10 minutes. Then the resulting suspension was heated for 10 minutes.
Le matériau coloré obtenu a été récupéré par centrifugation puis séché à l'étuve à 120°C. The colored material obtained was recovered by centrifugation and then dried in an oven at 120 ° C.
Le matériau coloré obtenu est sous la forme de nanoparticules d'or de dimension moyenne 30 nm environ supportées. The colored material obtained is in the form of gold nanoparticles of average size approximately 30 nm supported.
Le matériau coloré obtenu présente une couleur fuchsia en incidence normale, et une couleur dorée en incidence rasante (couleurs pantone : 17-2034 (fuchsia) et 871-C (doré)). The colored material obtained exhibits a fuchsia color in normal incidence, and a golden color in grazing incidence (pantone colors: 17-2034 (fuchsia) and 871-C (gold)).
La figure 1 représente une image par microscopie électronique à balayage des paillettes d'aluminium utilisées comme support micrométrique particulaire dans le procédé de l'exemple 3. La figure 2 représente des images par STEM-EDX du matériau coloré obtenu dans l'exemple 3. La figure 2 [a) et b)] montre en particulier un dépôt de particules d'or sur une paillette d'aluminium. Dans la figure 2 b), le support représente une paillette d'aluminium et apparaît en bleu, la couche 1 représente une couche de silice amorphe et apparaît en vert, et la couche 3 représente les particules d'or et apparaît en rouge. FIG. 1 represents a scanning electron microscopy image of the aluminum flakes used as a particulate micrometric support in the process of Example 3. FIG. 2 represents images by STEM-EDX of the colored material obtained in example 3. FIG. 2 [a) and b)] shows in particular a deposit of gold particles on an aluminum flake. In FIG. 2 b), the support represents an aluminum flake and appears in blue, layer 1 represents a layer of amorphous silica and appears in green, and layer 3 represents the gold particles and appears in red.
Exemple 4 : procédé de préparation d'un matériau coloré sous la forme de nanoparticules d'or dispersées dans un matériau polymère époxyde Example 4: process for preparing a colored material in the form of gold nanoparticles dispersed in an epoxy polymer material
Une solution aqueuse comprenant 20 ml d'eau ultrapure (résistivité de l'eau d'au moins 10 MQ.cm environ) et du sel d'or HAuCU à 0,25 mM a été préparée et agitée vigoureusement. Elle a été chauffée à reflux, puis 1 ml d'une solution de citrate de sodium à 1,7 x 10-2 M a été ajoutée. La solution résultante a été agitée pendant 20 min tout en maintenant le chauffage à reflux. La solution vire au gris, puis violet et enfin au rouge-rubis dans les premières minutes. Ensuite, la solution résultante a été laissée refroidir à température ambiante. Des nanoparticules d'or de 15 nm de diamètre en suspension aqueuse ont ainsi été obtenues. La suspension aqueuse obtenue comprend 2,0 x 10-9 mol/l de nanoparticules d'or. An aqueous solution comprising 20 ml of ultrapure water (water resistivity of at least about 10 MQ.cm) and 0.25 mM HAuCU gold salt was prepared and stirred vigorously. It was heated to reflux, then 1 ml of a 1.7 x 10 -2 M sodium citrate solution was added. The resulting solution was stirred for 20 min while maintaining heating at reflux. The solution turns gray, then purple and finally ruby red in the first few minutes. Then, the resulting solution was allowed to cool to room temperature. Gold nanoparticles 15 nm in diameter in aqueous suspension were thus obtained. The aqueous suspension obtained comprises 2.0 x 10 -9 mol / l of gold nanoparticles.
10 ml de la suspension aqueuse obtenue précédemment ont été chauffés à une température légèrement inférieure à 100°C (ne pas porter la solution à ébullition pour ne pas déstabiliser les nanoparticules d'or) sur une plaque chauffante avec une agitation magnétique. Puis des ajouts successifs de 2 ml d'éthanol dans la suspension aqueuse ont été réalisés de manière à réaliser un remplacement de l'eau par de l'éthanol. La suspension finale d'éthanol obtenue comprend lxlO 8 mol/l de nanoparticules d'or. 10 ml of the aqueous suspension obtained previously were heated to a temperature slightly below 100 ° C (do not bring the solution to a boil so as not to destabilize the gold nanoparticles) on a hot plate with magnetic stirring. Then successive additions of 2 ml of ethanol in the aqueous suspension were carried out so as to replace the water with ethanol. The final ethanol suspension obtained comprises 1 × 10 8 mol / l of gold nanoparticles.
Une résine époxyde a été préparée de la façon suivante : 10 ml de résine et 5 ml de durcisseur, vendus sous la dénomination Résine Cristal commercialisée par la société PEBEO, sont mélangées. An epoxy resin was prepared as follows: 10 ml of resin and 5 ml of hardener, sold under the name Crystal Resin marketed by the company PEBEO, are mixed.
1 ml de la suspension alcoolique de nanoparticules d'or est ensuite incorporé sous agitation lente dans la résine époxyde telle que préparée précédemment. Le mélange obtenu est ensuite coulé dans un moule en silicone de forme souhaitée, puis laissé au repos 24h jusqu'à polymérisation complète. Le solide obtenu se présente sous la forme d'un matériau translucide de couleur rouge (couleur pantone : 19-1664). 1 ml of the alcoholic suspension of gold nanoparticles is then incorporated with slow stirring into the epoxy resin as prepared above. The mixture obtained is then poured into a silicone mold of the desired shape, then left to stand for 24 hours until complete polymerization. The solid obtained is in the form of a translucent material of red color (pantone color: 19-1664).
Exemple 5 : procédé de préparation d'un matériau coloré sous la forme de nanoparticules de cuivre dispersées dans un matériau polymère époxyde Example 5: process for preparing a colored material in the form of copper nanoparticles dispersed in an epoxy polymer material
Une suspension de nanoparticules de cuivre est obtenue selon la voie de synthèse solvothermale assistée par chauffage micro-ondes. A suspension of copper nanoparticles is obtained according to the solvothermal synthesis route assisted by microwave heating.
Pour ce faire, 0,1178 g de CuCI2, 0,4 g de PVP 10000 vendu sous la dénomination commerciale PVP-10 par la société Sigma Aldrich, et 40 ml d'éthanol sont introduits dans un réacteur en téflon, et le réacteur est inséré dans un four micro-ondes. Il subit ensuite un chauffage selon la programmation suivante : montée en température de la température ambiante à 140°C en 5 minutes / pas de maintien en température / arrêt du chauffage micro-ondes / et redescente jusqu'à la température ambiante par inertie. Le chauffage micro ondes est réalisé à une fréquence de 45 Hz. Une suspension alcoolique de couleur jaune-orangé vif est alors obtenue. To do this, 0.1178 g of CuCl 2 , 0.4 g of PVP 10000 sold under the trade name PVP-10 by the company Sigma Aldrich, and 40 ml of ethanol are introduced into a Teflon reactor, and the reactor is inserted in a microwave oven. It then undergoes heating according to the following schedule: temperature rise from room temperature to 140 ° C in 5 minutes / no temperature maintenance / microwave heating off / and drop to room temperature by inertia. Microwave heating is carried out at a frequency of 45 Hz. An alcoholic suspension of bright yellow-orange color is then obtained.
Une résine époxyde est préparée de la façon suivante : 10 ml de résine et 5 ml de durcisseur, vendus sous la dénomination Résine Cristal commercialisée par la société PEBEO, sont mélangées. An epoxy resin is prepared as follows: 10 ml of resin and 5 ml of hardener, sold under the name Crystal Resin marketed by the company PEBEO, are mixed.
1 ml de la suspension alcoolique de nanoparticules de cuivre est ensuite incorporé sous agitation lente dans la résine époxyde telle que préparée précédemment. Le mélange obtenu est ensuite coulé dans un moule en silicone de forme souhaitée, puis laissé au repos 24h jusqu'à polymérisation complète. 1 ml of the alcoholic suspension of copper nanoparticles is then incorporated with slow stirring into the epoxy resin as prepared above. The mixture obtained is then poured into a silicone mold of the desired shape, then left to stand for 24 hours until complete polymerization.
Le solide obtenu se présente sous la forme d'un matériau translucide de couleur bleu (couleur Pantone 18-3949). The solid obtained is in the form of a translucent material of blue color (Pantone color 18-3949).
Exemple 6 : procédé de préparation d'un matériau coloré sous la forme de nanoparticules d'argent dispersées dans un matériau polymère époxyde Example 6: process for preparing a colored material in the form of silver nanoparticles dispersed in an epoxy polymer material
Une solution de nanoparticules d'argent est obtenue selon la voie de synthèse solvothermale assistée par chauffage micro-ondes. A solution of silver nanoparticles is obtained according to the solvothermal synthesis route assisted by microwave heating.
Pour ce faire, un mélange comprenant 0,1578 g de nitrate d'argent AgN03, et 12 ml d'une solution de PVP 10000 vendu sous la dénomination commerciale PVP-10 par la société Sigma Aldrich dans l'éthanol à 33,3 g/L, est soumis à des ultrasons à l'aide d'une cuve à ultrasons, afin de dissoudre l'intégralité du sel d'argent dans la solution éthanoïque de PVP, puis le mélange résultant est introduit dans un réacteur en téflon. Le réacteur est inséré dans un four micro-ondes. Il subit alors un chauffage selon la programmation suivante : montée en température de la température ambiante à 150°C en 2 minutes / maintien en température de 30 secondes à 150°C / arrêt du chauffage micro ondes/ et redescente jusqu'à la température ambiante par inertie. Le chauffage micro-ondes a été réalisé à une fréquence de 45 Hz. Une suspension alcoolique de couleur jaune-orangé vif est alors obtenue. To do this, a mixture comprising 0.1578 g of silver nitrate AgN0 3 , and 12 ml of a solution of PVP 10000 sold under the trade name PVP-10 by the company Sigma Aldrich in ethanol at 33.3 g / L, is subjected to ultrasound using an ultrasonic bath, in order to dissolve all of the silver salt in the ethanoic solution of PVP, then the resulting mixture is introduced into a Teflon reactor. The reactor is inserted into a microwave oven. It then undergoes heating according to the following schedule: temperature rise from room temperature to 150 ° C in 2 minutes / temperature maintenance for 30 seconds at 150 ° C / microwave heating off / and drop to room temperature by inertia. Microwave heating was carried out at a frequency of 45 Hz. An alcoholic suspension of bright yellow-orange color is then obtained.
Une résine époxyde est préparée de la façon suivante : 10 ml de résine et 5 ml de durcisseur, vendus sous la dénomination Résine Cristal commercialisée par la société PEBEO, sont mélangées. An epoxy resin is prepared as follows: 10 ml of resin and 5 ml of hardener, sold under the name Crystal Resin marketed by the company PEBEO, are mixed.
1 ml de la suspension alcoolique de nanoparticules d'argent est ensuite incorporé sous agitation lente dans la résine époxyde telle que préparée précédemment. Le mélange obtenu est ensuite coulé dans un moule en silicone de forme souhaitée, puis laissé au repos 24h jusqu'à polymérisation complète. 1 ml of the alcoholic suspension of silver nanoparticles is then incorporated with slow stirring into the epoxy resin as prepared above. The mixture obtained is then poured into a silicone mold of the desired shape, then left to stand for 24 hours until complete polymerization.
Le solide obtenu se présente sous la forme d'un matériau translucide de couleur jaune (couleur Pantone PMS 109). The solid obtained is in the form of a translucent material of yellow color (Pantone PMS color 109).

Claims

Revendications Claims
1. Procédé de préparation d'un matériau coloré, caractérisé en ce qu'il comprend au moins les étapes suivantes : 1. Process for preparing a colored material, characterized in that it comprises at least the following steps:
i) une étape de chauffage d'une suspension aqueuse comprenant : i) a step of heating an aqueous suspension comprising:
- au moins un sel d'or (+III) ou au moins des nanoparticules d'or, - at least one gold salt (+ III) or at least gold nanoparticles,
- au moins un agent réducteur, et - at least one reducing agent, and
- au moins un support particulaire micrométrique, - at least one micrometric particulate support,
afin de former ledit matériau coloré en suspension, et to form said colored material in suspension, and
ii) une étape de récupération dudit matériau coloré, ii) a step of recovering said colored material,
ledit matériau coloré étant sous la forme de nanoparticules d'or supportées par ledit support particulaire micrométrique. said colored material being in the form of gold nanoparticles supported by said micrometric particulate support.
2. Procédé selon la revendication 1, caractérisé en ce que le sel d'or (+III) est choisi parmi l'acide tétrachloroaurique HAuCU, le tétrachloroaurate de potassium KAuCU et leur mélange. 2. Method according to claim 1, characterized in that the gold salt (+ III) is chosen from tetrachloroauric acid HAuCU, potassium tetrachloroaurate KAuCU and their mixture.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le chauffage de l'étape i) est effectué par chauffage en température, ou par chauffage micro-ondes. 3. Method according to claim 1 or 2, characterized in that the heating of step i) is carried out by heating to temperature, or by microwave heating.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent réducteur est choisi parmi les citrates de métal alcalin, les citrates de dérivés zwitterioniques d'acides aminés, les borohydrures, l'hydrazine, l'hydroquinone et un de leurs mélanges. 4. Method according to any one of the preceding claims, characterized in that the reducing agent is chosen from alkali metal citrates, citrates of zwitterionic derivatives of amino acids, borohydrides, hydrazine, hydroquinone and one of their mixtures.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le support particulaire micrométrique est sous la forme de particules micrométriques ayant au moins une dimension inférieure à 300 pm. 5. Method according to any one of the preceding claims, characterized in that the micrometric particulate support is in the form of micrometric particles having at least one dimension less than 300 μm.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le support particulaire micrométrique est inorganique, et il comprend un matériau inorganique choisi parmi les silicates ; les verres ; les oxydes de métaux ; les oxydes de terres rares ; les métaux ; et un de leurs mélanges. 6. Method according to any one of the preceding claims, characterized in that the micrometric particulate support is inorganic, and it comprises an inorganic material chosen from silicates; the glasses ; metal oxides; rare earth oxides; metals ; and one of their mixtures.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le support particulaire micrométrique est sous la forme de paillettes, de plaquettes, de polyèdres, de billes, de particules, ou d'une poudre. 7. Method according to any one of the preceding claims, characterized in that the micrometric particulate support is in the form of flakes, platelets, polyhedra, beads, particles, or a powder.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape i) met en oeuvre au moins un sel d'or (+III) et le procédé comprend en outre avant l'étape i), une étape iO) de préparation de la suspension aqueuse comprenant les sous-étapes suivantes : 8. Method according to any one of the preceding claims, characterized in that step i) uses at least one gold salt (+ III) and the process further comprises before step i), a step iO) of preparation of the aqueous suspension comprising the following sub-steps:
10- 1) préparer une solution aqueuse comprenant le sel d'or (+III), iO-2) préparer une solution aqueuse comprenant l'agent réducteur, et iO-3) ajouter le support particulaire micrométrique et la solution aqueuse obtenue à la sous-étape iO-1), à la solution aqueuse de la sous-étape iO-2). 10- 1) prepare an aqueous solution comprising the gold (+ III) salt, iO-2) prepare an aqueous solution comprising the reducing agent, and iO-3) add the micrometric particulate support and the aqueous solution obtained to the sub-step iO-1), to the aqueous solution of sub-step iO-2).
9. Procédé selon l'une quelconque des revendications 1 à 7, 9. Method according to any one of claims 1 to 7,
caractérisé en ce que l'étape i) met en oeuvre au moins des nanoparticules d'or, et le procédé comprend en outre avant l'étape i), une étape iO) de préparation de la suspension aqueuse comprenant les sous-étapes suivantes : characterized in that step i) uses at least gold nanoparticles, and the method further comprises, before step i), a step iO) of preparing the aqueous suspension comprising the following sub-steps:
iO-A) préparer une solution aqueuse comprenant les nanoparticules d'or, iO-B) ajouter l'agent réducteur, et iO-A) prepare an aqueous solution comprising the gold nanoparticles, iO-B) add the reducing agent, and
iO-C) ajouter le support particulaire micrométrique. iO-C) add the micrometric particulate support.
10. Matériau coloré obtenu selon un procédé tel que défini à l'une quelconque des revendications précédentes, caractérisé en ce qu'il est sous la forme de nanoparticules d'or supportées sur un support particulaire 10. Colored material obtained according to a process as defined in any one of the preceding claims, characterized in that it is in the form of gold nanoparticles supported on a particulate support.
micrométrique. micrometric.
11. Composition colorée comprenant au moins un matériau coloré tel que défini à la revendication 10, et au moins un solvant dans lequel ledit matériau coloré est dispersé. 11. A colored composition comprising at least one colored material as defined in claim 10, and at least one solvent in which said colored material is dispersed.
12. Procédé de préparation d'un matériau coloré, caractérisé en ce qu'il comprend au moins les étapes suivantes : 12. Process for preparing a colored material, characterized in that it comprises at least the following steps:
a) une étape de préparation d'une composition réticulable comprenant un ou plusieurs précurseurs époxydes, a) a step of preparing a crosslinkable composition comprising one or more epoxy precursors,
b) une étape de mélange de la composition réticulable de l'étape a) avec une suspension dans un solvant protique polaire de nanoparticules métalliques d'un métal choisi parmi l'or, le cuivre, l'argent, et un de leurs mélanges, afin d'obtenir une composition colorée, et b) a step of mixing the crosslinkable composition of step a) with a suspension in a polar protic solvent of metallic nanoparticles of a metal chosen from gold, copper, silver, and one of their mixtures, in order to obtain a colored composition, and
c) une étape de polymérisation, et c) a polymerization step, and
en ce que ledit matériau coloré est sous la forme de nanoparticules métalliques d'un métal choisi parmi l'or, le cuivre, l'argent, et un de leurs mélanges, dispersées dans un matériau polymère époxyde réticulé. in that said colored material is in the form of metallic nanoparticles of a metal chosen from gold, copper, silver, and a mixture thereof, dispersed in a crosslinked epoxy polymer material.
13. Procédé selon la revendication 12, caractérisé en ce que le solvant polaire protique est choisi parmi les alcools inférieurs. 13. The method of claim 12, characterized in that the polar protic solvent is chosen from lower alcohols.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce qu'il comprend en outre entre les étapes b) et c), une étape b') au cours de laquelle la composition colorée est coulée dans un moule. 14. The method of claim 12 or 13, characterized in that it further comprises between steps b) and c), a step b ′) during which the colored composition is poured into a mold.
15. Procédé selon l'une quelconque des revendications 12 à 14, 15. Method according to any one of claims 12 to 14,
caractérisé en ce que les nanoparticules métalliques sont revêtues d'une couche organique ou inorganique. characterized in that the metallic nanoparticles are coated with an organic or inorganic layer.
16. Matériau coloré obtenu selon un procédé tel que défini à l'une quelconque des revendications 12 à 15, caractérisé en ce qu'il est sous la forme de nanoparticules métalliques d'un métal choisi parmi l'or, le cuivre, l'argent, et un de leur mélanges, dispersées dans un matériau polymère époxyde réticulé. 16. Colored material obtained according to a process as defined in any one of claims 12 to 15, characterized in that it is in the form of metallic nanoparticles of a metal selected from gold, copper, silver, and a mixture thereof, dispersed in a crosslinked epoxy polymeric material.
17. Utilisation d'un matériau coloré tel que défini à la revendication 10 ou 16, dans des applications cosmétiques ou de parfumerie, dans le domaine des articles de mode, dans les emballages, dans la joaillerie, dans l'imprimerie, dans une peinture ou un vernis, ou comme moyen d'authentification ou de décoration. 17. Use of a colored material as defined in claim 10 or 16, in cosmetic or perfumery applications, in the field of fashion articles, in packaging, in jewelry, in printing, in a paint or a varnish, or as a means of authentication or decoration.
EP20743192.5A 2019-05-28 2020-05-27 Coloured material based on metal nanoparticles Pending EP3976716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905635A FR3096685B1 (en) 2019-05-28 2019-05-28 Colored material based on metallic nanoparticles
PCT/FR2020/050895 WO2020240137A1 (en) 2019-05-28 2020-05-27 Coloured material based on metal nanoparticles

Publications (1)

Publication Number Publication Date
EP3976716A1 true EP3976716A1 (en) 2022-04-06

Family

ID=68138348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20743192.5A Pending EP3976716A1 (en) 2019-05-28 2020-05-27 Coloured material based on metal nanoparticles

Country Status (5)

Country Link
US (1) US20220227967A1 (en)
EP (1) EP3976716A1 (en)
JP (1) JP2022534580A (en)
FR (1) FR3096685B1 (en)
WO (1) WO2020240137A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305756A1 (en) 2009-09-22 2011-04-06 Rolex Sa Coloured composite material containing nanoparticles
CN107614627B (en) * 2015-06-02 2020-09-22 日本板硝子株式会社 Bright pigment, method for producing same, pigment-containing composition, and pigment-containing coated body

Also Published As

Publication number Publication date
FR3096685B1 (en) 2022-09-02
JP2022534580A (en) 2022-08-02
WO2020240137A1 (en) 2020-12-03
US20220227967A1 (en) 2022-07-21
FR3096685A1 (en) 2020-12-04

Similar Documents

Publication Publication Date Title
JP2006510800A (en) Copper-based metal flakes with aluminum in particular and method for producing the same
TW201209110A (en) Film-forming pigments and coating system including the same
FR3002745A1 (en) HEART-BARK TYPE PARTICLES BASED ON POLYDOPAMINE AND VEGETABLE OIL
EP3976716A1 (en) Coloured material based on metal nanoparticles
EP1828318B1 (en) Metal pigment composition
CH702835A2 (en) colored solid precious material formed by assembly of noble metal nanoparticles.
FR2650514A1 (en) PROCESS FOR THE MANUFACTURE OF ORDINATED POWDERS BY SPRAYING FROM AT LEAST TWO PARTICLE POPULATIONS AND ORDERED POWDERS THUS OBTAINED
CA2512202C (en) Photosensitive dispersion with adjustable viscosity for metal deposition on an insulating substrate and use of same
CN108103555B (en) The method of electrophoretic deposition preparation structure color ITO
JP2017214235A (en) Bright material and use thereof
EP3333140B1 (en) Ceramic composition for stereolithography
EP2480611B1 (en) Composite material dyed by nanoparticles
US20160108244A1 (en) Silica protected pigments for use in artist media
JP2008297207A (en) Cosmetic pigment
WO2006037916A1 (en) Light-polarizing solid coating composition, optical lens comprising same, and method for making same
EP3325195B1 (en) Method for producing a bichromatic material in the form of a film
WO2020239785A1 (en) Solid composition for forming surface coatings
CN105801853B (en) A kind of preparation method based on polyethyleneimine synthesis fluorescent polymer nanoparticle
Stauch et al. Colloidal Core–Satellite Supraparticles via Preprogramed Burst of Nanostructured Micro‐Raspberry Particles
KR20160072710A (en) Facile preparation of SERS-active nanostructured Au spheres
EP3763842B1 (en) Composite material made of gold
Ohishi et al. Synthesis and properties of latent pigment nano-and micro-encapsulated in high-durability inorganic capsules
EP3943573A1 (en) Luminescent metal material, method for preparing same and use thereof
WO2005097915A2 (en) Interference pigments based on silicon or the alloys thereof
Ali et al. Plasmon Resonances for PS@ Au-Cu-Ag Composite Nanoshell

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)